RF TEST REPORT

Report No.: 16070896-FCC-R4
Supersede Report No.: N/A

Applicant	Verykool USA Inc			
Product Name	Mobile pho	Mobile phone		
Model No.	SL5050			
Serial No.	N/A			
Test Standard	FCC Part 1	5.247: 2015, ANSI C63.10: 2	013	
Test Date	July 21 to A	August 30		
Issue Date	August 31,	August 31, 2016		
Test Result	Pass Fail			
Equipment complied with the specification				
Equipment did no	Equipment did not comply with the specification			
Loven	Luo	David Huang		
Loren Luo Test Engineer		David Huang Checked By		

This test report may be reproduced in full only

Test result presented in this test report is applicable to the tested sample only

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108

Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Test Report No.	16070896-FCC-R4
Page	2 of 44

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report No.	16070896-FCC-R4
Page	3 of 44

This page has been left blank intentionally.

Test Report No.	16070896-FCC-R4
Page	4 of 44

CONTENTS

1.	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	
3.	TEST SITE INFORMATION	5
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5.	TEST SUMMARY	9
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	10
6.1	ANTENNA REQUIREMENT	10
6.2	DTS (6 DB) CHANNEL BANDWIDTH	11
6.3	MAXIMUM OUTPUT POWER	13
6.4	POWER SPECTRAL DENSITY	15
6.5	BAND-EDGE & UNWANTED EMISSIONS INTO RESTRICTED FREQUENCY BANDS	17
6.6	AC POWER LINE CONDUCTED EMISSIONS	20
6.7	RADIATED SPURIOUS EMISSIONS & RESTRICTED BAND	26
INA	NEX A. TEST INSTRUMENT	32
INA	NEX B. EUT AND TEST SETUP PHOTOGRAPHS	33
ANI	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	39
ANI	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	43
ANI	NEX E. DECLARATION OF SIMILARITY	4

Test Report No.	16070896-FCC-R4
Page	5 of 44

1. Report Revision History

Report No.	Report Version	Description	Issue Date
16070896-FCC-R4	NONE	Original	August 31, 2016

2. Customer information

Applicant Name	Verykool USA Inc	
Applicant Add	3636 Nobel Drive, Suite 325, San Diego, California 92122 United States	
Manufacturer	Kozen Mobile Co.,Ltd	
Manufacturer Add	Floor 3rd, Building 29, No.368 Zhangjiang Road, Pudong District, Shanghai, China	
	201203	

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES	
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park	
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China	
	518108	
FCC Test Site No.	718246	
IC Test Site No.	4842E-1	
Test Software	Radiated Emission Program-To Shenzhen v2.0	

Test Report No.	16070896-FCC-R4
Page	6 of 44

4. Equipment under Test (EUT) Information

Description of EUT: Mobile phone

Main Model: SL5050

Serial Model: N/A

Date EUT received: July 20, 2016

Test Date(s): July 21 to August 30

Equipment Category : DTS

GSM850: -2.2dBi

PCS1900: -1.21dBi

UMTS-FDD Band V: -2.62dBi UMTS-FDD Band IV: -1.42dBi UMTS-FDD Band II: -1.42dBi

LTE Band 2: -1.5dBi

Antenna Gain: LTE Band 4: -1.4dBi

LTE Band 5: -2.2dBi LTE Band 7: -0.8dBi LTE Band 12: -2.4dBi LTE Band 17: -2.4dBi

Bluetooth/BLE/WIFI: 0dBi

GPS:0dBi

Antenna Type: PIFA antenna

Adapter:

Model: TPA-46B050100UU

Input: AC 100-240V,50/60Hz;0.2A

Output: DC 5.0V,1A

Input Power: Battery:

Model:FHPK275875L

Spec: 3.8V,2500mAh(9.5Wh) Charge limited voltage: 4.35V

Number of Channels:

Test Report No.	16070896-FCC-R4
Page	7 of 44

Max. Output Power: -11.25dBm

GSM / GPRS: GMSK EGPRS: GMSK,8PSK

UMTS-FDD: QPSK

LTE Band: QPSK, 16QAM Type of Modulation:

802.11b/g/n: DSSS, OFDM

Bluetooth: GFSK, π /4DQPSK, 8DPSK

BLE: GFSK GPS:BPSK

GSM850 TX: 824.2 ~ 848.8 MHz; RX: 869.2 ~ 893.8 MHz

PCS1900 TX: 1850.2 ~ 1909.8 MHz; RX: 1930.2 ~ 1989.8 MHz

UMTS-FDD Band V TX: 826.4 ~ 846.6 MHz; RX: 871.4 ~ 891.6 MHz

UMTS-FDD Band IV TX:1712.4 ~ 1752.6 MHz;

RX: 2112.4 ~ 2152.6 MHz

UMTS-FDD Band II TX:1852.4 ~ 1907.6 MHz;

RX: 1932.4 ~ 1987.6 MHz

LTE Band 2 TX: 1852.5 ~ 1907.5 MHz; RX : 1932.5 ~ 1987.5 MHz

RF Operating Frequency (ies): LTE Band 4 TX: $1712.5 \sim 1752.5 \text{ MHz}$; RX: $2112.5 \sim 2152.5 \text{ MHz}$

LTE Band 5 TX: 826.5 \sim 846.5 MHz; RX : 871.5 \sim 891.5 MHz

LTE Band 7 TX: $2502.5 \sim 2567.5 \text{ MHz}$; RX : $2622.5 \sim 2687.5 \text{ MHz}$

LTE Band 12 TX:699.7 ~ 715.3 MHz; RX : 729.7 ~ 745.3 MHz LTE Band 17 TX: 706.5 ~ 713.5 MHz; RX : 736.5 ~ 743.5 MHz

WIFI: 802.11b/g/n(20M): 2412-2462 MHz WIFI: 802.11n(40M): 2422-2452 MHz Bluetooth& BLE: 2402-2480 MHz

