

## Modifications made to the product : None

This Test Report is Issued Under the Authority of:Wiky. JamAlexo. Lin

Wiky Jam **Compliance Engineer** 

Alex Liu Technical Manager



This test report may be reproduced in full only.

Test result presented in this test report is applicable to the representative sample only.

Report No.: 14070214-FCC-R4 Issue Date: June 18, 2014 Page: 2 of 52 www.siemic.com www.siemic.com.cn

# **Laboratory Introduction**

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.



In addition to <u>testing</u> and <u>certification</u>, SIEMIC provides initial design reviews and <u>compliance</u> <u>management</u> through out a project. Our extensive experience with <u>China</u>, <u>Asia Pacific</u>, <u>North America</u>, <u>European</u>, <u>and international</u> compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the <u>global markets</u>.

### SIEMIC (Shenzhen - China) Laboratories Accreditations for Conformity Assessment

| Country/Region | Scope                         |  |
|----------------|-------------------------------|--|
| USA            | EMC, RF/Wireless, Telecom     |  |
| Canada         | EMC, RF/Wireless, Telecom     |  |
| Taiwan         | EMC, RF, Telecom, Safety      |  |
| Hong Kong      | RF/Wireless, Telecom          |  |
| Australia      | EMC, RF, Telecom, Safety      |  |
| Korea          | EMI, EMS, RF, Telecom, Safety |  |
| Japan          | EMI, RF/Wireless, Telecom     |  |
| Singapore      | EMC, RF, Telecom              |  |
| Europe         | EMC, RF, Telecom, Safety      |  |

Report No.: 14070214-FCC-R4 Issue Date: June 18, 2014 Page: 3 of 52 www.siemic.com www.siemic.com.en

This page has been left blank intentionally.

#### SIEMIC, INC. Accessing ofcel markets Title: RF Test Report for Mobile Phone Main Model: s505 Serial Model: N/A To: FCC Part 15.247: 2013, ANSI C63.4: 2009

### CONTENTS

| 1   | EXECUTIVE SUMMARY & EUT INFORMATION                         | 5  |
|-----|-------------------------------------------------------------|----|
| 2   | TECHNICAL DETAILS                                           | 6  |
| 3   | MODIFICATION                                                | 7  |
| 4   | TEST SUMMARY                                                | 8  |
| 5   | MEASUREMENTS, EXAMINATION AND DERIVED RESULTS               | 9  |
| ANN | NEX A. TEST INSTRUMENT & METHOD                             | 30 |
| ANN | NEX B. EUT AND TEST SETUP PHOTOGRAPHS                       | 35 |
| ANN | NEX C. TEST SETUP AND SUPPORTING EQUIPMENT                  | 47 |
| ANN | NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST | 51 |
| ANN | NEX E. DECLARATION OF SI                                    | 52 |

1

Report No.:14070214-FCC-R4Issue Date:June 18, 2014Page:5 of 52www.siemic.comwww.siemic.com.cn

# **Executive Summary & EUT information**

The purpose of this test programme was to demonstrate compliance of the Verykool USA Inc., Mobile Phone and model: s505 against the current Stipulated Standards. The Mobile Phone has demonstrated compliance with the FCC Part 15.247: 2013, ANSI C63.4: 2009.

| EUT Information                                   |                                                                                                                                                                     |  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| EUT<br>Description                                | : Mobile Phone                                                                                                                                                      |  |
| Main Model                                        | : s505                                                                                                                                                              |  |
| Serial Model                                      | : <b>N/A</b>                                                                                                                                                        |  |
| Antenna Gain                                      | GSM850/ UMTS-FDD Band V: -3.4 dBi<br>PCS1900/UMTS-FDD Band II: -2.5 dBi<br>Bluetooth/BLE/ WIFI: -2.6 dBi<br>GPS: -2.9 dBi                                           |  |
| Input Power                                       | Battery:<br>Spec: 3.8V 2000mAh<br>Limited charger voltage: 4.35V<br>Adapter:<br>Model: HJ-050100-US<br>Input: AC 100-240V; 50/60Hz 0.15A<br>Output: DC 5.0V; 1000mA |  |
| Classification<br>Per Stipulated<br>Test Standard | : FCC Part 15.247: 2013, ANSI C63.4: 2009                                                                                                                           |  |



Report No.: Issue Date: Page: 6 of www.siemic.com www.siemic.com.cn

14070214-FCC-R4 June 18 , 2014 6 of 52

# 2 TECHNICAL DETAILS

| Purpose                            | Compliance testing of Mobile Phone with stipulated standard                                                                                                                                                                                                                                                                |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Applicant / Client                 | Verykool USA Inc.<br>3636 Nobel Drive, Suite 325, San Diego, CA 92122 USA                                                                                                                                                                                                                                                  |
| Manufacturer                       | SHENZHEN KONKA TELECOMMUNICATIONS TECHNOLOGY CO., LTD<br>No. 9008, Shennan Avenue, Overseas Chinese Town, Shenzhen, China                                                                                                                                                                                                  |
| Laboratory performing<br>the tests | SIEMIC (Shenzhen - China) Laboratories<br>Zone A, Floor 1, Building 2, Wan Ye Long Technology Park, South Side of Zhoushi<br>Road, Bao'an District, Shenzhen, Guangdong, China<br>Tel: +86-0755-2601 4629 / 2601 4953<br>Fax: +86-0755-2601 4953-810<br>Email: China@siemic.com.cn                                         |
| Test report reference<br>number    | 14070214-FCC-R4                                                                                                                                                                                                                                                                                                            |
| Date EUT received                  | May 06, 2014                                                                                                                                                                                                                                                                                                               |
| Standard applied                   | FCC Part 15.247: 2013, ANSI C63.4: 2009                                                                                                                                                                                                                                                                                    |
| Dates of test (from – to)          | May 09 to June 17, 2014                                                                                                                                                                                                                                                                                                    |
| No of Units :                      | #1                                                                                                                                                                                                                                                                                                                         |
| Equipment Category :               | DTS                                                                                                                                                                                                                                                                                                                        |
| Trade Name :                       | Verykool                                                                                                                                                                                                                                                                                                                   |
| RF Operating Frequency<br>(ies)    | GSM850 TX : 824.2 ~ 848.8 MHz; RX : 869.2 ~ 893.8 MHz<br>PCS1900 TX : 1850.2 ~ 1909.8 MHz; RX : 1930.2 ~ 1989.8 MHz<br>UMTS-FDD Band V TX : 826.4 ~ 846.6 MHz; RX : 871.4 ~ 891.6 MHz<br>UMTS-FDD Band II TX :1852.4 ~ 1907.6 MHz; RX : 1932.4 ~ 1987.6 MHz<br>802.11b/g/n: 2412-2462 MHz<br>Bluetooth& BLE: 2402-2480 MHz |
| Number of Channels                 | 299CH (PCS1900) and 124CH (GSM850)<br>UMTS-FDD Band V : 102CH<br>UMTS-FDD Band II : 277CH<br>Bluetooth: 79CH<br>802.11b/g/n: 11CH<br>BLE: 40CH                                                                                                                                                                             |
| Modulation                         | GSM /PCS: GMSK<br>UMTS-FDD: QPSK<br>802.11b/g/n: DSSS/OFDM<br>Bluetooth: GFSK& π/4DQPSK&8DPSK<br>BLE: GFSK                                                                                                                                                                                                                 |
| GPRS Multi-slot class              | 8/10/12                                                                                                                                                                                                                                                                                                                    |
| FCC ID                             | WA68505                                                                                                                                                                                                                                                                                                                    |

Report No.:140Issue Date:JurPage:7 ofwww.siemic.comwww.siemic.com.cn

14070214-FCC-R4 June 18 , 2014 7 of 52 com

# **3 MODIFICATION**

NONE

Report No.: 140' Issue Date: Jum Page: 8 of www.siemic.com www.siemic.com.cn

14070214-FCC-R4 June 18 , 2014 8 of 52 om

# 4 TEST SUMMARY

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

### **Test Results Summary**

| FCC Rules                       | Description of Test                                                                    | Result     |
|---------------------------------|----------------------------------------------------------------------------------------|------------|
| §15.247 (i), §2.1091            | RF Exposure                                                                            | Compliance |
| §15.203                         | Antenna Requirement                                                                    | Compliance |
| §15.247 (a)(2)                  | DTS (6 dB) CHANNEL BANDWIDTH                                                           | Compliance |
| §15.247(b)(3)                   | Conducted Maximum Output Power                                                         | Compliance |
| §15.247(e)                      | Power Spectral Density                                                                 | Compliance |
| §15.247(d)                      | Band-Edge                                                                              | Compliance |
| §15.207 (a),                    | AC Power Line Conducted Emissions                                                      | Compliance |
| §15.205, §15.209,<br>§15.247(d) | Radiated Spurious Emissions &<br>Unwanted Emissions into Restricted Frequency<br>Bands | Compliance |

 Report No.:
 14070214-FCC-R4

 Issue Date:
 June 18, 2014

 Page:
 9 of 52

 www.siemic.com
 www.siemic.com

MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

# 5.1 §15.247 (i) and §2.1093 – RF Exposure

### **Standard Requirement:**

5

According to §15.247 (i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances*  $\leq$  50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)].

