

TEST REPORT

Product : Testo Control Unit

Trade mark : Otesto

Model/Type reference : 0480 0069

Serial Number : N/A

 Report Number
 : EED32K00112101

 FCC ID
 : WAF-04800069

Date of Issue : Aug. 13, 2018

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Testo SE & Co. KGaA
Testo-Strasse 1, Lenzkirch 79853, Germany

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Seal

Tested by:

Tom-chen

Tom chen (Test Project)

Reviewed by:

Kevin yang (Reviewer)

Date: Aug. 13, 2018

Max liang (Project Engineer)

Max liang

Sheek Luo (Lab supervisor)

Check No.:3096309230

2 Version

Version No.	Date	Description				
00	00 Aug. 13, 2018		Original			
	/°>	15	25	/ 5		
		(47°)	(0,4,2)	(2)		

3 Test Summary

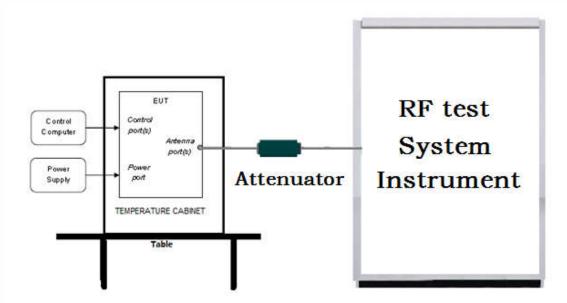
163t Summary			
Test Item	Test Requirement	Test method	Resul
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
(Radiated Emission) Remark:	15.205/15.209		_

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Page 4 of 54

4 Content

•						
1 CC	OVER PAGE					1
2 VE	RSION					2
3 TE	ST SUMMARY	•••••	•••••	•••••	•••••	3
4 CC	ONTENT				•••••	4
5 TE	ST REQUIREMENT				•••••	5
5.	1 TEST SETUP					5
	5.1.1 For Conducted test	•				
	5.1.2 For Radiated Emiss5.1.3 For Conducted Emis					
5	2 Test Environment					
	3 TEST CONDITION					
6 GE	ENERAL INFORMATION				•••••	7
	1 CLIENT INFORMATION					
	2 GENERAL DESCRIPTION OF					
	3 PRODUCT SPECIFICATION					
	4 DESCRIPTION OF SUPPOR 5 TEST LOCATION					
	6 DEVIATION FROM STANDA					
	7 ABNORMALITIES FROM STA					
	8 OTHER INFORMATION REC					
	9 MEASUREMENT UNCERTAI					
7 EG	QUIPMENT LIST				••••••	9
8 RA	ADIO TECHNICAL REQUI					
	Appendix A): 6dB Occupie	ed Bandwidth				12
	Appendix B): Conducted I	Peak Output Powe	er			14
	Appendix C): Band-edge					
	Appendix D): RF Conduct Appendix E): Power Spec	•				
	Appendix F): Antenna Re					
	Appendix G): AC Power L					
	Appendix H): Restricted b					
	Appendix I): Radiated Spi	urious Emissions		<i></i>		32
РНО	TOGRAPHS OF TEST SE	ETUP			•••••	37
РНО	TOGRAPHS OF EUT CO	NSTRUCTIONAL	DETAILS		•••••	39



Report No. :EED32K00112101 Page 5 of 54

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

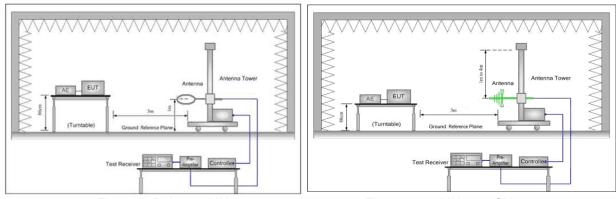
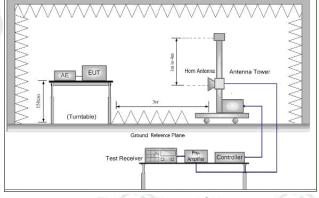
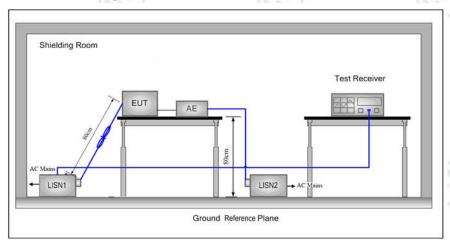


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz




Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:			(9
Temperature:	23.1 °C		
Humidity:	45% RH	Same a	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

	Test Mode	Tx/Rx	RF Channel			
L	rest wode	TX/KX	Low(L)	Middle(M)	High(H)	
1	05014	0.4001411 0.400.1411	Channel 1	Channel 20	Channel 40	
	GFSK	2402MHz ~2480 MHz	2402MHz 2440MHz 2480MH.			
	TX mode:	The EUT transmitted the continuous signal at the specific channel(s).				

Report No. :EED32K00112101 Page 7 of 54

6 General Information

6.1 Client Information

Applicant:	Testo SE & Co. KGaA
Address of Applicant:	Testo-Strasse 1, Lenzkirch 79853, Germany
Manufacturer:	Shenzhen Phonemax Technology Co., Ltd.
Address of Manufacturer:	5F, East block, LaoBing Building, Xingye Road, Xixiang, Bao'an District, Shenzhen
Factory:	Shenzhen Newsun Technology Co., Ltd
Address of Factory:	5F, Block A1, Zhongtai Information Industrial Park, No. 2 Dezheng Road, Shilong Community, Shiyan Street, Bao`an District, Shenzhen

6.2 General Description of EUT

Product Name:	Testo Control Uni	it
Model No.(EUT):	0480 0069	
Trade mark:	●testo	
EUT Supports Radios application:	WiFi: IEEE 802.1	mode, 2402MHz to 2480MHz 1b/g/n(HT20): 2412MHz to 2462MHz 1n(HT40): 2422MHz to 2452MHz o 1610MHz
Power Supply:	Adapter	Model: 0554 1104 Input: 100-240V~50/60Hz, 0.2A Output: 5.0V1.0A
25.7	Battery	Rechargeable Li-ion Battery 3.8V, 2150mAh, 8.17Wh
USB cable:	200cm(shielded)	

6.3 Product Specification subjective to this standard

	7'5
SSS	(5.77)
FSK	
ntenna Type: MONOPOLE ntenna Gain: 2.3dBi	
C 120V, 60Hz	
18.19(manufacturer declare)	
.2(manufacturer declare)	
ay 11, 2018	CO.
ay 11, 2018 to Aug. 13, 2018	
	sss rsk Intenna Type: MONOPOLE Intenna Gain: 2.3dBi C 120V, 60Hz I8.19(manufacturer declare) I.2(manufacturer declare) Is y 11, 2018

6.4 Description of Support Units

The EUT has been tested independently.