GPS: 1575.42 MHz

GSM 850: 124CH PCS1900: 299CH

UMTS-FDD Band V: 102CH
UMTS-FDD Band IV: 202CH
UMTS-FDD Band II: 277CH

WIFI :802.11b/g/n(20M): 11CH WIFI :802.11n(40M): 7CH

Bluetooth: 79CH BLE: 40CH

GPS:1CH

Test Report No.	16070896-FCC-R4	
Page	8 of 44	

Earphone Port, USB Port

Trade Name : verykool

GPRS/EGPRS Multi-slot class: 8/10/12

FCC ID: WA6SL5050

Test Report No.	16070896-FCC-R4	
Page	9 of 44	

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result	
§15.203	Antenna Requirement	Compliance	
§15.247 (a)(2)	DTS (6 dB) CHANNEL BANDWIDTH	Compliance	
§15.247(b)(3)	Conducted Maximum Output Power Com		
§15.247(e)	Power Spectral Density	Compliance	
§15.247(d)	Band-Edge & Unwanted Emissions into Restricted	Compliance	
• ()	Frequency Bands		
§15.207 (a),	AC Power Line Conducted Emissions Comp		
§15.205, §15.209,	Radiated Spurious Emissions & Unwanted Emissions		
§15.247(d)	into Restricted Frequency Bands		

Measurement Uncertainty

Emissions			
Test Item	Uncertainty		
Band Edge and Radiated Spurious Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB	
-	-	-	

Test Report No.	16070896-FCC-R4
Page	10 of 44

6. Measurements, Examination And Derived Results

6.1 Antenna Requirement

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

A permanently attached PIFA antenna for Bluetooth/BLE/WIFI/GPS, the gain is0dBi.

A permanently attached PIFA antenna for GSM/PCS/UMTS, the gain is -2.2dBi for GSM850, -1.21dBi for PCS1900, -2.62dBi for UMTS-FDD Band V, -1.42dBi for UMTS-FDD Band IV, 1.42dBi for UMTS-FDD Band II.

A permanently attached PIFA antenna for LTE Band 2/4/5/7/12/17, the gain is -1.5dBi for LTE Band 2, the gain is -1.4dBi for LTE Band 4, the gain is -2.2dBi for LTE Band 5, the gain is -0.8dBi for LTE Band 7, the gain is -2.4dBi for LTE Band 12, the gain is -2.4dBi for LTE Band 17.

The antenna meets up with the ANTENNA REQUIREMENT.

Result: Compliance.

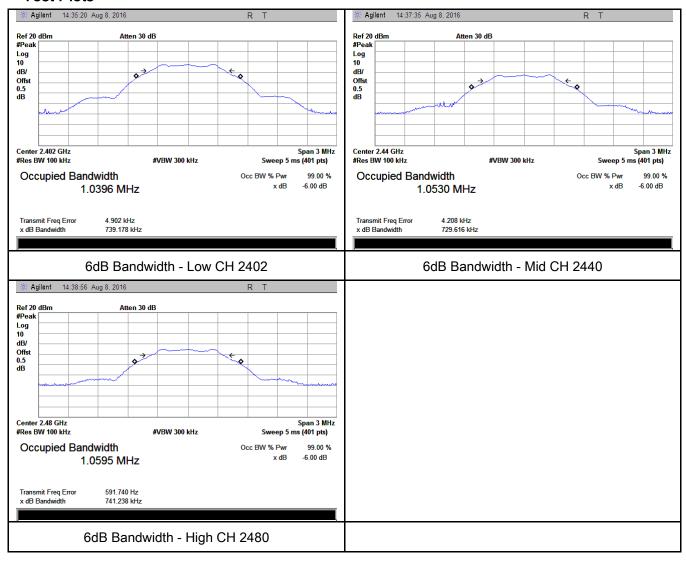
Test Report No.	16070896-FCC-R4
Page	11 of 44

6.2 DTS (6 dB) Channel Bandwidth

Temperature	25°C
Relative Humidity	50%
Atmospheric Pressure	1008mbar
Test date :	August 08, 2016
Tested By :	Loren Luo

Spec	Item	Item Requirement			
§ 15.247(a)(2)	a)	a) 6dB BW≥ 500kHz;			
RSS Gen(4.6.1)	b)	b) 99% BW: For FCC reference only; required by IC.			
Test Setup	Spectrum Analyzer EUT				
Test Procedure	Spectrum Analyzer 558074 D01 DTS MEAS Guidance v03r03, 8.1 DTS bandwidth 6dB Emission bandwidth measurement procedure - Set RBW = 100 kHz. - Set the video bandwidth (VBW) ≥ 3 RBW. - Detector = Peak. - Trace mode = max hold. - Sweep = auto couple. - Allow the trace to stabilize. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.				
Remark					
Result	Pa	ss Fail			

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}


Test Report No.	16070896-FCC-R4	
Page	12 of 44	

6dB Bandwidth measurement result

Test Data

СН	Frequency (MHz)	6dB Bandwidth (kHz)	99% Occupied Bandwidth (MHz)
Low	2402	739.178	1.0396
Mid	2440	729.616	1.0530
High	2480	741.238	1.0595

Test Plots

Test Report No.	16070896-FCC-R4
Page	13 of 44

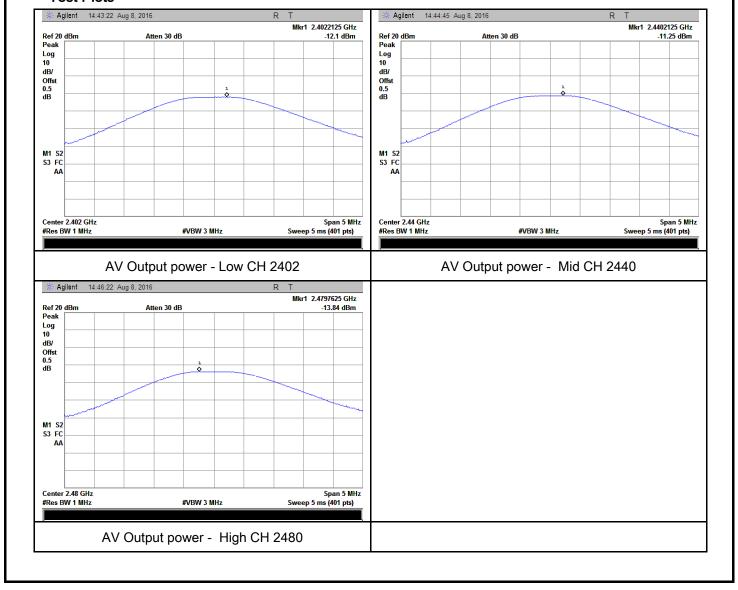
6.3 Maximum Output Power

Temperature	25°C		
Relative Humidity	50%		
Atmospheric Pressure	1008mbar		
Test date :	August 08, 2016		
Tested By :	Loren Luo		

Requirement(s):

