| Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 94 of 155 | # Annex A CALIBRATION REPORTS # **SARTIMO Calibration Certificate-Extended Dipole Calibrations** According to KDB865664 D01, Dipoles must be recalibrated at least once every three years; however, immediate re-calibration is required for following conditions. The test laboratory must ensure that the required supporting information and documentation have been included in the SAR report to qualify for extended 3-year calibration interval. - 1) When the most recent return-loss, measured at least annually, deviates by more than 20% from the previous measurement (i.e. 0.2 of the dB value) or not meeting the required -20 dB return-loss specification - 2) When the most recent measurement of the real or imaginary parts of the impedance, measured at least annually, deviates by more than 5Ω from the previous measurement Dipole Verification plot: SID 835 SN 18/11 DIPC150 835MHz for Head: | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 95 of 155 | # Dipole Verification plot: SID 1800 SN 18/11 DIPF152 # 1800MHz for Head: | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 96 of 155 | # Dipole Verification plot: SID 1900 SN 18/11 DIPG153 # 1900MHz for Head: | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 97 of 155 | # Dipole Verification plot: SID 2600 SN 26/14 DIP 2G600-326 2600MHz for Head: | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 98 of 155 | | SID 750 SN 26 | /14 DIP 0G750-3 | 25 For Head | | | | |---|-----------------|--------------------------|-------------------------------|----------------|----------------| | Return- Loss
(dB) | Deviate
(dB) | Real
Impedance
(Ω) | Imaginary
Impedance
(Ω) | Deviate
(Ω) | Calibrate Date | | -32.51 | | | 50 | | 07/03/2014 | | -32.451 | 0.059 | 50.324 | 50 | 0.324 | 07/15/2015 | | SID 750 SN 26/14 DIP 0G750-325 For Body | | | | | | | -32.817 | -0.307 | 50.066 | 50 | 0.066 | 07/15/2015 | | SID 835 SN 18/ | 11 DIPC150 Fo | r Head | | | | |-----------------------------------|-----------------|--------------------------|-------------------------------|----------------|----------------| | Return- Loss
(dB) | Deviate
(dB) | Real
Impedance
(Ω) | Imaginary
Impedance
(Ω) | Deviate
(Ω) | Calibrate Date | | -26.34 | | | 50 | | 06/018/2014 | | -25.95 | 0.39 | 51.979 | 50 | 1.979 | 06/24/2015 | | SID 835 SN 18/11 DIPC150 For Body | | | | | | | -26.105 | 0.235 | 52.68 | 50 | 2.68 | 06/24/2015 | | SID 1800 SN 18/11 DIPF152 For Head | | | | | | |------------------------------------|-----------------|--------------------------|-------------------------------|----------------|----------------| | Return- Loss
(dB) | Deviate
(dB) | Real
Impedance
(Ω) | Imaginary
Impedance
(Ω) | Deviate
(Ω) | Calibrate Date | | -28.21 | | | 50 | | 06/18/2014 | | -28.433 | -0.223 | 49.777 | 50 | -0.223 | 07/09/2015 | | SID 1800 SN 18/11 DIPF152 For Body | | | | | | | -28.281 | -0.071 | 48.592 | 50 | -1.408 | 07/09/2015 | | SID 1900 SN 18/11 DIPG153 For Head | | | | | | |------------------------------------|-----------------|--------------------------|-------------------------------|----------------|----------------| | Return- Loss
(dB) | Deviate
(dB) | Real
Impedance
(Ω) | Imaginary
Impedance
(Ω) | Deviate
(Ω) | Calibrate Date | | -21.22 | | | 50 | | 06/18/2014 | | -20.818 | 0.402 | 47.348 | 50 | -2.652 | 06/25/2015 | | SID 1900 SN 18/11 DIPG153 For Body | | | | | | | -21.154 | 0.066 | 48.680 | 50 | -1.32 | 06/25/2015 | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 99 of 155 | | SID 2600 SN 20 | 6/14 DIP 2G600- | 326 For Head | | | | |--|-----------------|--------------------------|-------------------------------|----------------|----------------| | Return- Loss
(dB) | Deviate
(dB) | Real
Impedance
(Ω) | Imaginary
Impedance
(Ω) | Deviate
(Ω) | Calibrate Date | | -30.77 | | | 50 | | 07/03/2014 | | -30.353 | 0.417 | 50.451 | 50 | 0.451 | 07/15/2015 | | SID 2600 SN 26/14 DIP 2G600-326 For Body | | | | | | | -30.525 | 0.245 | 50.412 | 50 | 0.412 | 07/15/2015 | According to up table, the return loss is <-20dB, deviates by less than 20% from the previous measurement; the real Impedance are all within 5 Ω compared to the required Impedance (50 Ω). | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 100 of 155 | # **COMOSAR E-Field Probe Calibration Report** Ref: ACR.265.1.15.SATU.A # SIEMIC TESTING AND CERTIFICATION SERVICES ZONE A,FLOOR 1,BUILDING 2,WAN YE LONG TECHNOLOGY PARK,SOUTH SIDE OF ZHOUSHI ROAD, SHIYAN STREET,BAO'AN DISTRICT, SHENZHEN 518108, GUANGDONG, P.R.C. MVG COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 27/15 EPGO262 Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 07/09/2015 #### Summary: This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions. | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 101 of 155 | Ref. ACR, 265.1.15.SATU.A | 9 | Name | Function | Date | Signature | |---------------|---------------|-----------------|-----------|----------------| | Prepared by : | Jérôme LUC | Product Manager | 9/22/2015 | JE | | Checked by: | Jérôme LUC | Product Manager | 9/22/2015 | 33 | | Approved by: | Kim RUTKOWSKI | Quality Manager | 9/22/2015 | -Aum Authorish | | | Customer Name | |---------------|--| | Distribution: | SIEMIC TESTING
