

Full

TEST REPORT

No. I16D00272-RF

For

Client : Verykool USA Inc Production : Mobile Phone Model Name : s5027,s5028 FCC ID: WA6S5027 Hardware Version: R615-MB-V1.0 Software Version: S4513_VK_Generic_Dual_SW_1.0 Issued date: 2017-02-24

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of ECIT Shanghai.

Test Laboratory:

ECIT Shanghai, East China Institute of Telecommunications

Add: 7-8F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China Tel: (+86)-021-63843300, E-Mail: <u>welcome@ecit.org.cn</u>

RF Test Report

Revision Version

Report Number	Revision	Date	Memo
I16D00272-RFA	00	2017-02-24	Initial creation of test report

CONTENTS

1.	TEST L	ABORATORY		5
1.1.	TESTIN	G LOCATION		5
1.2.	TESTIN	G ENVIRONMENT		5
1.3.	PROJE	CT DATA		5
1.4.	SIGNAT	URE		5
2.	CLIENT	INFORMATION		6
2.1.	APPLIC	ANT INFORMATION		6
2.2.	MANUF	ACTURER INFORMATION		6
3.	EQUIPN	IENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE).		7
3.1.	ABOUT	EUT		7
3.2.	INTERN	AL IDENTIFICATION OF EUT USED DURING THE TEST		7
3.3.	INTERN	AL IDENTIFICATION OF AE USED DURING THE TEST		7
3.4.		JPPLY OF EUT		7
3.5.	SECON	DARY SUPPLY OF EUT		7
3.6.	STATEN	IENTS		8
4.	REFER	ENCE DOCUMENTS		9
4.1.	REFER	ENCE DOCUMENTS FOR TESTING		9
5.	SUMMA	RY OF TEST RESULTS	1	0
6.	TEST E	QUIPMENT UTILIZED	1	1
7.	TEST E	NVIRONMENT		3
ANN	EX A.	MEASUREMENT RESULTS	1	4
ANN	EX A.1.	OUTPUT POWER	1	4
ANN	EX A.2.	PEAK-TO-AVERAGE POWER RATIO	1	6
ANN	EX A.3.	OCCUPIED BANDWIDTH	1	8
ANN	EX A.4.	-26DB EMISSION BANDWIDTH	3	;1
East	China Ins	itute of Telecommunications Page Number	: 3 of 90	

ANNEX A.5.	BAND EDGE AT ANTENNA TERMINALS	. 44
ANNEX A.6.	FREQUENCY STABILITY	. 51
ANNEX A.7.	CONDUCTED SPURIOUS EMISSION	. 56
ANNEX A.8.	RADIATED	. 70
ANNEX B.	DEVIATIONS FROM PRESCRIBED TEST METHODS	. 89
ANNEX C.	ACCREDITATION CERTIFICATE	. 90

1. Test Laboratory

1.1. Testing Location

Company Name:	ECIT Shanghai, East China Institute of Telecommunications		
Address:	7-8F, G Area, No. 668, Beijing East Road, Huangpu District,		
	Shanghai, P. R. China		
Postal Code:	200001		
Telephone:	(+86)-021-63843300		
Fax:	(+86)-021-63843301		
FCC Registration NO.:	489729		

1.2. Testing Environment

Normal Temperature:	15-35 ℃
Extreme Temperature:	-10/+55℃
Relative Humidity:	20-75%

1.3. Project data

Project Leader:	Xu Yuting
Testing Start Date:	2016-12-26
Testing End Date:	2017-02-15

1.4. Signature

就海洞

Zhang Shiyu (Prepared this test report)

丁立

Ding Li (Reviewed this test report)

Zheng Zhongbin Director of the laboratory (Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name:	Verykool USA Inc
Address:	3636 Nobel Drive, Suite 325, San Diego, CA92122 USA
Telephone:	+1-858-373-1635
Postcode:	CA92122

2.2. Manufacturer Information

Company Name:	Fortune Ship
Address:	6/F, Kanghesheng Building, No.1 Chuangsheng Road,
	Nanshan District, Shenzhen, Guangdong, China
Telephone:	0755-26397320
Postcode:	518055

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

EUT Description	Mobile Phone
Model name	s5027,s5028
FCC ID	WA6S5027
Frequency	GSM850/900/1800/1900;
	WCDMA Band II and V
Extreme Temperature	-10/+55℃
Nominal Voltage	3.8V
Extreme High Voltage	4.2V
Extreme Low Voltage	3.4V

Note: Photographs of EUT are shown in ANNEX A of this test report.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
N02	352139069743615	R615-MB-V1.0	S4513_VK_Generic_D	2016-12-26
			ual_SW_1.0	

*EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	SN
AE1	RF cable	
AE2	Dummy Battery	

*AE ID: is used to identify the test sample in the lab internally.