 $[\sqrt{f_{(GHz)}}] \leq 3.0$  for 1-g SAR and  $\leq 7.5$  for 10-g extremity SAR,  $^{16}$  where

- $f_{(GHz)}$  is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation<sup>17</sup>
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum *test separation distance* is  $\leq$  50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum *test separation distance* is  $\leq$  5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Routine SAR evaluation refers to that specifically required by § 2.1093, using measurements or computer simulation. When routine SAR evaluation is not required, portable transmitters with output power greater than the applicable low threshold require SAR evaluation to qualify for TCB approval.

Two antennas are available for the EUT (GSM antenna, Bluetooth/BLE/WIFI antenna). The maximum average output power(turn-up power) in low channel of BLE is -3.67 dBm= 0.43mW The calculation results=  $0.43/5 * \sqrt{2.402} = 0.13 < 3$ 

The maximum average output power(turn-up power) in middle channel of BLE is -3.17 dBm= 0.48 mW The calculation results=  $0.48/5 * \sqrt{2.440} = 0.15 < 3$ 

The maximum average output power(turn-up power) in high channel of BLE is -3.33 dBm= 0.46 mW The calculation results=  $0.46/5 * \sqrt{2.480} = 0.14 < 3$ 

According to KDB 447498, no stand-alone required for BLE antenna, and no simultaneous SAR measurement is required , please refer to SAR report.

### **Test Result: Pass**

Report No.: 14070214-FCC-R4 Issue Date: June 18, 2014 Page: 10 of 52 www.siemic.com www.siemic.com.cn

# 5.2 §15.203 - ANTENNA REQUIREMENT

### **Applicable Standard**

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria: a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

### Antenna Connector Construction

The EUT has 2 antennas: a PIFA antenna for WIFI/Bluetooth/BLE, the gain is -2.6 dBi for WIFI/ Bluetooth/BLE.

a PIFA antenna for GSM and UMTS, the gain is -3.4 dBi for GSM850/ PCS1900

and -2.5 dBi for UMTS-FDD BandV/UMTS-FDD Band II .

which in accordance to section 15.203, please refer to the internal photos.

### **Test Result: Pass**

SIEMIC, INC. Accessing global markets Title: RF Test Report for Mobile Phone Main Model: s505 Serial Model: NA To: FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: 14070214-FCC-R4 Issue Date: June 18, 2014 Page: 11 of 52 www.siemic.com www.siemic.com.cn

# 5.3 §15.247(a) (2) –DTS (6 dB) CHANNEL BANDWIDTH

| 1. | <u>Conducted Measurement</u><br>EUT was set for low, mid, high<br>The spectrum analyzer was conr | channel with modulated mode and nected to the antenna terminal.           | highest RF output power.                                                             |
|----|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 2. | Environmental Conditions                                                                         | Temperature<br>Relative Humidity<br>Atmospheric Pressure                  | 21°C<br>58%<br>1010mbar                                                              |
| 3. |                                                                                                  | it are traceable to national standard tely 95% (in the case where distrib | ls. The uncertainty of the measurement at utions are normal), with a coverage factor |

4. Test date : May 09, 2014 Tested By : Wiky Jam

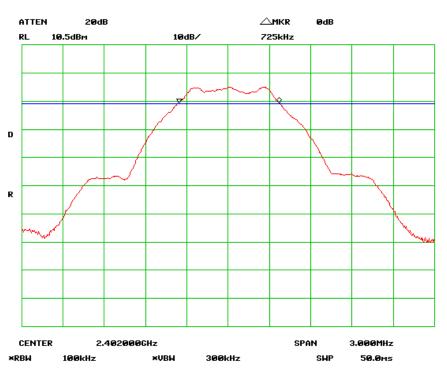
**Requirement(s):** The minimum 6 dB bandwidth of a DTS transmission shall be at least 500 kHz. Within this document, this bandwidth is referred to as the DTS bandwidth. The procedures provided herein for measuring the maximum peak conducted output power assume the use of the DTS bandwidth.

### **Procedures:**

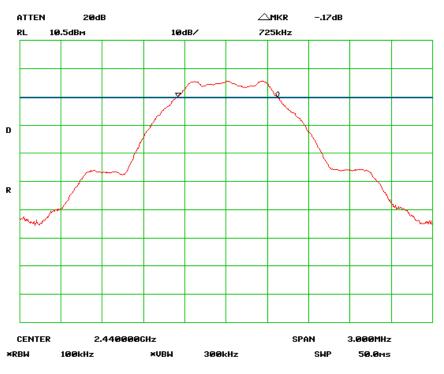
- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW)  $\ge$  3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

### Test Result: Pass.

Please refer to the following tables and plots.


| Channel | Channel<br>Frequency<br>(MHz) | Measured<br>6dB Bandwidth<br>(kHz) | FCC Part 15.247<br>Limit<br>(kHz) |
|---------|-------------------------------|------------------------------------|-----------------------------------|
| Low     | 2402                          | 725                                | >500                              |
| Middle  | 2440                          | 725                                | >500                              |
| High    | 2480                          | 730                                | >500                              |

To:

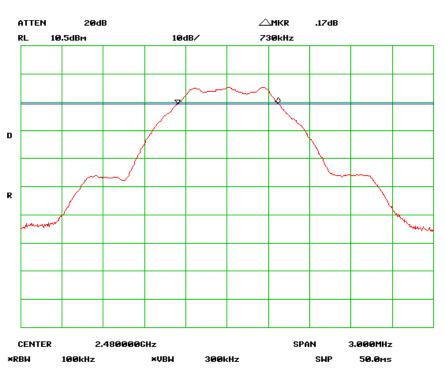

SIEMIC, INC. Accessing global markets Title: RF Test Report for Mobile Phone Main Model: s505 Serial Model: N/A FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: Page: 12 o www.siemic.com www.siemic.com.cn

14070214-FCC-R4 June 18 , 2014 12 of 52



6DB-2402




6DB-2440

SIEMIC, INC. Accessing global markets Title: RF Test Report for Mobile Phone Main Model: s505 Serial Model: N/A To: FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: Page: 13 o www.siemic.com www.siemic.com.cn

14070214-FCC-R4 June 18 , 2014 13 of 52



6DB-2480.

Report No.: 14070214-FCC-R4 Issue Date: June 18, 2014 Page: 14 of 52 www.siemic.com www.siemic.com.cn

# 5.4 §15.247(b) (3) - Conducted Maximum Output Power

- 1. Conducted Measurement EUT was set for low, mid, high channel with modulated mode and highest RF output power. The spectrum analyzer was connected to the antenna terminal. 2. Conducted Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is  $\pm 1.5dB$ . 3. **Environmental Conditions** Temperature 26°C **Relative Humidity** 54% 1015mbar Atmospheric Pressure
- 4. Test date : May 14, 2014 Tested By : Wiky Jam

**Standard Requirement**: One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

### **Procedures:**

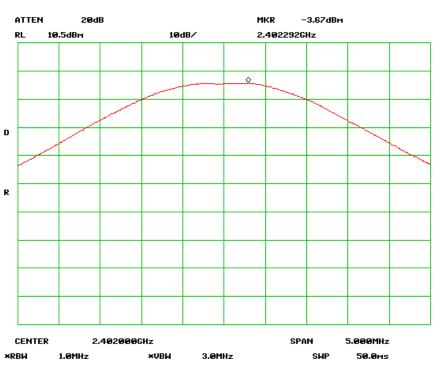
### **RBW** $\geq$ **DTS** bandwidth:

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

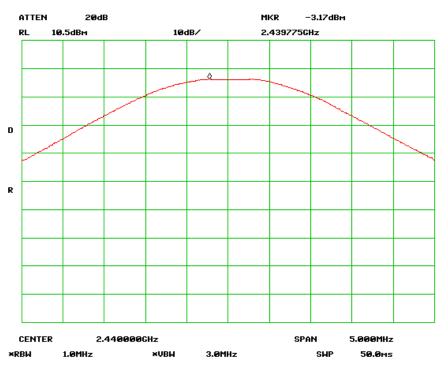
- 1. Set the RBW  $\geq$  DTS bandwidth.
- 2. Set  $VBW \ge 3 RBW$ .
- 3. Set span  $\ge$  3 x RBW
- 4. Sweep time = auto couple.
- 5. Detector = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use peak marker function to determine the peak amplitude level.

