RF TEST REPORT

Report No.: 16070896-FCC-R3			
Supersede Report No.:N/A			
Applicant	Verykool USA Inc		
Product Name	Mobile pho	one	
Model No.	SL5050		
Serial No.	N/A		
Test Standard	FCC Part 1	5.247: 2015, ANSI C63.10: 20	013
Test Date	July 21 to August 30		
Issue Date	August 31, 2016		
Test Result	Pass Fail		
Equipment compl	ied with the	specification	
Equipment did no	t comply wit	n the specification	
Loven Luo		David Huang	
Loren Luo		David Huang	
		Checked By	
Test Engineer Checked By			
This test report may be reproduced in full only			
Test result presented in this test report is applicable to the tested sample only			
Issued by:			

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108 Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Page

2 of 55

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Accreditations for Conformity Assessment

 Test Report No.
 16070896-FCC-R3

 Page
 3 of 55

This page has been left blank intentionally.

 Test Report No.
 16070896-FCC-R3

 Page
 4 of 55

CONTENTS

1.	REPORT REVISION HISTORY
2.	CUSTOMER INFORMATION
3.	TEST SITE INFORMATION
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION
5.	TEST SUMMARY9
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS
6.1	ANTENNA REQUIREMENT10
6.2	DTS (6 DB&20 DB) CHANNEL BANDWIDTH11
6.3	MAXIMUM OUTPUT POWER17
6.4	POWER SPECTRAL DENSITY21
6.5	BAND-EDGE & UNWANTED EMISSIONS INTO RESTRICTED FREQUENCY BANDS25
6.6	AC POWER LINE CONDUCTED EMISSIONS
6.7	RADIATED SPURIOUS EMISSIONS & RESTRICTED BAND
ANI	NEX A. TEST INSTRUMENT43
ANI	NEX B. EUT AND TEST SETUP PHOTOGRAPHS44
ANI	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT
ANI	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST
AN	NEX E. DECLARATION OF SIMILARITY

Test Report No.	16070896-FCC-R3
Page	5 of 55

1. Report Revision History

Report No.	Report Version	Description	Issue Date
16070896-FCC-R3	NONE	Original	August 31, 2016

2. Customer information

Applicant Name	Verykool USA Inc
Applicant Add	3636 Nobel Drive, Suite 325, San Diego, California 92122 United States
Manufacturer	Kozen Mobile Co.,Ltd
Manufacturer Add	Floor 3rd, Building 29, No.368 Zhangjiang Road, Pudong District, Shanghai, China
	201203

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China
	518108
FCC Test Site No.	718246
IC Test Site No.	4842E-1
Test Software	Radiated Emission Program-To Shenzhen v2.0

Test Report No.	16070896-FCC-R3
Page	6 of 55

4. Equipment under Test (EUT) Information

Description of EUT:	Mobile phone
Main Model:	SL5050
Serial Model:	N/A
Date EUT received:	July 20, 2016
Test Date(s):	July 21 to August 30
Equipment Category :	DTS
	GSM850: -2.2dBi
	PCS1900: -1.21dBi
	UMTS-FDD Band V: -2.62dBi
	UMTS-FDD Band IV: -1.42dBi
	UMTS-FDD Band II: -1.42dBi
	LTE Band 2: -1.5dBi
Antenna Gain:	LTE Band 4: -1.4dBi
	LTE Band 5: -2.2dBi
	LTE Band 7: -0.8dBi
	LTE Band 12: -2.4dBi
	LTE Band 17: -2.4dBi
	Bluetooth/BLE/WIFI:0dBi GPS:0dBi
Antenna Type:	PIFA antenna
	Adapter:
	Model: TPA-46B050100UU
	Input: AC 100-240V,50/60Hz;0.2A
Input Power:	Output: DC 5.0V,1A
P	Battery:
	Model:FHPK275875L
	Spec: 3.8V,2500mAh(9.5Wh)
	Charge limited voltage: 4.35V

 Test Report No.
 16070896-FCC-R3

 Page
 7 of 55

GSM / GPRS: GMSK EGPRS: GMSK,8PSK UMTS-FDD: QPSK LTE Band: QPSK, 16QAM Type of Modulation: 802.11b/g/n: DSSS, OFDM Bluetooth: GFSK, π /4DQPSK, 8DPSK BLE: GFSK **GPS:BPSK** GSM850 TX: 824.2 ~ 848.8 MHz; RX: 869.2 ~ 893.8 MHz PCS1900 TX: 1850.2 ~ 1909.8 MHz; RX: 1930.2 ~ 1989.8 MHz UMTS-FDD Band V TX: 826.4 ~ 846.6 MHz; RX: 871.4 ~ 891.6 MHz UMTS-FDD Band IV TX:1712.4 ~ 1752.6 MHz; RX : 2112.4 ~ 2152.6 MHz UMTS-FDD Band II TX:1852.4 ~ 1907.6 MHz; RX: 1932.4 ~ 1987.6 MHz LTE Band 2 TX: 1852.5 ~ 1907.5 MHz; RX : 1932.5 ~ 1987.5 MHz LTE Band 4 TX: 1712.5 ~ 1752.5 MHz; RX : 2112.5 ~ 2152.5 MHz RF Operating Frequency (ies): LTE Band 5 TX: 826.5 ~ 846.5 MHz; RX : 871.5 ~ 891.5 MHz LTE Band 7 TX: 2502.5 ~ 2567.5 MHz; RX : 2622.5 ~ 2687.5 MHz LTE Band 12 TX:699.7 ~ 715.3 MHz; RX : 729.7~ 745.3MHz LTE Band 17 TX: 706.5 ~ 713.5 MHz; RX : 736.5 ~ 743.5 MHz WIFI: 802.11b/g/n(20M): 2412-2462 MHz WIFI: 802.11n(40M): 2422-2452 MHz Bluetooth& BLE: 2402-2480 MHz GPS: 1575.42 MHz GSM 850: 124CH PCS1900: 299CH UMTS-FDD Band V: 102CH UMTS-FDD Band IV: 202CH UMTS-FDD Band II: 277CH Number of Channels: WIFI :802.11b/g/n(20M): 11CH WIFI :802.11n(40M): 7CH Bluetooth: 79CH BLE: 40CH GPS:1CH

 Test Report No.
 16070896-FCC-R3

 Page
 8 of 55

Port:	Earphone Port, USB Port
Max. Output Power:	802.11b: 9.02dBm 802.11g: 8.64dBm 802.11n(20M): 9.09dBm 802.11n(40M): 8.63dBm
Trade Name :	verykool
GPRS/EGPRS Multi-slot class	8/10/12
FCC ID:	WA6SL5050

Test Report No.	16070896-FCC-R3
Page	9 of 55

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.247 (a)(2)	DTS (6 dB&20 dB) CHANNEL BANDWIDTH	Compliance
§15.247(b)(3)	Conducted Maximum Output Power	Compliance
§15.247(e)	Power Spectral Density	Compliance
§15.247(d)	Band-Edge & Unwanted Emissions into Restricted Frequency Bands	Compliance
§15.207 (a),	AC Power Line Conducted Emissions	Compliance
§15.205, §15.209,	Radiated Spurious Emissions & Unwanted Emissions	Compliance
§15.247(d)	into Restricted Frequency Bands	Compliance

Measurement Uncertainty

Emissions			
Test Item	Description	Uncertainty	
Band Edge and Radiated Spurious Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB	
-	-	-	

 Test Report No.
 16070896-FCC-R3

 Page
 10 of 55

6. Measurements, Examination And Derived Results

6.1 Antenna Requirement

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

A permanently attached PIFA antenna for Bluetooth/BLE/WIFI/GPS, the gain is0dBi.

A permanently attached PIFA antenna for GSM/PCS/UMTS, the gain is -2.2dBi for GSM850, -1.21dBi for PCS1900, -2.62dBi for UMTS-FDD Band V, -1.42dBi for UMTS-FDD Band IV, 1.42dBi for UMTS-FDD Band II.

A permanently attached PIFA antenna for LTE Band 2/4/5/7/12/17, the gain is -1.5dBi for LTE Band 2, the gain is -1.4dBi for LTE Band 4, the gain is -2.2dBi for LTE Band 5, the gain is -0.8dBi for LTE Band 7, the gain is -2.4dBi for LTE Band 12, the gain is -2.4dBi for LTE Band 17.

The antenna meets up with the ANTENNA REQUIREMENT.

Result: Compliance.