Spec	Item	Requirement Appli						
	a)	FHSS in 2400-2483.5MHz with ≥ 75 channels: ≤ 1 Watt						
§15.247(b)	b)	b) FHSS in 5725-5850MHz: ≤ 1 Watt						
	c)	For all other FHSS in the 2400-2483.5MHz band: ≤ 0.125						
(3),RSS210		Watt.						
(A8.4)	d)	FHSS in 902-928MHz with ≥ 50 channels: ≤ 1 Watt						
(* 101 1)	e)	FHSS in 902-928MHz with ≥ 25 & <50 channels: ≤ 0.25						
		Watt						
	f)	DTS in 902-928MHz, 2400-2483.5MHz: ≤ 1 Watt	~					
Test Setup								
		Spectrum Analyzer EUT						
	558074	D01 DTS MEAS Guidance v03r03, 9.1.2 Integrated band power meth	od					
Maximum output power measurement procedure								
	Maximu	m output power measurement procedure						
		ne RBW ≥ DTS bandwidth.						
	a) Set th	·						
Test	a) Set th b) Set V	ne RBW ≥ DTS bandwidth.						
Test Procedure	a) Set th b) Set V c) Set sp	ne RBW ≥ DTS bandwidth.						
	a) Set th b) Set V c) Set sp d) Swee	ne RBW ≥ DTS bandwidth. BW ≥ 3 × RBW. pan ≥ 3 x RBW						
	a) Set th b) Set V c) Set sp d) Swee e) Detect	ne RBW ≥ DTS bandwidth. BW ≥ 3 × RBW. pan ≥ 3 x RBW ptime = auto couple.						
	a) Set th b) Set V c) Set sp d) Swee e) Detect f) Trace	ne RBW ≥ DTS bandwidth. BW ≥ 3 × RBW. pan ≥ 3 x RBW pp time = auto couple. ctor = peak.						
	a) Set the b) Set V c) Set specifical displayed by Sweet e) Detection of the control of the cont	ne RBW ≥ DTS bandwidth. BW ≥ 3 × RBW. pan ≥ 3 x RBW protime = auto couple. ctor = peak. mode = max hold.						
	a) Set the b) Set V c) Set specifical displayed by Sweet e) Detection of the control of the cont	ne RBW ≥ DTS bandwidth. /BW ≥ 3 × RBW. pan ≥ 3 x RBW rp time = auto couple. ctor = peak. mode = max hold. trace to fully stabilize.						

Test Report No.	16070896-FCC-R4
Page	14 of 44


Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Output Power measurement result

Test Data

Туре	СН	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Result
Output	Low	2402	-12.10	30	Pass
Output	Mid	2440	-11.25	30	Pass
power	High	2480	-13.84	30	Pass

Test Plots

Test Report No.	16070896-FCC-R4
Page	15 of 44

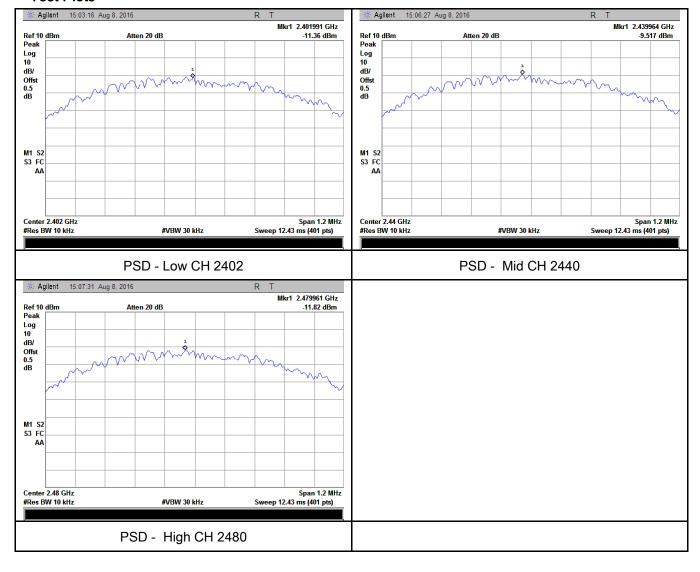
6.4 Power Spectral Density

Temperature	25°C		
Relative Humidity	50%		
Atmospheric Pressure	1008mbar		
Test date :	August 08, 2016		
Tested By :	Loren Luo		

Spec	Item	Requirement	Applicable			
§15.247(e)	a)	a) The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.				
Test Setup						
Test Procedure	Spectrum Analyzer 558074 D01 DTS MEAS Guidance v03r03, 10.2 power spectral density method power spectral density measurement procedure - a) Set analyzer center frequency to DTS channel center frequency. - b) Set the span to 1.5 times the DTS bandwidth. - c) Set the RBW to: 3 kHz ≤ RBW ≤ 100 kHz. - d) Set the VBW ≥ 3 × RBW. - e) Detector = peak. - f) Sweep time = auto couple. - g) Trace mode = max hold. - h) Allow trace to fully stabilize. - i) Use the peak marker function to determine the maximum amplitude level within the RBW. - j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.					
Remark						
Result	Pas	ss Fail				

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Test Report No.	16070896-FCC-R4
Page	16 of 44


Power Spectral Density measurement result

Test Data

Туре	СН	Freq (MHz)	Reading (dBm)	Factor (dB)	Result (dBm)	Limit (dBm)	Result
PSD	Low	2402	-11.36	-5.23	-16.59	8	Pass
	Mid	2440	-9.52	-5.23	-14.75	8	Pass
	High	2480	-11.82	-5.23	-17.05	8	Pass

Note: factor=10log(3/10)=-5.23

Test Plots

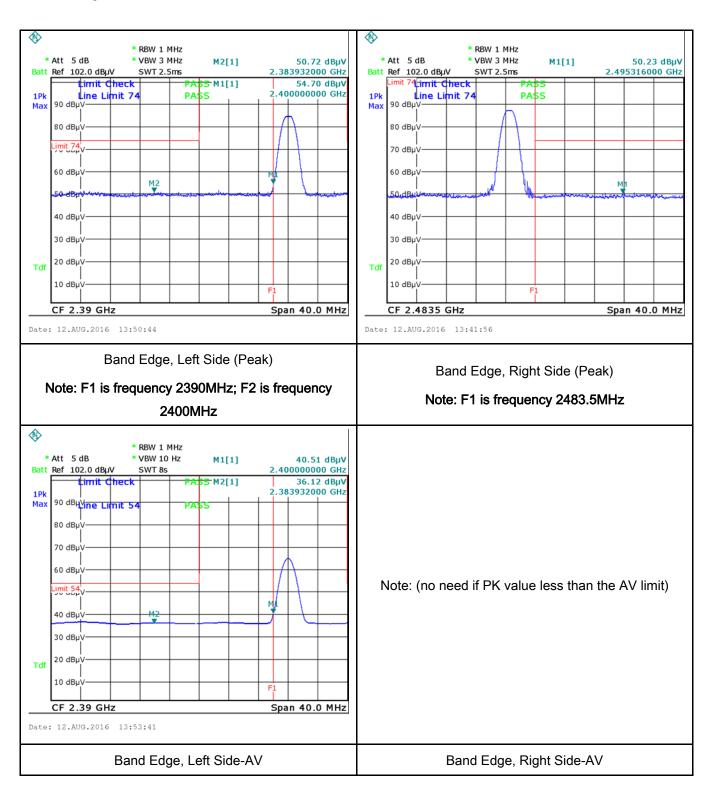
Test Report No.	16070896-FCC-R4
Page	17 of 44

