

FCC Measurement/Technical Report on

Testo 400 – Universal IAQ instrument

FCC ID: WAF-04404000 IC: 6127B-04404000

Test Report Reference: MDE_TESTO_1805_FCCa

Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Commerzbank AG Account No. 303 016 000 Bank Code 300 400 00 IBAN DE81 3004 0000 0303 0160 00 Swift Code COBADEFF

Table of Contents

1	Applied Standards and Test Summary	4
1.1	Applied Standards	4
1.2	FCC-IC Correlation Table	5
1.3	Measurement Summary / Signatures	6
2	Administrative Data	9
2.1	Testing Laboratory	9
2.2	Project Data	9
2.3	Applicant Data	9
2.4	Manufacturer Data	9
3	Test object Data	10
3.1	General EUT Description	10
3.2	EUT Main components	11
3.3	Ancillary Equipment	11
3.4	AUXilIary Equipment	12
3.5	EUT Setups	12
3.6	Operating Modes	13
3.7	Product labelling	13
4	Test Results	14
4.1	Conducted Emiossions AC Mains	14
4.2	Occupied Bandwidth (6 dB)	17
4.3	Occupied Bandwidth (99%)	19
4.4	Peak Power Output	21
4.5	Spurious RF Conducted Emissions	23
4.6	Transmitter Spurious Radiated Emissions	25
4.7	Band Edge Compliance Conducted	32
4.8	Band Edge Compliance Radiated	34
4.9	Power Density	36
5	Test Equipment	38
6	Antenna Factors, Cable Loss and Sample Calculations	42
6.1	LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	42
6.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	43
6.3	Antenna R&S HL562 (30 MHz – 1 GHz)	44
6.4	Antenna R&S HF907 (1 GHz – 18 GHz)	45
6.5	Antenna EMCO 3160-09 (18 GHz - 26.5 GHz)	46
6.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	47
7	Setup Drawings	48

8	Measurement Uncertainties	49
9	Photo Report	49

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-17 Edition). The following subparts are applicable to the results in this test report.

- Part 2, Subpart J Equipment Authorization Procedures, Certification
- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, 558074 D01 15.247 Meas Guidance v05, 2018-08-24". ANSI C63.10-2013 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 2: 5.2 (a)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 2: 5.4 (d)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 2: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 2: 5.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	-	-

1.3 MEASUREMENT SUMMARY / SIGNATURES

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.207		
Conducted Emissions at AC Mains			
The measurement was performed according to ANSI C63.10		Final R	lesult
OP-Mode	Setup	FCC	IC
Operating mode, Connection to AC mains			
worst case, direct	S01_AA01	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (a)) (2)	
Occupied Bandwidth (6 dB)			
The measurement was performed according to ANSI C63	.10	Final R	lesult
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency	•		
Bluetooth LE, high	S04_AI01	Passed	Passed
Bluetooth LE, low	S04_AI01	Passed	Passed
Bluetooth LE, mid	S04_AI01	Passed	Passed
•	IC RSS-Gen 6.7 & Ch. 8	& IC TRC	-43; Ch.
Occupied Bandwidth (99%) The measurement was performed according to ANSI C63	.10	Final R	lesult
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency	-		
Bluetooth LE, high	S04_AI01	N/A	performed
Bluetooth LE, low	S04_AI01	N/A	performed
Bluetooth LE, mid	S04_AI01	N/A	performed
•	§ 15.247 (b)) (3)	
§15.247 Peak Power Output) (3)	
§15.247) (3) Final R	lesult
§15.247 Peak Power Output The measurement was performed according to ANSI C63 OP-Mode	.10 Setup		lesult IC
§15.247 Peak Power Output The measurement was performed according to ANSI C63 OP-Mode Radio Technology, Operating Frequency, Measurement method	.10 Setup	Final R FCC	IC
§15.247 Peak Power Output The measurement was performed according to ANSI C63 OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted	.10 Setup S04_AI01	Final R FCC Passed	IC Passed
§15.247 Peak Power Output The measurement was performed according to ANSI C63 OP-Mode Radio Technology, Operating Frequency, Measurement method	.10 Setup	Final R FCC	IC

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)
Spurious RF Conducted Emissions	

The measurement was performed according to ANSI C63.10		Final Result	
OP-Mode Radio Technology, Operating Frequency	Setup	FCC	IC
Bluetooth LE, high	S04_AI01	Passed	Passed
Bluetooth LE, low	S04_AI01	Passed	Passed
Bluetooth LE, mid	S04_AI01	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) §15.247

Transmitter Spurious Radiated Emissions The measurement was performed according to ANSI C63.10

The measurement was performed according to ANSI C63.10		Final Result	
OP-Mode Radio Technology, Operating Frequency, Measurement range	Setup	FCC	IC
Bluetooth LE, high, 1 GHz - 26 GHz	S01_AB01	Passed	Passed
Bluetooth LE, high, 30 MHz - 1 GHz	S01_AA01	Passed	Passed
Bluetooth LE, low, 1 GHz - 26 GHz	S01_AB01	Passed	Passed
Bluetooth LE, low, 30 MHz - 1 GHz	S01_AA01	Passed	Passed
Bluetooth LE, mid, 1 GHz - 26 GHz	S01_AA01	Passed	Passed
Bluetooth LE, mid, 30 MHz - 1 GHz	S01_AA01	Passed	Passed
Bluetooth LE, mid, 9 kHz - 30 MHz	S01_AA01	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) §15.247

Band Edge Compliance Conducted

The measurement was performed according to ANSI C63.10			Final Result	
OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	FCC	IC	
Bluetooth LE, high, high	S04_AI01	Passed	Passed	
Bluetooth LE, low, low	S04_AI01	Passed	Passed	

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) §15.247

Band Edge Compliance Radiated The measurement was performed according to ANSI C63.10			Final Result	
OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	FCC	IC	
Bluetooth LE, high, high	S01_AB01	Passed	Passed	

1

(responsible for testing and report)

B.Sc. Jens Dörwald

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

§ 15.247 (e)

Power Density			
The measurement was performed according to ANS	SI C63.10	Final Re	esult
OP-Mode Radio Technology, Operating Frequency	Setup	FCC	IC
Bluetooth LE, high	S04_AI01	Passed	Passed
Bluetooth LE, low	S04_AI01	Passed	Passed
Bluetooth LE, mid	S04_AI01	Passed	Passed

N/A: Not applicable N/P: Not performed

(responsible for accreditation scope) Dipl.-Ing. Marco kullik

ayers 7 layers GmbH, Borsigstr. 11

7 layers GmbH, Borsigsti, 1 40880 Ratingen, Germany Phone +49 (0)2102 749 0

2 ADMINISTRATIVE DATA

2.1 TESTING LABORATORY

Company Name:

7layers GmbH

Address:

Borsigstr. 11 40880 Ratingen Germany

This facility has been fully described in a report submitted to the ISED and accepted under the registration number: Site# 3699A-1.