3.4. Main Supply of EUT

Part Name	Model Name	Supplier	Remark
Camera	SP5506	Shinetech	5 MP front camera

3.5. Secondary Supply of EUT

Part Name	Model Name	Supplier	Remark
Camera	GC0409	Shinetech	0.3 MP front camera

3.6. Statements

The product name s5027,s5028, supporting GSM/GPRS/WCDMA/HSDPA/HSUPA/ WLAN/BT, manufactured by Fortune Ship is a new product for testing.

ECIT has verified that the compliance of the tested device specified in section 5 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 5 of this test report.

4. Reference Documents

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 24	PERSONAL COMMUNICATIONS SERVICES	2014
FCC Part 22	PUBLIC MOBILE SERVICES	2014
ANSI-TIA-603-D	Land Mobile FM or PM Communications Equipment	2010
	Measurement and Performance Standards	
ANSI C63.4	Methods of Measurement of Radio-Noise Emissions from	2014
	Low-Voltage Electrical and Electronic Equipment in the	
	Range of 9 kHz to 40 GHz	

5. SUMMARY OF TEST RESULTS

ltem	Test items	FCC rules	result
1	Output Power	2.1046/22.913(a)/24.232(c)	Pass
2	Peak-to-Average Ratio	24.232(d)	Pass
3	99%Occupied Bandwidth	2.1049(h)(i)/ 22.917(b)	Pass
4	-26dB Emission Bandwidth	22.917(b)/§24.238(b)	Pass
5	Band Edge at antenna terminals	22.917(a)/24.238(a)	Pass
6	Frequency stability	2.1055/24.235	Pass
7	Conducted Spurious mission	2.1053/22.917(a)/24.238(a)	Pass
8	Emission Limit	2.1051/22.917/24.238/22.913/24.232	Pass

6. Test Equipment Utilized

Climate chamber

No.	Equipment	Model	Serial Number	Manufactur er	Calibration date	Cal.interval
1	Climate chamber	SH-641	92012011	ESPEC	2016-01-06	2 Year

Radiated emission test system

The test equipment and ancillaries used are as follows.

No.	Equipment	Model	Serial Number	Manufactur er	Calibration date	Cal.interval
1	Universal Radio Communicatio n Tester	CMU20 0	123101	R&S	2016-05-12	1 Year
3	Test Receiver	ESU40	100307	R&S	2016-05-12	1 Year
4	Trilog Antenna	VULB9 163	VULB9163- 515	Schwarzbec k	2014-11-05	3 Year
5	Double Ridged Guide Antenna	ETS-31 17	135885	ETS	2014-05-06	3 Year
8	2-Line V-Network	ENV21 6	101380	R&S	2016-05-12	1 Year

Conducted test system

No.	Name	Туре	SN	Manufacture	Calibratio n date	Cal.interval
1	Spectrum Analyzer	FSQ26	101096	R&S	2016-05-12	1 Year
2	Universal Radio Communicat	CMU200	123102	R&S	2016-05-12	1 Year
3	DC Power Supply	ZUP60-1 4	LOC-220Z006 -0007	TDL-Lambda	2016-05-12	1 Year
4	Weinschel power spliter	1870A	10264	Weinschel	2016-05-12	1 Year

Software

Name	Version
Eagle FCC GSM and WCMA auto test system	V2.0
EMC32	V9.15

7. Test Environment

Shielding Room1 (6.0 meters×3.0 meters×2.7 meters) did not exceed following limits along the conducted RF performance testing:

Temperature	Min. = 15 ℃, Max. = 35 ℃
Relative humidity	Min. = 25 %, Max. = 75 %
Shielding effectiveness	> 110 dB
Ground system resistance	< 0.5 Ω

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 ℃, Max. = 35 ℃
Relative humidity	Min. =25 %, Max. = 75 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω

Fully-anechoic chamber1 (6.9 meters×10.9 meters×5.4 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C	
Relative humidity	Min. = 25 %, Max. = 75 %	
Shielding effectiveness	> 100 dB	
Electrical insulation	> 10 kΩ	
Ground system resistance	< 0.5 Ω	
VSWR	Between 0 and 6 dB, from 1GHz to 18GHz	
Site Attenuation Deviation	Between -4 and 4 dB,30MHz to 1GHz	
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000 MHz	

ANNEX A. MEASUREMENT RESULTS

ANNEX A.1. OUTPUT POWER

A.1.1. Summary

During the process of testing, the EUT was controlled Rhode & Schwarz Digital Radio. Communication tester (CMU-200) to ensure max power transmission and proper modulation. This result contains peak output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

A.1.2. Conducted

A.1.2.1. Method of Measurements

Method of measurements please refer to KDB971168 D01 v02r02 clause 5.

The EUT was set up for the max output power with pseudo random data modulation.

The power was measured with Rhode & Schwarz Spectrum Analyzer FSQ(peak).

These measurements were done at 3 frequencies, 1850.2 MHz, 1880.0MHz and 1909.8MHz for PCS1900 band; 824.2MHz, 836.6MHz and 848.8MHz for GSM850 band. (bottom, middle and top of operational frequency range).