Test Report No.	16070896-FCC-R3
Page	11 of 55

6.2 DTS (6 dB&20 dB) Channel Bandwidth

Temperature	23°C
Relative Humidity	58%
Atmospheric Pressure	1006mbar
Test date :	August 06, 2016
Tested By :	Loren Luo

Spec	Item Requirement Applicabl				
§ 15.247(a)(2)	a)	a) 6dB BW≥ 500kHz; 20dB BW≥ 500kHz; ✓			
RSS Gen(4.6.1)	b)	99% BW: For FCC reference only; required by IC.	Z		
Test Setup					
	55807	4 D01 DTS MEAS Guidance v03r03, 8.1 DTS bandwidth			
	6dB b	andwidth			
	a) Se	t RBW = 100 kHz.			
	b) Se	t the video bandwidth (VBW) $\geq 3 \times RBW$.			
	c) De	tector = Peak.			
	d) Trace mode = max hold.				
	e) Sweep = auto couple.				
	f) Allow the trace to stabilize.				
	g) Measure the maximum width of the emission that is constrained by the freq				
Test Procedure	uencies associated with the two outermost amplitude points (upper and lower fr				
	equen	equencies) that are attenuated by 6 dB relative to the maximum level measure			
	d in the fundamental emission.				
	20dB bandwidth				
	C63.10 Occupied Bandwidth (OBW=20dB bandwidth)				
	1. Set RBW = 1%-5% OBW.				
	2. Set the video bandwidth (VBW) \geq 3 x RBW.				
	3. Set the span range between 2 times and 5 times of the OBW.				
	4. Sweep time=Auto, Detector=PK, Trace=Max hold.				
		nce the reference level is established, the equipment is con-	ditioned with t		
	ypical	ypical modulating signals to produce the worst-			

 Test Report No.
 16070896-FCC-R3

 Page
 12 of 55

	case (i.e., the widest) bandwidth. Unless otherwise specified for an unlicensed
	wireless device, measure the bandwidth at the 20 dB levels with respect to the
	reference level.
Remark	
Result	Pass Fail

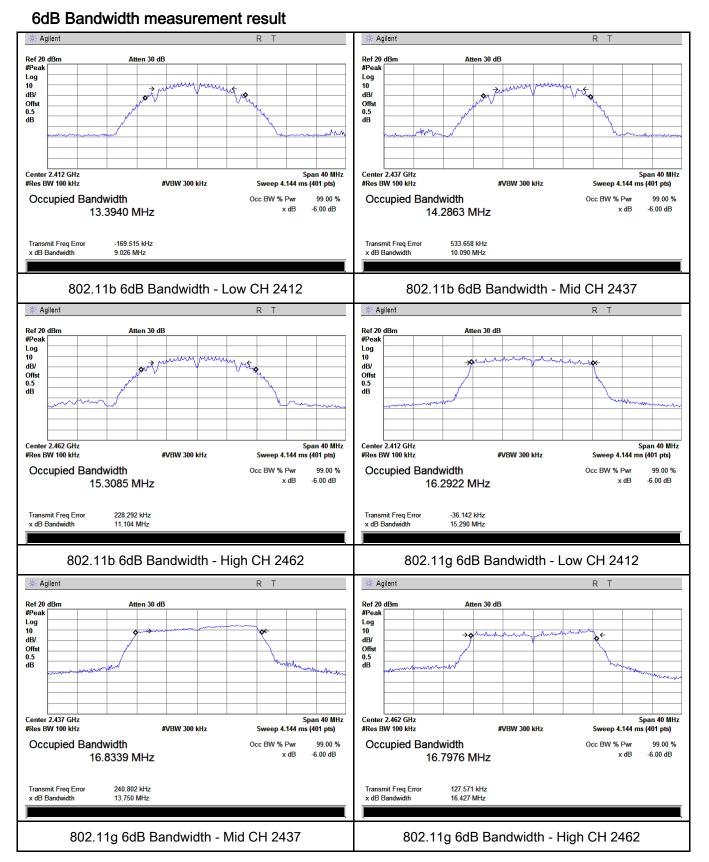
Test Data

□_{N/A}

Test Plot

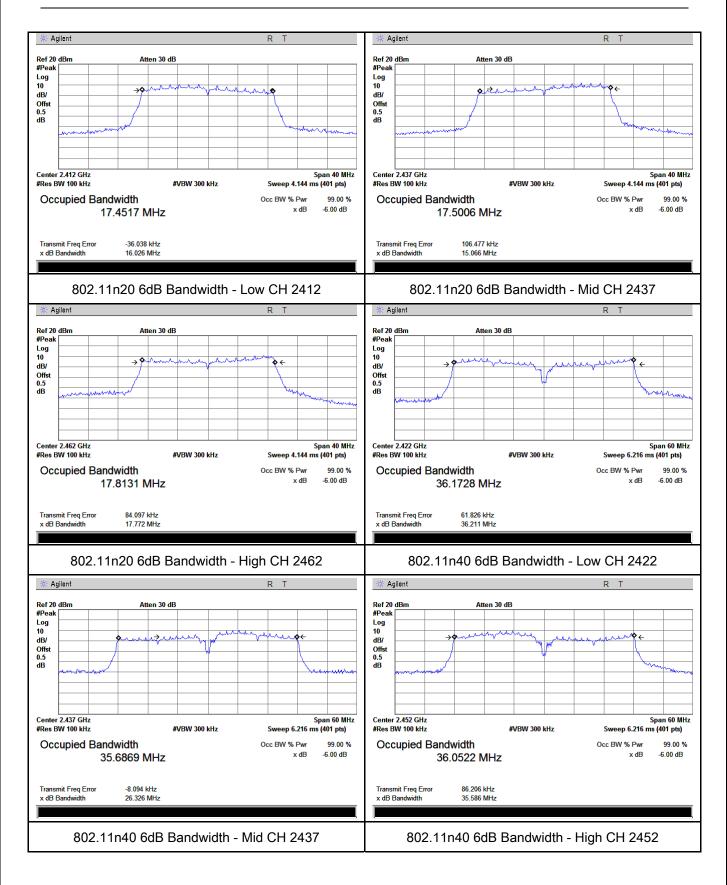
Yes (See below)

Measurement result


✓ Yes

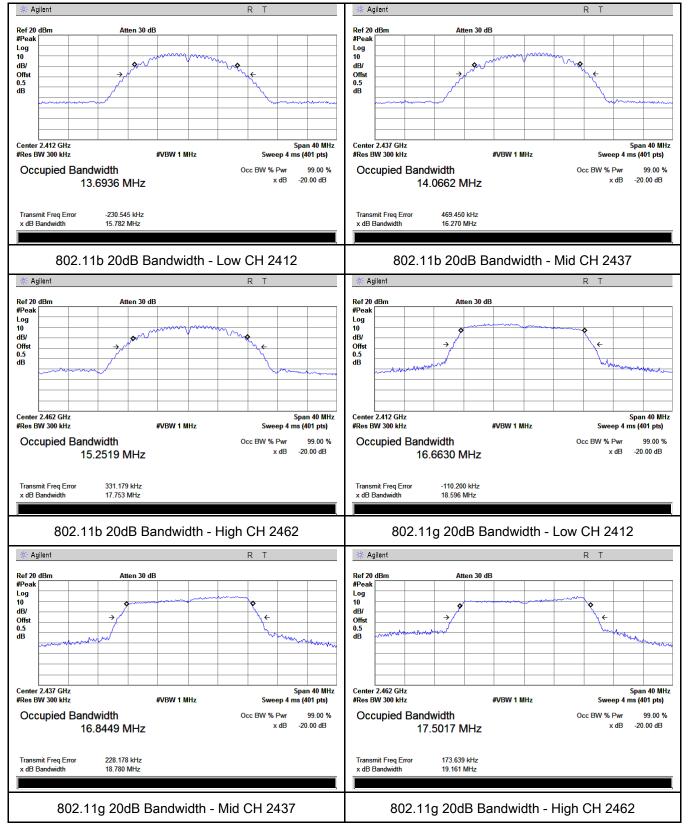
Test mode	СН	Freq (MHz)	6dB Bandwidth (MHz)	20dB Bandwidth (MHz)	Limit (MHz)
	Low	2412	9.060	15.782	≥ 0.5
802.11b	Mid	2437	10.090	16.270	≥ 0.5
	High	2462	11.104	17.753	≥ 0.5
	Low	2412	15.290	18.596	≥ 0.5
802.11g	Mid	2437	13.750	18.780	≥ 0.5
	High	2462	16.427	19.161	≥ 0.5
002 44-	Low	2412	16.026	19.232	≥ 0.5
802.11n	Mid	2437	15.066	19.306	≥ 0.5
(20M)	High	2462	17.772	19.676	≥ 0.5
000.44	Low	2422	36.211	40.204	≥ 0.5
802.11n	Mid	2437	26.326	39.114	≥ 0.5
(40M)	High	2452	35.586	39.601	≥ 0.5