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no:	DAkkS D-PL-12140-01-00	
FCC Designation Number:	DE0015	
FCC Test Firm Registration:	929146	
Responsible for accreditation scope:	DiplIng. Marco Kullik	
Report Template Version:	2018-01-10	
2.2 PROJECT DATA		
Responsible for testing and report:	B.Sc. Jens Dörwald	
Employees who performed the tests:	documented internally at 7Layers	
Date of Report:	2018-01-08	
Testing Period:	2018-10-16 to 2018-10-28	

2.3 APPLICANT DATA

Company Name:	Testo SE & Co. KGaA
Address:	Testo Straße 1 79853 Lenzkirch Germany
Contact Person:	Mr. Udo Spiwoks

2.4 MANUFACTURER DATA

Company Name:	please see Applicant data
	please see Applicate aata

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

Kind of Device product description	The EUT (Testo 400 – Universal IAQ instrument) is a universal IAQ Instrument for velocity and thermal comfort measurement, measurement with a modern graphic display with touch operation, an easy and professional reporting and with integrated calibration concept. Different external digital probes and temperature sensors can be attached.		
Product name	Testo 400 – Univer	sal IAQ instrument	
Туре	Bluetooth LE and W	/LAN transceiver	
Declared EUT data by	the supplier		
Voltage Type	AC		
Voltage Level	120 V / 60 Hz		
Tested Modulation Type	GFSK Modulation		
Specific product description for the EUT	The EUT is built up of two detachable parts, the Smart Device (SD) and Measuring Device (MD). The function of Smart Device covers in general the user interaction with a graphic display, storage of data and communication interfaces like WLAN. The Measuring Device includes the components of measuring like the internal differential pressure and arrange the communication with external probes		
The EUT provides the following ports:	Ports	Max. Cable Length [m]	Shielded
	Enclosure	-	No
	USB-Type-C (2pcs)	3	Yes
	DC / USB (Micro)	2	Yes
	Connector for ext. Sense (2pcs)	2	Yes
	AC	3	No
Tested datarates	1 Mbps		
Special software used for testing	-		

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

3.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
radiated sample 1	DE1101023aa01	Sample for radiated testing
Sample Parameter	Value	
Serial No.	52601170	
HW Version	2.1	
SW Version	App: 10.2.0.6170, FW: 0.1	.2.2
Comment		
Integral Antenna	+3dBi	

Sample Name	Sample Code	Description
radiated sample 2	DE1101023ab01	Sample for radiated testing
Sample Parameter	Va	alue
Serial No.	52602494	
HW Version	2.1	
SW Version	App: 10.2.0.6170, FW: 0.12.2	
Comment		
Integral Antenna	+3dBi	

Sample Name	Sample Code	Description
conducted sample	DE1101023ai01	Sample for conducted testing
Sample Parameter	Value	
Serial No.	52600969	
HW Version	2.1	
SW Version	App: 10.4.0.6286 , FW: (0.13.02
Comment		
Integral Antenna	+3dBi	

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, OUT Code)	Description
ANC 1	-0554 1106/7, EGSTON-BI12T-050200- IU	- AC/DC Adapter EGGSTON
ANC 2	0449 0134	USB Cable HW Status: 707

Device	Details (Manufacturer, Type Model, OUT Code)	Description
ANC 3	Testo, 0615 1212	 Waterproof immersion/ penetration probe (NTC)
ANC 4	Testo, 0635 0551	-Fast-action immersion (TC type K)
ANC 5	Testo, 0635 0551	-Lux probe
ANC 6	Testo, 0602 0645	-Thermo-Element-Paar

3.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it.

But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, HW, SW, S/N)	Description
-	-	-

3.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S01_AA01	radiated sample 1, ANC 1, ANC 2, ANC 3, ANC 4, ANC 5, ANC 6	Setup for radiated measurement
S01_AB01	radiated sample 2, ANC 1, ANC 2, ANC 3, ANC 4, ANC 5, ANC 6	Setup for radiated measurement
S04_AI01	conducted sample,	Setup for conducted measurement

3.6 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

3.6.1 TEST CHANNELS

2.4 GHz ISM		
2400 - 2483.5 MHz		
low	mid	high
0	19	39
2402	2440	2480
	2400 - Iow 0	2400 - 2483.5 low mid 0 19

3.7 PRODUCT LABELLING

3.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

3.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

4 TEST RESULTS

4.1 CONDUCTED EMIOSSIONS AC MAINS

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.1.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C 63.10 The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from 50μ H || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software EMC-32 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT. EMI receiver settings:

- Detector: Peak Maxhold & Average
- Frequency range: 150 kHz 30 MHz
- Frequency steps: 2.5 kHz
- IF-Bandwidth: 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)
- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

- EMI receiver settings:
- Detector: Quasi-Peak
- IF Bandwidth: 9 kHz
- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

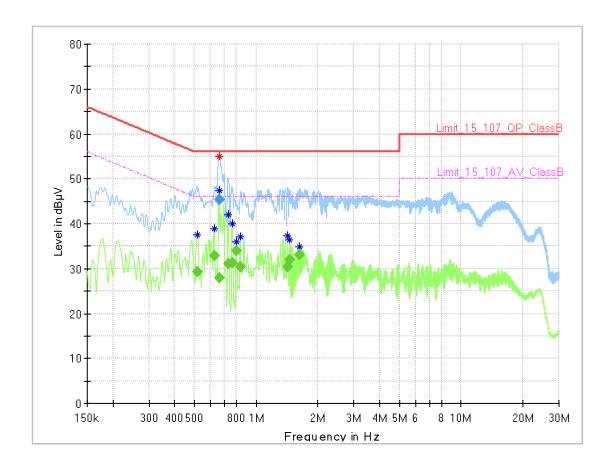
The highest value is reported.

4.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.207

Frequency (MHz)	QP Limits (dBµV)	AV Limits (dBµV)
0.15 - 0.5	66 - 56	56 - 46
0.5 - 5	56	46
5 - 30	60	50

Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).