These measurements were done at 3 frequencies, 1852.4 MHz, 1880.0MHz and 1907.6MHz for WCDMA Band II; 826.4MHz, 836.6MHz and 846.6MHz for WCDMA Band V. (bottom, middle and top of operational frequency range).

A.1.2.2 Test procedures:

- 1. The transmitter output port was connected to base station.
- 2. Set the EUT at maximum power through base station.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure the maximum burst average power for GSM and maximum average power for other modulation signal.

GSM850	Power control level	Nominal Peak output power (dBm)
GSM	5	33
GPRS	3	33

A.1.2.3 GSM Limit:

GSM1900	Power control level	Nominal Peak outpu power (dBm)
GSM	0	30
GPRS	3	30

A.1.2.4 WCDMA Limit:

22.913(a) Mobile stations are limited to 7watts.24.232(c) Mobile and portable stations are limited to 2 watts.

A.1.2.5 Test Procedure:

The transmitter output power was connected to calibrated attenuator, the other end of which was connected to signal analyzer. Transmitter output power was read off the power in dBm. The power outputs at the transmitter antenna port was determined by adding the value of attenuator to the signal analyzer reading.

A.1.2.6 GSM Test Condition:

RBW	VBW	Sweep time	Span
1MHz	1MHz	300ms	10MHz

A.1.2.7 WCDMA Test Condition:

RBW	VBW	Sweep time	Span
10MHz	10MHz	800ms	50MHz

A.1.2.8 Measurement results:

GSM 850 (GMSK)				
Channel/fc(MHz)	Peak power (dBm)			
Mid 189/836.4	31.41			
Low 128/824.2	31.29			
High 251/848.8	31.35			
GPRS 850 (0	GPRS 850 (GMSK 1 Slot)			
Channel/fc(MHz)	Peak power (dBm)			
Mid 189/836.4	31.40			
Low 128/824.2	31.29			
High 251/848.8	31.34			

GSM 1900(GMSK)

Channel/fc(MHz)	Peak power (dBm)
Mid 661/1880	29.36
Low 512/1850.2	29.62
High 810/1909.8	29.45
GPRS 1900 (GMSK 1 Slot)
Channel/fc(MHz)	Peak power (dBm)
Mid 661/1880	29.35
Low 512/1850.2	29.61
High 810/1909.8	29.43
WCDMA	BAND II
Channel/fc(MHz)	Peak power (dBm)
Mid 9400/1880	25.17
Low 9262/1852.4	24.84
High 9538/1907.6	24.79

WCDMA BAND V		
Channel/fc(MHz)	Peak power (dBm)	
Mid 4183/836.6	25.19	
Low 4132/826.4	25.86	
High 4233/846.6	25.55	

Conclusion: PASS

ANNEX A.2. Peak-to-Average Power Ratio

Method of test measurements please refer to KDB971168 D01 v02r02 clause 5.7.

A.2.1 PAPR Limit

The peak-to-average power ratio (PAPR) of the transmission may not exceed 13dB

A.2.2 Test procedures

The EUT was connected to the spectrum analyzer and system simulator via a power divider.
2.

- 1) Select the spectrum analyzer CCDF function.
- 2) Set RBW≥signal's occupied bandwidth.
- 3) Set the number of counts to a value that stabilizes the measured CCDF cure;
- 4) Sweep time \geq 1s.
- 3. Record the maximum PAPR level associated with a probability of 0.1%.

A.2.3 Test results:

GSM850			
Modes	GSM850		
Channel	512 661 810		
Frequency (MHz)	824.2	836.4	848.8
PAPR(dB)	10.64	7.63	7.63
GPRS850			
Modes	GPRS850		
Channel	512 661 810		
Frequency (MHz)	824.2 836.4 848.8		
PAPR(dB)	8.85	10.64	10.67

GSM1900				
Modes	GSM1900			
Channel	512 661 810			
Frequency (MHz)	1850.2	1880	1909.8	
PAPR(dB)	8.04	10.64	10.67	
GPRS1900				
Modes		GPRS1900		
Channel	512 661 810			
Frequency (MHz)	1850.2 1880 1909.8			
PAPR(dB)	9.26	10.64	10.67	

WCDMA Band II			
Modes	GSM1900		
Channel	9262 9400 9538		
Frequency (MHz)	1852.4	1880	1907.6
PAPR(dB)	2.79	2.66	2.44

WCDMA Band V			
Modes	GSM1900		
Channel	4132 4183 4233		
Frequency (MHz)	826.4	836.4	846.6
PAPR(dB)	2.28 3.17 3.04		

Conclusion: PASS

ANNEX A.3. Occupied Bandwidth

Method of test please refer to KDB971168 D01 v02r02 clause 4.0.

A.3.1. Occupied Bandwidth

Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of GSM850, PCS1900, WCDMA BANDII and WCDMA BANDV.