#### Test Result: Pass.

Please refer to the following tables and plots.


#### The Maximum peak conducted output power:

| Channel | Channel<br>Frequency<br>(MHz) | PK Output<br>Power<br>(dBm) | Limit<br>(dBm) |
|---------|-------------------------------|-----------------------------|----------------|
| Low     | 2402                          | -3.67                       | 30             |
| Middle  | 2440                          | -3.17                       | 30             |
| High    | 2480                          | -3.33                       | 30             |

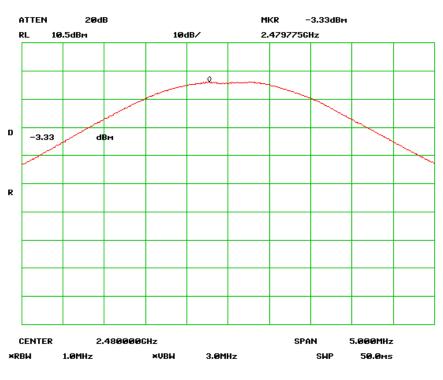

To:

SIEMIC, INC. Accessing global markets Title: RF Test Report for Mobile Phone Main Model: s505 Serial Model: N/A FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: 14070214-FCC-R4 June 18 , 2014 15 of 52 Page: 15 o www.siemic.com www.siemic.com.cn



Power-2402




Power-2440.

SIEMIC, INC. Accessing global markets Title: RF Test Report for Mobile Phone Main Model: s505 Serial Model: N/A To: FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: Page: 16 o www.siemic.com www.siemic.com.cn

14070214-FCC-R4 June 18 , 2014 16 of 52



Power-2480

Report No.: 14070214-FCC-R4 Issue Date: June 18, 2014 Page: 17 of 52 www.siemic.com www.siemic.com.cn

# 5.5 §15.247(e) - Power Spectral Density

| 1. | Conducted Measurement            |                                       |                                             |
|----|----------------------------------|---------------------------------------|---------------------------------------------|
|    | EUT was set for low, mid, high   | channel with modulated mode and       | l highest RF output power.                  |
|    | The spectrum analyzer was com    | nected to the antenna terminal.       |                                             |
| 2. | Environmental Conditions         | Temperature                           | 23 °C                                       |
|    |                                  | Relative Humidity                     | 58%                                         |
|    |                                  | Atmospheric Pressure                  | 1019mbar                                    |
| 3. | Conducted Emissions Measurer     | nent Uncertainty                      |                                             |
|    | All test measurements carried or | ut are traceable to national standard | ds. The uncertainty of the measurement at   |
|    | a confidence level of approxima  | ttely 95% (in the case where distrib  | outions are normal), with a coverage factor |
|    | of 2, in the range $30MHz - 40G$ | Hz is $\pm 1.5$ dB.                   |                                             |
| 4. | Test date : May 18, 2014         |                                       |                                             |

Tested By : Wiky Jam

### **Requirement(s):**

The DTS rules specify a conducted PSD limit within the DTS bandwidth during any time interval of continuous transmission.5 Such specifications require that the same method as used to determine the conducted output power shall also be used to determine the power spectral density. Therefore, if maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option)

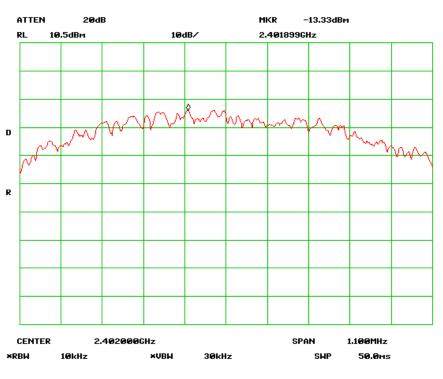
### **Procedures:**

### Method PKPSD (peak PSD):

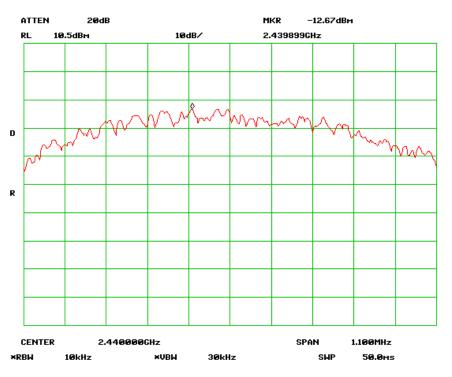
This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- Set the RBW to:  $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$ . 3.
- 4. Set the VBW  $\geq$  3 RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

#### Test Result: Pass.


Please refer to the following tables and plots.

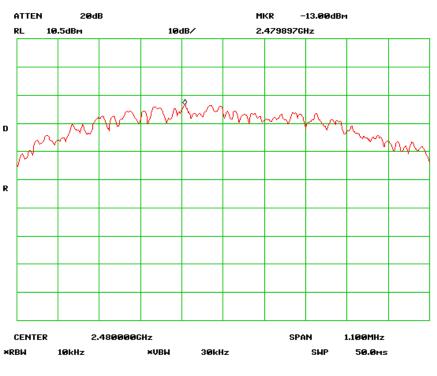
| Channel | Frequency<br>(MHz) | PSD<br>(dBm) | Limit<br>(dBm) |
|---------|--------------------|--------------|----------------|
| Low     | 2402               | -13.33       | 8              |
| Middle  | 2440               | -12.67       | 8              |
| High    | 2480               | -13.00       | 8              |


To:

SIEMIC, INC. Accessing global markets Title: RF Test Report for Mobile Phone Main Model: s505 Serial Model: N/A FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: 14070214-FCC-R4 June 18 , 2014 18 of 52 Page: www.siemic.com




PSD-2402



PSD-2440



Report No.: Issue Date: 14070214-FCC-R4 June 18 , 2014 19 of 52 Page: 19 o www.siemic.com www.siemic.com.cn



PSD-2480

Report No.:14070214-FCC-R4Issue Date:June 18 , 2014Page:20 of 52www.siemic.comwww.siemic.com

8mbar

# 5.6 §15.247(d) –Band-Edge

1. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emission which fall in the restricted bands, as defined in §15.205(c))

| 2. | Environmental Conditions  | Temperature          | 22°C  |
|----|---------------------------|----------------------|-------|
|    |                           | Relative Humidity    | 57%   |
|    |                           | Atmospheric Pressure | 1018n |
| 3. | Test date : June 17, 2014 | -                    |       |
|    | Tested By : Wiky Jam      |                      |       |

### **Standard Requirement:**

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

### **Procedures: (Radiated Method Only)**

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Put it on the Rotated table and turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. First, set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, check the emission of EUT, if pass then set Spectrum Analyzer as below:

a. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz.

b. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.

c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth for Average detection (AV) as below at frequency above 1GHz.