4.1.3 TEST PROTOCOL

Ambient	25 °C
temperature:	
Air Pressure:	1010 hPa
Humidity:	40 %
BT LE GFSK	

Power line	PE	Frequency [MHz]	Measured value QP [dBµV]	Measured value AV [dBµV]	Limit [dBµV]	Margin [dB]
L1	FLO	0.51225		29.84	46	16.16
Ν	FLO	0.62025		30.59	46	15.41
L1	GND	0.654	51.54		56	4.46
Ν	FLO	0.65625		29.82	46	16.18
L1	FLO	0.72375	50.84		56	5.16
L1	GND	0.726		31.05	46	14.95
L1	GND	0.762		31.92	46	14.08
L1	GND	0.798		22.28	46	23.72
L1	GND	0.834		29.1	46	16.9
L1	GND	0.87		26.79	46	19.21
L1	GND	1.41675		32.14	46	13.86
L1	GND	1.42125	48.51		56.0	7.49
L1	GND	1.45275		32.16	46.0	13.84

Remark: Please see next sub-clause for the measurement plot.

4.1.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth LE, Operating Frequency = low

4.1.5 TEST EQUIPMENT USED

- Conducted Emissions FCC

4.2 OCCUPIED BANDWIDTH (6 DB)

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.2.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (smallest) emission bandwidth.

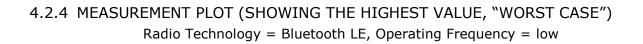
The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

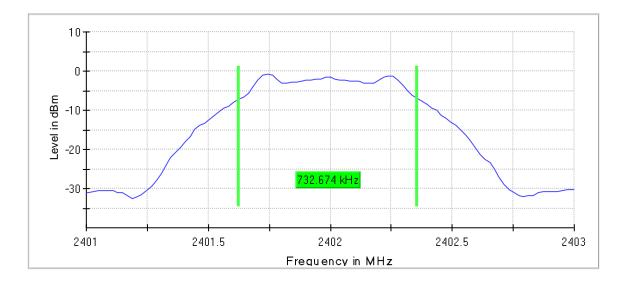
Analyzer settings:

- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Span: 2 MHz nominal bandwidth
- Trace: Maxhold
- Sweeps: 100
- Sweeptime: 18.98 us
- Detector: Peak

4.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (2) Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-


2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.


4.2.3 TEST PROTOCOL

Ambient temperature:	25 °C				
Air Pressure: Humidity:	1010 hPa 40 %				
BT LE GFSK					
Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
		• •		-	5
Band		[MHz]	[MHz]	[MHz]	[MHz]

Remark: Please see next sub-clause for the measurement plot.

Measurement

Setting	Instrument Value
Start Frequency	2.40100 GHz
Stop Frequency	2.40300 GHz
Span	2.000 MHz
RBW	100.000 kHz
VBW	300.000 kHz
SweepPoints	101
Sweeptime	18.938 µs
Reference Level	-20.000 dBm
Attenuation	0.000 dB
Detector	MaxPeak
SweepCount	100
Filter	3 dB
Trace Mode	Max Hold
Sweeptype	FFT
Preamp	off
Stablemode	Trace
Stablevalue	0.50 dB
Run	14 / max. 150
Stable	5/5
Max Stable Difference	0.14 dB

4.2.5 TEST EQUIPMENT USED

- R&S TS8997

4.3 OCCUPIED BANDWIDTH (99%)

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.3.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Resolution Bandwidth (RBW): 30 kHz
- Video Bandwidth (VBW): 100 kHz
- Span: 3 MHz
- Trace: Maxhold
- Sweeps: 2000
- Sweeptime: 20 ms
- Detector: Sample

The 99 % measurement function of the spectrum analyser function was used to determine the 99 % bandwidth.

4.3.2 TEST REQUIREMENTS / LIMITS

No applicable limit:

4.3.3 TEST PROTOCOL

Ambient temperature:	25 °C
Air Pressure:	1010 hPa
Humidity:	40 %
BT LE	

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]					
2.4 GHz ISM	0	2402	1.060					
	19	2440	1.050					
	39	2480	1.070					

Remark: Please see next sub-clause for the measurement plot.

4.3.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Spect	rum												
Att		10.00 d 15 2000/20	dB (Offset 1 SWT		_	′ 30 kH: / 100 kH:		Auto F	FT			
⊖1Sa M	lax												
0 dBm-						6		41	1[1] cc Bw				-3.29 dBm 05210 GHz 51230 MHz
-10 dBn	n					\sim		$\sim \sim \sim \sim$					
-20 dBn	n				T1 ~~~ X~~~				°Ъ	T2 R			
-30 dBn	n-		~~~	n f							-	·~~.	
-40 dBn	n-			$\rightarrow \downarrow$								- M	
~50°d8a	RANG											Ň	ho-~~~
-60 dBn	n												
-70 dBn	n												
-80 dBn	n												
CF 2.4	4 GH	lz					691 p	ts				 Spa	n 3.0 MHz
Marker							·						
Туре	Ref			X-value			alue	Func	tion		Fund	tion Result	:
M1 T1 T2		1 1 1		2.44005 2.439461 2.44051	65 GHz	-1	3.29 dBm 7.96 dBm 8.72 dBm	1 O	cc Bw			1.050	55123 MHz
)[- -	leady			1/0	25.10.2018 11:37:04

Radio Technology = Bluetooth LE, Operating Frequency = mid (S04_AI01)

Date: 25.OCT.2018 11:37:04

4.3.5 TEST EQUIPMENT USED

- R&S TS8997

4.4 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.4.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Resolution Bandwidth (RBW): 2 MHz
- Video Bandwidth (VBW): 10 MHz
- Trace: Maxhold
- Sweeps: 100
- Sweeptime: 953 us
- Detector: Peak

The channel power function of the spectrum analyser was used (Used channel bandwidth = DTS bandwidth)

4.4.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3) For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Peak Power

[dBm]

-0.5

-1.1

-1.8

Limit [dBm]

30.0

30.0

30.0

Margin to

Limit [dB]

30.5

31.1

31.8

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW)

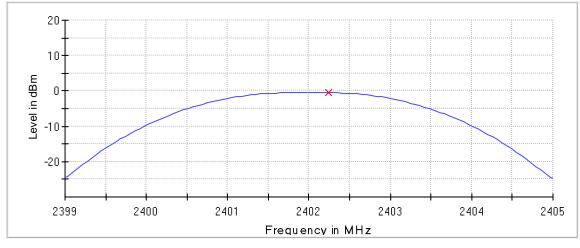
4.4.3 TEST PROTOCOL

Ambient temperature: Air Pressure:	25 °C 1010 hPa	
Humidity: BT LE	40 %	
Band	Channel No.	Frequency
		[MHz]
Band 2.4 GHz ISM	Channel No.	• •
		[MHz]

E.I.R.P

[dBm]

2.5


1.9

1.2

Remark: Please see next sub-clause for the measurement plot.