Report No. :EED32K00112101 Page 8 of 54

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

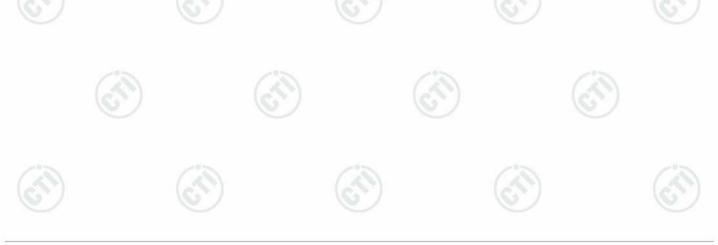
Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions


None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
-1	Radio Frequency	7.9 x 10 ⁻⁸
	DE was sandusted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
2	Dadiated Churique emission test	4.5dB (30MHz-1GHz)
3 Radiate	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4 Conduction emission		3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

7 Equipment List

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	05-26-2017 05-25-2018	05-25-2018 05-24-2019		
Temperature/ Humidity Indicator	Belida	TT-512	A19	01-24-2018	01-23-2019		
LISN	R&S	ENV216	100098	05-11-2018	05-10-2019		

	RF Conducted test							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019			
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019			
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019			
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-10-2018	01-09-2019			
power meter & power sensor	R&S	OSP120	101374	04-11-2018	04-10-2019			
RF control unit	JS Tonscend	JS0806-2	2015860006	03-13-2018	03-12-2019			

	3N	l Semi/full-anechoid	Chamber Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	/	06-04-2016	06-03-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	06-05-2018	06-04-2019
Preamplifier	JS Tonscend	EMC051845SE	980380	01-19-2018	01-18-2019
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015 07-18-2018	07-18-2018 07-16-2021
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-26-2018 05-25-2018	05-25-2018 05-24-2019
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095744	03-13-2018	03-12-2019
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019
Communication test set	Agilent	E5515C	GB47050534	03-16-2018	03-15-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019
Communication test set	R&S	CMW500	152394	03-16-2018	03-15-2019
High-pass filter	Sinoscite	FL3CX03WG18NM1 2-0398-002		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA09CL12 -0395-001	<u>(11)-</u>	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA08CL12 -0393-001	<u> </u>	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA04CL12 -0396-002		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA03CL12 -0394-001	(01-10-2018	01-09-2019

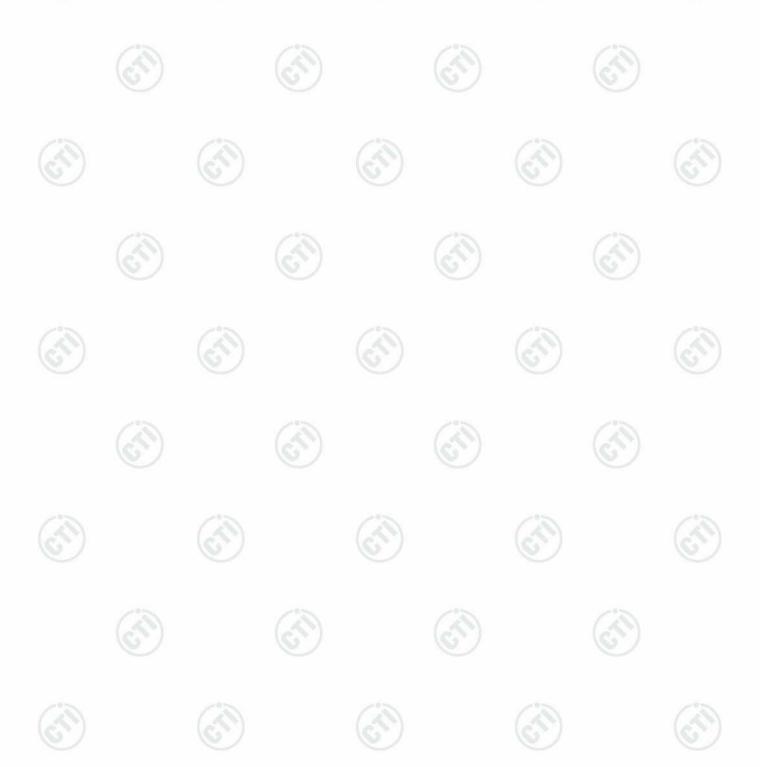
8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

_					
	Test Requirement	Test method	Test item	Verdict	Note
	Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
	Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
	Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
1	Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
	Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
	Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
	Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
	Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
	Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

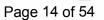


Appendix A): 6dB Occupied Bandwidth

Test Result

5.307				1.704	
Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6929	1.0393	PASS	
BLE	MCH	0.6903	1.0414	PASS	Peak
BLE	нсн	0.6880	1.0407	PASS	detector