■ 1 kHz (Duty cycle < 98%)  $\Box$  10 Hz (Duty cycle > 98%)

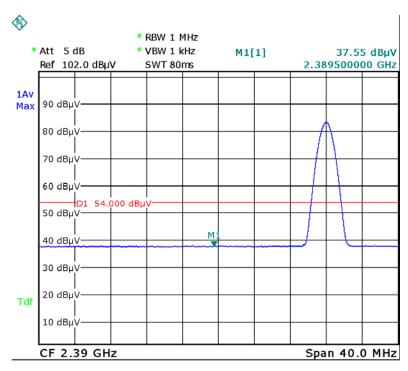
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Note:

Report No.:14070214-FCC-R4Issue Date:June 18, 2014Page:21 of 52www.siemic.comwww.siemic.com

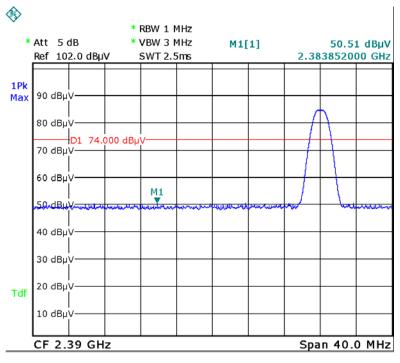
For Hopping device, should test hopping mode and CW Tx mode separately. For hopping mode, find out the worst points outside the frequency band firstly, then set the worst points as the center frequency, use above average 3 (c) spectrum analyzer set, find out the final worst average value separately.

### Test Result: Pass.


Please refer to the following tables and plots.

Note: L: Left Side R: Right Side SIEMIC, INC.




Accessing global markets Title: RF Test Report for Mobile Phone Main Model: s505 Serial Model: N/A To: FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: 14070214-FCC-R4 Issue Date: June 18, 2014 Page: 22 of 52 www.siemic.com www.siemic.com.cn

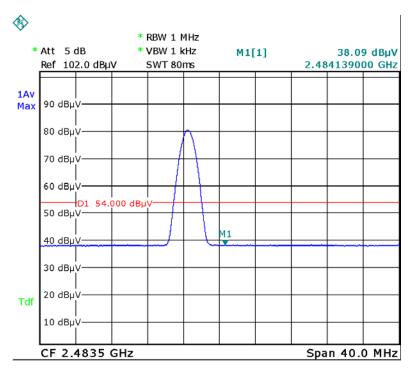


Date: 17.JUN.2014 11:43:05

**BLE-L-AV** 

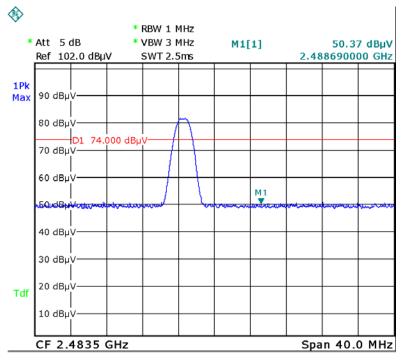


Date: 28.MAY.2014 14:02:53


BLE-L-PK

SIEMIC, INC.




Accessing global markets Title: RF Test Report for Mobile Phone Main Model: s505 Serial Model: N/A To: FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: 14070214-FCC-R4 Issue Date: June 18, 2014 Page: 23 of 52 www.siemic.com www.siemic.com.cn



Date: 17.JUN.2014 11:44:48

BLE-R-AV



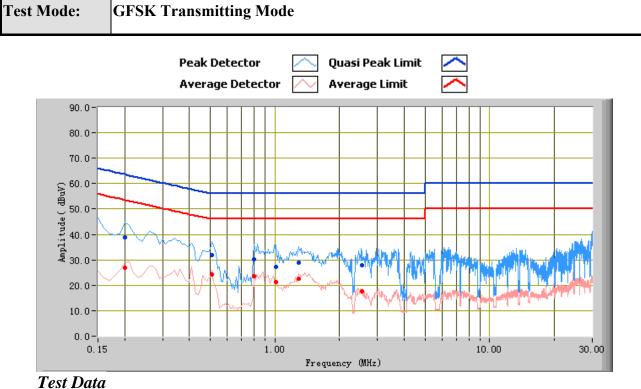
Date: 28.MAY.2014 14:06:35



Report No.: 14070214-FCC-R4 Issue Date: June 18, 2014 Page: 24 of 52 www.siemic.com www.siemic.com.cn

# 5.7 §15.207 (a) - AC Power Line Conducted Emissions

Requirement:


|                             | Conducted lir | Conducted limit (dBµV) |  |
|-----------------------------|---------------|------------------------|--|
| Frequency of emission (MHz) | Quasi-peak    | Average                |  |
| 0.15–0.5                    | 66 to 56*     | 56 to 46*              |  |
| 0.5–5                       | 56            | 46                     |  |
| 5–30                        | 60            | 50                     |  |

\*Decreases with the logarithm of the frequency.

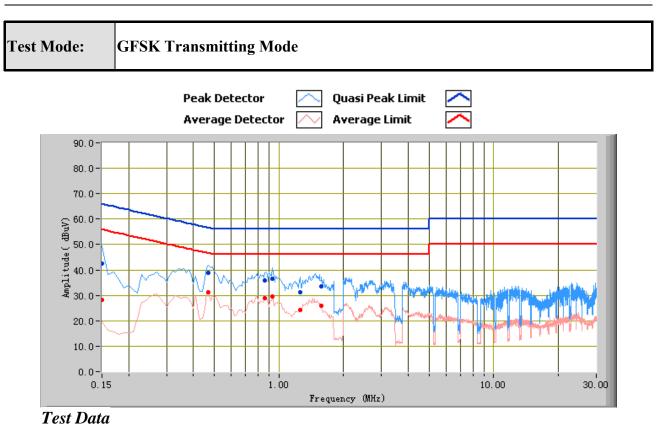
### **Procedures:**

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- <u>Conducted Emissions Measurement Uncertainty</u> All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz – 30MHz (Average & Quasi-peak) is ±3.5dB.
   Environmental Conditions Temperature 24°C Relative Humidity 56% Atmospheric Pressure 1020mar
- 5. Test date: May 27, 2014 Tested By : Wiky Jam

#### SIEMIC, INC. Accessing global markets Title: Report for Mobile Phone Main Model: \$505 Serial Model: N/A To: FCC Part 15.247: 2013, ANSI C63.4: 2009 Report No.: 14070214-FCC-R4 Issue Date: June 18, 2014 Page: 25 of 52 www.siemic.com www.siemic.com.cn



| Phase   | Line | Plot  | at | 120Vac,  | 60Hz        |
|---------|------|-------|----|----------|-------------|
| 1 11000 |      | 1 100 |    | 120, 40, | <b>UUII</b> |


| Frequency<br>(MHz) | Quasi<br>Peak<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Average<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Factors<br>(dB) |
|--------------------|-------------------------|-----------------|----------------|-------------------|-----------------|----------------|-----------------|
| 0.51               | 31.75                   | 56.00           | -24.25         | 24.17             | 46.00           | -21.83         | 10.57           |
| 0.20               | 38.81                   | 63.61           | -24.80         | 26.79             | 53.61           | -26.82         | 12.12           |
| 0.80               | 30.28                   | 56.00           | -25.72         | 23.57             | 46.00           | -22.43         | 10.40           |
| 1.01               | 27.38                   | 56.00           | -28.62         | 21.14             | 46.00           | -24.86         | 10.29           |
| 1.29               | 29.04                   | 56.00           | -26.96         | 22.44             | 46.00           | -23.56         | 10.31           |
| 2.54               | 27.88                   | 56.00           | -28.12         | 17.61             | 46.00           | -28.39         | 10.54           |



SIEMIC, INC. Accessing global markets Title: RF Test Report for Mobile Phone Main Model: s505 Serial Model: N/A To: FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: 14070214-FCC-R4 June 18 , 2014 26 of 52 Page:

www.siemic.com



| Phase  | Neutral   | Plot at  | 120Vac,  | 60Hz        |
|--------|-----------|----------|----------|-------------|
| I mase | 1 \Cuthui | I IOU au | 120, 40, | <b>UUII</b> |

| Frequency<br>(MHz) | Quasi<br>Peak<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Average<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Factors<br>(dB) |
|--------------------|-------------------------|-----------------|----------------|-------------------|-----------------|----------------|-----------------|
| 0.47               | 39.02                   | 56.51           | -17.49         | 31.08             | 46.51           | -15.43         | 10.70           |
| 0.93               | 36.57                   | 56.00           | -19.43         | 29.65             | 46.00           | -16.35         | 10.33           |
| 0.15               | 42.35                   | 66.00           | -23.65         | 28.17             | 56.00           | -27.83         | 12.49           |
| 0.86               | 35.80                   | 56.00           | -20.20         | 29.00             | 46.00           | -17.00         | 10.37           |
| 1.58               | 33.57                   | 56.00           | -22.43         | 25.94             | 46.00           | -20.06         | 10.36           |
| 1.26               | 31.23                   | 56.00           | -24.77         | 24.21             | 46.00           | -21.79         | 10.31           |