Test Report No.	16070896-FCC-R3
Page	13 of 55


Test Plots

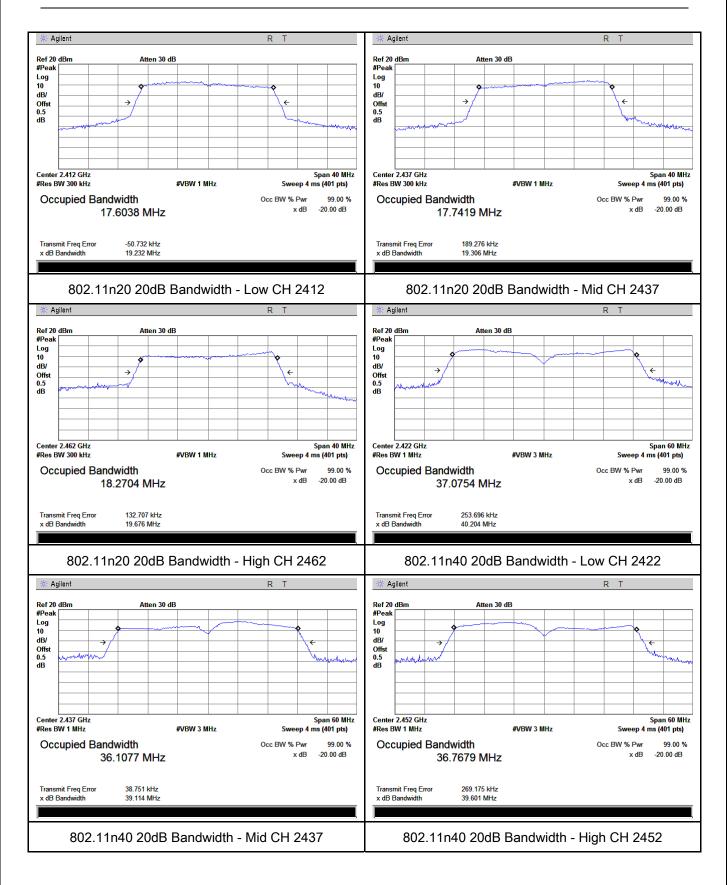
 Test Report No.
 16070896-FCC-R3

 Page
 14 of 55



Page

15 of 55


20 dB Bandwidth measurement result

 Test Report No.
 16070896-FCC-R3

 Page
 16 of 55

 Test Report No.
 16070896-FCC-R3

 Page
 17 of 55

6.3 Maximum Output Power

Temperature	25°C
Relative Humidity	57%
Atmospheric Pressure	1024mbar
Test date :	August 24, 2016
Tested By :	Loren Luo

Requirement(s):

Spec	Ite	Requirement	Applicable		
0000	m	m			
	a)	FHSS in 2400-2483.5MHz with \geq 75 channels: \leq 1 Watt			
	b)	FHSS in 5725-5850MHz: ≤ 1 Watt			
§15.247(b) (3),RSS210	c)	For all other FHSS in the 2400-2483.5MHz band: ≤ 0.125 Watt.			
(A8.4)	d)	FHSS in 902-928MHz with ≥ 50 channels: ≤ 1 Watt			
(, (0, 1))	e)	FHSS in 902-928MHz with $\geq 25 \& <50$ channels: ≤ 0.25 Watt			
	f)	DTS in 902-928MHz, 2400-2483.5MHz: ≤ 1 Watt	×		
Test Setup					
Test Procedure	 558074 D01 DTS MEAS Guidance v03r03, 9.1.2 Integrated band power method Maximum output power measurement procedure a) Set span to at least 1.5 times the OBW. b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz. c) Set VBW ≥ 3 x RBW. d) Number of points in sweep ≥ 2 × span / RBW. (This gives bin-to-bin spacing ≤ RBW/2, so that narrowband signals are not lost between frequency bins.) e) Sweep time = auto. f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode. g) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum 				

 Test Report No.
 16070896-FCC-R3

 Page
 18 of 55

power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

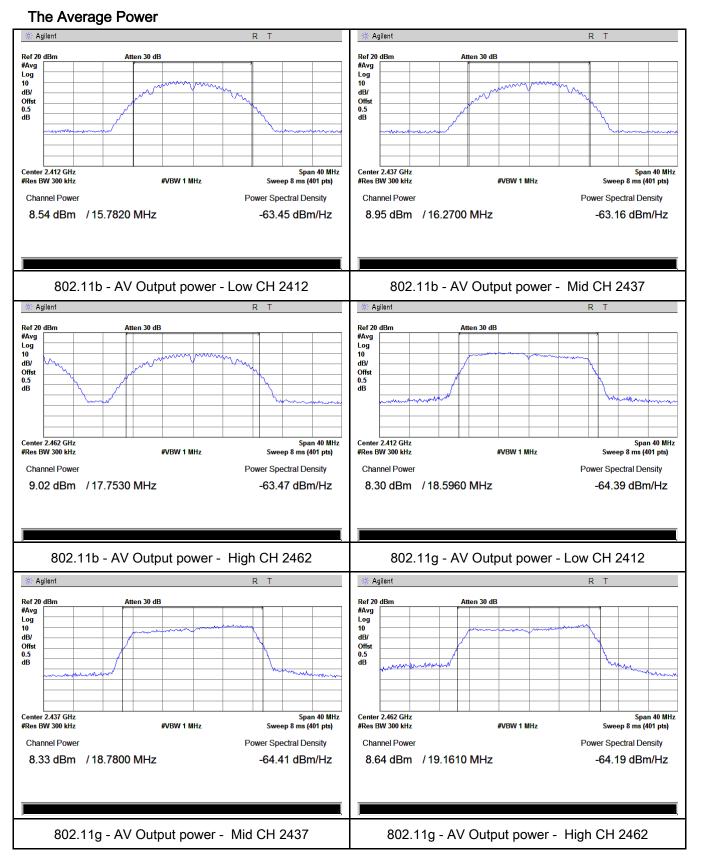
Remark			
Result	Pass	🗖 Fail	

Test Data

Test Plot

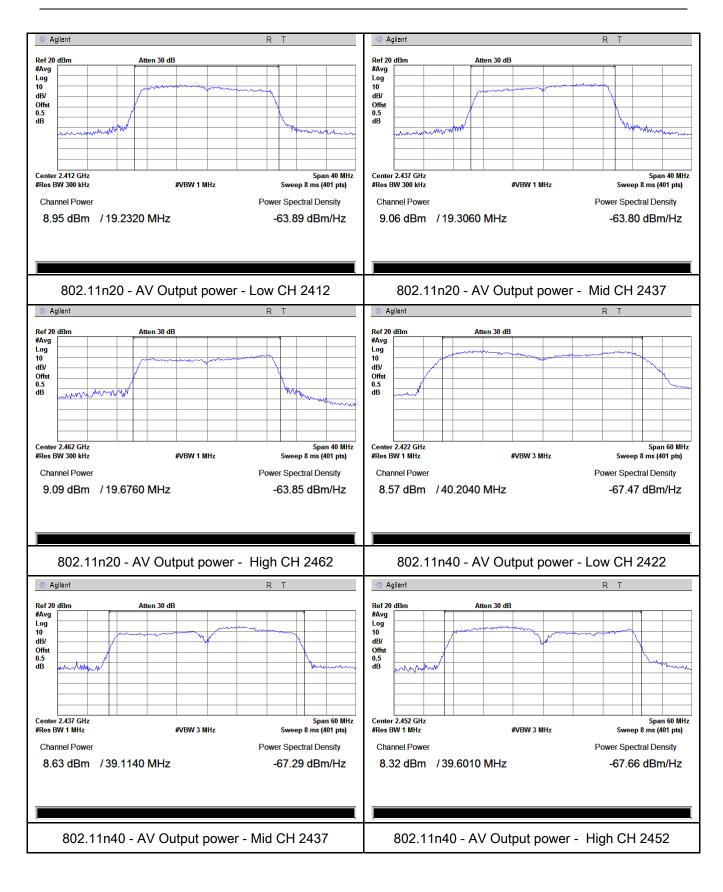
Output Power measurement result

Yes (See below)


Yes

Туре	Test mode	СН	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Result
		Low	2412	8.54	30	Pass
	802.11b	Mid	2437	8.95	30	Pass
		High	2462	9.02	30	Pass
	802.11g Output power 802.11n (20M)	Low	2412	8.30	30	Pass
		Mid	2437	8.33	30	Pass
Output		High	2462	8.64	30	Pass
power		Low	2412	8.95	30	Pass
		Mid	2437	9.06	30	Pass
		High	2462	9.09	30	Pass
		Low	2422	8.57	30	Pass
	802.11n	Mid	2437	8.63	30	Pass
	(40M)	High	2452	8.32	30	Pass

Test Report No.	16070896-FCC-R3
Page	19 of 55


Test Plots

 Test Report No.
 16070896-FCC-R3

 Page
 20 of 55

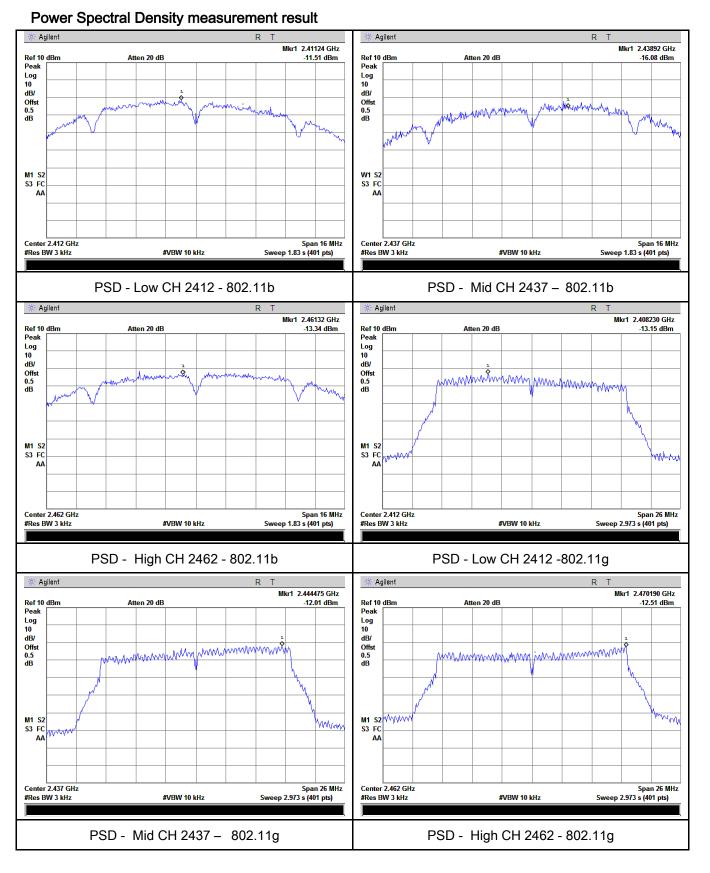
6.4 Power Spectral Density

Temperature	25°C
Relative Humidity	57%
Atmospheric Pressure	1024mbar
Test date :	August 24, 2016
Tested By :	Loren Luo