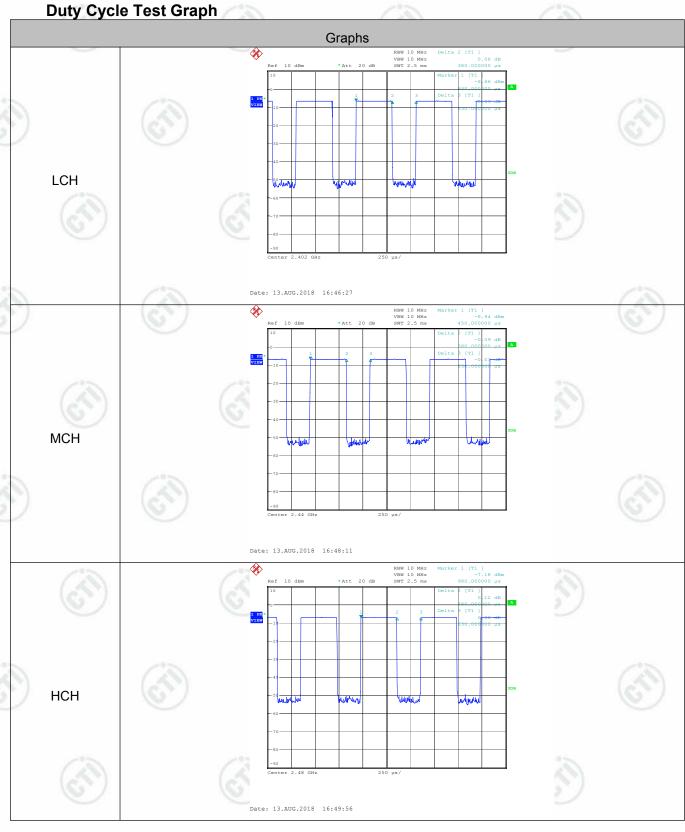
Page 13 of 54



Appendix B): Conducted Peak Output Power

Duty Cycle

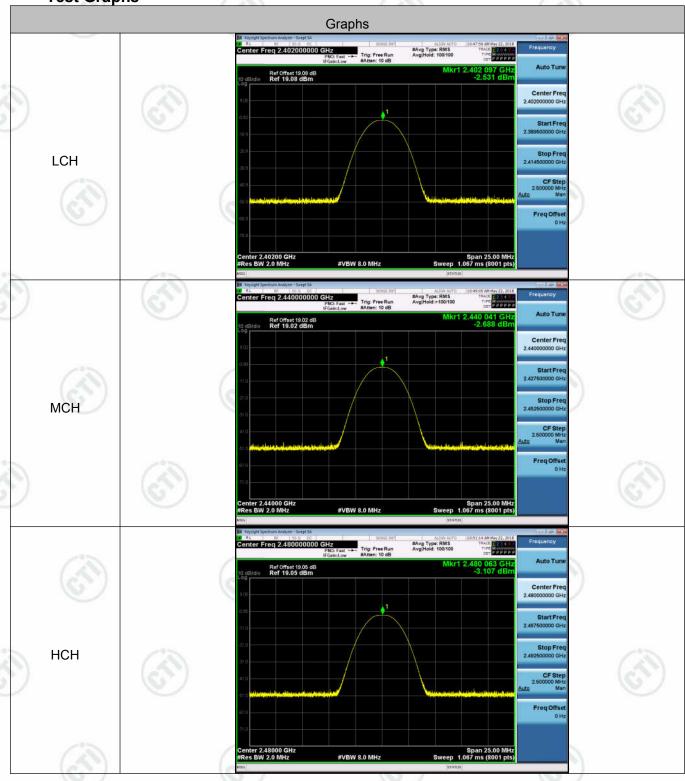
	Mode	Channel	Duty Cycle[%]	Verdict
	BLE	LCH	60.32	PASS
0	BLE	MCH	60.32	PASS
2/	BLE	НСН	60.32	PASS



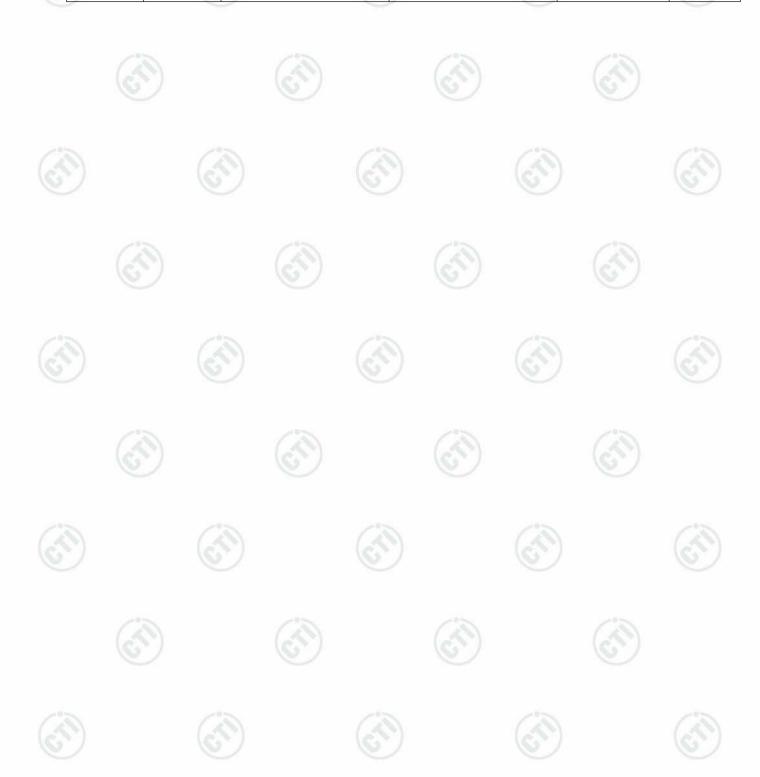
Page 16 of 54

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Av.Power [dBm]	Verdict
BLE	LCH	-2.531	-6.922	PASS
BLE	MCH	-2.688	-7.079	PASS
BLE	НСН	-3.107	-7.498	PASS



Page 17 of 54



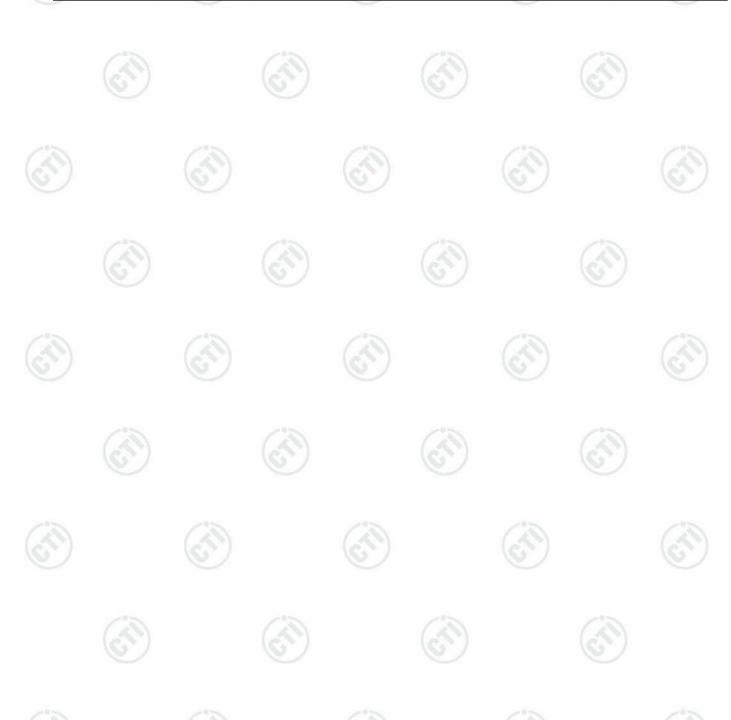
Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
0	BLE	LCH	-3.333	-61.477	-23.33	PASS
3	BLE	нсн	-3.953	-60.134	-23.95	PASS