SIEMIC, INC. Accessing global markets RF Test Report for Mobile Phone Main Model: s505 Serial Model: N/A FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: 14070214-FCC-R4 Issue Date: June 18, 2014 Page: 27 of 52 www.siemic.com www.siemic.com.cn

# 5.8 §15.209, §15.205 & §15.247(d) - Radiated Spurious Emissions & **Unwanted Emissions into Restricted Frequency Bands**

All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the 1. correct CISPR detectors, are reported. All other emissions were relatively insignificant. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular 2. frequency. 3. Radiated Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz – 1GHz & 1GHz above (3m & 10m) is +/-6dB. 4. Environmental Conditions Temperature  $23^{\circ}C$ 

**Relative Humidity** Atmospheric Pressure 54% 1013mbar

5. Test date : May 15, 2014 Tested By : Wiky Jam

Title:

### **Requirement:**

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

### **Procedures:**

1. The EUT was switched on and allowed to warm up to its normal operating condition.

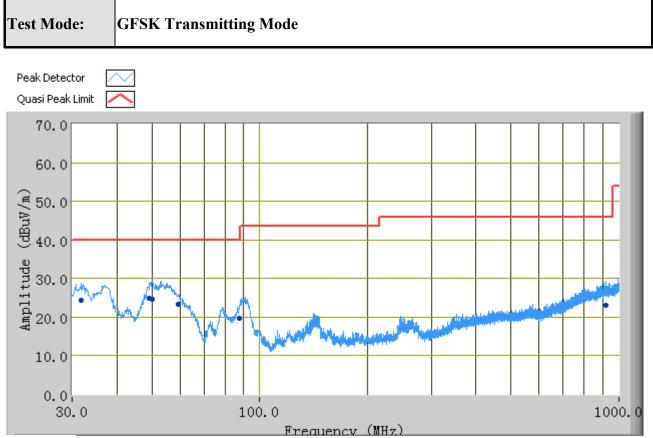
2. The test was carried out at the selected frequency points obtained from the EUT characterisation. Maximization of the emissions was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner:

a. Vertical or horizontal polarisation (whichever gave the higher emission level over a full rotation of the EUT) was chosen.

- b. The EUT was then rotated to the direction that gave the maximum emission.
- c. Finally, the antenna height was adjusted to the height that gave the maximum emission.

3. A Quasi-peak measurement was then made for that frequency point for below 1GHz test, PK and AV for above 1GHz emission test.

- a. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz.
- b. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth for Average detection (AV) as below at frequency above 1GHz.




 $\Box$ 1 kHz (Duty cycle < 98%)

■ 10 Hz (Duty cycle > 98%)

4. Steps 2 and 3 were repeated for the next frequency point, until all selected frequency points were measured.

### Test Result: Pass



### Test Data

| Frequency<br>(MHz) | Quasi Peak<br>(dBuV/m) | Azimuth | Polarity(H/<br>V) | Height (cm) | Factors (dB) | Limit<br>(dBuV) | Margin (dB) |
|--------------------|------------------------|---------|-------------------|-------------|--------------|-----------------|-------------|
| 50.15              | 24.50                  | 0.00    | V                 | 134.00      | -14.00       | 40.00           | -15.50      |
| 31.84              | 24.39                  | 112.00  | V                 | 143.00      | -2.60        | 40.00           | -15.61      |
| 49.26              | 24.85                  | 111.00  | V                 | 100.00      | -13.60       | 40.00           | -15.15      |
| 59.17              | 23.37                  | 127.00  | V                 | 102.00      | -13.98       | 40.00           | -16.63      |
| 87.96              | 19.62                  | 216.00  | V                 | 125.00      | -13.79       | 40.00           | -20.38      |
| 920.65             | 23.20                  | 76.00   | V                 | 290.00      | 5.10         | 46.00           | -22.80      |

Report No.: Issue Date: 14070214-FCC-R4 June 18 , 2014 29 of 52 Page: 29 o www.siemic.com www.siemic.com.cn

## Above 1 GHz:

### **Test Mode: Transmitting**

| Frequency<br>(MHz) | S.A.<br>Reading<br>(dBµV) | Detector<br>(PK/AV) | Polarity<br>(H/V) | Ant.<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Pre-Amp.<br>Gain<br>(dB) | Cord.<br>Amp.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
|--------------------|---------------------------|---------------------|-------------------|--------------------------|-----------------------|--------------------------|---------------------------|-------------------|----------------|
| 4804               | 34.77                     | AV                  | V                 | 33.83                    | 4.87                  | 24                       | 49.47                     | 54                | -4.53          |
| 4804               | 33.93                     | AV                  | Н                 | 33.83                    | 4.87                  | 24                       | 48.63                     | 54                | -5.37          |
| 4804               | 42.59                     | РК                  | V                 | 33.83                    | 4.87                  | 24                       | 57.29                     | 74                | -16.71         |
| 4804               | 43.11                     | РК                  | Н                 | 33.83                    | 4.87                  | 24                       | 57.81                     | 74                | -16.19         |

#### J (2402 MHz) т CL

### Middle Channel (2440 MHz)

| Frequency<br>(MHz) | S.A.<br>Reading<br>(dBµV) | Detector<br>(PK/AV) | Polarity<br>(H/V) | Ant.<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Pre-Amp.<br>Gain<br>(dB) | Cord.<br>Amp.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
|--------------------|---------------------------|---------------------|-------------------|--------------------------|-----------------------|--------------------------|---------------------------|-------------------|----------------|
| 4880               | 32.24                     | AV                  | V                 | 33.86                    | 4.87                  | 24                       | 46.97                     | 54                | -7.03          |
| 4880               | 34.07                     | AV                  | Н                 | 33.86                    | 4.87                  | 24                       | 48.80                     | 54                | -5.20          |
| 4880               | 43.01                     | РК                  | V                 | 33.86                    | 4.87                  | 24                       | 57.74                     | 74                | -16.26         |
| 4880               | 42.38                     | РК                  | Н                 | 33.86                    | 4.87                  | 24                       | 57.11                     | 74                | -16.89         |

| Frequency<br>(MHz) | S.A.<br>Reading<br>(dBµV) | Detector<br>(PK/AV) | Polarity<br>(H/V) | Ant.<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Pre-Amp.<br>Gain<br>(dB) | Cord.<br>Amp.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
|--------------------|---------------------------|---------------------|-------------------|--------------------------|-----------------------|--------------------------|---------------------------|-------------------|----------------|
| 4960               | 32.18                     | AV                  | V                 | 33.9                     | 4.87                  | 24                       | 46.95                     | 54                | -7.05          |
| 4960               | 33.76                     | AV                  | Н                 | 33.9                     | 4.87                  | 24                       | 48.53                     | 54                | -5.47          |
| 4960               | 43.17                     | РК                  | V                 | 33.9                     | 4.87                  | 24                       | 57.94                     | 74                | -16.06         |
| 4960               | 43.26                     | PK                  | Н                 | 33.9                     | 4.87                  | 24                       | 58.03                     | 74                | -15.97         |

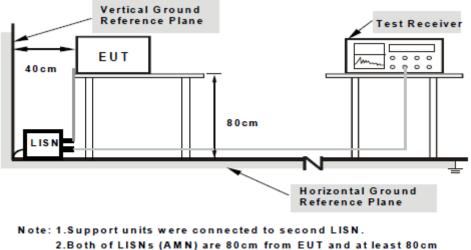
## High Channel (2480 MHz)

To:

Report No.: Issue Date: 14070214-FCC-R4 June 18 , 2014 30 of 52 Page: 30 o www.siemic.com www.siemic.com.cn