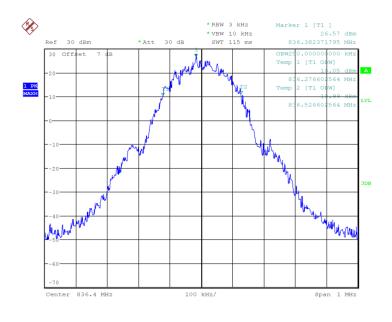
A.3.2 Test Procedure:

- 1. The EUT output RF connector was connected with a short cable to the signal analyzer.
- 2. RBW was set to about 1% of emission BW, VBW >= 3 times RBW,.
- 3. 99% bandwidth were measured, the occupied bandwidth is delta frequency between the two points where the display line intersects the signal trace.

GSM850		
Test channel	Frequency (MHz)	99% Occupied Bandwidth(KHz)
Mid 189	836.4	250

A.3.3 Test result:

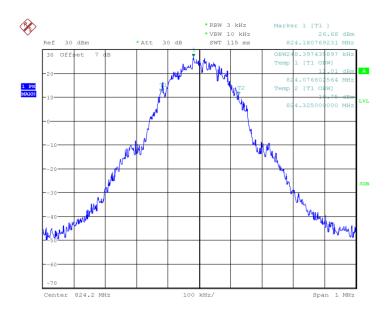
East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301

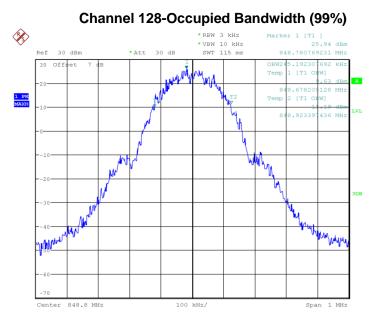


RF Test Report

Low 128	824.2	248.397
High 251	848.8	245.192
GPRS850		
Test channel	Frequency (MHz)	99% Occupied Bandwidth(KHz)
Mid 189	836.4	248.397
Low 128	824.2	241.987
High 251	848.8	246.795

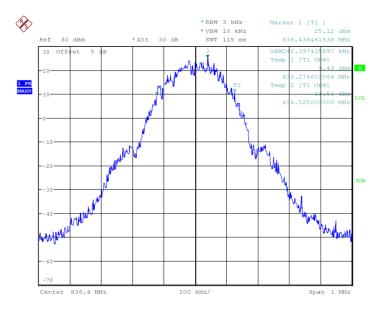
Conclusion: PASS


GSM 850

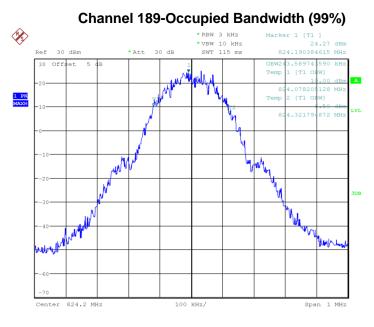

Date: 29.DEC.2016 14:50:01

Channel 189-Occupied Bandwidth (99%)

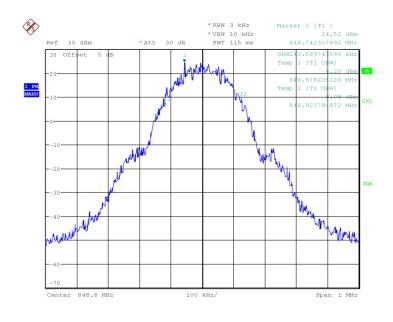
Date: 29.DEC.2016 14:50:39



Date: 29.DEC.2016 14:51:17


Channel 251-Occupied Bandwidth (99%)

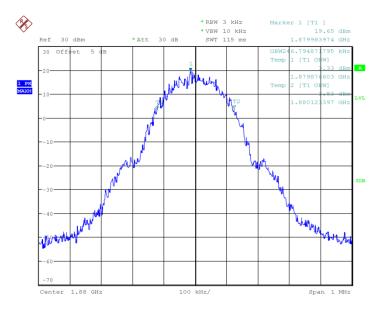
GPRS 850


Date: 2.JAN.2017 08:45:12

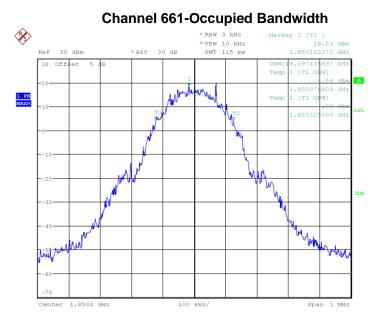
Date: 2.JAN.2017 08:45:48

Channel 128-Occupied Bandwidth (99%)

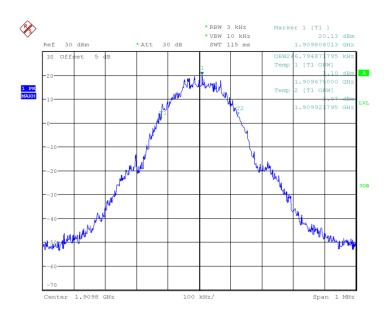
Date: 2.JAN.2017 08:46:23


Channel 251-Occupied Bandwidth (99%)

