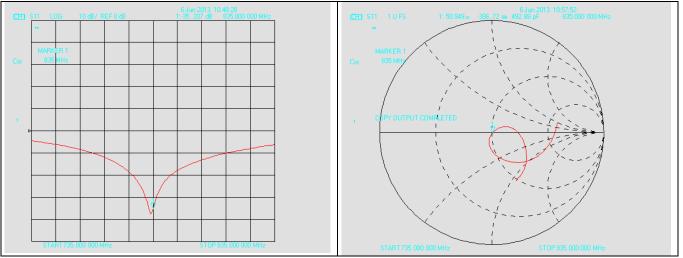
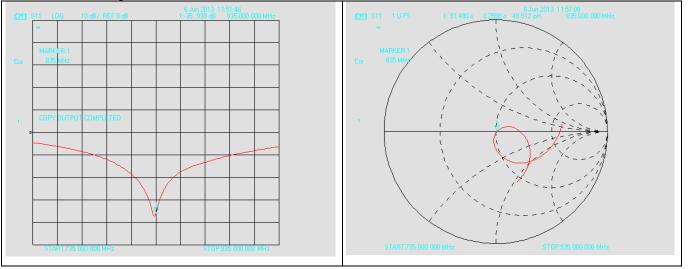


Model : S470 C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Serial# 13070170-FCC-H Issue Date July 26th, 2013 Page 74 of 111 www.siemic.com

Annex A CALIBRATION REPORTS


SARTIMO Calibration Certificate-Extended Dipole Calibrations

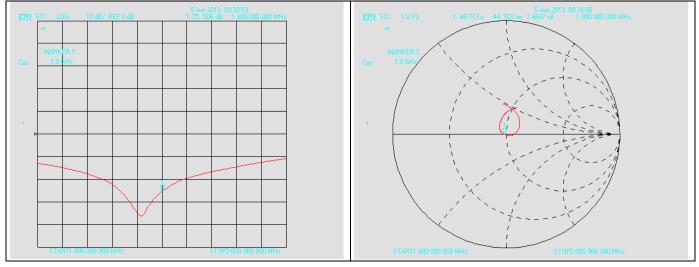
According to KDB 450824 D02, Dipoles must be recalibrated at least once every three years; however, immediate re-calibration is required for following conditions. The test laboratory must ensure that the required supporting information and documentation have been included in the SAR report to qualify for extended 3-year calibration interval.

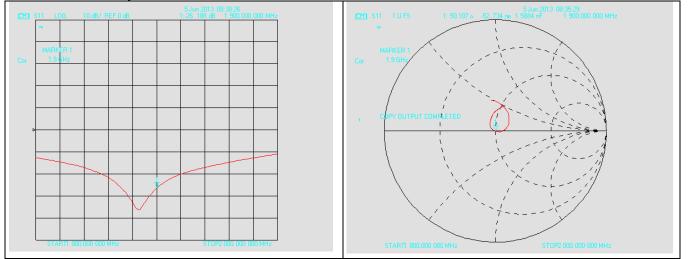

- 1) When the most recent return-loss, measured at least annually, deviates by more than 20% from the previous measurement (i.e. 0.2 of the dB value) or not meeting the required -20 dB return-loss specification
- 2) When the most recent measurement of the real or imaginary parts of the impedance, measured at least annually, deviates by more than 5 ∩ from the previous measurement

Dipole Verification plot: SID 835 SN 31/10 DIPC150

835MHz for Head:

835MHz for Body:




Serial# 13070170-FCC-H Issue Date July 26th, 2013 Page 75 of 111

Dipole Verification plot: SID 1900 SN 31/10 DIPG153

1900MHz for Head:

1900MHz for Body:

SIEMIC, INC. Accessing global markets SAR Test Report of Mobile Phone

e 4 and Safety Code 6

Model : S470 C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102

Serial# 13070170-FCC-Issue Date July 26th, 2013 Page 76 of 111

SID 835 SN 31/10 DIPC150 For Head Real Imaginary **Return-Loss** Deviate Deviate Impedance Calibrate Date Impedance (dB) (dB) (Ω) (Ω) **(**Ω) -35.8 06/01/2011 ----------50 ------35.207 50 06/06/2013 0.593 50.949 0.949 SID 835 SN 31/10 DIPC150 For Body -35.938 -0.138 51.490 50 1.49 06/06/2013

SID 1900 SN 3	1/10 DIPCG153	For Head			
Return- Loss (dB)	Deviate (dB)	Real Impedance (Ω)	lmaginary Impedance (Ω)	Deviate (Ω)	Calibrate Date
-25.9			50		06/01/2011
-25.506	0.394	48.713	50	-1.287	06/05/2013
SID 1900 SN 31/10 DIPG153 For Body					
-26.188	-0.288	50.107	50	0.107	06/05/2013

According to up table, the return loss is <-20dB, deviates by less than 20% from the previous measurement; the real Impedance are all within 5 Ω compared to the required Impedance (50 Ω).