#### **TEST INSTRUMENT & METHOD** Annex A.

#### **TEST INSTRUMENTATION & GENERAL PROCEDURES** Annex A.i.


| Instrument                                        | Model    | Serial #    | Calibration<br>Date | Calibration<br>Due Date |
|---------------------------------------------------|----------|-------------|---------------------|-------------------------|
| AC Line Conducted Emissions                       |          |             |                     |                         |
| EMI test receiver                                 | ESCS30   | 8471241027  | 05/27/2014          | 05/26/2015              |
| Line Impedance Stabilization<br>Network           | LI-125A  | 191106      | 11/14/2013          | 11/13/2014              |
| Line Impedance Stabilization<br>Network           | LI-125A  | 191107      | 11/14/2013          | 11/13/2014              |
| LISN                                              | ISN T800 | 34373       | 01/11/2014          | 01/10/2015              |
| Double Ridge Horn Antenna<br>(1~18GHz)            | AH-118   | 71283       | 11/20/2013          | 11/19/2014              |
| Transient Limiter                                 | LIT-153  | 531118      | 09/02/2013          | 09/01/2014              |
| RF conducted test                                 |          |             |                     |                         |
| Agilent ESA-E SERIES<br>SPECTRUM ANALYZER         | E4407B   | MY45108319  | 09/17/2013          | 09/16/2014              |
| Power Splitter                                    | 1#       | 1#          | 09/02/2013          | 09/01/2014              |
| DC Power Supply                                   | E3640A   | MY40004013  | 09/17/2013          | 09/16/2014              |
| Wireless Connectivity Test Set                    | N4010A   | GB44440198  | 03/20/2014          | 03/19/2015              |
| <b>Radiated Emissions</b>                         |          |             |                     |                         |
| EMI test receiver                                 | ESL6     | 100262      | 11/23/2013          | 11/22/2014              |
| Positioning Controller                            | UC3000   | MF780208282 | 11/19/2013          | 11/19/2014              |
| OPT 010 AMPLIFIER<br>(0.1-1300MHz)                | 8447E    | 2727A02430  | 09/02/2013          | 09/01/2014              |
| Microwave Preamplifier $(0.5 \sim 18 \text{GHz})$ | PAM-118  | 443008      | 09/02/2013          | 09/01/2014              |
| Bilog Antenna (30MHz~6GHz)                        | JB6      | A110712     | 09/23/2013          | 09/22/2014              |
| Double Ridge Horn Antenna<br>(1~18GHz)            | AH-118   | 71283       | 11/20/2013          | 11/19/2014              |
| Universal Radio Communication<br>Tester           | CMU200   | 121393      | 09/17/2013          | 09/16/2014              |

Report No.: 14070214-FCC-R4 Issue Date: June 18, 2014 Page: 31 of 52 www.siemic.com www.siemic.com.cn

### Annex A. ii. CONDUCTED EMISSIONS TEST DESCRIPTION

#### <u>Test Set-up</u>

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5 m x 1 m x 0.8 m high, non-metallic table, as shown in <u>Annex B</u>.
- 2. The power supply for the EUT was fed through a  $50\Omega/50\mu$ H EUT LISN, connected to filtered mains.
- 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipments were powered separately from another main supply.



## from other units and other metal planes support units.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration1.

### Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 kHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

### **Description of Conducted Emission Program**

This EMC Measurement software run Lab View automation software and offers a common user interface for electromagnetic interference (EMI) measurements. This software is a modern and powerful tool for controlling and monitoring EMI test receivers and EMC test systems. It guarantees reliable collection, evaluation, and documentation of measurement results. Basically, this program will run a pre-scan measurement before it proceeds with the final measurement. The pre-scan routine will run the common scan range from 150 kHz to 30 MHz; the program will first start a peak and average scan on selectable measurement time and step size. After the program complete the pre-scan, this program will perform the Quasi Peak and Average measurement, based on the pre-scan peak data reduction result.

Report No.:14070214-FCC-R4Issue Date:June 18, 2014Page:32 of 52www.siemic.comwww.siemic.com.cn

# **Sample Calculation Example**

| At 20 MHz                                                                         | limit = 250 $\mu$ V = 47.96 dB $\mu$ V |
|-----------------------------------------------------------------------------------|----------------------------------------|
| Transducer factor of LISN, pulse limiter & cable loss at $20 \text{ MHz} = 11.20$ | dB                                     |
| Q-P reading obtained directly from EMI Receiver = $40.00 \text{ dB}\mu\text{V}$   |                                        |

(Calibrated for system losses)

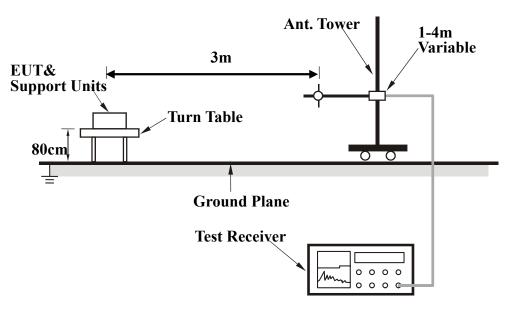
Therefore, Q-P margin = 47.96 - 40.00 = 7.96

i.e. 7.96 dB below limit

SIEMIC, INC. Accessing global markets Title: RF Test Report for Mobile Phone Main Model: s505 Serial Model: N/A To: FCC Part 15.247; 2013, ANSI C63.4: 2009

Report No.: 14070214-FCC-R4 Issue Date: June 18, 2014 Page: 33 of 52 www.siemic.com www.siemic.com.cn

## Annex A. iii RADIATED EMISSIONS TEST DESCRIPTION


### **EUT Characterisation**

EUT characterisation, over the frequency range from 30MHz to 10<sup>th</sup> Harmonic, was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

### <u>Test Set-up</u>

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.



Report No.: 14070214-FCC-R4 Issue Date: June 18, 2014 Page: 34 of 52 www.siemic.com www.siemic.com.cn

### Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

1. With the receiving antenna is H polarization; rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.

2. With the receiving antenna is V polarization; rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.

3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

#### Final Radiated Emission Measurement

1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.

2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.

3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.

4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from  $0 \circ to 360 \circ$  with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.

5. Repeat step 4 until all frequencies need to be measured was complete.

6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

| Frequency Band (MHz) | Function | Resolution bandwidth | Video Bandwidth |
|----------------------|----------|----------------------|-----------------|
| 30 to 1000           | Peak     | 100 kHz              | 100 kHz         |
| Above 1000           | Peak     | 1 MHz                | 1 MHz           |
| Above 1000           | Average  | 1 MHz                | 10 Hz           |

#### Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows: Peak = Reading + Corrected Factor

Where

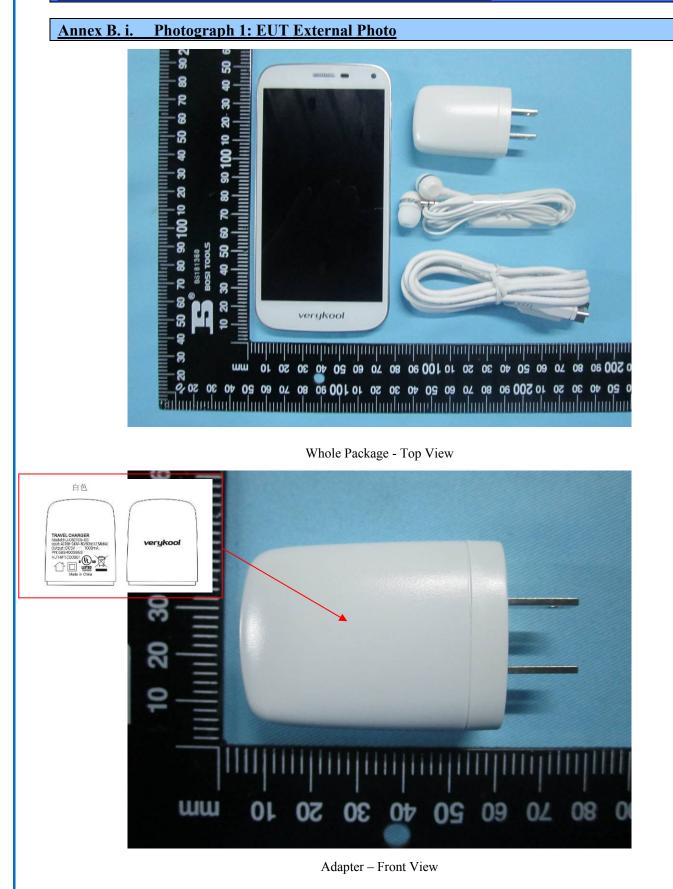
Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any) And the average value is Average = Peak Value + Duty Factor or

Set RBW = 1MHz, VBW = 10Hz.