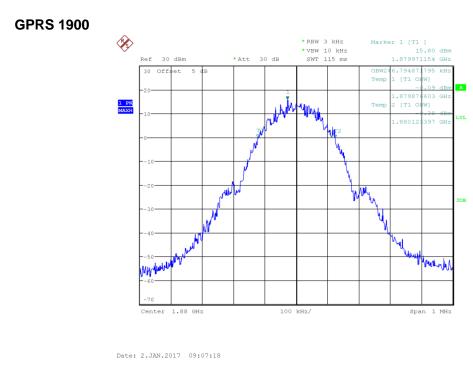
GSM 1900				
Test channel	Frequency (MHz)	99% Occupied Bandwidth(KHz)		
Mid 661	1880	243.59		
Low 512	1850.2	261.218		
High 810	1909.8	251.603		
	GPRS1900			
Test channel	Frequency (MHz)	99% Occupied Bandwidth(KHz)		
Mid 661	1880	238.78		
Low 512	1850.2	245.192		
High 810	1909.8	283.654		

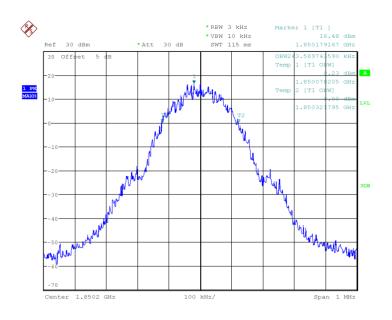

Conclusion: PASS

GSM 1900

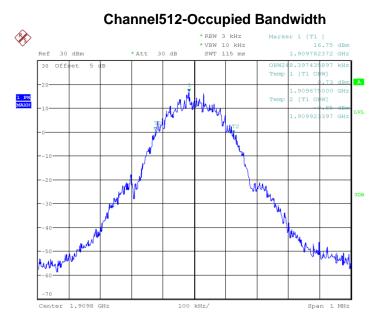

Date: 4.JAN.2017 08:11:09

Date: 4.JAN.2017 08:11:47


Channel512-Occupied Bandwidth


Date: 4.JAN.2017 08:12:24

Channel 810-Occupied Bandwidth

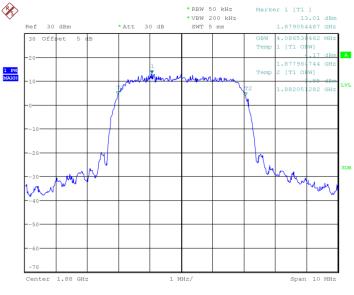


Channel 661-Occupied Bandwidth

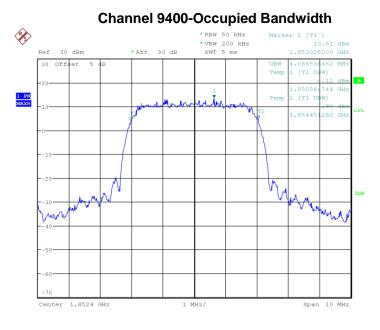
Date: 2.JAN.2017 09:07:53

Date: 2.JAN.2017 09:08:28

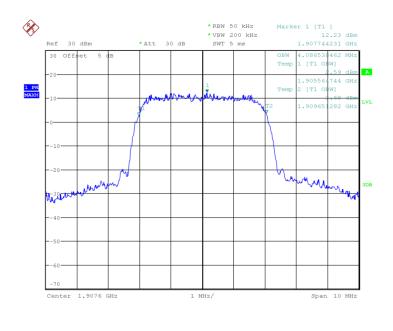
Channel 810-Occupied Bandwidth


WCDMA BAND II		
Test channel	Frequency (MHz)	99% Occupied Bandwidth(MHz)
Mid 9400	1880	4.09
Low 9262	1852.4	4.09
High 9538	1907.6	4.09