Spec	Item	Requirement	Applicable
§15.247(e)	a)	The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.	2
Test Setup			
Test Procedure	power s - - - - - - - - - - - -	 D01 DTS MEAS Guidance v03r03, 10.2 power spectral density measurement procedure a) Set analyzer center frequency to DTS channel center frequeb) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to: 3 kHz ≤ RBW ≤ 100 kHz. d) Set the VBW ≥ 3 × RBW. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum at level within the RBW. j) If measured value exceeds limit, reduce RBW (no less than repeat. 	uency.
Remark			
Result	🗹 Pas	ss Fail	

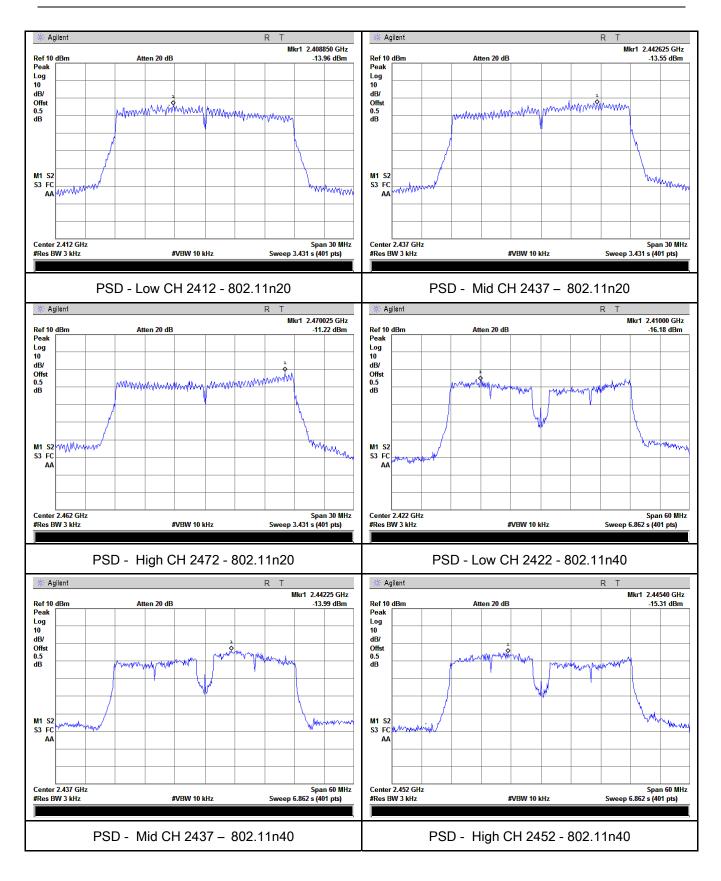
Test Report No.	16070896-FCC-R3
Page	22 of 55

Test Data	Ves	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}


Power Spectral Density measurement result

Туре	Test mode	СН	Freq (MHz)	PSD (dBm)	Limit (dBm)	Result
		Low	2412	-11.51	8	Pass
	802.11b	Mid	2437	-16.08	8	Pass
		High	2462	-13.34	8	Pass
		Low	2412	-13.15	8	Pass
	802.11g	Mid	2437	-12.01	8	Pass
PSD		High	2462	-12.51	8	Pass
F3D	802.11n	Low	2412	-13.96	8	Pass
	(20M)	Mid	2437	-13.55	8	Pass
		High	2462	-11.22	8	Pass
	802.11n	Low	2422	-16.18	8	Pass
		Mid	2437	-13.99	8	Pass
	(40M)	High	2452	-15.31	8	Pass

Test Report No.	16070896-FCC-R3
Page	23 of 55


Test Plots

 Test Report No.
 16070896-FCC-R3

 Page
 24 of 55

 Test Report No.
 16070896-FCC-R3

 Page
 25 of 55

6.5 Band-Edge & Unwanted Emissions into Restricted Frequency Bands

Temperature	24°C
Relative Humidity	53%
Atmospheric Pressure	1011mbar
Test date :	August 11, 2016
Tested By :	Loren Luo

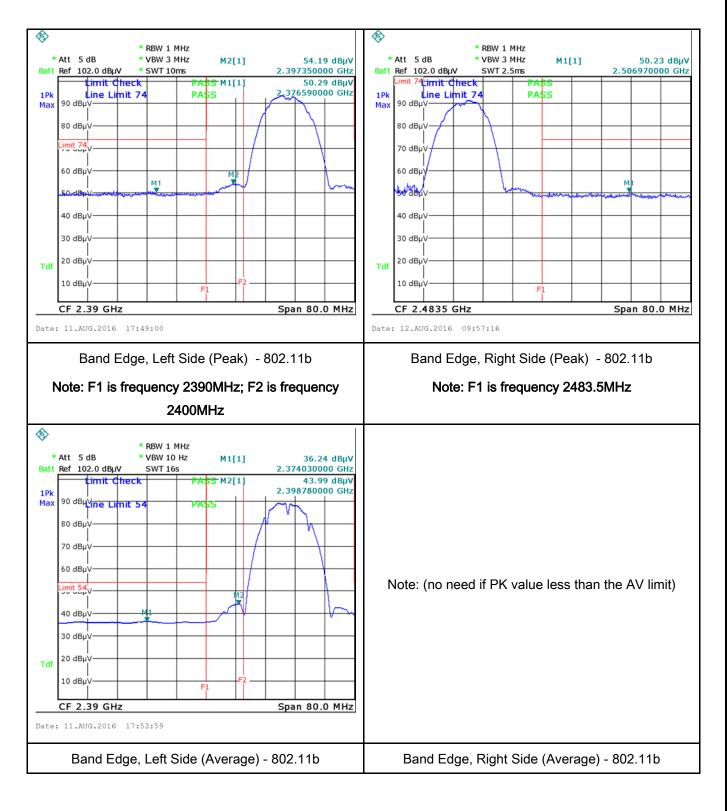
Requirement(s):

Spec	Item	Requirement	Applicable
§15.247(d)	a)	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.	X
Test Setup		Ant. Tower L-4m Variable 0.8/1.5m Ground Plane Test Receiver	e.
Test Procedure	-	 Radiated Method Only 1. Check the calibration of the measuring instrument using either calibrator or a known signal from an external generator. 2. Position the EUT without connection to measurement instrument the Rotated table and turn on the EUT and make it operate in transmode. Then set it to Low Channel and High Channel within its or and make sure the instrument is operated in its linear range. 	ent. Put it on ansmitting

 Test Report No.
 16070896-FCC-R3

 Page
 26 of 55

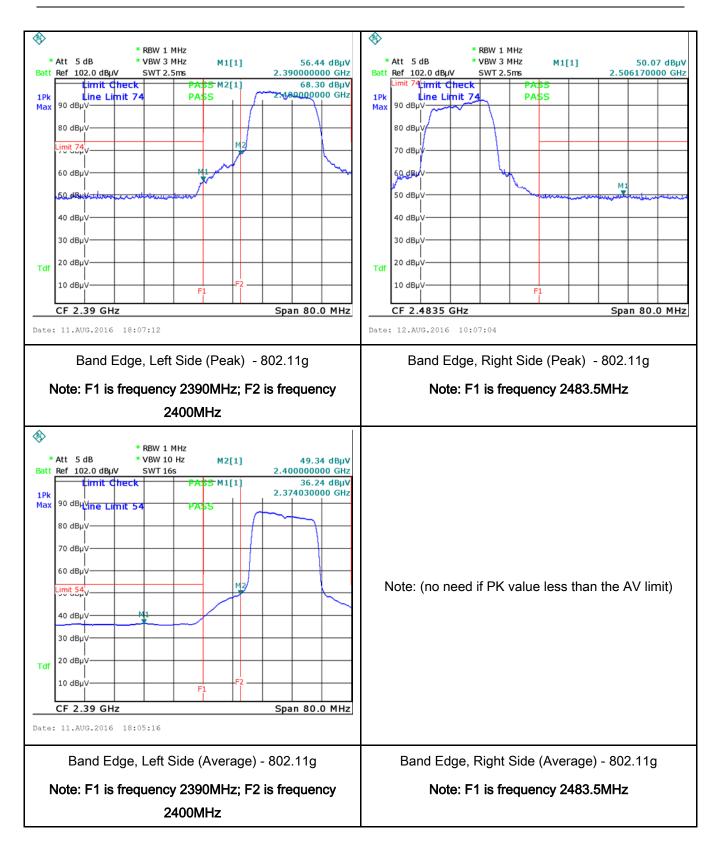
	 3. First, set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, check the emission of EUT, if pass then set Spectrum Analyzer as below: a. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz. b. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz with Peak detection for Peak measurement at frequency above 1GHz. c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the site of a first for the resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the site of a first for the resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the site of a first for the site of a first fo
	video bandwidth is 10Hz with Peak detection for Average Measurement as below at frequency above 1GHz.
	 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency. 5. Repeat above procedures until all measured frequencies were complete.
Remark	
Result	Pass Fail
	Yes IN/A Yes (See below)