4.4.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth LE, Operating Frequency = low Measurement method = conducted (S04_AI01)

------ Connector 1 × Peak Connector 1

Measurement

Setting	Instrument Value
Start Frequency	2.39900 GHz
Stop Frequency	2.40500 GHz
Span	6.000 MHz
RBW	2.000 MHz
VBW	10.000 MHz
SweepPoints	101
Sweeptime	953.450 ns
Reference Level	-10.000 dBm
Attenuation	10.000 dB
Detector	MaxPeak
SweepCount	100
Filter	3 dB
Trace Mode	Max Hold
Sweeptype	FFT
Preamp	off
Stablemode	Trace
Stablevalue	0.50 dB
Run	4 / max. 150
Stable	3/3
Max Stable Difference	0.02 dB

4.4.5 TEST EQUIPMENT USED

- R&S TS8997

4.5 SPURIOUS RF CONDUCTED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.5.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Frequency range: 30 25000 MHz
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Trace: Maxhold
- Sweeps: Trace allowed to fully stabilize
- Sweep Time: 250 ms
- Detector: Peak

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc limit.

4.5.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

4.5.3 TEST PROTOCOL

Ambient temperature:	25 °C
Air Pressure:	1010 hPa
Humidity:	40 %
BTIEGESK	

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	-	-	PEAK	100	-	-	>20
19	2440	-	-	PEAK	100	-	-	>20
39	2480	-	-	PEAK	100	-	-	>20

Remark: Please see next sub-clause for the measurement plot.

(S04_AI01) Spectrum Ref Level 14.00 dBm 🔵 RBW 100 kHz 30 dB **SWT** 250 ms 👄 **VBW** 300 kHz Att Mode Auto Sweep TDF ●1Pk Max M1[1] -2.76 dBm 10 dBm· 2.440000 GHz D2[1] -41.40 dB 0 dBm-2.440820 GHz -10 dBm--20 dBm-D1 -22.760 dBm--30 dBm· -40 dBm· D2 -50 dBm· -70 dBm--80 dBm-Start 30.0 MHz 32000 pts Stop 25.0 GHz 25.10.2018 11:57:35 Measuring... h

4.5.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth LE, Operating Frequency = mid (S04 AI01)

Date: 25.OCT.2018 11:57:35

4.5.5 TEST EQUIPMENT USED

- R&S TS8997

4.6 TRANSMITTER SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.6.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 3 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz
- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: \pm 45 ° around the determined value
- Height variation range: ± 100 cm around the determined value
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by $\pm 22.5^{\circ}$.

The elevation angle will slowly vary by $\pm 45^{\circ}$

EMI receiver settings (for all steps):

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

Step 3:

- Spectrum analyser settings for step 3:
- Detector: Peak / Average
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 1 MHz
- Measuring time: 1 s

4.6.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

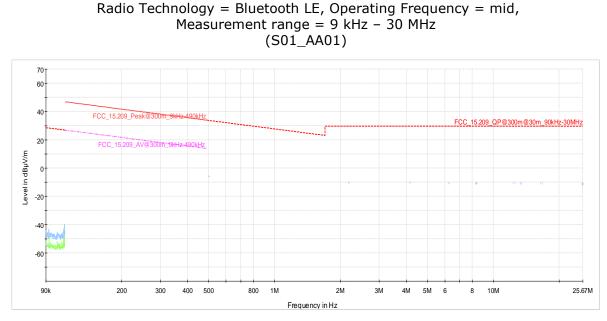
Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

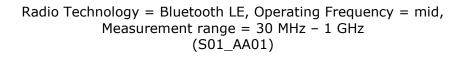
§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

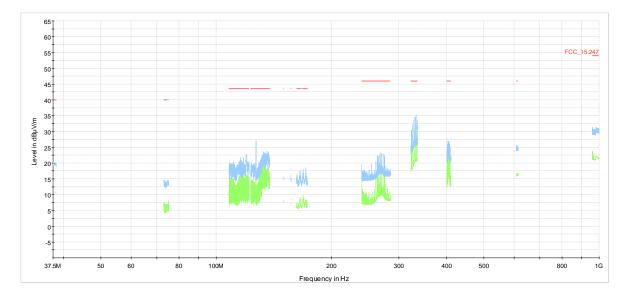
Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

4.6.3 TEST PROTOCOL


Ambient temperature: Air Pressure: Humidity: BT low Energy 24°C 1010 hPa 38 %

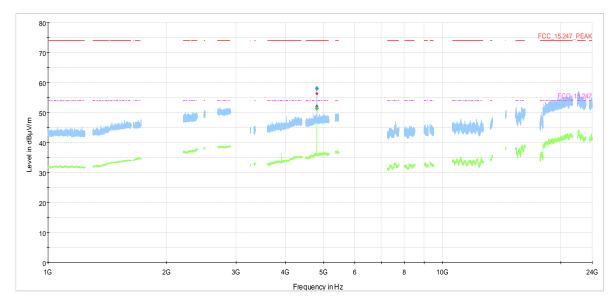
Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
0	2402	4804.5	58.0	PEAK	1000	74.0	16.0	RB
0	2402	4803.9	51.3	AV	1000	54.0	2.7	RB
19	2440	4879.9	55.2	PEAK	1000	74.0	18.8	RB
19	2440	4879.9	50.0	AV	1000	54.0	4.0	RB
39	2480	2483.5	50.3	PEAK	1000	74.0	23.7	RB
39	2480	2483.5	38.1	AV	1000	54.0	15.9	RB
39	2480	4960.0	55.5	PEAK	1000	74.0	18.5	RB
39	2480	4960.1	48.3	AV	1000	54.0	5.7	RB


Remark: Please see next sub-clause for the measurement plot.

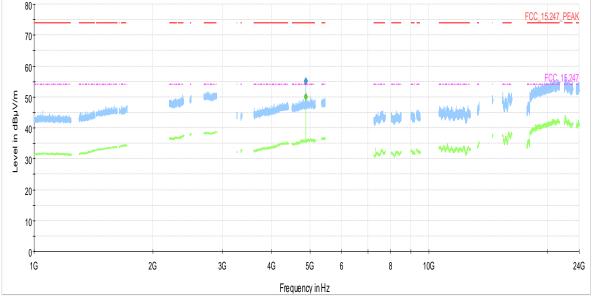


4.6.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

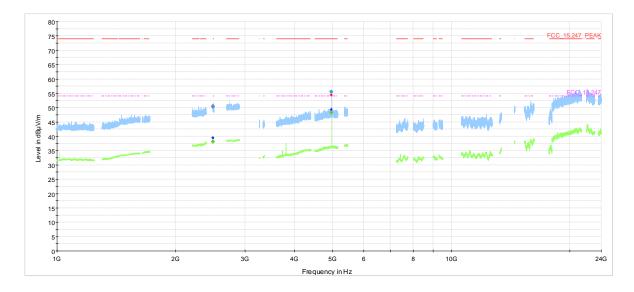
Legend: blue trace = Peak detector, green = QP detector