Conclusion: PASS



WCDMA BAND II

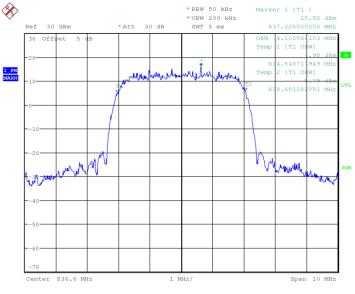

Date: 2.JAN.2017 12:07:42

Date: 2.JAN.2017 12:08:19

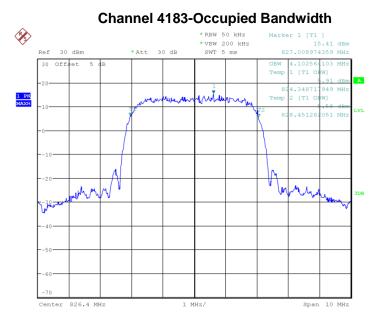
Channel 1852-Occupied Bandwidth

Date: 2.JAN.2017 12:08:57

Channel 1907-Occupied Bandwidth

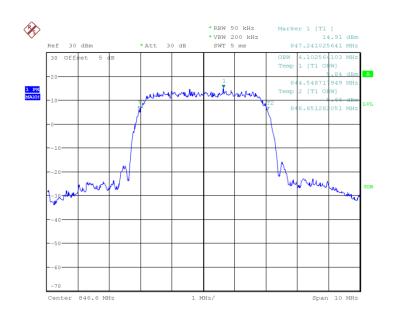

WCDMA BAND V		
Test channel	Frequency (MHz)	99% Occupied Bandwidth(MHz)
Mid 4183	836.6	4.10
Low 4132	826.4	4.10
High 4233	846.6	4.10

Conclusion: PASS



WCDMA BAND V

Date: 2.JAN.2017 12:09:57



Date: 2.JAN.2017 12:10:35

Channel4132-Occupied Bandwidth

RF Test Report

Date: 2.JAN.2017 12:11:12

Channel 4233-Occupied Bandwidth

ANNEX A.4. -26dB Emission Bandwidth

Method of test please refer to KDB971168 D01 v02r02 clause 4.0.

A.4.1. -26dB Emission Bandwidth

Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of GSM850, PCS1900, WCDMA BANDII and WCDMA BANDV.

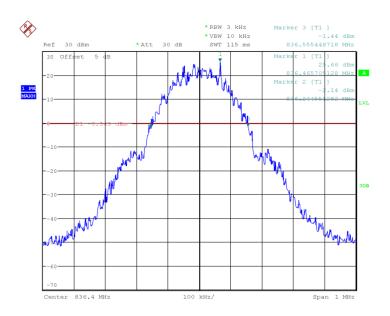
A.4.2 Test Procedure:

- 1. The EUT output RF connector was connected with a short cable to the signal analyzer.
- 2. RBW was set to about 1% of emission BW, VBW >= 3 times RBW,.
- 3. 26dB bandwidth were measured, the occupied bandwidth is delta frequency between the two points where the display line intersects the signal trace.

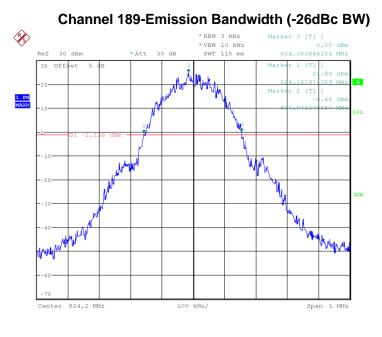
A.4.3 Measurement methods:

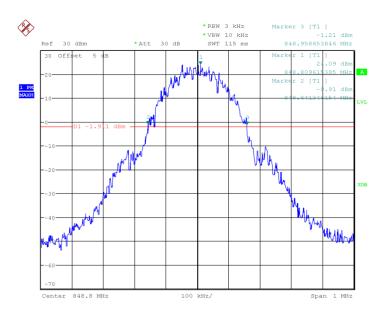
For GSM: signal analyzer setting as: RBW=3KHz;VBW=10KHz;Span=1MHz. For WCDMA: signal analyzer setting as: RBW=50KHZ;VBW=20KHZ;Span=10MHz.

A.4.4 Test results:

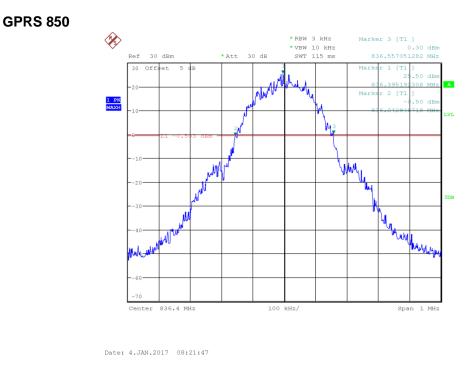

GSM850		
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(KHz)
Mid 189	836.4	310.897
Low 128	824.2	312.5
High 251	848.8	317.308
GPRS850		
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(KHz)
Mid 189	836.4	314.103
Low 128	824.2	314.103
High 251	848.8	314.103