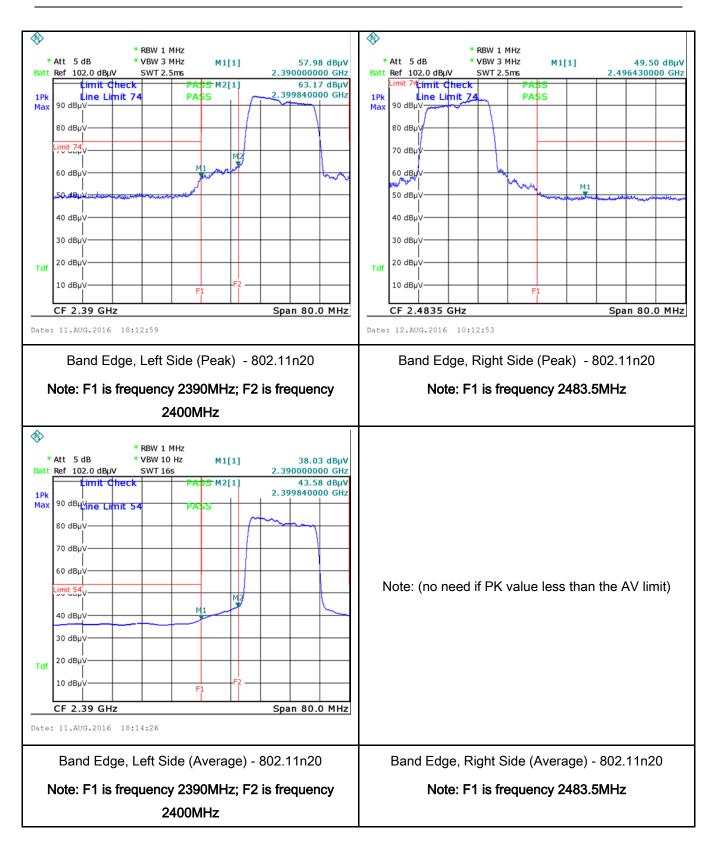
 Test Report No.
 16070896-FCC-R3

 Page
 27 of 55

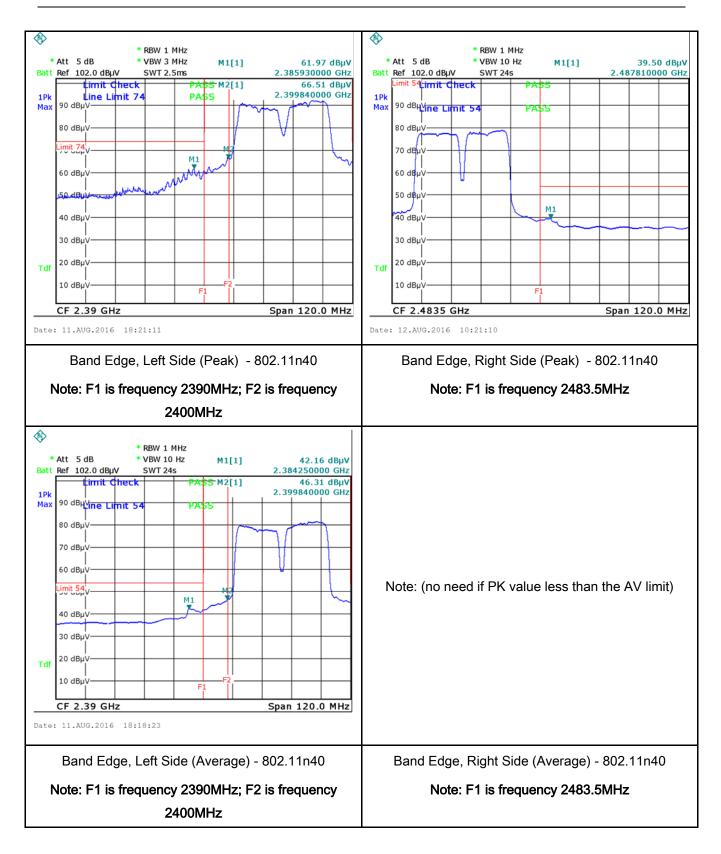
Test Plots


Band Edge measurement result

 Test Report No.
 16070896-FCC-R3


 Page
 28 of 55

 Test Report No.
 16070896-FCC-R3


 Page
 29 of 55

 Test Report No.
 16070896-FCC-R3

 Page
 30 of 55

6.6 AC Power Line Conducted Emissions

Temperature	24°C
Relative Humidity	53%
Atmospheric Pressure	1001mbar
Test date :	August 01, 2016
Tested By :	Loren Luo


Requirement(s):

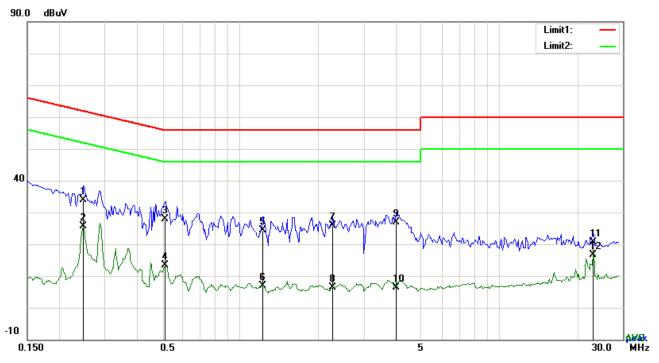
Spec	Item	Requirement			Applicable
47CFR§15. 207, RSS210 (A8.1)	a)	For Low-power radio-fr connected to the public voltage that is conducted frequency or frequencied not exceed the limits in [mu] H/50 ohms line im lower limit applies at th Frequency ranges (MHz) $0.15 \sim 0.5$ $0.5 \sim 5$ $5 \sim 30$	c utility (AC) power line ed back onto the AC po es, within the band 150 the following table, as pedance stabilization r e boundary between th	, the radio frequency ower line on any 0 kHz to 30 MHz, shall measured using a 50 network (LISN). The	V
Test Setup		Vertical Ground Reference Plane UT 40cm EUT 80cm Horizontal Ground Reference Plane Horizontal Ground Reference Plane Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80cm from EUT and at least 80cm			
Procedure	the 2. The filte	e EUT and supporting eq standard on top of a 1.5 e power supply for the El ered mains. e RF OUT of the EUT LIS	m x 1m x 0.8m high, n JT was fed through a 5	n accordance with the re on-metallic table. 50W/50mH EUT LISN, c	onnected to

Test Report No. 16070896-FCC-R3
Page 32 of 55
coaxial cable.
4. All other supporting equipment were powered separately from another main supply.
5. The EUT was switched on and allowed to warm up to its normal operating condition.
6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power)
over the required frequency range using an EMI test receiver.
7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the
selected frequencies and the necessary measurements made with a receiver bandwidth
setting of 10 kHz.
8. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).
Pass Fail
Fass Fail
Yes N/A
Yes (See below)

33 of 55

Test Data

Phase Line Plot at 120Vac, 60Hz

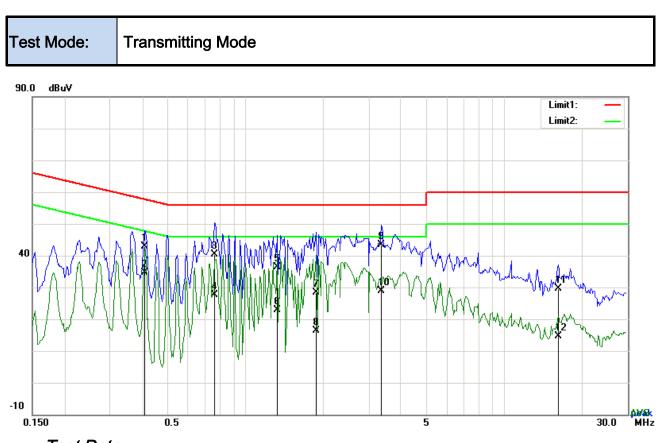

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	L1	0.2865	25.26	QP	10.03	35.29	60.63	-25.34
2	L1	0.2865	14.96	AVG	10.03	24.99	50.63	-25.64
3	L1	0.5049	18.30	QP	10.03	28.33	56.00	-27.67
4	L1	0.5049	1.51	AVG	10.03	11.54	46.00	-34.46
5	L1	0.7584	11.44	QP	10.03	21.47	56.00	-34.53
6	L1	0.7584	-1.35	AVG	10.03	8.68	46.00	-37.32
7	L1	1.3278	10.93	QP	10.03	20.96	56.00	-35.04
8	L1	1.3278	-2.70	AVG	10.03	7.33	46.00	-38.67
9	L1	4.0179	12.99	QP	10.07	23.06	56.00	-32.94
10	L1	4.0179	-1.82	AVG	10.07	8.25	46.00	-37.75
11	L1	24.7464	8.26	QP	10.39	18.65	60.00	-41.35
12	L1	24.7464	-1.56	AVG	10.39	8.83	50.00	-41.17