Legend: blue trace = Peak detector, green = QP detector, stars= critical frequencies, blue Rhombus = final measurement QP-detector


Radio Technology = Bluetooth LE, Operating Frequency = low, Measurement range = 1 GHz - 26 GHz (S01_AB01)

Legend: blue trace = Peak detector, green = CIPRP-AV detector, stars= critical frequencies, blue Rhombus = final measurement Peak detector, green = final measurement AV-detector


Radio Technology = Bluetooth LE, Operating Frequency = mid, Measurement range = 1 GHz - 26 GHz

Legend: blue trace = Peak detector, green = CIPRP-AV detector, stars= critical frequencies, blue Rhombus = final measurement Peak detector, green = final measurement AV-detector

Radio Technology = Bluetooth LE, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S01_AB01)

Legend: blue trace = Peak detector, green = CIPRP-AV detector, stars= critical frequencies, blue Rhombus = final measurement Peak detector, green = final measurement AV-detector

- 4.6.5 TEST EQUIPMENT USED
 - Radiated Emissions

4.7 BAND EDGE COMPLIANCE CONDUCTED

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.7.1 TEST DESCRIPTION

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions". The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Lower Band Edge: Minimum frequency: 2397.0 MHz Upper Band Edge Maximum frequency: 2485.0 MHz
- Span: Bluetooth: 137 MHz Detector: Peak
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Sweeptime: 94 us
- Sweeps: 1670 pts
- Trace: Maxhold

4.7.2 TEST REQUIREMENTS / LIMITS

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

4.7.3 TEST PROTOCOL

Ambient temper Air Pressure: Humidity: BT LE GFSK	1	25 °C .010 hPa 40 %						
Channel No.	Channel Center Frequenc [MHz]	Band Edge Cy Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400.0	-48.6	PEAK	100	-1.0	-21.0	27.6
39	2480	2483.5	-62.2	PEAK	100	-2.7	-22.7	39.5

Remark: Please see next sub-clause for the measurement plot.

4.7.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Radio Technology = Bluetooth LE, Operating Frequency = low, (S04_AI01)

4.7.5 TEST EQUIPMENT USED - R&S TS8997

4.8 BAND EDGE COMPLIANCE RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.8.1 TEST DESCRIPTION

Please see test description for the test case "Spurious Radiated Emissions"

4.8.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

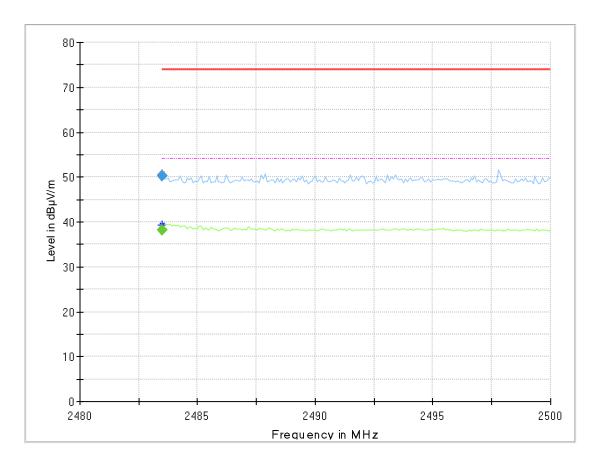
The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$


4.8.3 TEST PROTOCOL

Ambient temperature: Air Pressure: Humidity: BT LE GFSK Applied duty cycle correction (AV): 0 dB			26 °C 1020 hP 38 %	a				
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
39	2480	2483.5	50.3	PEAK	1000	74.0	23.7	BE
39	2480	2483.5	38.1	AV	1000	54.0	15.9	BE

Remark: Please see next sub-clause for the measurement plot.

4.8.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Radio Technology = Bluetooth LE, Operating Frequency = high, Band Edge = high (S01_AB01)

4.8.5 TEST EQUIPMENT USED

- Radiated Emissions

4.9 POWER DENSITY

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.9.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up in a shielded room to perform the Power Density measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) power density.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Resolution Bandwidth (RBW): 10 kHz
- Video Bandwidth (VBW): 30 kHz
- Trace: Maxhold
- Sweeps: 100
- Sweeptime: 1.5 ms
- Detector: Peak

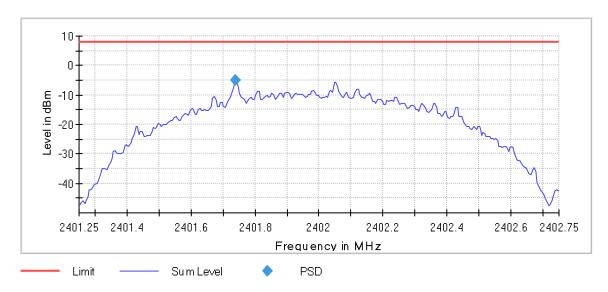
4.9.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

The same method of determining the conducted output power shall be used to determine the power spectral density.

4.9.3 TEST PROTOCOL


Ambient temperature:	25 °C
Air Pressure:	1010 hPa
Humidity:	40 %
BT LE	

Band	Channel No.	Frequency [MHz]	Power Density [dBm/3kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	0	2402	-5.1	8.0	13.1
	19	2440	-5.6	8.0	13.6
	39	2480	-6.3	8.0	14.3

Remark: Please see next sub-clause for the measurement plot.

4.9.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Radio Technology = Bluetooth LE, Operating Frequency = low, (S02_AH01)

Measurement

Setting	Instrument Value
Start Frequency	2.40125 GHz
Stop Frequency	2.40275 GHz
Span	1.500 MHz
RBW	10.000 kHz
VBW	30.000 kHz
SweepPoints	300
Sweeptime	1.500 ms
Reference Level	-20.000 dBm
Attenuation	0.000 dB
Detector	MaxPeak
SweepCount	100
Filter	3 dB
Trace Mode	Max Hold
Sweeptype	Sweep
Preamp	off
Stablemode	Trace
Stablevalue	0.50 dB
Run	20 / max. 150
Stable	2/2
Max Stable Difference	0.50 dB