6.5 Band-Edge & Unwanted Emissions into Restricted Frequency Bands

Temperature	25°C
Relative Humidity	54%
Atmospheric Pressure	1012mbar
Test date :	August 12, 2016
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Applicable	
§15.247(d)	a)	Ŋ	
Test Setup	Ant. Tower Support Units Ground Plane Test Receiver		
Test Procedure	Radiated Method Only 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. 2. Position the EUT without connection to measurement instrument. Put it on the Rotated table and turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.		


Test Report No.	16070896-FCC-R4
Page	18 of 44

	- 3. First, set both RBW and VBW of spectrum analyzer to 100 kHz with a
	convenient frequency span including 100kHz bandwidth from band edge, check
	the emission of EUT, if pass then set Spectrum Analyzer as below:
	a. The resolution bandwidth and video bandwidth of test receiver/spectrum
	analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz.
	b. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video
	bandwidth is 3MHz with Peak detection for Peak measurement at frequency above
	1GHz.
	c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the
	video bandwidth is 10Hz with Peak detection for Average Measurement as below
	at frequency above 1GHz.
	- 4. Measure the highest amplitude appearing on spectral display and set it as a
	reference level. Plot the graph with marking the highest point and edge frequency.
	- 5. Repeat above procedures until all measured frequencies were complete.
Remark	
Result	Pass Fail
	•
Test Data	Yes N/A
Test Plot	Yes (See below)

Test Report No.	16070896-FCC-R4
Page	19 of 44

Test Plots Band Edge measurement result

Test Report No.	16070896-FCC-R4
Page	20 of 44

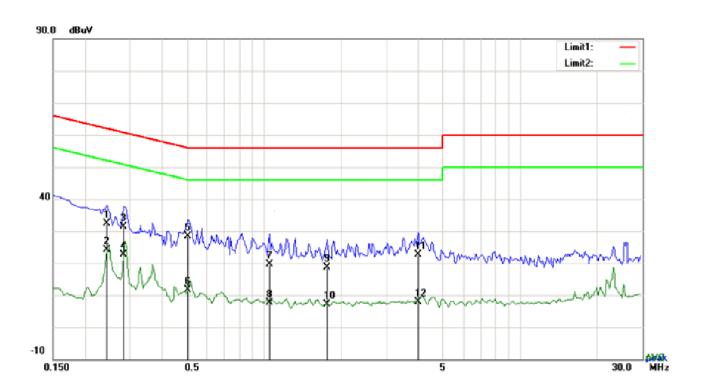
6.6 AC Power Line Conducted Emissions

Temperature	24°C
Relative Humidity	53%
Atmospheric Pressure	1001mbar
Test date :	August 01, 2016
Tested By:	Loren Luo

Requirement(s):

Spec	Item	n Requirement			Applicable	
47CFR§15. 207, RSS210 (A8.1)	a)	For Low-power radio-fr connected to the public voltage that is conducte frequency or frequencie not exceed the limits in [mu] H/50 ohms line im lower limit applies at th Frequency ranges (MHz)	e utility (AC) power line and back onto the AC power, within the band 150 the following table, as upedance stabilization reboundary between the Limit (QP	the radio frequency ower line on any kHz to 30 MHz, shall measured using a 50 network (LISN). The ne frequencies ranges. dBµV) Average		
		0.15 ~ 0.5 0.5 ~ 5	66 – 56 56	56 – 46 46		
		5 ~ 30	60	50		
Test Setup		Vertical Ground Reference Plane BUT Horizontal Ground Reference Plane Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80cm from EUT and at least 80cm				
The EUT and supporting equipment were set up in accordance with the require the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. Procedure 2. The power supply for the EUT was fed through a 50W/50mH EUT LISN, connefiltered mains. 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low			onnected to			

Test Report No.	16070896-FCC-R4
Page	21 of 44

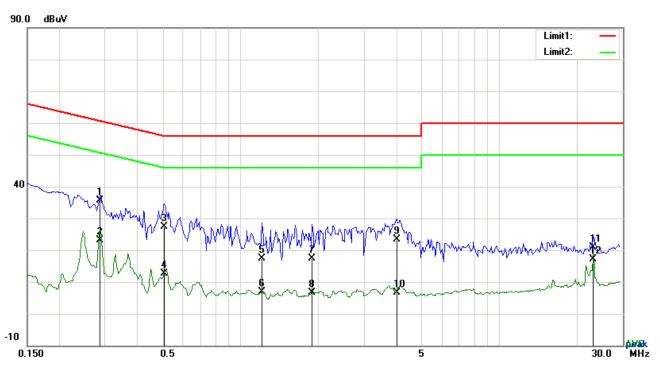

	coaxial cable.		
	4. All other supporting equipment were powered separately from another main supply.		
	5. The EUT was switched on and allowed to warm up to its normal operating condition.		
	6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power)		
	over the required frequency range using an EMI test receiver.		
	7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the		
	selected frequencies and the necessary measurements made with a receiver bandwidth		
	setting of 10 kHz.		
	8. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).		
Remark			
Result	Pass Fail		

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Test Report No.	16070896-FCC-R4
Page	22 of 44