AND
CERTIFICATION
SERVICES | | Date | Modifications | | |-----------|-----------------|--| | 9/22/2015 | Initial release | | | | | | | | | | | | | | | | | | Page: 2/10 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 102 of 155 | Ref. ACR, 265.1.15.SATU.A # TABLE OF CONTENTS | 1 | De | vice Under Test 4 | | |---|-----|--------------------------------|---| | 2 | Pro | duct Description4 | | | | 2.1 | General Information | 4 | | 3 | Me | asurement Method | | | | 3.1 | Linearity | 4 | | | 3.2 | Sensitivity | 5 | | | 3.3 | Lower Detection Limit | | | | 3.4 | Isotropy | 5 | | | 3.5 | Boundary Effect | 5 | | 4 | Me | asurement Uncertainty5 | | | 5 | Cal | libration Measurement Results6 | | | | 5.1 | Sensitivity in air | 6 | | | 5.2 | Linearity | 7 | | | 5.3 | Sensitivity in liquid | 7 | | | 5.4 | Isotropy | 8 | | 6 | Lis | t of Equipment | | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 103 of 155 | Ref. ACR, 265.1.15.SATU.A #### 1 DEVICE UNDER TEST | Device Under Test | | | |--|----------------------------------|--| | Device Type | COMOSAR DOSIMETRIC E FIELD PROBE | | | Manufacturer | MVG | | | Model | SSE2 | | | Serial Number | SN 27/15 EPGO262 | | | Product Condition (new / used) | New | | | Frequency Range of Probe | 0.7 GHz-6GHz | | | Resistance of Three Dipoles at Connector | Dipole 1: R1=0.222 MΩ | | | | Dipole 2: R2=0.200 MΩ | | | | Dipole 3: R3=0.200 MΩ | | A yearly calibration interval is recommended. #### 2 PRODUCT DESCRIPTION #### 2.1 GENERAL INFORMATION MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. Figure 1 – MVG COMOSAR Dosimetric E field Dipole | Probe Length | 330 mm | |--|--------| | Length of Individual Dipoles | 2 mm | | Maximum external diameter | 8 mm | | Probe Tip External Diameter | 2.5 mm | | Distance between dipoles / probe extremity | 1 mm | ## 3 MEASUREMENT METHOD The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEVIEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards. #### 3.1 LINEARITY The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100 W/kg. Page: 4/10 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used on by for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 104 of 155 | Ref. ACR, 265.1.15.SATU.A #### 3.2 SENSITIVITY The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards. # 3.3 LOWER DETECTION LIMIT The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg. #### 3.4 ISOTROPY The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The
dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$. #### 3.5 BOUNDARY EFFECT The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface. # 4 MEASUREMENT UNCERTAINTY The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. | ERROR SOURCES | Uncertainty value (%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (%) | |---------------------------|-----------------------|-----------------------------|---------------|----|-----------------------------| | Incident or forward power | 3.00% | Rectangular | √3 | 1 | 1.732% | | Reflected power | 3.00% | Rectangular | <u></u> —√3 — | 1 | 1.732% | | Liquid conductivity | 5.00% | Rectangular | <u></u> —√3 — | 1 | 2.887% | | Liquid permittivity | 4.00% | Rectangular | — √3 — | 1 | 2.309% | | Field homogeneity | 3.00% | Rectangular | <u></u> √3 – | 1 | 1.732% | | Field probe positioning | 5.00% | Rectangular | √3 | 1 | 2.887% | Page: 5/10 | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 105 of 155 | Ref. ACR, 265.1.15. SATU. A | Field probe linearity | 3.00% | Rectangular | √3 | 1 | 1.732% | |---|-------|-------------|---------|---|--------| | Combined standard uncertainty | | | <u></u> | | 5.831% | | Expanded uncertainty
95 % confidence level k = 2 | | | | | 12.0% | # 5 CALIBRATION MEASUREMENT RESULTS | Calibration Parameters | | | |------------------------|-------|--| | Liquid Temperature | 21 °C | | | Lab Temperature | 21 °C | | | Lab Humidity | 45 % | | # 5.1 SENSITIVITY IN AIR | Normx dipole $1 (\mu V/(V/m)^2)$ | | | |----------------------------------|------|------| | 0.78 | 0.70 | 0.72 | | DCP dipole 1 | | 4 | |--------------|------|------| | (mV) | (mV) | (mV) | | 92 | 90 | 90 | Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula: $$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$ Page: 6/10 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used on by for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 106 of 155 | Ref. ACR, 265.1.15.SATU.A #### 5.2 LINEARITY Linearity: 1+/-1.78% (+/-0.08dB) #### 5.3 SENSITIVITY IN LIQUID | Liquid | Frequency
(MHz +/-