4.9.5 TEST EQUIPMENT USED

- R&S TS8997

5 TEST EQUIPMENT

1 R&S TS8997

EN300328/301893 Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	Opus10 TPR (8253.00)	ThermoAirpres sure Datalogger 13 (Environ)	Lufft Mess- und Regeltechnik GmbH	13936	2017-04	2019-04
1.2	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
1.3	ESH3-Z5	Two-Line V- Network	Rohde & Schwarz	828304/029	2017-05	2019-05
1.4	EP 1200/B, NA/B1	Amplifier with integrated variable Oscillator	Spitzenberger & Spieß	B6278		
1.5	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		
1.6	Shielded Room 02	Shielded Room for conducted testing, 12qm	Frankonia	-		
1.7	ESH3-Z5		Rohde & Schwarz	829996/002	2017-05	2019-05
1.8			Rohde & Schwarz	101424	2016-11	2018-11
1.9	Opus10 THI (8152.00)	ThermoHygro	Lufft Mess- und Regeltechnik GmbH	7489	2017-04	2019-04
1.10	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2018-01	2020-01

2 R&S TS8997 EN300328/301893 Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1		Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2017-07	2020-07
2.2	_	Rubidium Frequency Standard	Datum-Beverly	5489/001	2018-07	2019-07
2.3	,		Weinschel Associates	LN673		
2.4		Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2018-04	2020-04

2.5	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
2.6	VT 4002	Temperature Chamber	Vötsch	58566002150010	2018-04	2020-04
2.7	A8455-4	4 Way Power Divider (SMA)		-		
2.8	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	7482	2017-03	2019-03
2.9	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2016-10	2019-10
2.10	OSP120	Switching Unit with integrated power meter	Rohde & Schwarz	101158	2018-05	2021-05

3 Radiated Emissions Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
	NRV-Z1		Rohde & Schwarz GmbH & Co. KG	827753/005	2018-07	2019-07
3.2	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2018-10	2020-10
3.3	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936	2017-04	2019-04
3.4	ESW44		Rohde & Schwarz GmbH & Co. KG	101603	2018-05	2019-05
3.5	Anechoic 10.58 x 6.38 Chamber 6.00 m ³		Frankonia	none	2018-06	2020-06
3.6	FS-Z60 Harmonic Mixer 40 - 60 GHz		Rohde & Schwarz Messgerätebau GmbH	100178	2016-12	2019-12
3.7	FS-Z220	Mixer 140 -	Rohde & Schwarz Messgerätebau GmbH	101005	2017-03	2020-03
3.8	SGH-05		RPG-Radiometer Physics GmbH	075		
3.9	HL 562		Rohde & Schwarz	830547/003	2018-07	2021-07
3.10		High Pass Filter	Trilithic	9942012		
3.11	, kg		Maturo GmbH	-		
3.12	Fully Anechoic 8.80m x Room 4.60m x 4.05m (l x w x h)		Albatross Projects	P26971-647-001- PRB	2018-06	2020-06
3.13	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
3.14	NRVD	Power Meter	Rohde & Schwarz GmbH & Co. KG	828110/016	2018-07	2019-07
3.15	HF 906	Double-ridged horn	Rohde & Schwarz	357357/002	2018-09	2021-09
3.16	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
3.17	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2016-12	2018-12
3.18			EMCO Elektronic GmbH	00083069		
3.19	SGH-19	Standard Gain / Pyramidal Horn Antenna (40 - 60 GHz)	RPG-Radiometer Physics GmbH	093		
	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright	09		
3.21	4HC1600/12750 -1.5-KK	Filter	Trilithic	9942011		
3.22	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		
	JS4-00102600- 42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
3.24	TT 1.5 WI	Turn Table	Maturo GmbH	-		
3.25	_	Logper. Antenna	Rohde & Schwarz	100609	2016-04	2019-04
3.26	HF 906	Double-ridged horn	Rohde & Schwarz	357357/001	2018-03	2021-03
3.27	FS-Z325	Harmonic Mixer 220 - 325 GHz	Rohde & Schwarz Messgerätebau GmbH	101006	2017-03	2020-03
3.28	3160-10	Standard Gain / Pyramidal Horn Antenna 40 GHz	EMCO Elektronic GmbH	00086675		
3.29	SGH-08	Standard Gain / Pyramidal Horn Antenna (90 - 140 GHz)	RPG-Radiometer Physics GmbH	064		
3.30	SGH-12	Standard Gain / Pyramidal HornAntenna (60 - 90 GHz)	RPG-Radiometer Physics GmbH	326		
3.31	5HC3500/18000 -1.2-KK		Trilithic	200035008		
3.32	FS-Z140 Harmonic Mixer 90 -140 GHz		Rohde & Schwarz Messgerätebau GmbH	101007	2017-02	2020-02
3.33	HFH2-Z2	Loop Antenna	Rohde & Schwarz	829324/006	2018-01	2021-01
3.34	Opus10 THI (8152.00)	ThermoHygro	Lufft Mess- und Regeltechnik GmbH	12482	2017-03	2019-03

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
3.35	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2016-11	2018-11
3.36	JS4-00101800- 35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
3.37	AS 620 P	Antenna mast	HD GmbH	620/37		
3.38	Tilt device Maturo (Rohacell)	Antrieb TD1.5- 10kg	Maturo GmbH	TD1.5- 10kg/024/37907 09		
3.39	SGH-03	Standard Gain / Pyramidal Horn Antenna (220 - 325 GHz)	RPG-Radiometer Physics GmbH	060		
3.40	FS-Z90	Harmonic Mixer 60 - 90 GHz	Rohde & Schwarz Messgerätebau GmbH	101686	2017-03	2020-03
3.41	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2018-01	2020-01
3.42	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
3.43	AFS42- 00101800-25-S- 42	Broadband Amplifier 25 MHz - 18 GHz	Miteq	2035324		
3.44	AM 4.0	Antenna mast	Maturo GmbH	AM4.0/180/1192 0513		
3.45	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2018-07	2021-07

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

			cable
		LISN	loss
		insertion	(incl. 10
		loss	dB
		ESH3-	atten-
Frequency	Corr.	Z5	uator)
MHz	dB	dB	dB
0.15	10.1	0.1	10.0
5	10.3	0.1	10.2
7	10.5	0.2	10.3
10	10.5	0.2	10.3
12	10.7	0.3	10.4
14	10.7	0.3	10.4
16	10.8	0.4	10.4
18	10.9	0.4	10.5
20	10.9	0.4	10.5
22	11.1	0.5	10.6
24	11.1	0.5	10.6
26	11.2	0.5	10.7
28	11.2	0.5	10.7
30	11.3	0.5	10.8