Page 19 of 54

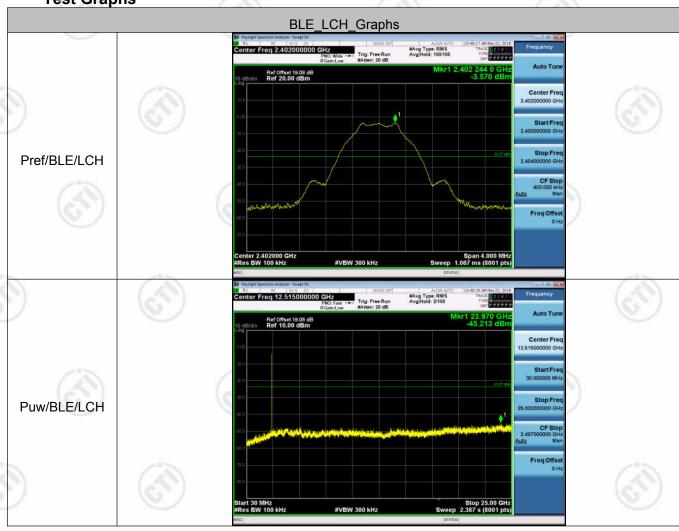
Test Graphs

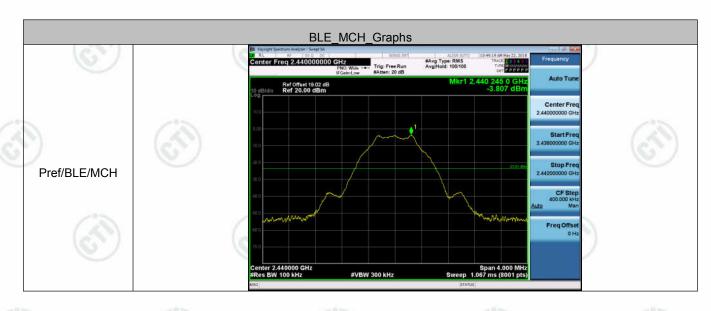


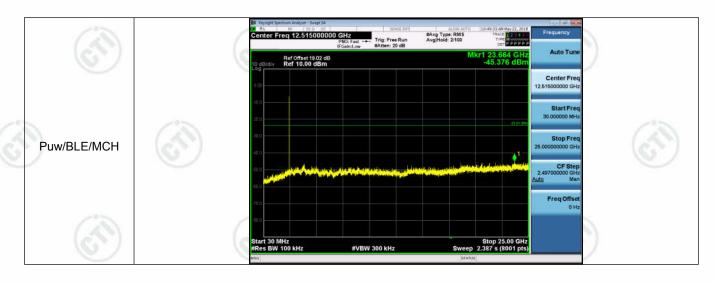
Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-3.57	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-3.807	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	-4.723	<limit< td=""><td>PASS</td></limit<>	PASS



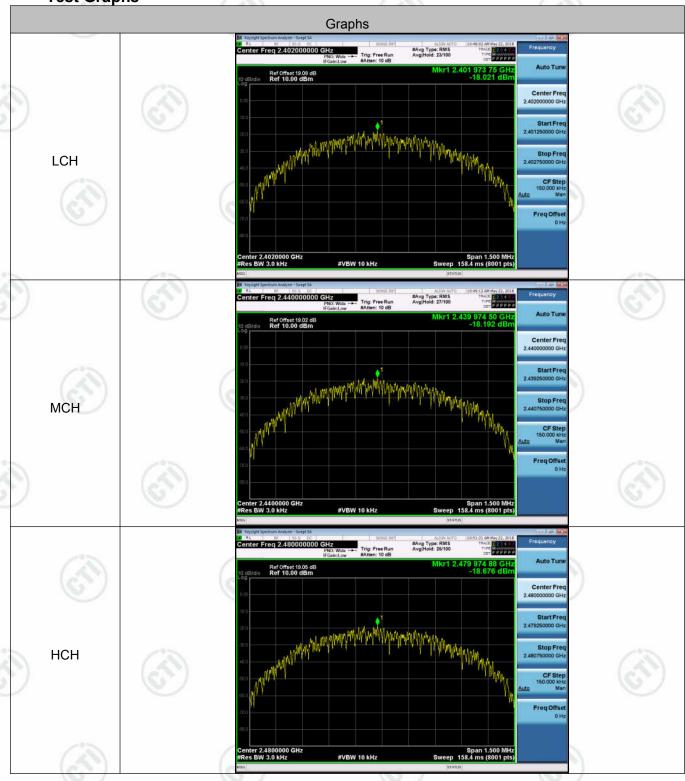




Appendix E): Power Spectral Density

Result Table

5.302		3.700		
Mode	Channel	PSD [[dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-18.021	8	PASS
BLE	MCH	-18.192	8	PASS
BLE	нсн	-18.676	8	PASS



Page 24 of 54

Report No. :EED32K00112101 Page 25 of 54

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is MONOPOLE and no consideration of replacement. The best case gain of the antenna is 2.3dBi.

Appendix G): AC Power Line Conducted Emission

Test Procedure: Test frequency range :150KHz-30MHz

- 1)The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

	Limit (c	dΒμV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

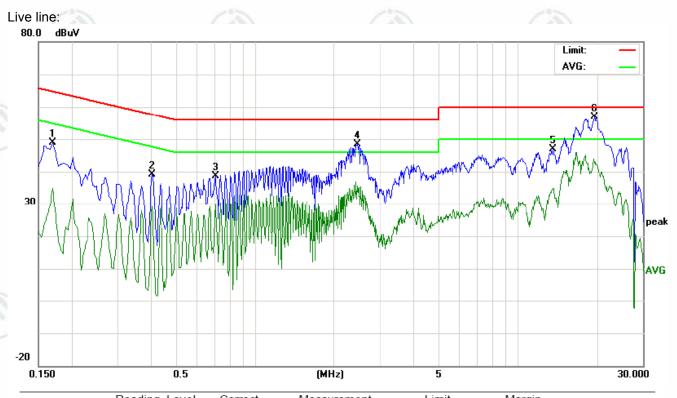
^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

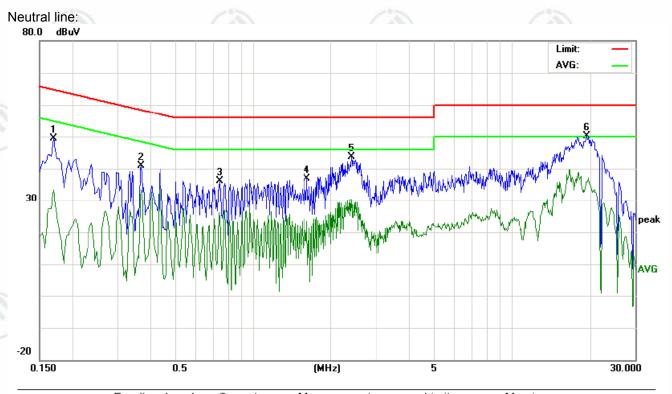
An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