SIEMIC, INC.

Accessing global markets SAR Test Report of Mobile Phone Model : S470 C95,1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 4 and Safety Code 6

Serial# 13070170-FCC-H Issue Date July 26th, 2013 Page 77 of 111 www.siemic.com

COMOSAR E-Field Probe Calibration Report

Ref : ACR.137.1.13.SATU.A

SIEMIC TESTING AND CERTIFICATION SERVICES

SUITE 311, BUILDING 1, SECTION 30 ,NO.2 KEFA ROAD, SCIENCE AND TECHNOLOGY PARK

NAN SHAN DISTRICT, SHENZHEN 518057, GUANGDONG ,P.R.C.

SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 09/13 EPG176

> Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

05/01/2013

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR test bench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national metrology institutions.

SIEMIC, INC. Accessing global markets Title: SAR Test Report of Mobile Phone Model : S470 To C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

Serial# 13070170-FCC-H Issue Date July 26th, 2013 Page 78 of 111

SATIMO

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.137.1.13.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	5/17/2013	JS
Checked by :	Jérôme LUC	Product Manager	5/17/2013	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	5/17/2013	him Butchowski

	Customer Name
Distribution :	SIEMIC Testing and Certification Services

Issue	Date	Modifications
Α	5/17/2013	Initial release

Page: 2/10

Serial# 13070170-FCC-H Issue Date July 26th, 2013 Page 79 of 111

COMOSAR E-FIELD PROBE CALIBRATION REPORT

SIEMIC, INC. Accessing global markets Title: SAR Test Report of Mobile Phone Model: S470 To C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

Ref: ACR.137.1.13.SATU.A

TABLE OF CONTENTS

1	Dev	ice Under Test4	
2	Prod	luct Description	
	2.1	General Information	4
3	Mea	surement Method	
	3.1	Linearity	4
	3.2	Sensitivity	5
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Mea	surement Uncertainty	
5	Cali	bration Measurement Results	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	8
6	List	of Equipment	

Page: 3/10

Serial# 13070170-FCC-H Issue Date July 26th, 2013 Page 80 of 111

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.137.1.13.SATU.A

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	Satimo		
Model	SSE2		
Serial Number	SN 09/13 EPG176		
Product Condition (new / used)	new		
Frequency Range of Probe	0.7 GHz-6GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.225 MΩ		
	Dipole 2: R2=0.209 MΩ		
	Dipole 3: R3=0.238 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – Satimo COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

SIEMIC, INC. Accessing global in SAR Test Report of Mobile Phone

C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 4 and Safety Code 6

Serial# Issue Date July 26th, 2013 Page www.siemic.com

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 137.1.13.SATU.A

SENSITIVITY 3.2

Model : S470

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis (0°-360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	√3	1	2.887%
Liquid permittivity	4.00%	Rectangular	√3	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Field probe linearity	3.00%	Rectangular	√3	1	1.732%

Page: 5/10

SIEMIC, INC. Accessing global ma SAR Test Report of Mobile Phone

Model: 5470 C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 e 4 and Safety Code 6 Serial# 13070170-FCC-H Issue Date July 26th, 2013 Page 82 of 111

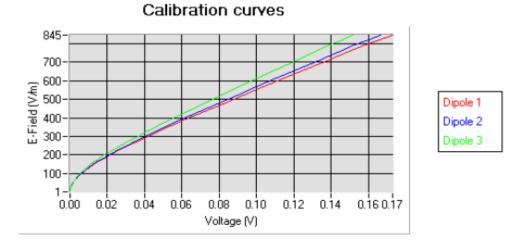
COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.137.1.13.SATU.A

Combined standard uncertainty			5.831%
Expanded uncertainty 95 % confidence level k = 2			12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters		
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	


5.1 SENSITIVITY IN AIR

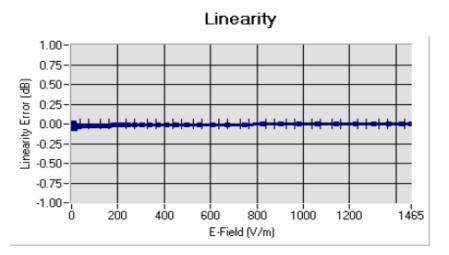
Normx dipole 1 $(\mu V/(V/m)^2)$	Normy dipole $2 (\mu V/(V/m)^2)$	Normz dipole 3 $(\mu V/(V/m)^2)$
0.62	0.61	0.52