100MHz) | Permittivity | Epsilon (S/m) | ConvF | |--------|----------------------------------|--------------|---------------|-------| | HL750 | 750 | 41.82 | 0.90 | 1.68 | | BL750 | 750 | 56.28 | 0.98 | 1.74 | | HL850 | 835 | 42.59 | 0.90 | 1.90 | | BL850 | 835 | 53.19 | 0.97 | 1.97 | | HL900 | 900 | 42.05 | 0.98 | 1.75 | | BL900 | 900 | 56.41 | 1.08 | 1.81 | | HL1800 | 1800 | 41.82 | 1.38 | 2.01 | | BL1800 | 1800 | 53.00 | 1.52 | 2.05 | | HL1900 | 1900 | 40.38 | 1.41 | 2.26 | | BL1900 | 1900 | 53.93 | 1.55 | 2.32 | | HL2000 | 2000 | 40.12 | 1.43 | 2.16 | | BL2000 | 2000 | 53.65 | 1.54 | 2.25 | | HL2450 | 2450 | 38.34 | 1.80 | 2.22 | | BL2450 | 2450 | 52.70 | 1.94 | 2.29 | | HL2600 | 2600 | 38.16 | 1.93 | 2.28 | | BL2600 | 2600 | 51.55 | 2.21 | 234 | | HL3500 | 3500 | 37.01 | 2.89 | 231 | | BL3500 | 3500 | 52.99 | 3.20 | 2.40 | | HL5200 | 5200 | 36.44 | 4.79 | 1.96 | | BL5200 | 5200 | 50.70 | 5.11 | 2.04 | | HL5400 | 5400 | 35.99 | 4.91 | 2.11 | | BL5400 | 5400 | 50.01 | 5.64 | 2.22 | | HL5600 | 5600 | 35.22 | 5.18 | 2.15 | | BL5600 | 5600 | 49.34 | 5.85 | 2.21 | | HL5800 | 5800 | 34.95 | 5.42 | 2.13 | | BL5800 | 5800 | 48.54 | 6.22 | 2.18 | LOWER DETECTION LIMIT: 8mW/kg Page: 7/10 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 107 of 155 | Ref. ACR, 265.1.15.SATU.A # 5.4 ISOTROPY #### HL5600 MHz - Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.05 dB # HL5600 MHz - Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.07 dB Page: 8/10 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 108 of 155 | Ref. ACR, 265.1.15.SATU. A # HL5600 MHz - Axial isotropy: 0.06 dB - Hemispherical isotropy: 0.10 dB Dipole at 6' Dipole at 30' Dipole at 60' | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 109 of 155 | Ref. ACR, 265.1.15. SATU. A # 6 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |----------------------------------|-------------------------|--------------------|---|---|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | Flat Phantom | MVG | SN-20/09-SAM71 | Validated. No cal required. | Validated. No ca
required. | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No ca
required. | | | Network Analyzer | Rhode & Schwarz
ZVA | SN 100132 | 02/2013 | 02/2016 | | | Reference Probe | MVG | EP 94 SN 37/08 | 10/2014 | 10/2015 | | | Multimeter | Keithley 2000 | 1188656 | 12/2013 | 12/2016 | | | Signal Generator | Agilent E4438C | MY49070581 | 12/2013 | 12/2016 | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Power Meter | HP E4418A | US38261498 | 12/2013 | 12/2016 | | | Power Sensor | HP ECP-E26A | US37181460 | 12/2013 | 12/2016 | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | | | | Waveguide | Mega Industries | 069Y7-158-13-712 | Validated. No cal
required. | Validated. No cal
required. | | | Waveguide Transition | Mega Industries | 069Y7-158-13-701 | Validated. No cal required. Validated. No cal required. | | | | Waveguide Termination | Mega Industries | 069Y7-158-13-701 | Validated. No cal required. Validated. No cal required. | | | | Temperature / Humidity
Sensor | Control Company | 11-661-9 | 8/2012 | 8/2015 | | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 110 of 155 | # **SAR Reference Dipole Calibration Report** Ref: ACR.170.1.14.SATU.A # SIEMIC TESTING AND CERTIFICATION SERVICES ZONE A,FLOOR 1,BUILDING 2,WAN YE LONG TECHNOLOGY PARK,SOUTH SIDE OF ZHOUSHI ROAD, SHIYAN STREET,BAO'AN DISTRICT, SHENZHEN 518108, GUANGDONG, P.R.C. # SATIMO COMOSAR REFERENCE DIPOLE FREQUENCY: 835 MHZ SERIAL NO.: SN 18/11 DIPC150 # Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144 06/18/2014 ## Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 111 of 155 | Ref: ACR.170.1.14.SATU.A | | Name | Function | Date | Signature | |---------------|---------------|-----------------|-----------|---------------| | Prepared by : | Jérôme LUC | Product Manager | 6/19/2014 | JS | | Checked by : | Jérôme LUC | Product Manager | 6/19/2014 | Je | | Approved by : | Kim RUTKOWSKI | Quality Manager | 6/19/2014 | Jum Puthowshi | | | Customer Name | |----------------|---| | Distribution : | SIEMIC Testing
and Certification
Services | | Date | Modifications | |-----------|-----------------| | 6/19/2014 | Initial release | | | | | | | | | | | | | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 112 of 155 | Ref: ACR.170.1.14.SATU.A # TABLE OF CONTENTS | 1 | Intro | duction 4 | | |---|-------|-----------------------------|---| | 2 | Devi | ce Under Test | | | 3 | Prod | uct Description | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | | | | 5.3 | Validation Measurement | 5 | | 6 | Calil | oration Measurement Results | | | | 6.1 | Return Loss and Impedance | 6 | | | 6.2 | Mechanical Dimensions | 6 | | 7 | Vali | dation measurement | | | | 7.1 | Measurement Condition | 7 | | | 7.2 | Head Liquid Measurement | 7 | | | 7.3 | Measurement Result | | | | 7.4 | Body Measurement Result | | | 8 | List | of Equipment 10 | | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 113 of 155 | Ref: ACR.170.1.14.SATU.A #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209
standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | |--------------------------------|----------------------------------|--| | Device Type | COMOSAR 835 MHz REFERENCE DIPOLE | | | Manufacturer | Satimo | | | Model | SID835 | | | Serial Number | SN 18/11 DIPC150 | | | Product Condition (new / used) | | | A yearly calibration interval is recommended. ## 3 PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 – Satimo COMOSAR Validation Dipole | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 114 of 155 | Ref: ACR.170.1.14.SATU.A #### 4 MEASUREMENT METHOD The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. ## 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. ### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.1 dB | #### 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 3 - 300 | 0.05 mm | #### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 20.3 % | | 10 g | 20.1 % | Page: 5/10 | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 115 of 155 | Ref: ACR.170.1.14.SATU.A #### 6 CALIBRATION MEASUREMENT RESULTS # 6.1 RETURN LOSS AND IMPEDANCE | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 835 | -26.34 | -20 | $54.8 \Omega + 1.3 j\Omega$ | # 6.2 MECHANICAL DIMENSIONS | Frequency MHz | Ln | nm | h mm | | d r | nm | |---------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | ő | | 835 | 161.0 ±1 %. | PASS | 89.8 ±1 %. | PASS | 3.6 ±1 %. | PASS | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | 8 | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | 7 | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | Page: 6/10 | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 116 of 155 | Ref: ACR.170.1.14.SATU.A #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. ## 7.1 MEASUREMENT CONDITION | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Head Liquid Values: eps': 43.8 sigma: 0.91 | | Distance between dipole center and liquid | 15.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8m/dz=5mm | | Frequency | 835 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | # 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ε _r ') | | Conductiv | ity (σ) S/m | |------------------|--|----------|-----------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±5 % | | 0.87 ±5 % | | | 450 | 43.5 ±5 % | | 0.87 ±5 % | | | 750 | 41.9 ±5 % | | 0.89 ±5 % | | | 835 | 41.5 ±5 % | PASS | 0.90 ±5 % | PASS | | 900 | 41.5 ±5 % | | 0.97 ±5 % | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 1750 | 40.1 ±5 % | | 1.37 ±5 % | | | 1800 | 40.0 ±5 % | | 1.40 ±5 % | | | 1900 | 40.0 ±5 % | | 1.40 ±5 % | | | 1950 | 40.0 ±5 % | | 1.40 ±5 % | | | 2000 | 40.0 ±5 % | | 1.40 ±5 % | | | 2100 | 39.8 ±5 % | | 1.49 ±5 % | | | 2300 | 39.5 ±5 % | | 1.67 ±5 % | | | 2450 | 39.2 ±5 % | | 1.80 ±5 % | | | 2600 | 39.0 ±5 % | | 1.96 ±5 % | | | 3000 | 38.5 ±5 % | | 2.40 ±5 % | | | 3500 | 37.9 ±5 % | | 2.91 ±5 % | | Page: 7/10 | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 117 of 155 | Ref: ACR.170.1.14.SATU.A #### 7.3 MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 P SAR (W/KP/W) | | 10 g SAR (W/kg/W) | | |------------------|------------------|-------------|-------------------|------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | 9.65 (0.96) | 6.22 | 6.17 (0.62 | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | Į. | 25.7 | | | 3500 | 67.1 | | 25 | | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 118 of 155 | Ref: ACR.170.1.14.SATU.A # 7.4 BODY MEASUREMENT RESULT | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Body Liquid Values: eps': 54.4 sigma: 0.94 | | Distance between dipole center and liquid | 15.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8m/dz=5mm | | Frequency | 835 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) | |------------------|------------------|-------------------| | | measured | measured | | 835 | 9.98 (1.00) | 6.38 (0.64) | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 119 of 155 | Ref: ACR.170.1.14.SATU.A # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | |------------------------------------|-------------------------|--------------------|---|---|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | SAM Phantom | Satimo | SN-20/09-SAM71 | Validated. No cal
required. | Validated. No cal
required. | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No cal
required. | | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2013 | 02/2016 | | | | Calipers | Carrera | CALIPER-01 | 12/2013 | 12/2016 | | | | Reference Probe | Satimo | EPG122 SN 18/11 | Characterized
prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Multimeter | Keithley 2000 | 1188656 | 12/2013 | 12/2016 | | | | Signal Generator | Agilent E4438C | MY49070581 | 12/2013 | 12/2016 | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Power Meter | HP E4418A | US38261498 | 12/2013 | 12/2016 | | | | Power Sensor | HP ECP-E26A | US37181460 | 12/2013 | 12/2016 | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 8/2012 | 8/2015 | | | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 120 of 155 | # SAR Reference Dipole Calibration Report Ref: ACR.170.4.14.SATU.A # SIEMIC TESTING AND CERTIFICATION SERVICES ZONE A,FLOOR 1,BUILDING 2,WAN YE LONG TECHNOLOGY PARK,SOUTH SIDE OF ZHOUSHI ROAD, SHIYAN STREET,BAO'AN DISTRICT, SHENZHEN 518108, GUANGDONG, P.R.C. # SATIMO COMOSAR REFERENCE DIPOLE FREQUENCY: 1900 MHZ SERIAL NO.: SN 18/11 DIPG153 Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144 06/18/2014 # Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 121 of 155 | Ref: ACR.170.4.14.SATU.A | | Name | Function | Date | Signature | |---------------|---------------|-----------------|-----------|---------------| | Prepared by: | Jérôme LUC | Product Manager | 6/19/2014 | JES | | Checked by : | Jérôme LUC | Product Manager | 6/19/2014 | JES | | Approved by : | Kim RUTKOWSKI | Quality Manager | 6/19/2014 | sum Puthowski | | | Customer Name | |---------------|---| | Distribution: | SIEMIC Testing