Page

34 of 55

Test Mode: Transmitting Mode

Test Data


Phase Neutral Plot at 120Vac, 60Hz

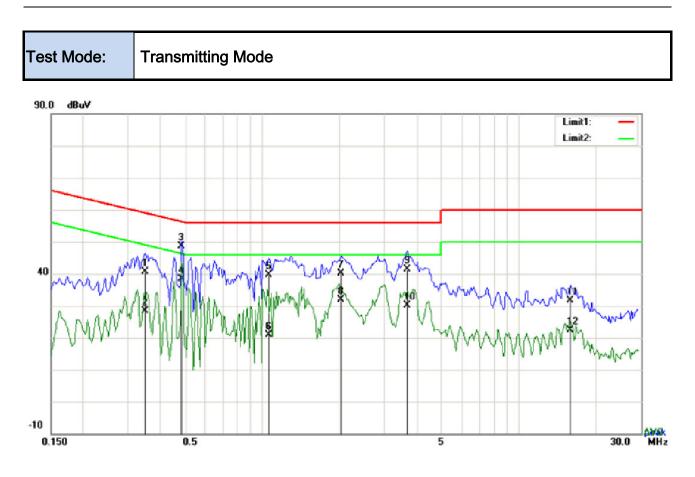
No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBµV)		(dB)	(dBµV)	(dBµV)	(dB)
1	Ν	0.2475	23.78	QP	10.02	33.80	61.84	-28.04
2	Ν	0.2475	15.64	AVG	10.02	25.66	51.84	-26.18
3	Ν	0.5127	17.83	QP	10.02	27.85	56.00	-28.15
4	Ν	0.5127	3.38	AVG	10.02	13.40	46.00	-32.60
5	Ν	1.2225	14.39	QP	10.03	24.42	56.00	-31.58
6	Ν	1.2225	-3.22	AVG	10.03	6.81	46.00	-39.19
7	Ν	2.2755	15.92	QP	10.04	25.96	56.00	-30.04
8	Ν	2.2755	-3.74	AVG	10.04	6.30	46.00	-39.70
9	Ν	4.0023	16.91	QP	10.06	26.97	56.00	-29.03
10	Ν	4.0023	-3.72	AVG	10.06	6.34	46.00	-39.66
11	Ν	23.1279	10.32	QP	10.31	20.63	60.00	-39.37
12	Ν	23.1279	6.20	AVG	10.31	16.51	50.00	-33.49

Page

35 of 55

Test Data

Phase Line Plot at 240Vac, 60Hz


No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	L1	0.4074	32.77	QP	10.03	42.80	57.70	-14.90
2	L1	0.4074	24.65	AVG	10.03	34.68	47.70	-13.02
3	L1	0.7623	30.36	QP	10.03	40.39	56.00	-15.61
4	L1	0.7623	17.57	AVG	10.03	27.60	46.00	-18.40
5	L1	1.3239	26.47	QP	10.03	36.50	56.00	-19.50
6	L1	1.3239	12.95	AVG	10.03	22.98	46.00	-23.02
7	L1	1.8738	18.27	QP	10.04	28.31	56.00	-27.69
8	L1	1.8738	6.45	AVG	10.04	16.49	46.00	-29.51
9	L1	3.3627	33.21	QP	10.06	43.27	56.00	-12.73
10	L1	3.3627	18.87	AVG	10.06	28.93	46.00	-17.07
11	L1	16.1399	19.49	QP	10.24	29.73	60.00	-30.27
12	L1	16.1399	4.32	AVG	10.24	14.56	50.00	-35.44

:

Page

36 of 55

Test Data

Phase Neutral Plot at 240Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	Ν	0.3489	30.71	QP	10.02	40.73	58.99	-18.26
2	Ν	0.3489	18.40	AVG	10.02	28.42	48.99	-20.57
3	Ν	0.4854	38.64	QP	10.02	48.66	56.25	-7.59
4	Ν	0.4854	28.43	AVG	10.02	38.45	46.25	-7.80
5	Ν	1.0626	29.72	QP	10.03	39.75	56.00	-16.25
6	Ν	1.0626	10.90	AVG	10.03	20.93	46.00	-25.07
7	Ν	2.0259	30.11	QP	10.04	40.15	56.00	-15.85
8	Ν	2.0259	21.91	AVG	10.04	31.95	46.00	-14.05
9	Ν	3.6708	31.20	QP	10.06	41.26	56.00	-14.74
10	Ν	3.6708	20.17	AVG	10.06	30.23	46.00	-15.77
11	Ν	15.8700	21.37	QP	10.21	31.58	60.00	-28.42
12	Ν	15.8700	12.24	AVG	10.21	22.45	50.00	-27.55

Test Report No.	16070896-FCC-R3
Page	37 of 55

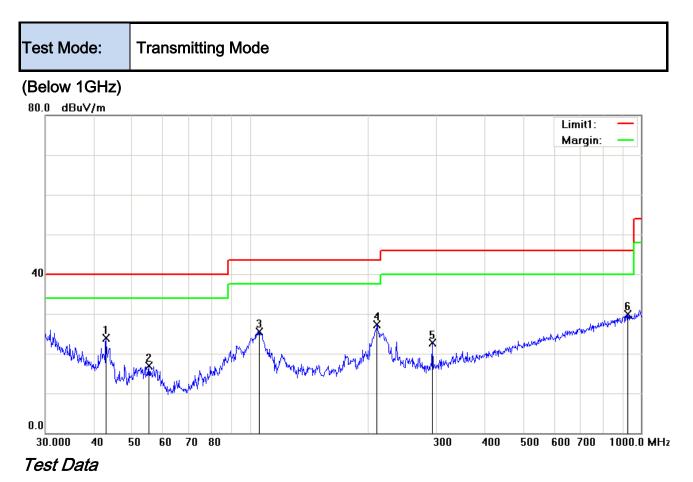
6.7 Radiated Spurious Emissions & Restricted Band

Temperature	24°C
Relative Humidity	53%
Atmospheric Pressure	1001mbar
Test date :	August 01, 2016
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Requirement		Applicable
Spec	a)	Except higher limit as specified else emissions from the low-power radio exceed the field strength levels specified the level of any unwanted emission the fundamental emission. The tight edges Frequency range (MHz) 30 – 88 88 – 216	V	
47CFR§15.		216 960 Above 960	200 500	
247(d), RSS210 (A8.5)	b)	For non-restricted band, In any 100 frequency band in which the spread modulated intentional radiator is op power that is produced by the inten 20 dB or 30dB below that in the 100 band that contains the highest leve determined by the measurement m used. Attenuation below the general is not required 20 dB down 30	d spectrum or digitally perating, the radio frequency tional radiator shall be at least 0 kHz bandwidth within the I of the desired power, ethod on output power to be	V
	c)	or restricted band, emission must a emission limits specified in 15.209	V	

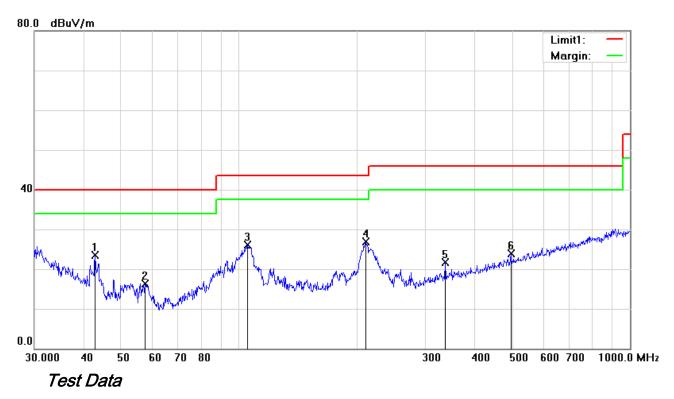
Test Report No.	16070896-FCC-R3
Page	38 of 55


Test Setup	Ant. Tower LUT& 3m Support Units 0.8/1.5m Ground Plane Test Receiver
Procedure	 The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT characterization. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: a. Vertical or horizontal polarization (whichever gave the higher emission level over a full rotation of the EUT) was chosen. b. The EUT was then rotated to the direction that gave the maximum emission. c. Finally, the antenna height was adjusted to the height that gave the maximum emission. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 10Hz and video bandwidth is 3MHz with Peak detection for Peak measurement at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 10Hz and the video bandwidth is 10Hz with Peak detection for Average Measurement as below at frequency above 1GHz. Steps 2 and 3 were repeated for the next frequency point, until all selected frequency points were measured.
Remark	Different RF configuration has been evaluated but not much difference was found. The data presented here is the worst case data with EUT under 802.11n – HT20-2437MHz mode.
Result	Pass Fail
_	Yes N/A Yes (See below)