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
101	95	92

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Page: 6/10


Serial# 13070170-FCC-H Issue Date July 26th, 2013 Page 83 of 111

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.137.1.13.SAT

5.2 LINEARITY

Linearity:1+/-1.50% (+/-0.07dB)

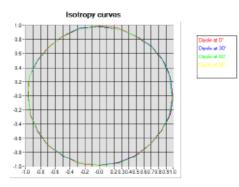
5.3 SENSITIVITY IN LIQUID

Liquid	Frequency	Permittivity	Epsilon (S/m)	ConvF
	<u>(MHz +/-</u>			
	100MHz)			
HL850	835	42.56	0.88	3.49
BL850	835	55.26	0.96	3.59
HL900	900	41.79	0.96	3.40
BL900	900	55.98	1.04	3.53
HL1800	1750	40.17	1.38	3.95
BL1800	1750	52.05	1.48	4.04
HL1900	1880	39.80	1.43	4.53
BL1900	1880	52.55	1.50	4.68
HL2000	1950	38.93	1.44	4.08
BL2000	1950	53.12	1.51	4.22
HL2450	2450	38.64	1.82	4.31
BL2450	2450	52.02	1.94	4.43
HL3500	3500	36.42	3.07	4.55
BL3500	3500	51.56	3.24	4.72
HL5200	5200	36.11	4.81	4.95
BL5200	5200	49.87	4.99	5.11
HL5400	5400	36.61	5.08	5.35
BL5400	5400	49.09	5.64	5.54
HL5600	5600	35.97	5.37	5.25
BL5600	5600	48.64	5.99	5.41
HL5800	5800	35.33	5.59	5.65
BL5800	5800	47.76	6.21	5.80

LOWER DETECTION LIMIT: 7mW/kg

Page: 7/10

Serial# 13070170-FCC-H Issue Date July 26th, 2013 Page 84 of 111

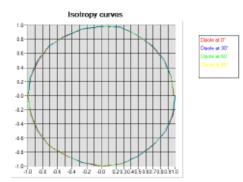

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.137.1.13.SATU.A

5.4 ISOTROPY

HL900 MHz

 Axial isotropy: 	0.04 dB
 Hemispherical isotropy: 	0.07 dB



HL1800 MHz

- Axial isotropy:

-	Hemispl	herica1	isotropy:
	remsp	noncai	isonopy.

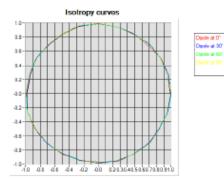
Page: 8/10

SIEMIC, INC. Accessing global markets fille: SAR Test Report of Mobile Phone Model: S470 o C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 sue 4 and Safety Code 6

 Serial#
 13070170-FCC-H

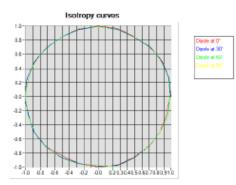
 Issue Date
 July 26th, 2013

 Page
 85 of 111


COMOSAR E-FIELD PROBE CALIBRATION REPORT

0.07 dB 0.10 dB Ref: ACR.137.1.13.SATU.A

HL2450 MHz


 Axial isotropy: 	
-------------------------------------	--

 Hemispherical isotropy: 	
---	--

HL5800 MHz

 Axial isotropy: 	0.08 dB
 Hemispherical isotropy: 	0.11 dB

Page: 9/10

SIEMIC, INC. Accessing global martets Title: SAR Test Report of Mobile Phone Model : S470 To C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

 Serial#
 13070170-FCC-H

 Issue Date
 July 26th, 2013

 Page
 86 of 111

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.137.1.13.SATU.A

LIST OF EQUIPMENT 6

Equipment Summary Sheet					
Equipment Manufacturer / Description Model		Identification No.	Current Calibration Date	Next Calibration Date	
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Reference Probe	Satimo	EP 94 SN 37/08	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Multimeter	Keithley 2000	1188656	11/2010	11/2013	
Signal Generator	Agilent E4438C	MY49070581	12/2010	12/2013	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	11/2010	11/2013	
Power Sensor	HP ECP-E26A	US37181460	11/2010	11/2013	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.	
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Temperature / Humidity Sensor	Control Company	11-661-9	3/2012	3/2014	

Page: 10/10

<text><text><text><text>

SIEMIC TESTING AND CERTIFICATION SERVICES

SUITE 311, BUILDING 1, SECTION 30 ,NO.2 KEFA ROAD, SCIENCE AND TECHNOLOGY PARK NAN SHAN DISTRICT, SHENZHEN 518057 , GUANGDONG ,P.R.C.