and Certification
Services | | Issue | Date | Modifications | |-------|-----------|-----------------| | A | 6/19/2014 | Initial release | | | | | | | | | | | | | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 122 of 155 | Ref: ACR.170.4.14.SATU.A # TABLE OF CONTENTS | 1 | Intro | duction | | |---|-------|-----------------------------|---| | 2 | Devi | ce Under Test | | | 3 | Prod | uct Description | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | | | | 5.3 | Validation Measurement | | | 6 | Calil | oration Measurement Results | | | | 6.1 | Return Loss and Impedance | 6 | | | 6.2 | Mechanical Dimensions | 6 | | 7 | Vali | lation measurement | | | | 7.1 | Measurement Condition | 7 | | | 7.2 | Head Liquid Measurement | | | | 7.3 | Measurement Result | | | | 7.4 | Body Measurement Result | 9 | | 8 | List | of Equipment 10 | | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 123 of 155 | Ref: ACR.170.4.14.SATU.A #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | |--------------------------------|-----------------------------------|--| | Device Type | COMOSAR 1900 MHz REFERENCE DIPOLE | | | Manufacturer | Satimo | | | Model | SID1900 | | | Serial Number | SN 18/11 DIPG153 | | | Product Condition (new / used) | used | | A yearly calibration interval is recommended. #### 3 PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - Satimo COMOSAR Validation Dipole | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 124 of 155 | Ref: ACR.170.4.14.SATU.A #### 4 MEASUREMENT METHOD The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. #### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.1 dB | ## 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 3 - 300 | 0.05 mm | # 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 20.3 % | | 10 g | 20.1 % | Page: 5/10 | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 125 of 155 | Ref: ACR.170.4.14.SATU.A # 6 CALIBRATION MEASUREMENT RESULTS # 6.1 RETURN LOSS AND IMPEDANCE | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 1900 | -21.22 | -20 | $52.7 \Omega + 8.6 j\Omega$ | # 6.2 MECHANICAL DIMENSIONS | Frequency MHz | Lm | ım | h m | m | d r | nm | |---------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | PASS | 39.5 ±1 %. | PASS | 3.6 ±1 %. | PASS | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 126 of 155 | Ref: ACR.170.4.14.SATU.A #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 7.1 MEASUREMENT CONDITION | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Head Liquid Values: eps': 40.9 sigma: 1.45 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8m/dz=5mm | | Frequency | 1900 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | # 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ϵ_{r}') | | Conductivi | ity (σ) S/m | |------------------|---|----------|------------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±5 % | | 0.87 ±5 % | | | 450 | 43.5 ±5 % | | 0.87 ±5 % | | | 750 | 41.9 ±5 % | | 0.89 ±5 % | | | 835 | 41.5 ±5 % | | 0.90 ±5 % | | | 900 | 41.5 ±5 % | | 0.97 ±5 % | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 1750 | 40.1 ±5 % |
| 1.37 ±5 % | | | 1800 | 40.0 ±5 % | | 1.40 ±5 % | | | 1900 | 40.0 ±5 % | PASS | 1.40 ±5 % | PASS | | 1950 | 40.0 ±5 % | | 1.40 ±5 % | | | 2000 | 40.0 ±5 % | | 1.40 ±5 % | | | 2100 | 39.8 ±5 % | | 1.49 ±5 % | | | 2300 | 39.5 ±5 % | | 1.67 ±5 % | | | 2450 | 39.2 ±5 % | | 1.80 ±5 % | | | 2600 | 39.0 ±5 % | | 1.96 ±5 % | | | 3000 | 38.5 ±5 % | | 2.40 ±5 % | | | 3500 | 37.9 ±5 % | | 2.91 ±5 % | | Page: 7/10 | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 127 of 155 | Ref: ACR.170.4.14.SATU.A #### 7.3 MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR (W/kg/W) | | |------------------|------------------|--------------|-------------------|--------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | 39.52 (3.95) | 20.5 | 20.03 (2.00) | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | Page: 8/10 | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 128 of 155 | Ref: ACR.170.4.14.SATU.A # 7.4 BODY MEASUREMENT RESULT | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Body Liquid Values: eps': 53.6 sigma: 1.52 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8m/dz=5mm | | Frequency | 1900 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) | |------------------|------------------|-------------------| | | measured | measured | | 1900 | 42.88 (4.29) | 21.39 (2.14) | | Test Report | 15071133-FCC-H | | |-------------|----------------|--| | Page | 129 of 155 | | Ref: ACR.170.4.14.SATU.A # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | |------------------------------------|-------------------------|--------------------|---|---|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | SAM Phantom | Satimo | SN-20/09-SAM71 | Validated. No cal required. | Validated. No cal
required. | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No cal
required. | | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2013 | 02/2016 | | | | Calipers | Carrera | CALIPER-01 | 12/2013 | 12/2016 | | | | Reference Probe | Satimo | EPG122 SN 18/11 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Multimeter | Keithley 2000 | 1188656 | 12/2013 | 12/2016 | | | | Signal Generator | Agilent E4438C | MY49070581 | 12/2013 | 12/2016 | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Power Meter | HP E4418A | US38261498 | 12/2013 | 12/2016 | | | | Power Sensor | HP ECP-E26A | US37181460 | 12/2013 | 12/2016 | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 8/2012 | 8/2015 | | | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 130 of 155 | # SAR Reference Dipole Calibration Report Ref: ACR.170.3.14.SATU.A # SIEMIC TESTING AND CERTIFICATION SERVICES ZONE A,FLOOR 1,BUILDING 2,WAN YE LONG TECHNOLOGY PARK,SOUTH SIDE OF ZHOUSHI ROAD, SHIYAN STREET,BAO'AN DISTRICT, SHENZHEN 518108, GUANGDONG, P.R.C. # SATIMO COMOSAR REFERENCE DIPOLE FREQUENCY: 1800 MHZ SERIAL NO.: SN 18/11 DIPF152 Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144 06/18/2014 #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 131 of 155 | Ref: ACR.170.3.14.SATU.A | | Name | Function | Date | Signature | |---------------|---------------|-----------------|-----------|--------------| | Prepared by: | Jérôme LUC | Product Manager | 6/19/2014 | JS | | Checked by : | Jérôme LUC | Product Manager | 6/19/2014 | JES | | Approved by : | Kim RUTKOWSKI | Quality Manager | 6/19/2014 | um Puthowski | | | Customer Name | |----------------|---| | Distribution : | SIEMIC Testing
and Certification
Services | | Issue | Date | Modifications | |-------|-----------|-----------------| | A | 6/19/2014 | Initial release | | | | | | | | | | | | | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 132 of 155 | Ref: ACR.170.3.14.SATU.A # TABLE OF CONTENTS | 1 Int | roduction4 | | |-------|-------------------------------|---| | 2 De | vice Under Test4 | | | 3 Pro | oduct Description4 | | | 3.1 | General Information | 4 | | 4 Me | easurement Method | | | 4.1 | Return Loss Requirements | 5 | | 4.2 | Mechanical Requirements | | | 5 Me | easurement Uncertainty5 | | | 5.1 | Return Loss | 5 | | 5.2 | Dimension Measurement | | | 5.3 | Validation Measurement | | | 6 Ca | libration Measurement Results | | | 6.1 | Return Loss and Impedance | 6 | | 6.2 | Mechanical Dimensions | | | 7 Va | didation measurement | | | 7.1 | Measurement Condition | 7 | | 7.2 | Head Liquid Measurement | | | 7.3 | Measurement Result | | | 7.4 | Body Measurement Result | | | 8 Lis | st of Equipment 10 | | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 133 of 155 | Ref: ACR.170.3.14.SATU.A #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | |--------------------------------|-----------------------------------|--| | Device Type | COMOSAR 1800 MHz REFERENCE DIPOLE | | | Manufacturer | Satimo | | | Model | SID1800 | | | Serial Number | SN 18/11 DIPF152 | | | Product Condition (new / used) | used | | A yearly calibration interval is recommended. ## 3 PRODUCT DESCRIPTION ## 3.1 GENERAL INFORMATION Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 – Satimo COMOSAR Validation Dipole | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 134 of 155 | Ref: ACR.170.3.14.SATU.A #### 4 MEASUREMENT METHOD The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. ## 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. # 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.1 dB | ## 5.2 <u>DIMENSION MEASUREMENT</u> The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 3 - 300 | 0.05 mm | ## 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 20.3 % | | 10 g | 20.1 % | Page: 5/10 | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 135 of 155 | Ref: ACR.170.3.14.SATU.A ## 6 CALIBRATION MEASUREMENT RESULTS # 6.1 RETURN LOSS AND IMPEDANCE | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------
------------------|------------------|-----------------------------| | 1800 | -28.21 | -20 | $46.5 \Omega + 1.0 j\Omega$ | # 6.2 MECHANICAL DIMENSIONS | Frequency MHz | Ln | nm | h m | m | d r | nm | |---------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | 3) | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | 10 | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | PASS | 41.7 ±1 %. | PASS | 3.6 ±1 %. | PASS | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | 20 | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | 20 | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | 21 | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 136 of 155 | Ref: ACR.170.3.14.SATU.A #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. ## 7.1 MEASUREMENT CONDITION | Software | OPENSAR V4 | | |---|--|--| | Phantom | SN 20/09 SAM71 | | | Probe | SN 18/11 EPG122 | | | Liquid | Head Liquid Values: eps': 40.9 sigma: 1.36 | | | Distance between dipole center and liquid | 10.0 mm | | | Area scan resolution | dx=8mm/dy=8mm | | | Zoon Scan Resolution | dx=8mm/dy=8m/dz=5mm | | | Frequency | 1800 MHz | | | Input power | 20 dBm | | | Liquid Temperature | 21 °C | | | Lab Temperature | 21 °C | | | Lab Humidity | 45 % | | # 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ϵ_{r}') | | Conductiv | ity (σ) S/m | |------------------|---|----------|-----------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±5 % | | 0.87 ±5 % | | | 450 | 43.5 ±5 % | | 0.87 ±5 % | | | 750 | 41.9 ±5 % | | 0.89 ±5 % | | | 835 | 41.5 ±5 % | | 0.90 ±5 % | | | 900 | 41.5 ±5 % | | 0.97 ±5 % | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 1750 | 40.1 ±5 % | | 1.37 ±5 % | | | 1800 | 40.0 ±5 % | PASS | 1.40 ±5 % | PASS | | 1900 | 40.0 ±5 % | | 1.40 ±5 % | | | 1950 | 40.0 ±5 % | | 1.40 ±5 % | | | 2000 | 40.0 ±5 % | | 1.40 ±5 % | | | 2100 | 39.8 ±5 % | | 1.49 ±5 % | | | 2300 | 39.5 ±5 % | | 1.67 ±5 % | | | 2450 | 39.2 ±5 % | | 1.80 ±5 % | | | 2600 | 39.0 ±5 % | | 1.96 ±5 % | | | 3000 | 38.5 ±5 % | | 2.40 ±5 % | | | 3500 | 37.9 ±5 % | | 2.91 ±5 % | | Page: 7/10 | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 137 of 155 | Ref: ACR.170.3.14.SATU.A ## 7.3 MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR (W/kg/W) | | |------------------|------------------|--------------|-------------------|-------------| | 7 | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | 38.44 (3.84) | 20.1 | 19.96 (2.00 | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | Page: 8/10 | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 138 of 155 | Ref: ACR.170.3.14.SATU.A # 7.4 BODY MEASUREMENT RESULT | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Body Liquid Values: eps': 52.6 sigma: 1.47 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8m/dz=5mm | | requency 1800 MHz | | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) | | |------------------|------------------|-------------------|--| | | measured | measured | | | 1800 | 39.59 (3.96) | 20.55 (2.05) | | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 139 of 155 | Ref: ACR.170.3.14.SATU.A # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | |------------------------------------|-------------------------|--------------------|---|---| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | SAM Phantom | Satimo | SN-20/09-SAM71 | Validated. No cal
required. | Validated. No cal
required. | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No cal
required. | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2013 | 02/2016 | | Calipers | Carrera | CALIPER-01 | 12/2013 | 12/2016 | | Reference Probe | Satimo | EPG122 SN 18/11 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Multimeter | Keithley 2000 | 1188656 | 12/2013 | 12/2016 | | Signal Generator | Agilent E4438C | MY49070581 | 12/2013 | 12/2016 | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Power Meter | HP E4418A | US38261498 | 12/2013 | 12/2016 | | Power Sensor | HP ECP-E26A | US37181460 | 12/2013 | 12/2016 | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 8/2012 | 8/2015 | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 140 of 155 | # **SAR Reference Dipole Calibration Report** Ref: ACR.188.2.14.SATU.A # SIEMIC TESTING AND CERTIFICATION SERVICES 775 MONTAGUE EXPRESSWAY MILPITAS, CA 95035, USA SATIMO COMOSAR REFERENCE DIPOLE FREQUENCY: 2600 MHZ SERIAL NO.: SN 26/14 DIP 2G600-326 Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144 07/03/2014 #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 141 of 155 | Ref: ACR.188.2.14.SATU.A | | Name | Function | Date | Signature | |---------------|---------------|-----------------|----------|----------------| | Prepared by: | Jérôme LUC | Product Manager | 7/7/2014 | JES | | Checked by : | Jérôme LUC | Product Manager | 7/7/2014 | JS | | Approved by : | Kim RUTKOWSKI | Quality Manager | 7/7/2014 | frim Puthowski | | | Customer Name | |----------------|---| | Distribution : | SIEMIC Testing
and Certification
Services | | Issue | Date | Modifications | |-------|----------|-----------------| | A | 7/7/2014 | Initial release | | | | | | | | | | | | | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 142 of 155 | Ref: ACR.188.2.14.SATU.A # TABLE OF CONTENTS | 1 | Intro | oduction4 | | |---|-------|-------------------------------|---| | 2 | Dev | ice Under Test4 | | | 3 | Prod | luct Description 4 | | | | 3.1 | General Information | | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results 6 | | | | 6.1 | Return Loss and Impedance | 6 | | | 6.2 | Mechanical Dimensions | 6 | | 7 | Vali | dation measurement7 | | | | 7.1 | Measurement Condition | 7 | | | 7.2 | Head Liquid Measurement | 7 | | | 7.3 | Measurement Result | | | | 7.4 | Body Measurement Result | | | 8 | List | of Equipment 10 | | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 143 of 155 | Ref: ACR.188.2.14.SATU.A #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, OET 65
Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | |--------------------------------|-----------------------------------|--| | Device Type | COMOSAR 2600 MHz REFERENCE DIPOLE | | | Manufacturer | Satimo | | | Model | SID2600 | | | Serial Number | SN 26/14 DIP 2G600-326 | | | Product Condition (new / used) | New | | A yearly calibration interval is recommended. ## 3 PRODUCT DESCRIPTION ## 3.1 GENERAL INFORMATION Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 – Satimo COMOSAR Validation Dipole | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 144 of 155 | Ref: ACR.188.2.14.SATU.A #### 4 MEASUREMENT METHOD The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. # 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. #### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. # 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | | | |----------------|-------------------------------------|--|--| | 400-6000MHz | 0.1 dB | | | #### 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | | |-------------|--------------------------------|--|--| | 3 - 300 | 0.05 mm | | | #### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 20.3 % | | 10 g | 20.1 % | Page: 5/10 | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 145 of 155 | Ref: ACR.188.2.14.SATU.A #### 6 CALIBRATION MEASUREMENT RESULTS # 6.1 RETURN LOSS AND IMPEDANCE | Frequency (MHz) | uency (MHz) Return Loss (dB) Requirement (dB) | | Impedance | |-----------------|---|-----|-----------------| | 2600 | -30.77 | -20 | 52.4 Ω - 1.6 jΩ | # 6.2 MECHANICAL DIMENSIONS | Frequency MHz | Ln | L mm h mm | | d mm | | | |---------------|-------------|-----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | | 2600 | 48.5 ±1 %. | PASS | 28.8 ±1 %. | PASS | 3.6 ±1 %. | PASS | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 146 of 155 | Ref: ACR 188 2 14 SATU A #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 7.1 MEASUREMENT CONDITION | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Head Liquid Values: eps': 38.5 sigma: 1.92 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8m/dz=5mm | | Frequency | 2600 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | # 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative per | Relative permittivity (ϵ_{r}') | | ity (σ) S/m | |------------------|--------------|---|-----------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±5 % | | 0.87 ±5 % | | | 450 | 43.5 ±5 % | | 0.87 ±5 % | | | 750 | 41.9 ±5 % | | 0.89 ±5 % | | | 835 | 41.5 ±5 % | | 0.90 ±5 % | | | 900 | 41.5 ±5 % | | 0.97 ±5 % | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 1750 | 40.1 ±5 % | | 1.37 ±5 % | | | 1800 | 40.0 ±5 % | | 1.40 ±5 % | | | 1900 | 40.0 ±5 % | | 1.40 ±5 % | | | 1950 | 40.0 ±5 % | | 1.40 ±5 % | | | 2000 | 40.0 ±5 % | | 1.40 ±5 % | | | 2100 | 39.8 ±5 % | | 1.49 ±5 % | | | 2300 | 39.5 ±5 % | | 1.67 ±5 % | | | 2450 | 39.2 ±5 % | | 1.80 ±5 % | | | 2600 | 39.0 ±5 % | PASS | 1.96 ±5 % | PASS | | 3000 | 38.5 ±5 % | | 2.40 ±5 % | | | 3500 | 37.9 ±5 % | | 2.91 ±5 % | | Page: 7/10 | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 147 of 155 | Ref: ACR.188.2.14.SATU.A # 7.3 MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR (W/kg/W) | | |------------------|------------------|--------------|-------------------|--------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | 56.32 (5.63) | 24.6 | 24.10 (2.41) | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 148 of 155 | Ref: ACR.188.2.14.SATU.A # 7.4 BODY MEASUREMENT RESULT | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Body Liquid Values: eps': 51.8 sigma: 2.19 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8m/dz=5mm | | Frequency | 2600 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) | | |------------------|------------------|-------------------|--| | | measured | measured | | | 2600 | 57.82 (5.78) | 24.95 (2.49) | | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 149 of 155 | Ref: ACR.188.2.14.SATU.A # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | |------------------------------------|-------------------------|--------------------|---|---| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | SAM Phantom | Satimo | SN-20/09-SAM71 | Validated. No cal required. | Validated. No cal
required. | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No cal
required. | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2013 | 02/2016 | | Calipers | Carrera | CALIPER-01 | 12/2013 | 12/2016 | | Reference
Probe | Satimo | EPG122 SN 18/11 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Multimeter | Keithley 2000 | 1188656 | 12/2013 | 12/2016 | | Signal Generator | Agilent E4438C | MY49070581 | 12/2013 | 12/2016 | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Power Meter | HP E4418A | US38261498 | 12/2013 | 12/2016 | | Power Sensor | HP ECP-E26A | US37181460 | 12/2013 | 12/2016 | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 8/2012 | 8/2015 | | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 150 of 155 | # Annex B SAR System PHOTOGRAPHS Liquid depth ≥ 15cm | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 151 of 155 | # Annex C SETUP PHOTOGRAPHS Right Head Touch View # Right Head Tilt View | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 152 of 155 | # **Left Head Touch View** Left Head Tilt View | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 153 of 155 | Body Setup Photo (LCD UP) Body Setup Photo (LCD DOWN) | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 154 of 155 | Body Setup Photo (LEFT EDGE) # Body Setup Photo (LEFT EDGE) | Test Report | 15071133-FCC-H | |-------------|----------------| | Page | 155 of 155 | Body Setup Photo (BOTTOM EDGE)