Test Mode:	Transmitting Mode

Test Data

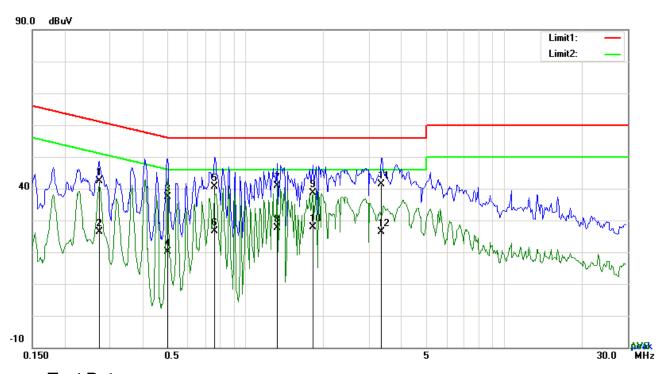

Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	L1	0.2436	22.27	QP	10.03	32.30	61.97	-29.67
2	L1	0.2436	14.02	AVG	10.03	24.05	51.97	-27.92
3	L1	0.2826	21.30	QP	10.03	31.33	60.74	-29.41
4	L1	0.2826	12.65	AVG	10.03	22.68	50.74	-28.06
5	L1	0.5049	18.36	QP	10.03	28.39	56.00	-27.61
6	L1	0.5049	1.58	AVG	10.03	11.61	46.00	-34.39
7	L1	1.0509	9.66	QP	10.03	19.69	56.00	-36.31
8	L1	1.0509	-2.38	AVG	10.03	7.65	46.00	-38.35
9	L1	1.7607	8.67	QP	10.04	18.71	56.00	-37.29
10	L1	1.7607	-2.94	AVG	10.04	7.10	46.00	-38.90
11	L1	3.9984	12.62	QP	10.07	22.69	56.00	-33.31
12	L1	3.9984	-2.08	AVG	10.07	7.99	46.00	-38.01

Test Report No.	16070896-FCC-R4
Page	23 of 44

Test Mode: Transmitting Mode

Test Data

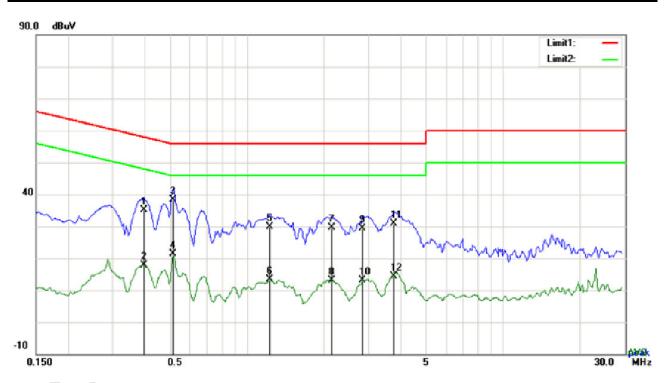

Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
INO.	P/L	(MHz)	(dBµV)	Detector	(dB)	(dBµV)	(dBµV)	(dB)
1	N	0.2865	25.49	QP	10.02	35.51	60.63	-25.12
2	N	0.2865	13.17	AVG	10.02	23.19	50.63	-27.44
3	N	0.5088	17.26	QP	10.02	27.28	56.00	-28.72
4	Ν	0.5088	2.73	AVG	10.02	12.75	46.00	-33.25
5	N	1.2108	7.27	QP	10.03	17.30	56.00	-38.70
6	N	1.2108	-3.16	AVG	10.03	6.87	46.00	-39.13
7	N	1.8933	7.32	QP	10.04	17.36	56.00	-38.64
8	N	1.8933	-3.35	AVG	10.04	6.69	46.00	-39.31
9	N	4.0140	13.34	QP	10.06	23.40	56.00	-32.60
10	N	4.0140	-3.36	AVG	10.06	6.70	46.00	-39.30
11	N	23.1279	10.64	QP	10.31	20.95	60.00	-39.05
12	N	23.1279	6.83	AVG	10.31	17.14	50.00	-32.86

Test Report No.	16070896-FCC-R4
Page	24 of 44

Test Mode:	Transmitting Mode
	_

Test Data


Phase Line Plot at 240Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	L1	0.2715	32.38	QP	10.03	42.41	61.07	-18.66
2	L1	0.2715	16.46	AVG	10.03	26.49	51.07	-24.58
3	L1	0.5010	27.35	QP	10.03	37.38	56.00	-18.62
4	L1	0.5010	10.22	AVG	10.03	20.25	46.00	-25.75
5	L1	0.7623	30.67	QP	10.03	40.70	56.00	-15.30
6	L1	0.7623	16.54	AVG	10.03	26.57	46.00	-19.43
7	L1	1.3239	30.88	QP	10.03	40.91	56.00	-15.09
8	L1	1.3239	17.55	AVG	10.03	27.58	46.00	-18.42
9	L1	1.8270	28.62	QP	10.04	38.66	56.00	-17.34
10	L1	1.8270	17.95	AVG	10.04	27.99	46.00	-18.01
11	L1	3.3627	31.28	QP	10.06	41.34	56.00	-14.66
12	L1	3.3627	16.37	AVG	10.06	26.43	46.00	-19.57