Conclusion: PASS

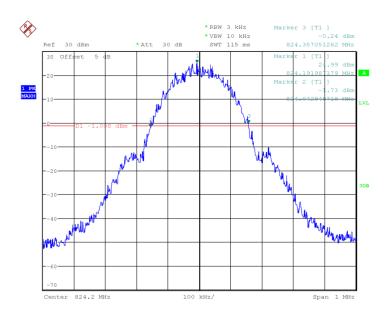

GSM 850

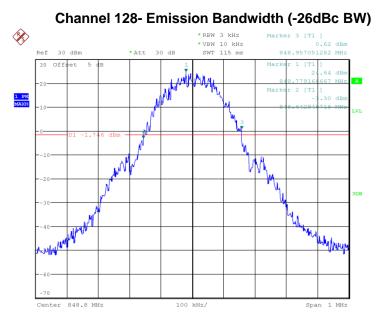

Date: 2.JAN.2017 09:28:14

Date: 2.JAN.2017 09:28:43



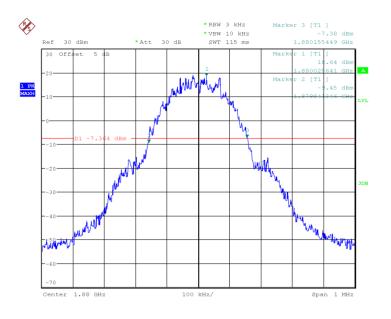
Date: 2.JAN.2017 09:29:12




Channel 189- Emission Bandwidth (-26dBc BW)

Date: 4.JAN.2017 08:22:14

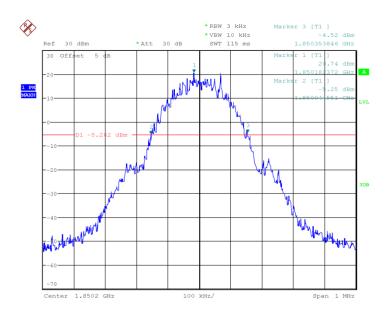
Date: 4.JAN.2017 08:22:40



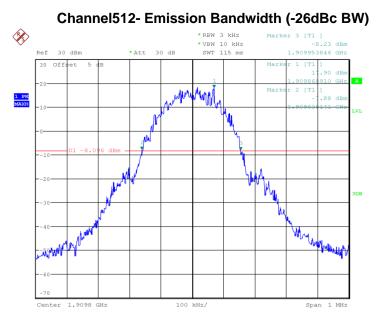
GSM 1900		
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(KHz)
Mid 661	1880	314.103
Low 512	1850.2	309.295
High 810	1909.8	315.705
GPRS1900		
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(KHz)
Mid 661	1880	315.705
Low 512	1850.2	310.897
High 810	1909.8	315.705

Conclusion: PASS

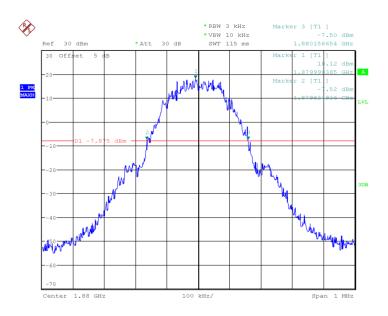
GSM 1900

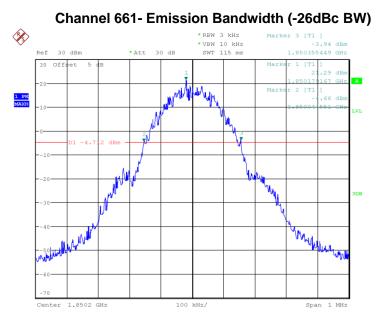


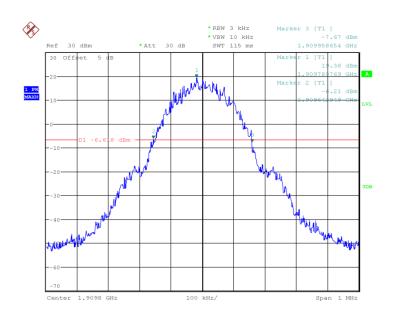
Date: 2.JAN.2017 09:44:09


Channel 661- Emission Bandwidth (-26dBc BW)

Date: 2.JAN.2017 09:44:37


Date: 2.JAN.2017 09:45:05

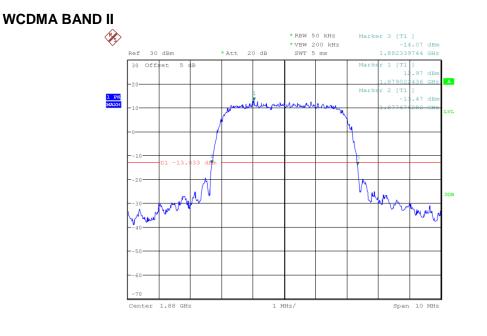

GPRS 1900

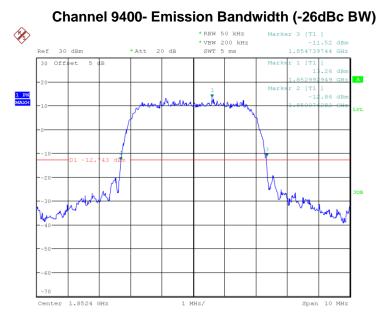

Date: 4.JAN.2017 08:40:08

Date: 4.JAN.2017 08:40:34

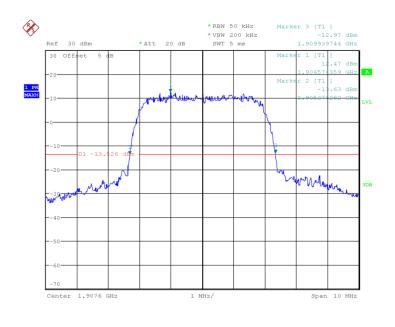
Channel512- Emission Bandwidth (-26dBc BW)