Note:

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.




To:

Accessing global markets RF Test Report for Mobile Phone Title: RF Main Model: s505 Serial Model: N/A FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: Page: www.siemic.com

14070214-FCC-R4 June 18, 2014 35 of 52 www.siemic.com.cn

#### Annex B. **EUT AND TEST SETUP PHOTOGRAPHS**







EUT - Front View





Accessing global markets RF Test Report for Mobile Phone Title: RF Main Model: s505 Serial Model: N/A FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: 36 of 52 Page: www.siemic.com

14070214-FCC-R4 June 18, 2014 www.siemic.com.cn

To:



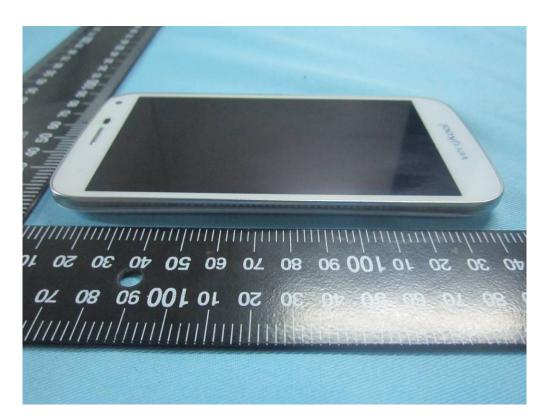
Accessing global markets Title: RF Test Report for Mobile Phone Main Model: s505 Serial Model: N/A FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: 14070214-FCC-R4 June 18 , 2014 37 of 52 Page: www.siemic.com www.siemic.com.cn

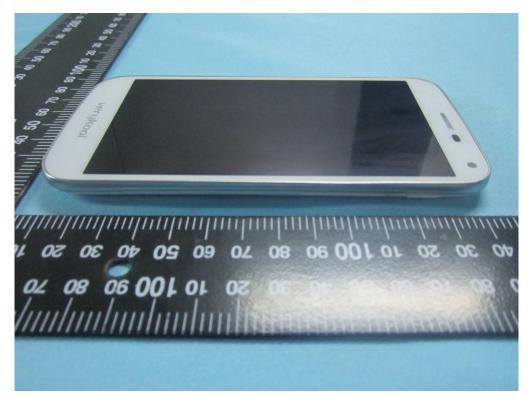
...... 30 50 10 шш 10 60 50 40 05 09 02 08 06 0

### EUT - Top View




EUT - Bottom View

To:




Accessing global martets Title: RF Test Report for Mobile Phone Main Model: s505 Serial Model: N/A FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: 14070214-FCC-R4 June 18, 2014 38 of 52 Page: www.siemic.com www.siemic.com.cn



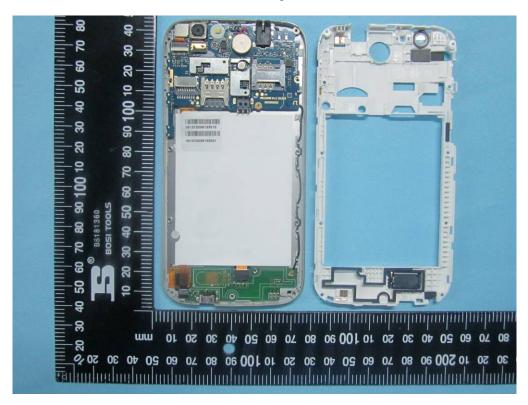
### EUT - Left View



EUT - Right View

To:

Accessing global markets RF Test Report for Mobile Phone Title: RF Main Model: s505 Serial Model: N/A FCC Part 15.247: 2013, ANSI C63.4: 2009

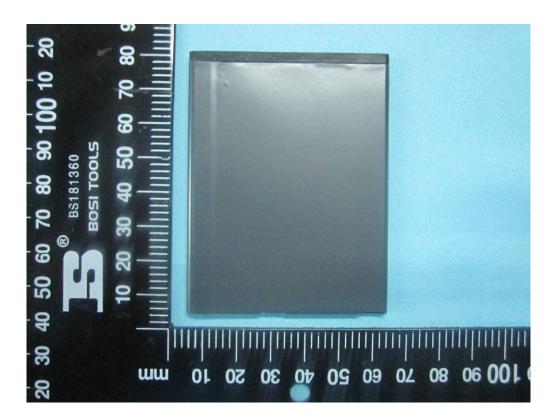

Report No.: Issue Date: Page: www.siemic.com

14070214-FCC-R4 June 18, 2014 39 of 52 www.siemic.com.cn

#### Annex B. ii. **Photograph 2: EUT Internal Photo**



#### Cover Off - Top View 1




Cover Off - Top View 2



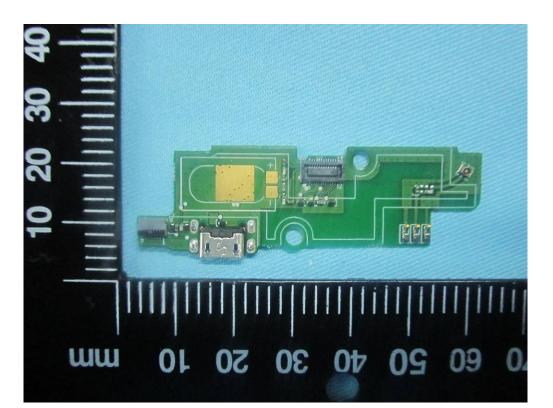
Accessing global markets Title: RF Test Report for Mobile Phone Main Model: s505 Serial Model: N/A To: FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: 14070214-FCC-R4 Issue Date: June 18, 2014 Page: 40 of 52 www.siemic.com www.siemic.com.cn

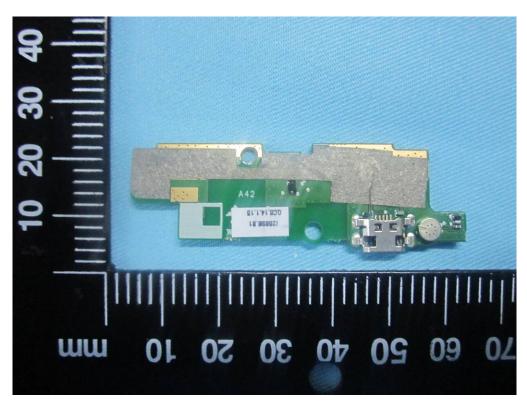


#### Battery - Top View




Battery - Bottom View

To:



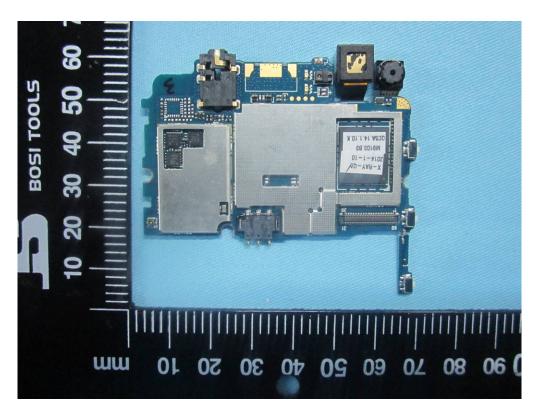

Accessing global markets Title: RF Test Report for Mobile Phone Main Model: s505 Serial Model: N/A FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: 14070214-FCC-R4 June 18 , 2014 41 of 52 Page: 41 o www.siemic.com www.siemic.com.cn

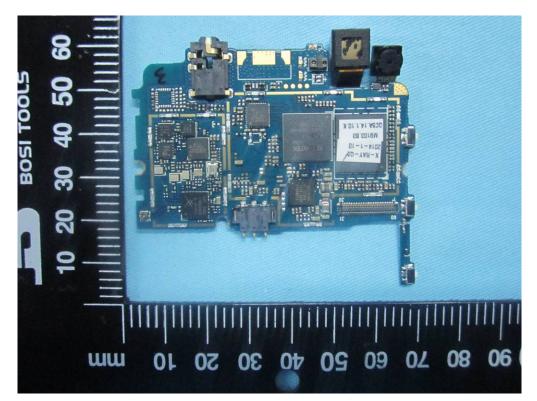


### Connect board – Front View




Connect board - Rear View

To:


Accessing global markets RF Test Report for Mobile Phone Title: RF 7 Main Model: s505 Serial Model: N/A FCC Part 15.247: 2013, ANSI C63.4: 2009

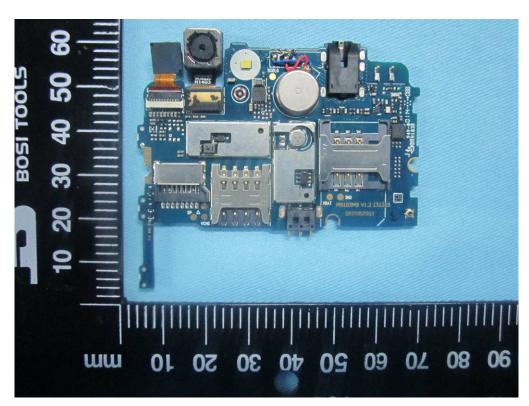
Report No.: Issue Date: Page: www.siemic.com www.siemic.com.cn

14070214-FCC-R4 June 18 , 2014 42 of 52

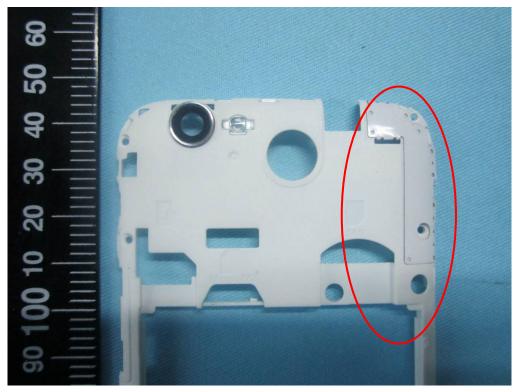


Mainborad With Shielding - Front View




Mainborad Without Shielding - Front View




SIEMIC, INC. Accessing global markets Title: RF Test Report for Mobile Phone Main Model: s505 Serial Model: N/A FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: Page: www.siemic.com www.siemic.com.cn

14070214-FCC-R4 June 18 , 2014 43 of 52



### Mainborad - Rear View



BT/BLE/WIFI Antenna View



SIEMIC, INC. Accessing global markets Title: RF Test Report for Mobile Phone Main Model: s505 Serial Model: N/A To: FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: 14070214-FCC-R4 June 18 , 2014 44 of 52 Page: 44 o www.siemic.com www.siemic.com.cn



GSM/PCS/UMTS-FDD Antenna



SIEMIC, INC. Accessing global marines Title: RF Test Report for Mobile Phone Main Model: s505 Serial Model: N/A To: FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: Page: www.siemic.com www.siemic.com.cn

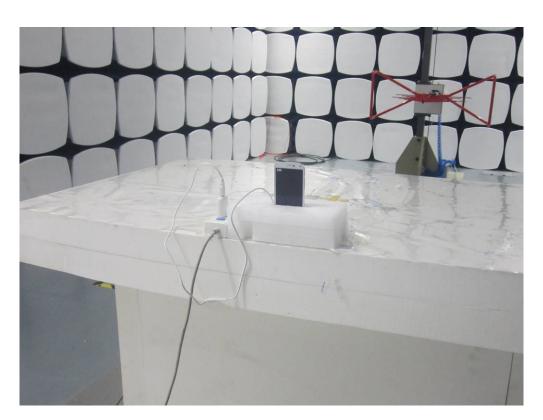
14070214-FCC-R4 June 18 , 2014 45 of 52

#### Annex B.iii. Photograph 3: Test Setup Photo

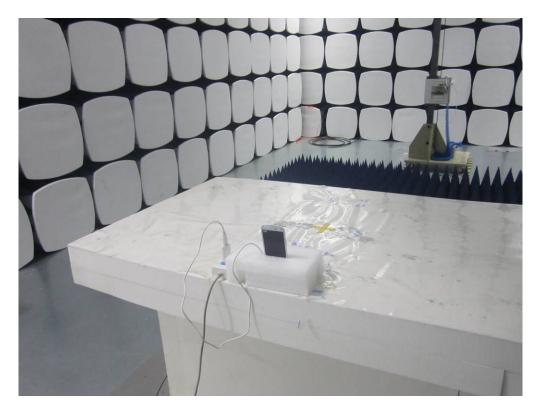


Conducted Emissions Test Setup Front View




Conducted Emissions Test Setup Side View




SIEMIC, INC. Accessing global markets Title: RF Test Report for Mobile Phone Main Model: s505 Serial Model: N/A To: FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: Page: 46 www.siemic.com www.siemic.com.cn

14070214-FCC-R4 June 18 , 2014 46 of 52



Radiated Spurious Emissions Test Setup Below 1GHz - Front View

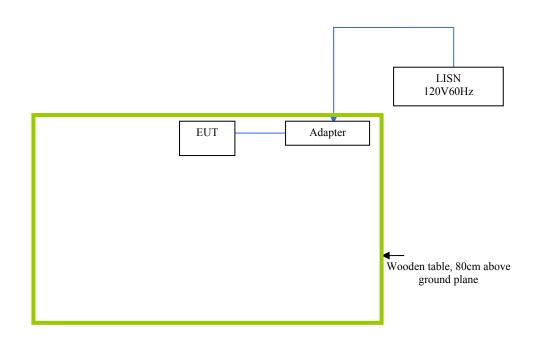


Radiated Spurious Emissions Test Setup Above 1GHz -Front View

Report No.: 14070214-FCC-R4 Issue Date: June 18, 2014 Page: 47 of 52 www.siemic.com www.siemic.com.cn

# Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

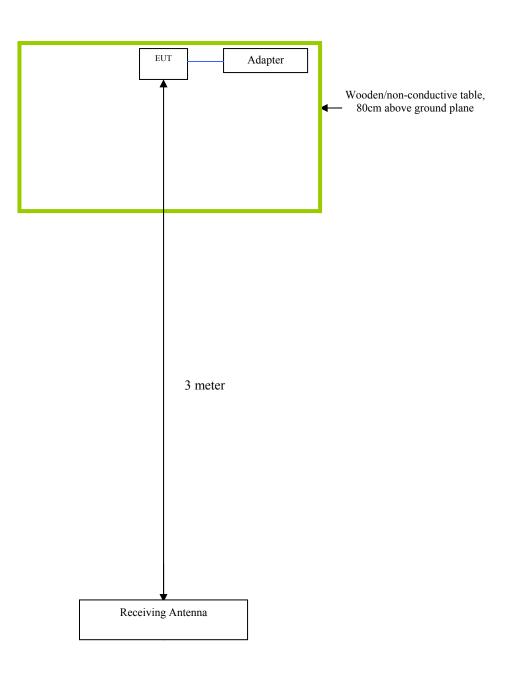
# **EUT TEST CONDITIONS**


## Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

| Manufacturer | Equipment<br>Description<br>(Including Brand<br>Name) | Model | Calibration<br>Date | Calibration<br>Due Date |
|--------------|-------------------------------------------------------|-------|---------------------|-------------------------|
| N/A          | N/A                                                   | N/A   | N/A                 | N/A                     |




# **Block Configuration Diagram for AC Line Conducted Emissions**





Report No.:14070214-FCC-R4Issue Date:June 18, 2014Page:49 of 52www.siemic.comwww.siemic.com.cn

## **Block Configuration Diagram for Radiated Emissions**



Report No.:14070214-FCC-R4Issue Date:June 18, 2014Page:50 of 52www.siemic.comwww.siemic.com.cn

# Annex C. ii. EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

| Test              | Description Of Operation                                           |  |
|-------------------|--------------------------------------------------------------------|--|
| Emissions Testing | The EUT was continuously transmitting to stimulate the worst case. |  |

FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: 14070214-FCC-R4 June 18 , 2014 51 of 52 Page: 51 o www.siemic.com www.siemic.com.cn

# Annex D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST

Please see attachment

SIEMIC, INC. Accessing global markets Title: RF Test Report for Mobile Phone Main Model: s505 Serial Model: N/A To: FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: Page: 52 c www.siemic.com www.siemic.com.cn

14070214-FCC-R4 June 18 , 2014 52 of 52

# **Annex E. DECLARATION OF SI**

N/A