6.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

				cable	cable	cable	cable	distance	dLimit	dused
	. –			loss 1	loss 2	loss 3	loss 4	corr.	(meas	(meas
_	AF			(inside	(outside	(switch	(to	(-40 dB/	distance	distance
	HFH-Z2)	Corr.	_	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
	dB (1/m)	dB		dB	dB	dB	dB	dB	m	m
0.009	20.50	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.01	20.45	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.015	20.37	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.02	20.36	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.025	20.38	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.03	20.32	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.05	20.35	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.08	20.30	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.1	20.20	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.2	20.17	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.3	20.14	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.49	20.12	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.490001	20.12	-39.6		0.1	0.1	0.1	0.1	-40	30	3
0.5	20.11	-39.6		0.1	0.1	0.1	0.1	-40	30	3
0.8	20.10	-39.6		0.1	0.1	0.1	0.1	-40	30	3
1	20.09	-39.6		0.1	0.1	0.1	0.1	-40	30	3
2	20.08	-39.6		0.1	0.1	0.1	0.1	-40	30	3
3	20.06	-39.6		0.1	0.1	0.1	0.1	-40	30	3
4	20.05	-39.5		0.2	0.1	0.1	0.1	-40	30	3
5	20.05	-39.5		0.2	0.1	0.1	0.1	-40	30	3
6	20.02	-39.5		0.2	0.1	0.1	0.1	-40	30	3
8	19.95	-39.5		0.2	0.1	0.1	0.1	-40	30	3
10	19.83	-39.4		0.2	0.1	0.2	0.1	-40	30	3
12	19.71	-39.4		0.2	0.1	0.2	0.1	-40	30	3
14	19.54	-39.4		0.2	0.1	0.2	0.1	-40	30	3
16	19.53	-39.3		0.3	0.1	0.2	0.1	-40	30	3
18	19.50	-39.3		0.3	0.1	0.2	0.1	-40	30	3
20	19.57	-39.3		0.3	0.1	0.2	0.1	-40	30	3
22	19.61	-39.3		0.3	0.1	0.2	0.1	-40	30	3
24	19.61	-39.3	F	0.3	0.1	0.2	0.1	-40	30	3
26	19.54	-39.3	F	0.3	0.1	0.2	0.1	-40	30	3
28	19.46	-39.2		0.3	0.1	0.3	0.1	-40	30	3
30	19.73	-39.1	F	0.4	0.1	0.3	0.1	-40	30	3

6.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

6.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

(<u>d_{Limit} = 3 m)</u>

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable loss 1	cable loss 2	cable loss 3	cable loss 4	distance corr.	d _{Limit} (meas.	d _{used} (meas.
(inside chamber)	(outside chamber)	(switch unit)	(to receiver)	(-20 dB/ decade)	distance (limit)	distance
						(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

(<u>d_{Limit} = 10 m)</u>

	•/								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

			`		,				
						cable			
				cable		loss 3			
				loss 1		(switch			
				(relay +	cable	unit,			
	AF			cable	loss 2	atten-	cable		
	R&S			inside	(outside	uator &	loss 4 (to		
Frequency	HF907	Corr.		chamber)	chamber)	pre-amp)	receiver)		
MHz	dB (1/m)	dB		dB	dB	dB	dB		
1000	24.4	-19.4		0.99	0.31	-21.51	0.79		
2000	24.4								
		-17.4		1.44	0.44	-20.63	1.38		
3000	31.0	-16.1		1.87	0.53	-19.85	1.33		
4000	33.1	-14.7		2.41	0.67	-19.13	1.31		
5000	34.4	-13.7		2.78	0.86	-18.71	1.40		
6000	34.7	-12.7		2.74	0.90	-17.83	1.47		
7000	35.6	-11.0		2.82	0.86	-16.19	1.46		
.		-							
							cable		
							loss 4		
				cable			(switch		
				loss 1	cable	cable	unit,		used
	AF			(relay	loss 2	loss 3	atten-	cable	for
	R&S			inside	(inside	(outside	uator &	loss 5 (to	FCC
Frequency	HF907	Corr.		chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
MHz		dB		dB	dB	dB	dB	dB	13.247
	dB (1/m)				-			-	
3000	31.0	-23.4		0.47	1.87	0.53	-27.58	1.33	
4000	33.1	-23.3		0.56	2.41	0.67	-28.23	1.31	
5000	34.4	-21.7		0.61	2.78	0.86	-27.35	1.40	
6000	34.7	-21.2		0.58	2.74	0.90	-26.89	1.47	
7000	35.6	-19.8		0.66	2.82	0.86	-25.58	1.46	
				cable					
				loss 1	cable	cable	cable	cable	cable
	AF			(relay	loss 2	loss 3	loss 4	loss 5	loss 6
	R&S			inside	(High	(pre-	(inside	(outside	(to
Frequency	HF907	Corr.		chamber)	Pass)	amp)	chamber)	chamber)	receiver)
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	dB
7000	35.6	-57.3		0.56	1.28	-62.72	2.66	0.94	1.46
8000	36.3	-56.3		0.69	0.71	-61.49	2.84	1.00	1.53
9000	37.1	-55.3		0.68	0.65	-60.80	3.06	1.09	1.60
10000	37.5	-56.2		0.70	0.05	-61.91	3.28	1.20	1.67
11000	37.5								
		-55.3		0.80	0.61	-61.40	3.43	1.27	1.70
12000	37.6	-53.7		0.84	0.42	-59.70	3.53	1.26	1.73
13000	38.2	-53.5		0.83	0.44	-59.81	3.75	1.32	1.83
14000	39.9	-56.3		0.91	0.53	-63.03	3.91	1.40	1.77
15000	40.9	-54.1		0.98	0.54	-61.05	4.02	1.44	1.83
16000	41.3	-54.1		1.23	0.49	-61.51	4.17	1.51	1.85
17000	42.8	-54.4		1.36	0.76	-62.36	4.34	1.53	2.00
18000	44.2	-54.7		1.70	0.53	-62.88	4.41	1.55	1.91
10000	77.2	-J+./		1.70	0.55	-02.00	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