Page 27 of 54

MHz Peak QP AVG dB peak QP AVG P/F Comment 1 0.1700 39.20 36.08 25.11 9.74 48.94 45.82 34.85 64.96 54.96 -19.14 -20.11 P 2 0.4060 29.50 26.42 19.46 9.75 39.25 36.17 29.21 57.73 47.73 -21.56 -18.52 P 3 0.7060 28.83 26.43 20.22 9.75 38.58 36.18 29.97 56.00 46.00 -19.82 -16.03 P 4 2.4539 38.72 35.10 26.03 9.70 48.42 44.80 35.73 56.00 46.00 -11.20 -10.27 P 5 13.6900 36.93 33.76 24.91 9.95 46.88 43.71 34.86 6	No.	Freq.		ding_Le dBu∀)	vel	Correct Factor	IV	leasuren (dBu∀)		Lin (dBi			rgin dB)		
2 0.4060 29.50 26.42 19.46 9.75 39.25 36.17 29.21 57.73 47.73 -21.56 -18.52 P 3 0.7060 28.83 26.43 20.22 9.75 38.58 36.18 29.97 56.00 46.00 -19.82 -16.03 P 4 2.4539 38.72 35.10 26.03 9.70 48.42 44.80 35.73 56.00 46.00 -11.20 -10.27 P 5 13.6900 36.93 33.76 24.91 9.95 46.88 43.71 34.86 60.00 50.00 -16.29 -15.14 P		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
3 0.7060 28.83 26.43 20.22 9.75 38.58 36.18 29.97 56.00 46.00 -19.82 -16.03 P 4 2.4539 38.72 35.10 26.03 9.70 48.42 44.80 35.73 56.00 46.00 -11.20 -10.27 P 5 13.6900 36.93 33.76 24.91 9.95 46.88 43.71 34.86 60.00 50.00 -16.29 -15.14 P	1	0.1700	39.20	36.08	25.11	9.74	48.94	45.82	34.85	64.96	54.96	-19.14	-20.11	Р	
4 2.4539 38.72 35.10 26.03 9.70 48.42 44.80 35.73 56.00 46.00 -11.20 -10.27 P 5 13.6900 36.93 33.76 24.91 9.95 46.88 43.71 34.86 60.00 50.00 -16.29 -15.14 P	2	0.4060	29.50	26.42	19.46	9.75	39.25	36.17	29.21	57.73	47.73	-21.56	-18.52	Р	
5 13.6900 36.93 33.76 24.91 9.95 46.88 43.71 34.86 60.00 50.00 -16.29 -15.14 P	3	0.7060	28.83	26.43	20.22	9.75	38.58	36.18	29.97	56.00	46.00	-19.82	-16.03	Р	
	4	2.4539	38.72	35.10	26.03	9.70	48.42	44.80	35.73	56.00	46.00	-11.20	-10.27	Р	
6 19.5740 46.93 44.53 32.75 10.06 56.99 54.59 42.81 60.00 50.00 -5.41 -7.19 P	5	13.6900	36.93	33.76	24.91	9.95	46.88	43.71	34.86	60.00	50.00	-16.29	-15.14	Р	
	6	19.5740	46.93	44.53	32.75	10.06	56.99	54.59	42.81	60.00	50.00	-5.41	-7.19	Р	



Page 28 of 54

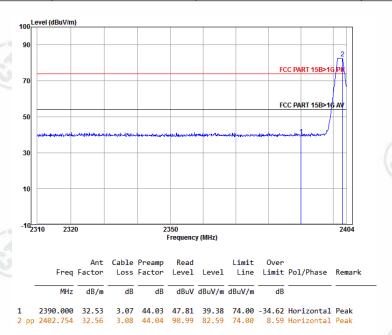
No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasurem (dBuV)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1700	39.52	36.43	23.54	9.74	49.26	46.17	33.28	64.96	54.96	-18.79	-21.68	Р	
2	0.3700	31.13	28.74	23.57	9.76	40.89	38.50	33.33	58.50	48.50	-20.00	-15.17	Р	
3	0.7460	26.44	23.48	14.96	9.75	36.19	33.23	24.71	56.00	46.00	-22.77	-21.29	Р	
4	1.6220	27.13	24.85	13.70	9.72	36.85	34.57	23.42	56.00	46.00	-21.43	-22.58	Р	
5	2.3980	34.02	30.48	20.71	9.71	43.73	40.19	30.42	56.00	46.00	-15.81	-15.58	Р	
6	19.4460	40.18	37.41	25.86	10.05	50.23	47.46	35.91	60.00	50.00	-12.54	-14.09	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Ab 4011-	Peak	1MHz	3MHz	Peak	-05
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 meters was mounted on the total c. The antenna height is determine the maximu polarizations of the antenna was tuned was turned from 0 deg e. The test-receiver systematics of the antenna was turned from the determined from the degree of the enternal was turned from the test-receiver systematics.	on the top of a rot choic camber. The of the highest ra- sters away from to p of a variable-howaried from one of m value of the field enna are set to rous inssion, the EUT to heights from trees to 360 degrees	ne table wandiation. The interference interference in the interfer	ence-receinna tower. ur meters n. Both hor neasurement ged to its very 4 meters at	above the gradent above the gradent and vent. worst case along the rotate and the rotate and the reading.	to i, whic ound t rertical
	f. Place a marker at the of frequency to show con bands. Save the spect for lowest and highest	end of the restric opliance. Also me oum analyzer plo	easure any	emissions	s in the restri	
	Bandwidth with Maxim f. Place a marker at the of frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedure. G. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lower in the radiation measure. Transmitting mode, an	end of the restrict opliance. Also me rum analyzer plochannel were as below: we is the test site aber change form 1 meter and table towest channel, timents are perford found the X ax	easure any it. Repeat f c, change fr n table 0.8 e is 1.5 met he Highest rmed in X, is positioni	remissions for each por com Semi- meter to 1 ter). channel Y, Z axis p ng which i	Anechoic Ch.5 meter(Aboositioning for tis worse car	dulatio nambe ove
imit:	Bandwidth with Maxim f. Place a marker at the of frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedure. G. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lower in the lower in the lower in the radiation measure. Transmitting mode, an j. Repeat above procedure.	end of the restrict opliance. Also me rum analyzer plochannel ure as below: we is the test site aber change form 1 meter and table owest channel, timents are perford found the X ax res until all frequence.	easure any of. Repeat f of table 0.8 e is 1.5 met he Highest rmed in X, is positioni	remissions for each por from Semi- meter to 1 ter). channel Y, Z axis p ng which i	Anechoic Ch.5 meter(Aboositioning for tis worse car	dulatio nambe ove
imit:	Bandwidth with Maxim f. Place a marker at the of frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedure. G. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lower in the radiation measure. Transmitting mode, an	end of the restrict opliance. Also me rum analyzer plochannel were as below: we is the test site aber change form 1 meter and table towest channel, timents are perford found the X ax	easure any of. Repeat f of change from table 0.8 e is 1.5 med he Highest rmed in X, is positioning uencies med im @3m)	rom Semi- meter to 1 ter). channel Y, Z axis p ng which in	Anechoic Ch.5 meter(Aboositioning for tis worse cases complete.	dulation nambe ove
imit:	Bandwidth with Maxim f. Place a marker at the of frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedure. G. Different between above to fully Anechoic Chamman 18GHz the distance is how it is the EUT in the low in the radiation measure. Transmitting mode, and it is in Repeat above procedure. Frequency 30MHz-88MHz	end of the restrict opliance. Also me rum analyzer plochannel vere as below: vere is the test site obser change form 1 meter and table owest channel, the result of found the X ax resuntil all frequency Limit (dBµV/40.0)	easure any t. Repeat f t, change fr table 0.8 e is 1.5 met he Highest med in X, is positioni uencies me m @3m)	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa	Anechoic Ch.5 meter(Aboositioning for tis worse cars complete.	dulation nambe ove
imit:	Bandwidth with Maxim f. Place a marker at the of frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedures. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low in the radiation measure and the requency. Transmitting mode, and j. Repeat above procedure.	end of the restrict opliance. Also me rum analyzer plochannel wre as below: We is the test site aber change form 1 meter and table to be the same of the channel, the ments are performed found the X ax res until all frequ	easure any of. Repeat f of table 0.8 e is 1.5 met he Highest rmed in X, is positioni uencies me	remissions for each portion Semi-meter to 1 ter). channel Y, Z axis programmed was red was red was red was red was red was red Quasi-pe	Anechoic Ch.5 meter(Abecositioning for tis worse cases complete.	dulation nambe ove
imit:	Bandwidth with Maxim f. Place a marker at the of frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedure. G. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lower in the reduction of the reduc	end of the restrict opliance. Also me rum analyzer plochannel we as below: We is the test site aber change form 1 meter and table owest channel, to ments are perford found the X ax res until all frequency. Limit (dBµV/40.0 43.5	easure any t. Repeat f t, change fr table 0.8 te is 1.5 met the Highest rmed in X, tis positioni uencies met tim @3m)	remissions for each portion Semi-meter to 1 ter). channel Y, Z axis programmed was red was Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Abecositioning for tis worse cast complete. mark eak Value	dulation nambe ove
Limit:	Bandwidth with Maxim f. Place a marker at the of frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedured g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low in the radiation measure Transmitting mode, and j. Repeat above procedured Transmitting mode, and j. Repeat above procedured Samuel Sa	end of the restrict opliance. Also me rum analyzer plochannel ure as below: ve is the test site aber change form 1 meter and table owest channel, the result of found the X ax resuntil all frequency Limit (dBµV/40.043.546.0	easure any t. Repeat f the change from table 0.8 the Highest from the Highest from the Highest from the control of the control	remissions for each portion Semi-meter to 1 ter). channel Y, Z axis pag which it easured was Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Aboositioning for tis worse cars complete. mark eak Value eak Value	dulation nambe ove