Test Report No.	16070896-FCC-R4
Page	25 of 44

Test Mode: Transmitting Mode

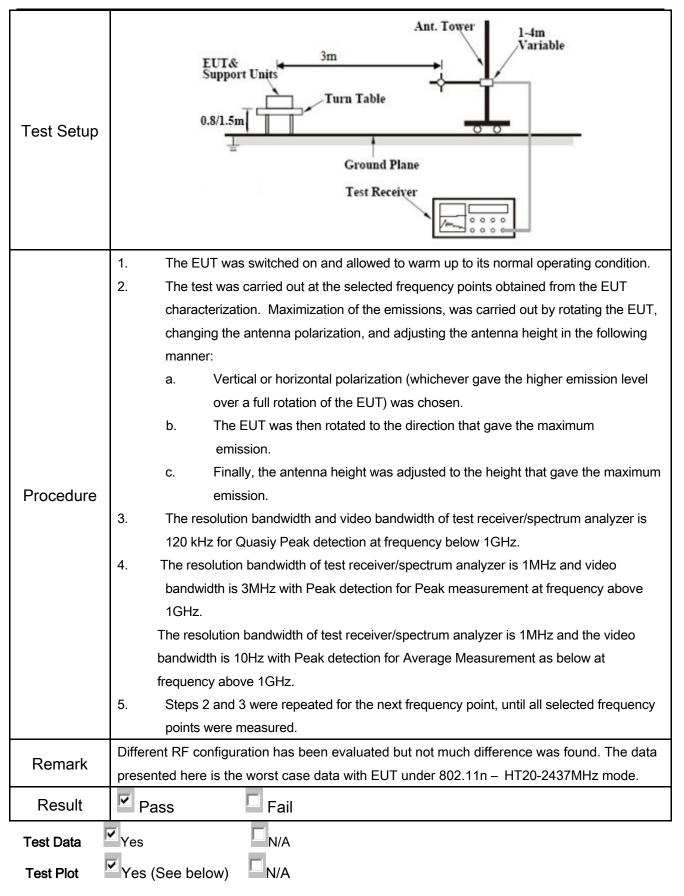
Test Data

Phase Neutral Plot at 240Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	N	0.3957	24.99	QP	10.02	35.01	57.94	-22.93
2	Ν	0.3957	7.87	AVG	10.02	17.89	47.94	-30.05
3	N	0.5166	28.31	QP	10.02	38.33	56.00	-17.67
4	N	0.5166	11.30	AVG	10.02	21.32	46.00	-24.68
5	N	1.2342	19.88	QP	10.03	29.91	56.00	-26.09
6	N	1.2342	3.37	AVG	10.03	13.40	46.00	-32.60
7	N	2.1546	19.51	QP	10.04	29.55	56.00	-26.45
8	N	2.1546	3.21	AVG	10.04	13.25	46.00	-32.75
9	N	2.8371	19.39	QP	10.05	29.44	56.00	-26.56
10	N	2.8371	3.08	AVG	10.05	13.13	46.00	-32.87
11	N	3.7527	20.93	QP	10.06	30.99	56.00	-25.01
12	N	3.7527	4.44	AVG	10.06	14.50	46.00	-31.50

Test Report No.	16070896-FCC-R4
Page	26 of 44

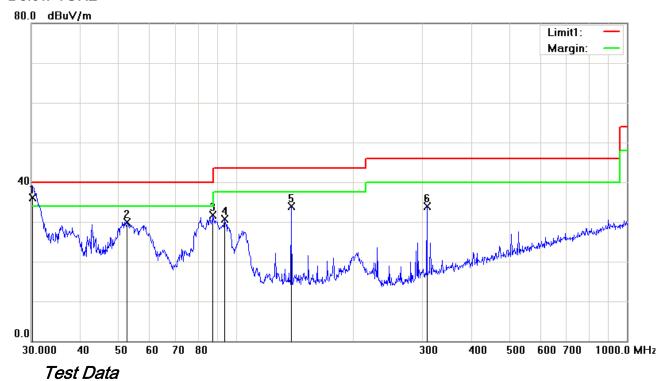
6.7 Radiated Spurious Emissions & Restricted Band


Temperature	24°C
Relative Humidity	53%
Atmospheric Pressure	1001mbar
Test date :	August 01, 2016
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Requirement	Applicable				
	a)	Except higher limit as specified else emissions from the low-power radio exceed the field strength levels spet the level of any unwanted emission the fundamental emission. The tight edges	\				
		Frequency range (MHz)	Field Strength (μV/m)				
		30 – 88	100				
		88 – 216	150				
47CFR§15.		216 960	200				
•		Above 960	500				
247(d), RSS210 (A8.5)	b)	For non-restricted band, In any 100 frequency band in which the spread modulated intentional radiator is oppower that is produced by the intentional solution of 20 dB or 30dB below that in the 100 band that contains the highest lever determined by the measurement mused. Attenuation below the general is not required 20 dB down 30	d spectrum or digitally perating, the radio frequency stional radiator shall be at least 0 kHz bandwidth within the 1 of the desired power, ethod on output power to be	\			
	c)	or restricted band, emission must also comply with the radiated					

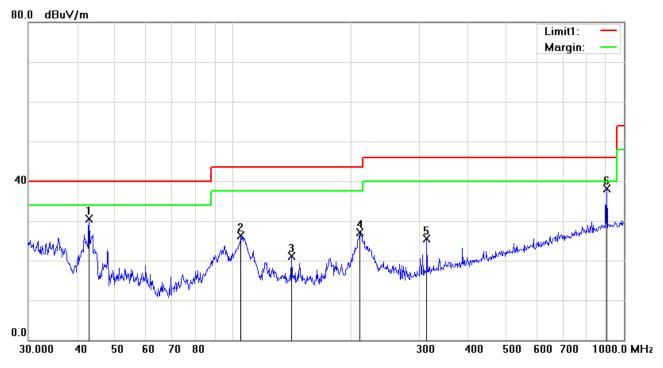
Test Report No.	16070896-FCC-R4
Page	27 of 44



Test Report No.	16070896-FCC-R4
Page	28 of 44

Test Mode: Transmitting Mode

Below 1GHz


Vertical Polarity Plot @3m

No	P/L	Frequency (MHz)	Reading (dBµV)	Detec tor	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)	Height	Degree
1	V	30.2111	36.45	QP	-0.41	36.04	40.00	-3.96	100	186
2	٧	52.7600	43.39	peak	-13.50	29.89	40.00	-10.11	100	212
3	V	87.4177	45.13	peak	-13.44	31.69	40.00	-8.31	100	171
4	V	93.4402	43.14	peak	-12.51	30.63	43.50	-12.87	100	227
5	٧	138.3873	42.42	peak	-8.45	33.97	43.50	-9.53	100	119
6	V	307.8313	40.68	peak	-6.68	34.00	46.00	-12.00	100	134

Test Report No.	16070896-FCC-R4
Page	29 of 44

Below 1GHz

Test Data

Horizontal Polarity Plot @3m

No	P/L	Frequency (MHz)	Reading (dBµV)	Dete ctor	Correcte d (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)	Height	Degree
1	Н	42.8998	39.99	peak	-9.53	30.46	40.00	-9.54	100	359
2	Н	104.9033	36.22	peak	-9.93	26.29	43.50	-17.21	100	184
3	Н	141.3298	29.54	peak	-8.52	21.02	43.50	-22.48	100	199
4	Н	211.5265	35.99	peak	-8.84	27.15	43.50	-16.35	100	105
5	Н	313.2760	32.07	peak	-6.51	25.56	46.00	-20.44	100	248
6	Н	903.3094	33.47	peak	4.73	38.20	46.00	-7.80	100	87

Test Report No.	16070896-FCC-R4
Page	30 of 44

Above 1GHz

Test Mode:

Low Channel (2402 MHz)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4804	39.25	AV	٧	33.83	6.86	31.72	48.22	54	-5.78
4804	39.08	AV	Η	33.83	6.86	31.72	48.05	54	-5.95
4804	48.75	PK	٧	33.83	6.86	31.72	57.72	74	-16.28
4804	48.33	PK	Н	33.83	6.86	31.72	57.3	74	-16.7
17815	25.01	AV	V	45.03	11.21	32.38	48.87	54	-5.13
17815	24.68	AV	Н	45.03	11.21	32.38	48.54	54	-5.46
17815	41.25	PK	V	45.03	11.21	32.38	65.11	74	-8.89
17815	40.86	PK	Н	45.03	11.21	32.38	64.72	74	-9.28