			•				
			cable	cable	cable	cable	cable
			loss 1	loss 2	loss 3	loss 4	loss 5
			(inside	(pre-	(inside	(switch	(to
3160-09	Corr.		chamber)	amp)	chamber)	unit)	receiver)
dB (1/m)	dB		dB	dB	dB	dB	dB
40.2	-23.5		0.72	-35.85	6.20	2.81	2.65
40.2	-23.2		0.69	-35.71	6.46	2.76	2.59
40.2	-22.0		0.76	-35.44	6.69	3.15	2.79
40.3	-21.3		0.74	-35.07	7.04	3.11	2.91
40.3	-20.3		0.72	-34.49	7.30	3.07	3.05
40.3	-19.9		0.78	-34.46	7.48	3.12	3.15
40.3	-19.1		0.87	-34.07	7.61	3.20	3.33
40.3	-19.1		0.90	-33.96	7.47	3.28	3.19
40.3	-18.7		0.89	-33.57	7.34	3.35	3.28
40.4	-19.0		0.87	-33.66	7.06	3.75	2.94
40.4	-19.5		0.88	-33.75	6.92	3.77	2.70
40.4	-19.3		0.90	-33.35	6.99	3.52	2.66
40.4	-19.8		0.88	-33.99	6.88	3.88	2.58
40.4	-19.5		0.91	-33.89	7.01	3.93	2.51
40.4	-19.3		0.88	-33.00	6.72	3.96	2.14
40.5	-20.4		0.89	-34.07	6.90	3.66	2.22
40.5	-21.3		0.86	-35.11	7.02	3.69	2.28
40.5	-21.1		0.90	-35.20	7.15	3.91	2.36
	40.2 40.2 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3	EMCO 3160-09 Corr. dB (1/m) dB 40.2 -23.5 40.2 -23.2 40.2 -23.2 40.2 -22.0 40.3 -21.3 40.3 -20.3 40.3 -19.9 40.3 -19.1 40.3 -19.1 40.3 -19.1 40.3 -19.1 40.3 -19.1 40.4 -19.0 40.4 -19.5 40.4 -19.3 40.4 -19.3 40.4 -19.3 40.4 -19.3 40.4 -19.3 40.5 -20.4	EMCO3160-09Corr.dB (1/m)dB40.2-23.540.2-23.240.3-21.340.3-20.340.3-19.940.3-19.140.3-19.140.3-19.140.4-19.040.4-19.540.4-19.840.4-19.540.4-19.540.4-19.540.4-19.540.5-20.440.5-21.3	AF loss 1 EMCO (inside 3160-09 Corr. (inside dB (1/m) dB dB 40.2 -23.5 0.72 40.2 -23.2 0.69 40.2 -22.0 0.76 40.3 -21.3 0.74 40.3 -20.3 0.72 40.3 -19.9 0.78 40.3 -19.1 0.87 40.3 -19.1 0.87 40.3 -19.1 0.90 40.4 -19.0 0.87 40.4 -19.5 0.88 40.4 -19.3 0.90 40.4 -19.3 0.88 40.4 -19.3 0.88 40.4 -19.3 0.88 40.4 -19.3 0.88 40.4 -19.3 0.88 40.4 -19.3 0.88 40.5 -20.4 0.89 40.5 -20.4 0.89	AF EMCOloss 1 (inside (inside (pre- chamber)3160-09Corr.dB (1/m)dB40.2-23.540.2-23.240.2-23.240.2-22.040.3-21.340.3-20.340.3-19.940.3-19.140.3-19.140.3-19.140.3-19.140.3-19.140.3-19.140.3-19.10.78-34.4640.3-19.10.87-33.9640.4-19.040.4-19.540.4-19.340.4-19.340.4-19.340.4-19.340.4-19.340.4-19.340.4-19.340.5-20.40.88-33.0040.5-21.30.86-35.11	AF EMCOloss 1 (inside (inside (inside (amp))loss 2 (inside (inside amp))loss 3 (inside (inside amp))dB (1/m)dBdBdBdB40.2-23.50.72-35.856.2040.2-23.20.69-35.716.4640.2-22.00.76-35.446.6940.3-20.30.72-34.497.3040.3-19.90.78-34.467.4840.3-19.10.87-34.077.6140.3-19.10.87-33.577.3440.3-19.10.89-33.577.3440.4-19.00.87-33.667.0640.4-19.30.90-33.356.9940.4-19.30.90-33.396.8840.4-19.30.88-33.006.7240.5-20.40.89-34.076.9040.5-21.30.86-35.117.02	AF EMCOIoss 1 (insideIoss 2 (insideIoss 3 (insideIoss 4 (switch3160-09Corr.(inside (inside(pre- (inside(inside (switch(switch unit)dB (1/m)dBdBdBdBdBdB40.2-23.50.72-35.856.202.8140.2-22.00.69-35.716.462.7640.3-21.30.74-35.077.043.1140.3-20.30.72-34.497.303.0740.3-19.10.87-34.467.483.1240.3-19.10.87-34.077.613.2040.3-19.10.89-33.577.343.3540.4-19.00.87-33.667.063.7540.4-19.30.90-33.356.993.5240.4-19.30.90-33.897.013.9340.4-19.30.88-33.006.723.9640.4-19.30.88-33.006.723.9640.4-19.30.88-33.006.723.9640.4-19.30.88-33.006.723.9640.5-20.40.89-34.076.903.6640.5-21.30.86-35.117.023.69

6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

	AF EMCO		cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
Frequency	3160-10	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
GHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
26.5	43.4	-11.2	4.4				-15.6	3	0.5
27.0	43.4	-11.2	4.4				-15.6	3	0.5
28.0	43.4	-11.1	4.5				-15.6	3	0.5
29.0	43.5	-11.0	4.6				-15.6	3	0.5
30.0	43.5	-10.9	4.7				-15.6	3	0.5
31.0	43.5	-10.8	4.7				-15.6	3	0.5
32.0	43.5	-10.7	4.8				-15.6	3	0.5
33.0	43.6	-10.7	4.9				-15.6	3	0.5
34.0	43.6	-10.6	5.0				-15.6	3	0.5
35.0	43.6	-10.5	5.1				-15.6	3	0.5
36.0	43.6	-10.4	5.1				-15.6	3	0.5
37.0	43.7	-10.3	5.2				-15.6	3	0.5
38.0	43.7	-10.2	5.3				-15.6	3	0.5
39.0	43.7	-10.2	5.4				-15.6	3	0.5
40.0	43.8	-10.1	5.5				-15.6	3	0.5

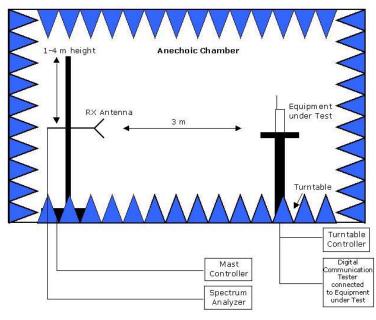
6.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Sample calculation

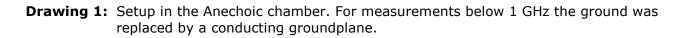
 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

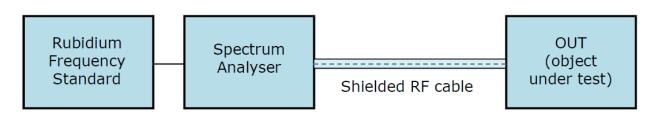
U = Receiver reading

AF = Antenna factor


Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG ($d_{\text{Limit}}/d_{\text{used}}$) Linear interpolation will be used for frequencies in between the values in the table.


Table shows an extract of values.



7 SETUP DRAWINGS

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 2: Setup for conducted radio tests.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

9 PHOTO REPORT

Please see separate photo report.