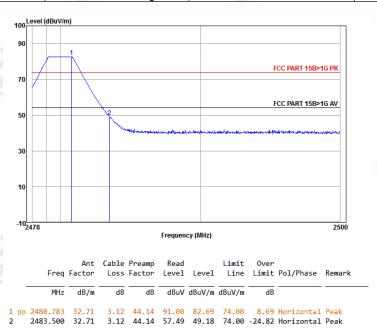


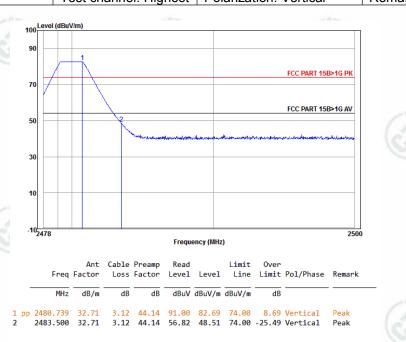
Page 30 of 54

Test plot as follows:

Worse case mode:	GFSK		(67)
Frequency: 2402MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK			
Frequency: 2402MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	





Page 31 of 54

Worse case mode:	GFSK	(2/2)	(25)	
Frequency: 2480MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	GFSK		
Frequency: 2480MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. :EED32K00112101 Page 32 of 54

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
/	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Al 4011	Peak	1MHz	3MHz	Peak	
(0,	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

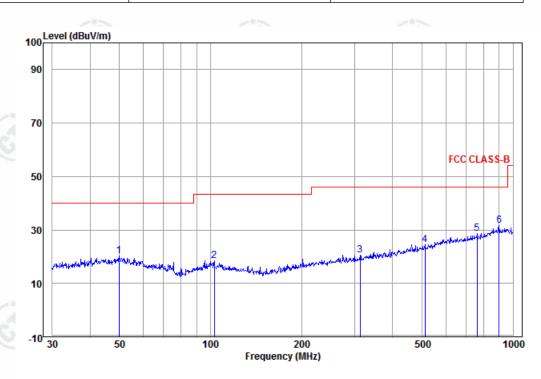
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

	- 11	n	١ı	t:
ш	-11	п	ш	ι.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	705	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

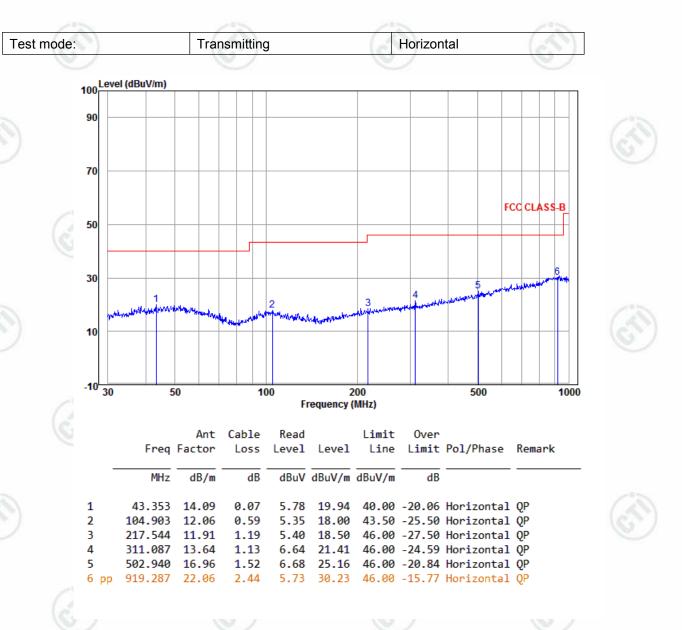
Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)			0
Test mode:	Transmitting	Vertical	