Date: 4.JAN.2017 08:41:00


Channel 810- Emission Bandwidth (-26dBc BW)

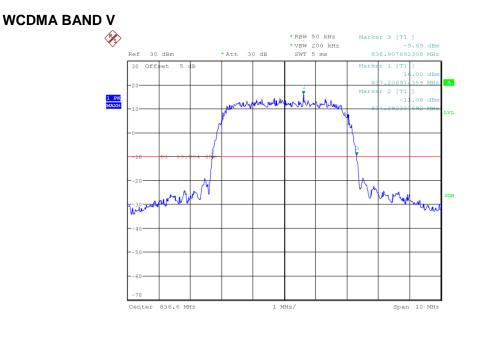

WCDMA BAND II		
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(MHz)
Mid 9400	1880	4.7
Low 9262	1852.4	4.7
High 9538	1907.6	4.7

Conclusion: PASS

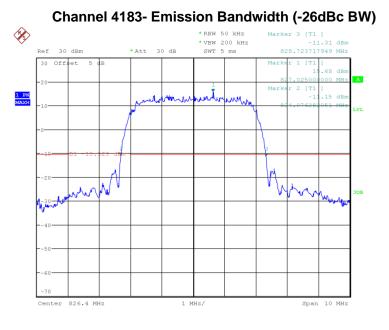

Date: 2.JAN.2017 12:14:58

Date: 2.JAN.2017 12:15:26

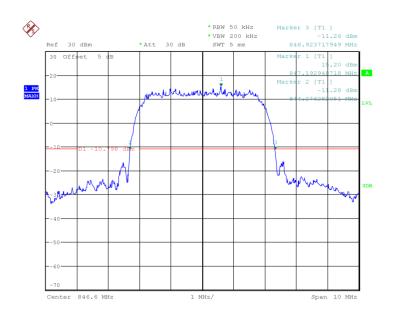
Channel 9262- Emission Bandwidth (-26dBc BW)


Date: 2.JAN.2017 12:15:53

Channel 9538- Emission Bandwidth (-26dBc BW)


WCDMA BAND V		
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(MHz)
Mid 4183	836.6	4.6
Low 4132	826.4	4.6
High 4233	846.6	4.6

Conclusion: PASS


Date: 2.JAN.2017 12:16:44

Date: 2.JAN.2017 12:17:12

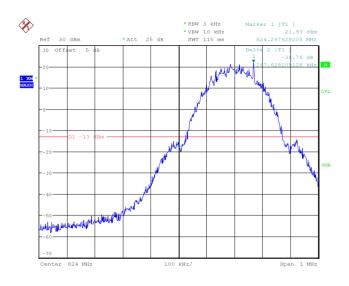
Channel4132- Emission Bandwidth (-26dBc BW)

Date: 2.JAN.2017 12:17:39

Channel 4233- Emission Bandwidth (-26dBc BW)

ANNEX A.5. Band Edge at antenna terminals

Method of test measurements please refer to KDB971168 D01 v02r02 clause 3.5

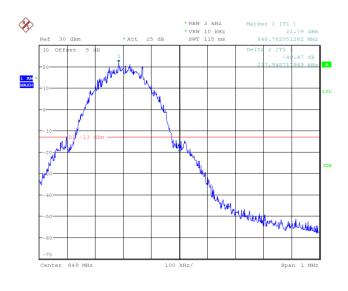

A.5.1 Limit:

The magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under the conditions specification in the instruction manual and/or alignment procedure, shall not be less than 43+10log (Mean power in watts) dBc below the mean power output outside a license's frequency block(-13dBm).

A.5.2 Test procedure:

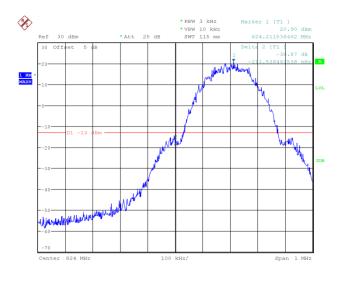
- 1. The RF output of the transceiver was connected to a signal analyzer through appropriate attenuation.
- 2. In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.
- 3. The RF fundamental frequency should be excluded against the limit line in the operating frequency band
- The limit line is derived from 43+10log(P) Db below the transmitter power P(Watts) =P(W)-[43+10log(P)](Db)

=[30+10log(P)](dBm)-[43+10log(P)](Db) =-13dBm


GSM 850

Date: 9.FEB.2017 08:28:00

Channel 128- LOW BAND EDGE BLOCK



RF Test Report

Date: 9.FEB.2017 08:29:23

Channel 251- HIGH BAND EDGE BLOCK

GPRS 850

Date: 9.FEB.2017 08:32:28

Channel 128- LOW BAND EDGE BLOCK