Middle Channel (2440 MHz)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4880	39.15	AV	V	33.86	6.82	31.82	48.01	54	-5.99
4880	38.89	AV	Н	33.86	6.82	31.82	47.75	54	-6.25
4880	48.34	PK	V	33.86	6.82	31.82	57.2	74	-16.8
4880	48.05	PK	Н	33.86	6.82	31.82	56.91	74	-17.09
17830	24.86	AV	V	45.15	11.18	32.41	48.78	54	-5.22
17830	24.33	AV	Н	45.15	11.18	32.41	48.25	54	-5.75
17830	41.12	PK	V	45.15	11.18	32.41	65.04	74	-8.96
17830	40.93	PK	Н	45.15	11.18	32.41	64.85	74	-9.15

Test Report No.	16070896-FCC-R4				
Page	31 of 44				

High Channel (2480 MHz)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4960	38.99	AV	V	33.9	6.76	31.92	47.73	54	-6.27
4960	38.74	AV	Н	33.9	6.76	31.92	47.48	54	-6.52
4960	48.61	PK	V	33.9	6.76	31.92	57.35	74	-16.65
4960	48.21	PK	Н	33.9	6.76	31.92	56.95	74	-17.05
17863	24.55	AV	V	45.22	11.35	32.38	48.74	54	-5.26
17863	24.38	AV	Н	45.22	11.35	32.38	48.57	54	-5.43
17863	40.86	PK	V	45.22	11.35	32.38	65.05	74	-8.95
17863	40.68	PK	Н	45.22	11.35	32.38	64.87	74	-9.13

Note:

- 1, The testing has been conformed to 10*2480MHz=24,800MHz 2, All other emissions more than 30 dB below the limit
- 3, X-Axis, Y-Axis and Y-Axis were investigated. The results above show only the worst case.

Test Report No.	16070896-FCC-R4
Page	32 of 44

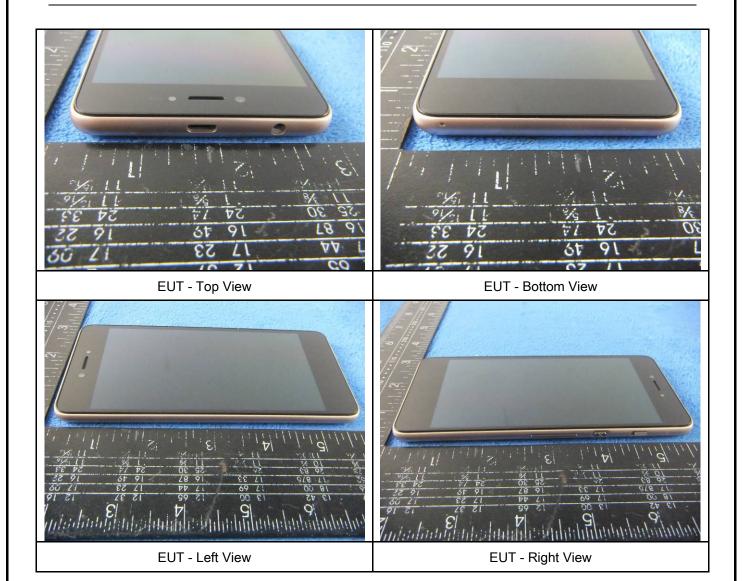
Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Due	In use
AC Line Conducted				l	
EMI test receiver	ESCS30	8471241027	09/17/2015	09/16/2016	~
Line Impedance	LI-125A	191106	09/25/2015	09/24/2016	<u> </u>
Line Impedance	LI-125A	191107	09/25/2015	09/24/2016	<u>\</u>
LISN	ISN T800	34373	09/25/2015	09/24/2016	>
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/24/2015	09/23/2016	V
Transient Limiter	LIT-153	531118	09/01/2015	08/31/2016	V
RF conducted test					
Agilent ESA-E SERIES	E4407B	MY45108319	09/17/2015	09/16/2016	>
Power Splitter	1#	1#	09/01/2015	08/31/2016	~
DC Power Supply	E3640A	MY40004013	09/17/2015	09/16/2016	~
Radiated Emissions					
EMI test receiver	ESL6	100262	09/17/2015	09/16/2016	~
Positioning Controller	UC3000	MF780208282	11/19/2015	11/18/2016	~
OPT 010 AMPLIFIER (0.1-1300MHz)	8447E	2727A02430	09/01/2015	08/31/2016	V
Microwave Preamplifier (1 ~ 26.5GHz)	8449B	3008A02402	03/24/2016	03/23/2017	\
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/21/2015	09/20/2016	V
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/24/2015	09/23/2016	<u>X</u>
Universal Radio Communication Tester	CMU200	121393	09/25/2015	09/24/2016	V

Test Report No.	16070896-FCC-R4
Page	33 of 44

EUT - Rear View

Annex B. EUT And Test Setup Photographs


Photograph: EUT External Photo Annex B.i.