Test Report No. 16070896-FCC-R3

Page

39 of 55



No	P/L	Frequency (MHz)	Reading (dBµV)	Detec tor	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)	Height	Degree
1	V	42.8998	33.42	peak	-9.53	23.89	40.00	-16.11	100	226
2	V	55.2207	30.65	peak	-13.79	16.86	40.00	-23.14	100	218
3	V	105.6415	35.32	peak	-9.79	25.53	43.50	-17.97	100	181
4	V	211.5265	36.21	peak	-8.84	27.37	43.50	-16.13	100	124
5	V	293.0842	30.00	peak	-7.21	22.79	46.00	-23.21	100	61
6	V	925.7563	25.04	peak	4.92	29.96	46.00	-16.04	100	1

Test Report No.	16070896-FCC-R3
Page	40 of 55

(Below 1GHz)

Horizontal Polarity Plot @3m

No	P/L	Frequency (MHz)	Reading (dBµV)	Detec tor	Corrected (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height	Degree
1	Н	42.8998	33.12	peak	-9.53	23.59	40.00	-16.41	100	302
2	н	57.5939	30.35	peak	-14.08	16.27	40.00	-23.73	100	213
3	Н	105.2718	35.97	peak	-9.86	26.11	43.50	-17.39	100	179
4	Н	211.5265	35.68	peak	-8.84	26.84	43.50	-16.66	100	134
5	Н	337.2155	27.52	peak	-5.83	21.69	46.00	-24.31	100	77
6	Н	495.9344	25.68	peak	-1.80	23.88	46.00	-22.12	100	145

Test Report No.	16070896-FCC-R3
Page	41 of 55

Above 1GHz

Test Mode: Transmitting Mode

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
4824	39.15	AV	V	33.8	6.86	32.69	47.12	54	-6.88		
4824	38.86	AV	Н	33.8	6.86	32.69	46.83	54	-7.17		
4824	47.64	PK	V	33.8	6.86	32.69	55.61	74	-18.39		
4824	47.23	PK	Н	33.8	6.86	32.69	55.2	74	-18.8		
17984	23.98	AV	V	45.12	11.57	32.11	48.56	54	-5.44		
17984	23.62	AV	Н	45.12	11.57	32.11	48.2	54	-5.8		
17984	40.13	PK	V	45.12	11.57	32.11	64.71	74	-9.29		
17984	39.92	PK	Н	45.12	11.57	32.11	64.5	74	-9.5		

Low Channel (2412 MHz)(n20 mode worst case)

Middle Channel (2437 MHz) (n20 mode worst case)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4874	39.31	AV	V	33.6	6.82	32.71	47.02	54	-6.98
4874	38.95	AV	Н	33.6	6.82	32.71	46.66	54	-7.34
4874	48.02	PK	V	33.6	6.82	32.71	55.73	74	-18.27
4874	47.68	PK	Н	33.6	6.82	32.71	55.39	74	-18.61
18013	23.56	AV	V	45.17	11.63	32.18	48.18	54	-5.82
18013	23.18	AV	Н	45.17	11.63	32.18	47.8	54	-6.2
18013	40.22	PK	V	45.17	11.63	32.18	64.84	74	-9.16
18013	40.34	PK	Н	45.17	11.63	32.18	64.96	74	-9.04

Test Report No.	16070896-FCC-R3
Page	42 of 55

High Channel (2462 MHz) (n20 mode worst case)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4924	38.76	AV	V	33.83	6.95	32.79	46.75	54	-7.25
4924	38.49	AV	Н	33.83	6.95	32.79	46.48	54	-7.52
4924	47.62	PK	V	33.83	6.95	32.79	55.61	74	-18.39
4924	47.48	PK	Н	33.83	6.95	32.79	55.47	74	-18.53
17957	23.59	AV	V	45.19	11.61	32.24	48.15	54	-5.85
17957	23.48	AV	Н	45.19	11.61	32.24	48.04	54	-5.96
17957	40.51	PK	V	45.19	11.61	32.24	65.07	74	-8.93
17957	40.12	PK	Н	45.19	11.61	32.24	64.68	74	-9.32

Note:

1, The testing has been conformed to 10*2462MHz=24,620MHz

2, All other emissions more than 30 dB below the limit

3, X-Axis, Y-Axis and Y-Axis were investigated. The results above show only the worst case.

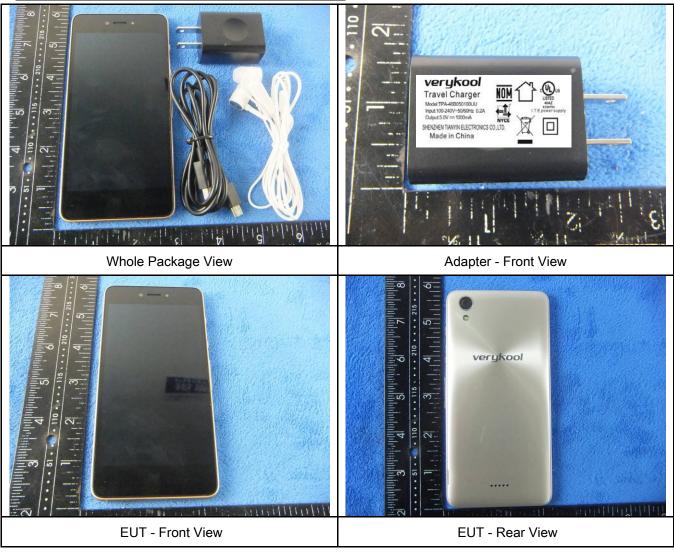
Test Report No. 16070896-FCC-R3

Page

43 of 55

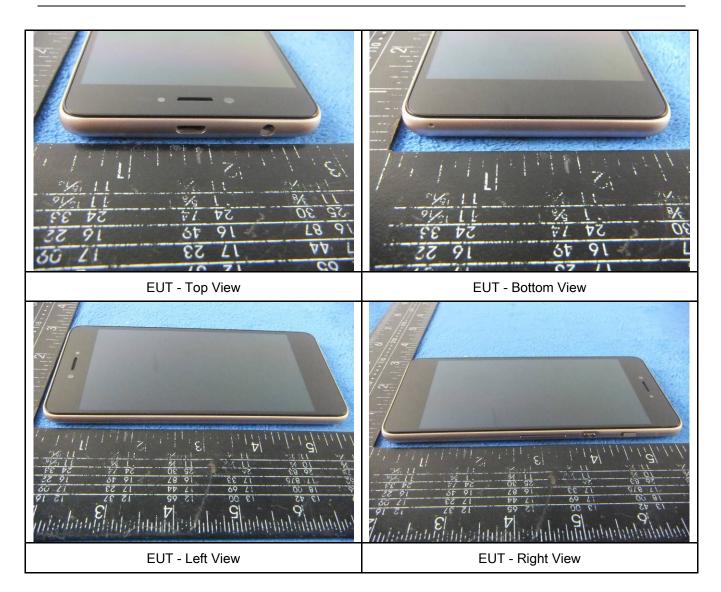
Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Due	In use
AC Line Conducted					
EMI test receiver	ESCS30	8471241027	09/17/2015	09/16/2016	
Line Impedance	LI-125A	191106	09/25/2015	09/24/2016	
Line Impedance	LI-125A	191107	09/25/2015	09/24/2016	V
LISN	ISN T800	34373	09/25/2015	09/24/2016	V
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/24/2015	09/23/2016	V
Transient Limiter	LIT-153	531118	09/01/2015	08/31/2016	•
RF conducted test					
Agilent ESA-E SERIES	E4407B	MY45108319	09/17/2015	09/16/2016	K
Power Splitter	1#	1#	09/01/2015	08/31/2016	K
DC Power Supply	E3640A	MY40004013	09/17/2015	09/16/2016	
Radiated Emissions					
EMI test receiver	ESL6	100262	09/17/2015	09/16/2016	•
Positioning Controller	UC3000	MF780208282	11/19/2015	11/18/2016	V
OPT 010 AMPLIFIER (0.1-1300MHz)	8447E	2727A02430	09/01/2015	08/31/2016	V
Microwave Preamplifier (1 ~ 26.5GHz)	8449B	3008A02402	03/24/2016	03/23/2017	
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/21/2015	09/20/2016	K
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/24/2015	09/23/2016	K
Universal Radio Communication Tester	CMU200	121393	09/25/2015	09/24/2016	V