	Ant	Cable	Read		Limit	0ver			
Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark	
MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
40.004	44.50	0.44	F 46	20.46	40.00	40.04	W1	OD	
49.881	14.59	0.11	5.46	20.16	40.00	-19.84	vertical	QР	
103.080	12.22	0.59	5.79	18.60	43.50	-24.90	Vertical	QP	
312.179	13.66	1.13	5.91	20.70	46.00	-25.30	Vertical	QP	
511.835	17.12	1.52	5.81	24.45	46.00	-21.55	Vertical	QP	
760.704	19.57	2.50	6.55	28.62	46.00	-17.38	Vertical	QP	
900.147	22.10	2.49	6.96	31.55	46.00	-14.45	Vertical	QP	
	MHz 49.881 103.080 312.179 511.835 760.704	Freq Factor MHz dB/m 49.881 14.59 103.080 12.22 312.179 13.66 511.835 17.12 760.704 19.57	Freq Factor Loss MHz dB/m dB 49.881 14.59 0.11 103.080 12.22 0.59 312.179 13.66 1.13 511.835 17.12 1.52 760.704 19.57 2.50	Freq Factor Loss Level MHz dB/m dB dBuV 49.881 14.59 0.11 5.46 103.080 12.22 0.59 5.79 312.179 13.66 1.13 5.91 511.835 17.12 1.52 5.81 760.704 19.57 2.50 6.55	Freq Factor Loss Level Level MHz dB/m dB dBuV dBuV/m 49.881 14.59 0.11 5.46 20.16 103.080 12.22 0.59 5.79 18.60 312.179 13.66 1.13 5.91 20.70 511.835 17.12 1.52 5.81 24.45 760.704 19.57 2.50 6.55 28.62	Freq Factor Loss Level Level Line MHz dB/m dB dBuV dBuV/m dBuV/m 49.881 14.59 0.11 5.46 20.16 40.00 103.080 12.22 0.59 5.79 18.60 43.50 312.179 13.66 1.13 5.91 20.70 46.00 511.835 17.12 1.52 5.81 24.45 46.00 760.704 19.57 2.50 6.55 28.62 46.00	Freq Factor Loss Level Level Line Limit MHz dB/m dB dBuV dBuV/m dBuV/m dB 49.881 14.59 0.11 5.46 20.16 40.00 -19.84 103.080 12.22 0.59 5.79 18.60 43.50 -24.90 312.179 13.66 1.13 5.91 20.70 46.00 -25.30 511.835 17.12 1.52 5.81 24.45 46.00 -21.55 760.704 19.57 2.50 6.55 28.62 46.00 -17.38	Freq Factor Loss Level Level Line Limit Pol/Phase	Freq Factor Loss Level Level Line Limit Pol/Phase Remark MHz dB/m dB dBuV dBuV/m dBuV/m dB dB QP 49.881 14.59 0.11 5.46 20.16 40.00 -19.84 Vertical QP 103.080 12.22 0.59 5.79 18.60 43.50 -24.90 Vertical QP 312.179 13.66 1.13 5.91 20.70 46.00 -25.30 Vertical QP 511.835 17.12 1.52 5.81 24.45 46.00 -21.55 Vertical QP 760.704 19.57 2.50 6.55 28.62 46.00 -17.38 Vertical QP



Page 34 of 54

Page 35 of 54

Transmitter Emission above 1GHz

Worse case	mode:	GFSK	(N)	Test char	nnel:	Lowest	Remark: Po	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1276.818	30.41	1.98	44.28	48.81	36.92	74.00	-37.08	Pass	H
1777.646	31.36	2.61	43.70	49.10	39.37	74.00	-34.63	Pass	C H
4804.000	34.69	5.98	44.60	48.02	44.09	74.00	-29.91	Pass	Н
6017.064	35.91	7.44	44.50	49.26	48.11	74.00	-25.89	Pass	Н
7206.000	36.42	6.97	44.77	48.87	47.49	74.00	-26.51	Pass	Н
9608.000	37.88	6.98	45.58	46.86	46.14	74.00	-27.86	Pass	Н
1188.980	30.20	1.84	44.40	47.82	35.46	74.00	-38.54	Pass	V
1502.732	30.88	2.29	43.99	48.74	37.92	74.00	-36.08	Pass	V
4804.000	34.69	5.98	44.60	48.44	44.51	74.00	-29.49	Pass	V
5850.919	35.79	7.29	44.51	49.64	48.21	74.00	-25.79	Pass	V
7206.000	36.42	6.97	44.77	47.83	46.45	74.00	-27.55	Pass	V
9608.000	37.88	6.98	45.58	46.49	45.77	74.00	-28.23	Pass	V

Worse case	mode:	GFSK	760	Test char	nnel:	Middle	Remark: P	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1289.885	30.43	2.00	44.26	48.81	36.98	74.00	-37.02	Pass	/° #
1545.405	30.96	2.35	43.95	49.13	38.49	74.00	-35.51	Pass	(AH)
4880.000	34.85	6.13	44.60	49.14	45.52	74.00	-28.48	Pass	H
6001.768	35.90	7.44	44.50	49.32	48.16	74.00	-25.84	Pass	Н
7320.000	36.43	6.85	44.87	46.89	45.30	74.00	-28.70	Pass	Н
9760.000	38.05	7.12	45.55	45.90	45.52	74.00	-28.48	Pass	Н
1062.998	29.88	1.63	44.59	49.15	36.07	74.00	-37.93	Pass	V
1410.080	30.69	2.17	44.11	49.14	37.89	74.00	-36.11	Pass	V
4880.000	34.85	6.13	44.60	48.57	44.95	74.00	-29.05	Pass	V
6017.064	35.91	7.44	44.50	48.91	47.76	74.00	-26.24	Pass	V
7320.000	36.43	6.85	44.87	46.45	44.86	74.00	-29.14	Pass	V
9760.000	38.05	7.12	45.55	47.13	46.75	74.00	-27.25	Pass	V