EUT - Front View

Test Report No.	16070896-FCC-R4
Page	34 of 44

Test Report No.	16070896-FCC-R4
Page	35 of 44

Annex B.ii. Photograph: EUT Internal Photo

Cover Off - Top View 1

Cover Off - Top View 2

Battery - Front View

Battery - Rear View

Mainboard with Shielding - Front View

Mainboard without Shielding - Front View

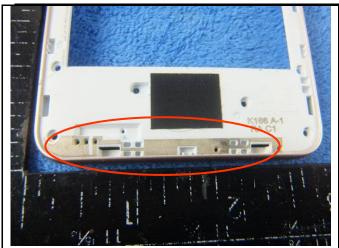

Test Report No.	16070896-FCC-R4
Page	36 of 44

Mainboard with Shielding - Rear View

Mainboard without Shielding - Rear View

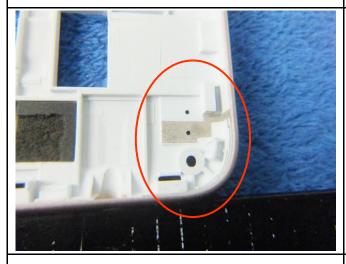
Small Board - Front View

Small Board - Rear View



LCD - Front View

LCD - Rear View

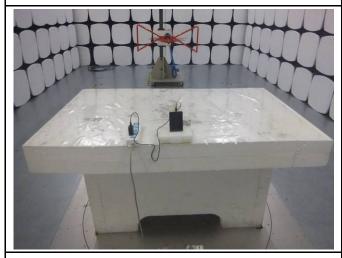

Test Report No.	16070896-FCC-R4
Page	37 of 44

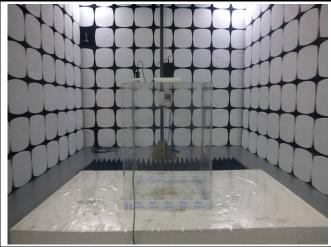
GSM/PCS/UMTS-FDD-Antenna View

WIFI/BT/BLE/GPS - Antenna View

LTE - Antenna View

Test Report No.	16070896-FCC-R4
Page	38 of 44

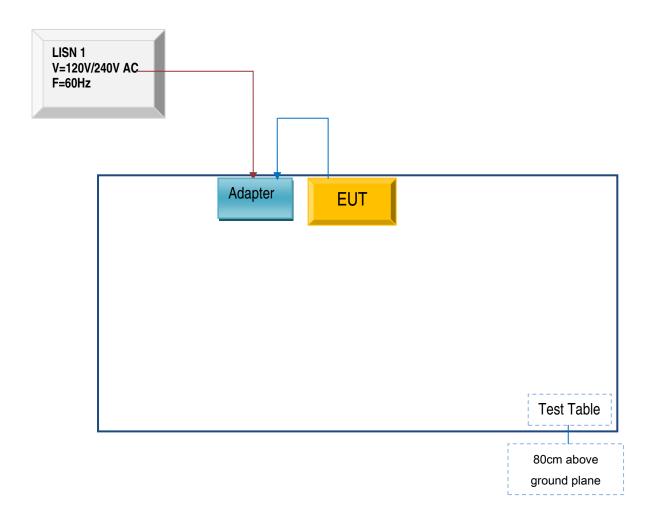

Annex B.iii. Photograph: Test Setup Photo


Conducted Emissions Test Setup Front View

Conducted Emissions Test Setup Side View

Radiated Spurious Emissions Test Setup Below 1GHz

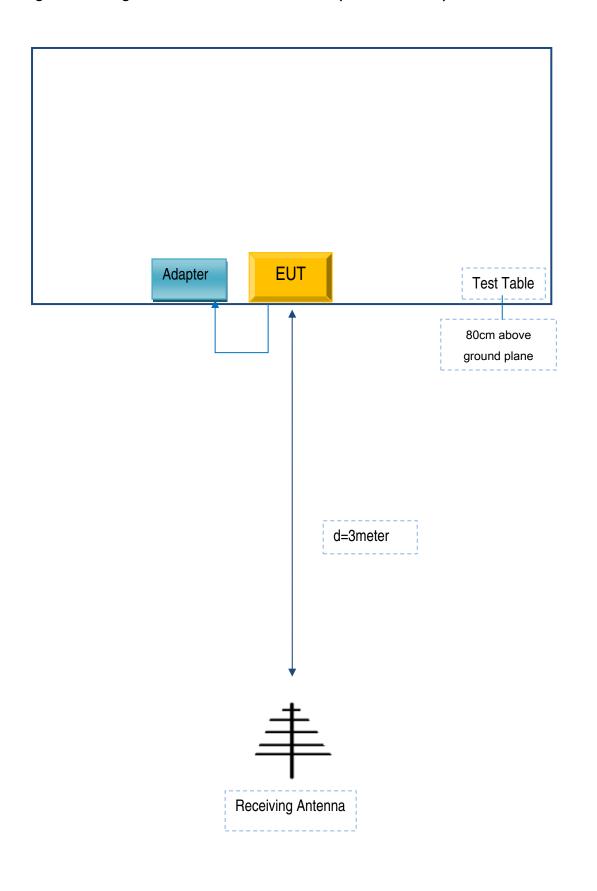
Radiated Spurious Emissions Test Setup Above 1GHz



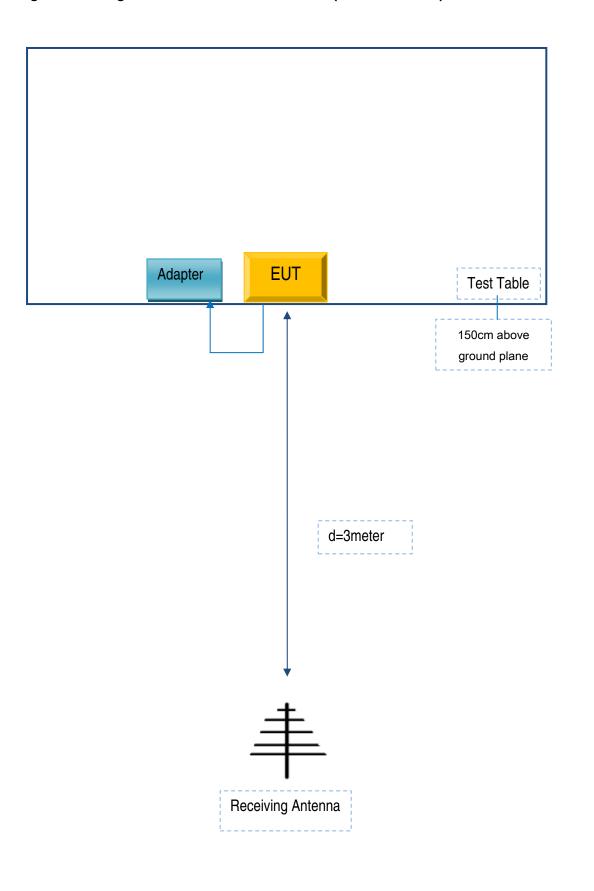
Test Report No.	16070896-FCC-R4
Page	39 of 44

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK


Block Configuration Diagram for AC Line Conducted Emissions

Test Report No.	16070896-FCC-R4
Page	40 of 44


Block Configuration Diagram for Radiated Emissions (Below 1GHz).

Test Report No.	16070896-FCC-R4
Page	41 of 44

Block Configuration Diagram for Radiated Emissions (Above 1GHz) .

Test Report No.	16070896-FCC-R4
Page	42 of 44

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
Verykool USA Inc	Adapter	TPA- 46B050100UU	SL-010

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
USB Cable	Un-shielding	No	0.8m	SL-010

Test Report No.	16070896-FCC-R4
Page	43 of 44

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see attachment

Test Report No.	16070896-FCC-R4
Page	44 of 44

Annex E. DECLARATION OF SIMILARITY

N/A