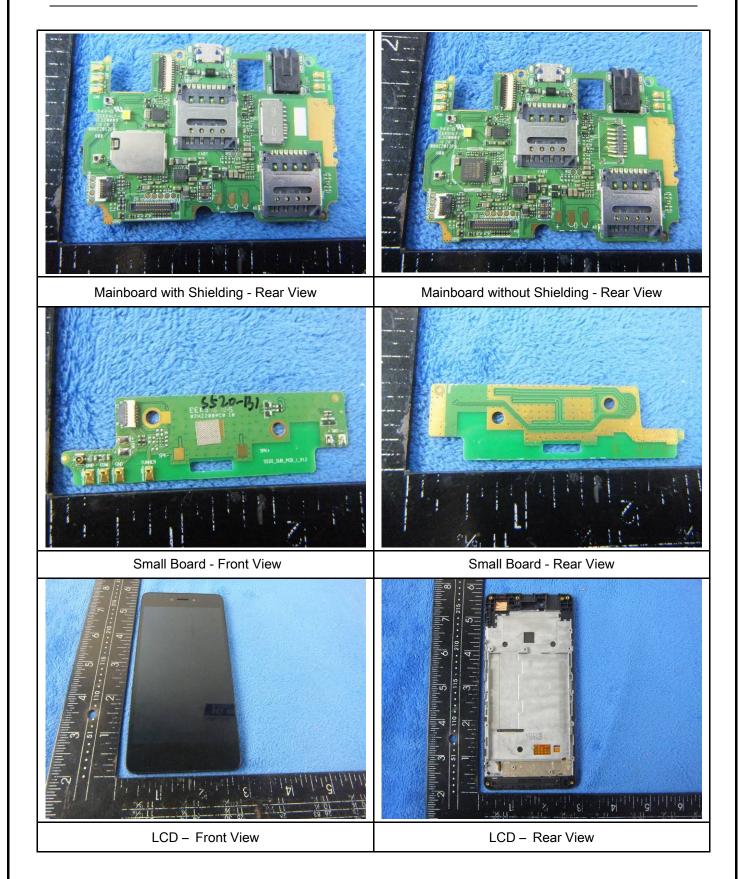
 Test Report No.
 16070896-FCC-R3

 Page
 44 of 55

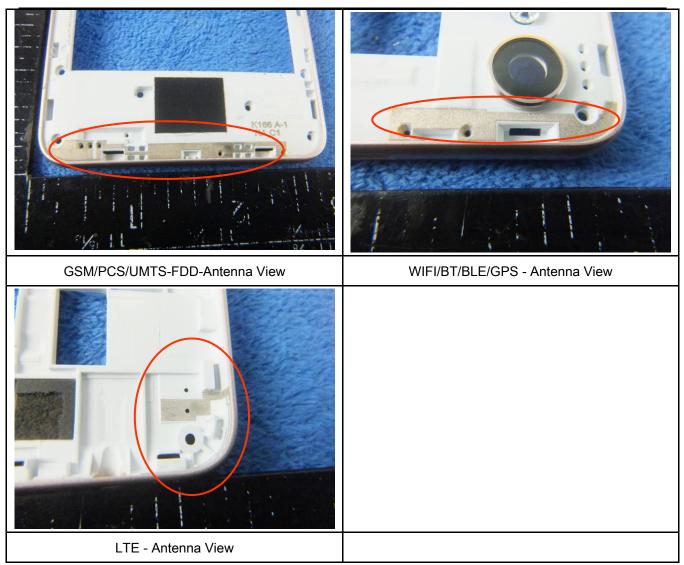

Annex B. EUT and Test Setup Photographs

Annex B.i. Photograph: EUT External Photo


Test Report No).	16070896-FCC-R3
Page		45 of 55


Test Report No.	16070896-FCC-R3
Page	46 of 55

Annex B.ii. Photograph: EUT Internal Photo



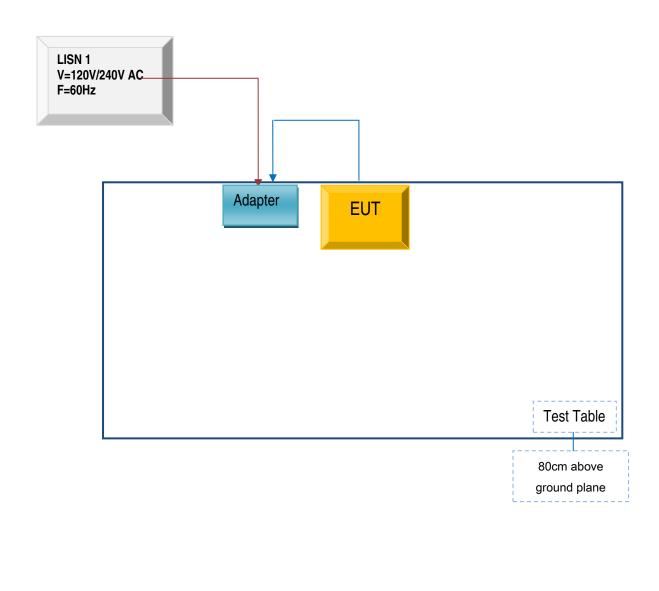
Test Report No.	16070896-FCC-R3
Page	47 of 55

Test Report No.	16070896-FCC-R3
Page	48 of 55

Test Report No.	16070896-FCC-R3
Page	49 of 55

Annex B.iii. Photograph: Test Setup Photo

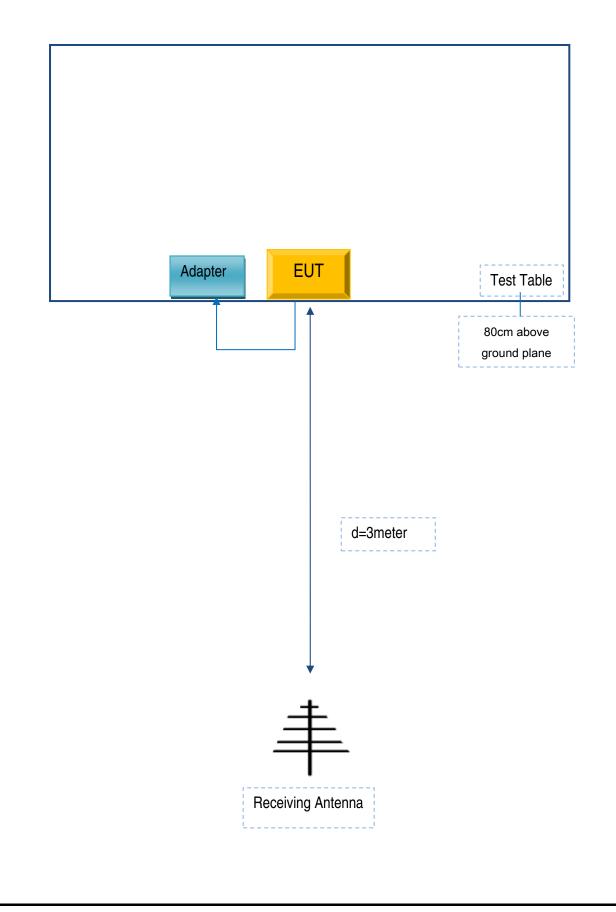
Test Report No. 1


Page

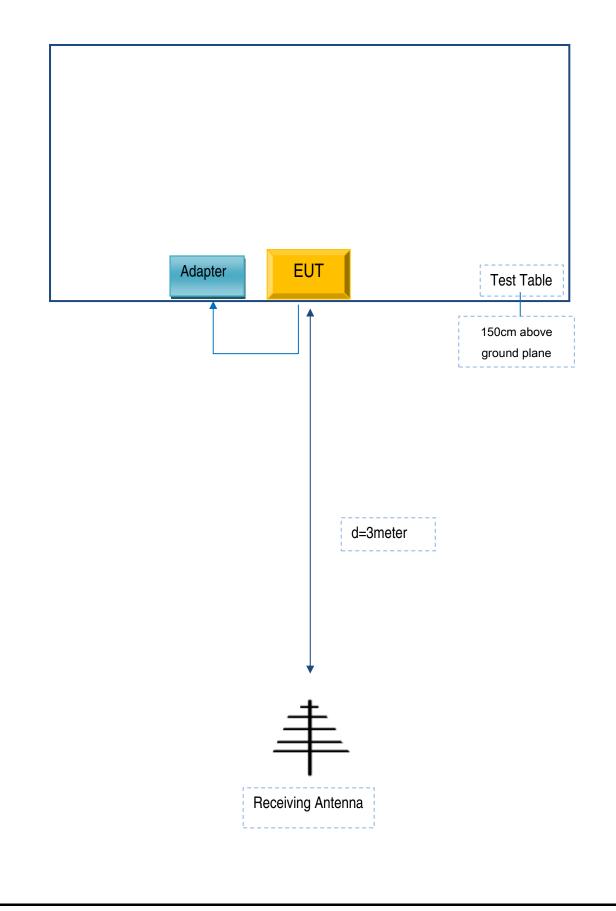
16070896-FCC-R3 50 of 55

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK


Block Configuration Diagram for AC Line Conducted Emissions

Test Report No.	16070896-FCC-R3
Page	51 of 55


Block Configuration Diagram for Radiated Emissions (Below 1GHz).

Test Report No.	16070896-FCC-R3
Page	52 of 55

Block Configuration Diagram for Radiated Emissions (Above 1GHz).

Test Report No.	16070896-FCC-R3
Page	53 of 55

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
Verykool USA Inc	Adapter	TPA- 46B050100UU	SL-010

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
USB Cable	Un-shielding	No	0.8m	SL-010

Test Report No. 16070896-FCC-R3

Page

54 of 55

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see attachment

Test Report No.

Page

16070896-FCC-R3 55 of 55

Annex E. DECLARATION OF SIMILARITY

N/A