Page 36 of 54

Worse case	mode:	GFSK	100	Test chan	nel:	Highest	Remark: P	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1293.173	30.44	2.00	44.25	49.16	37.35	74.00	-36.65	Pass	/°H
2102.853	31.93	2.90	43.65	48.59	39.77	74.00	-34.23	Pass	(H)
4960.000	35.02	6.29	44.60	47.11	43.82	74.00	-30.18	Pass	H
6611.326	36.21	7.28	44.56	49.00	47.93	74.00	-26.07	Pass	Н
7440.000	36.45	6.73	44.97	47.48	45.69	74.00	-28.31	Pass	Н
9920.000	38.22	7.26	45.52	46.96	46.92	74.00	-27.08	Pass	Н
1192.011	30.21	1.85	44.40	49.32	36.98	74.00	-37.02	Pass	V
1651.146	31.15	2.47	43.83	48.18	37.97	74.00	-36.03	Pass	V
4960.000	35.02	6.29	44.60	46.99	43.70	74.00	-30.30	Pass	V
6032.401	35.92	7.43	44.50	48.97	47.82	74.00	-26.18	Pass	V
7440.000	36.45	6.73	44.97	46.89	45.10	74.00	-28.90	Pass	V
9920.000	38.22	7.26	45.52	46.63	46.59	74.00	-27.41	Pass	V

Note

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test model No.: 0480 0069

Radiated spurious emission Test Setup-1(9K-30M)

Radiated spurious emission Test Setup-2(30M-1G)

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

PHOTOGRAPHS OF EUT Constructional Details

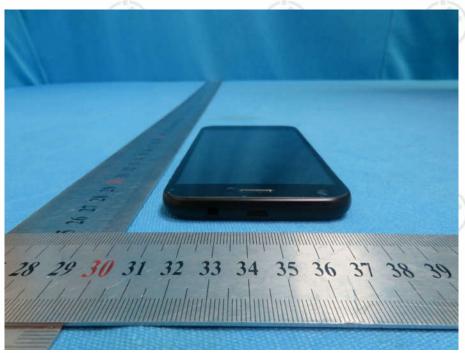
Test model No.: 0480 0069

View of Product-1

View of Product-2

Page 40 of 54

View of Product-3



Page 41 of 54

View of Product-5

View of Product-6

Page 42 of 54

View of Product-7

View of Product-8

View of Product-9

View of Product-10

View of Product-11

View of Product-12

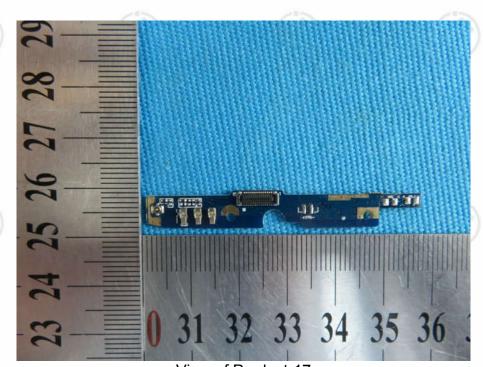
View of Product-13

View of Product-14

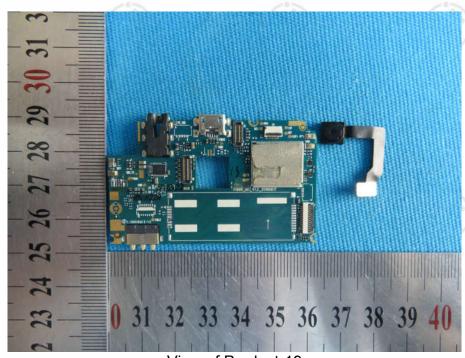
Page 46 of 54

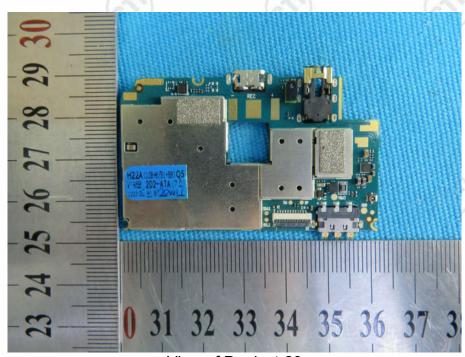
View of Product-15

View of Product-16



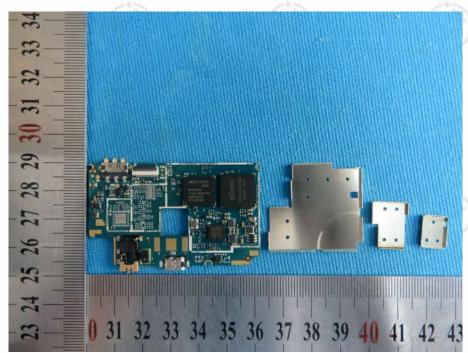
View of Product-18

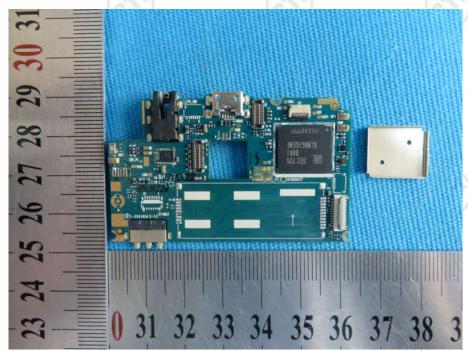




View of Product-19

View of Product-20





View of Product-21

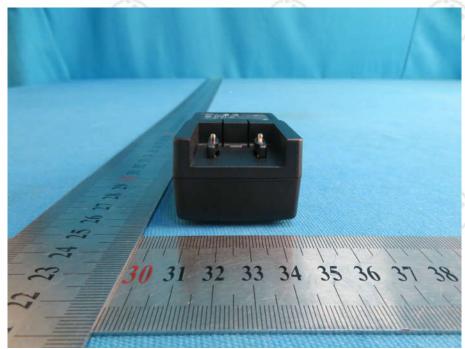
View of Product-22

View of Product-23

View of Product-24

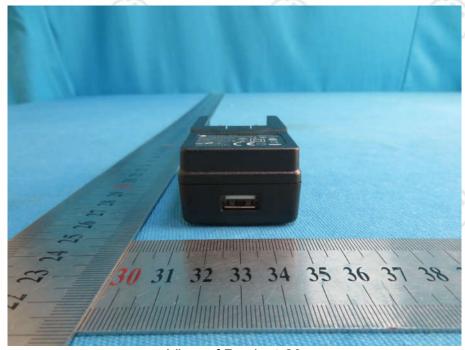
View of Product-25

View of Product-26



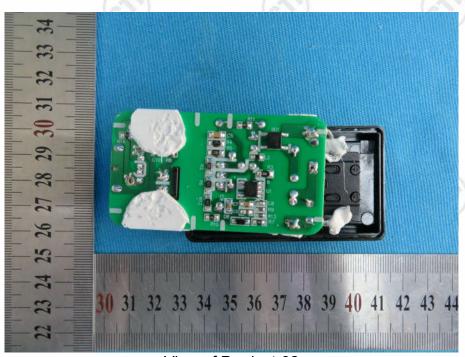
Page 52 of 54

View of Product-27



Page 53 of 54

View of Product-29



View of Product-31

View of Product-32

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com