SATIMO COMOSAR REFERENCE DIPOLE

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

06/01/2011

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SIEMIC, INC. Accessing global markets Title: SAR Test Report of Mobile Phone Model : S470 To C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

 Serial#
 13070170-FCC-H

 Issue Date
 July 26th, 2013

 Page
 88 of 111

ATIN

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR, 158.4.11.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	6/7/2011	JS
Checked by :	Jérôme LUC	Product Manager	6/7/2011	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	6/7/2011	sum mithoushi

	Customer Name	
	SIEMIC Testing	
Distribution :	and Certification	
	Services	

Issue	Date	Modifications	
Α	6/7/2011	Initial release	
1			

Page: 2/9

SIEMIC, INC. Accessing global markets Model : S470 To C95, 1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

 Serial#
 13070170-FCC-H

 Issue Date
 July 26th, 2013

 Page
 89 of 111

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.4.11. SATU.A

TABLE OF CONTENTS

1	Introduction		
2	Devi	ce Under Test	
3	Prod	uct Description4	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Calil	bration Measurement Results	
	6.1	Return Loss	6
	6.2	Mechanical Dimensions	6
7	Vali	dation measurement7	
	7.1	Measurement Condition	7
	7.2	Head Liquid Measurement	7
	7.3	Measurement Result	8
8	List	of Equipment8	

Page: 3/9

Accessing global martets SAR Test Report of Mobile Phone Model : S470 C95 1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 4 and Safety Code 6 Supplement C, IEC62209-2 & RSS-102 Supplement C, IEC62200-2 & RSS-1

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.4.11.SATU.A

1 INTRODUCTION

SIEMIC, INC.

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE	
Manufacturer	Satimo	
Model	SID835	
Serial Number	SN 18/11 DIPC150	
Product Condition (new / used)	new	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - Satimo COMOSAR Validation Dipole

Page: 4/9

SIEMIC, INC. Accessing global r SAR Test Report of Mobile Phone

C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102

Issue Date July 26th, 2013 Page www.siemic.com

Model : S470

4 and Safety Code 6

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.4.11.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

RETURN LOSS REOUIREMENTS 4.1

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

MECHANICAL REQUIREMENTS 4.2

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

RETURN LOSS 5.1

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

DIMENSION MEASUREMENT 5.2

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

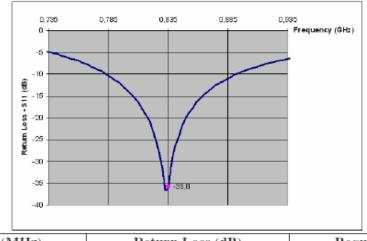
5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	16.19 %
10 g	15.86 %

Page:	5/9
-------	-----

Serial# 13070170-FCC-H Issue Date July 26th, 2013 Page 92 of 111


SATIMO

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.4.11. SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS

Frequency (MHz)	Return Loss (dB)	Requirement (dB)
835	-35.8	-20

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Lm	Lmm hmm		h mm d m		nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.	PASS	89.8 ±1 %.	PASS	3.6 ±1 %.	PASS
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

Page: 6/9

Accessing elocal martets SAR Test Report of Mobile Phone Model: \$470 C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 4 and Safety Code 6

Serial# 13070170-FCC-H Issue Date July 26th, 2013 Page 93 of 111

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.4.11.SATU.A

7 VALIDATION MEASUREMENT

SIEMIC, INC.

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 MEASUREMENT CONDITION

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 43.0 sigma: 0.88
Distance between dipole center and liquid	15.0 mm
A rea scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

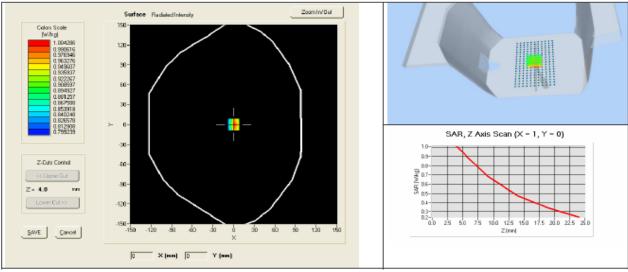
Frequency Relative permittivity (z,') Conductivity (a) S/m MHz required measured required measured 300 45.3 ±5 % 0.87 ±5 % 0.87 ±5 % 450 43.5 ±5 % 41.9 ±5 % 0.89 ±5 % 750 835 41.5 ±5 % PASS 0.90 ±5 % PASS 900 41.5 ±5 % 0.97 ±5 % 1450 40.5 ±5 % 1.20 ±5 % 1500 40.4 ±5 % 1.23 ±5 % 1640 40.2 ±5 % 1.31 ±5 % 40.1 ±5 % 1.37 ±5 % 1750 1800 40.0 ±5 % 1.40 ±5 % 1900 40.0 ±5 % 1.40 ±5 % 1950 40.0 ±5 % 1.40 ±5 % 2000 40.0 ±5 % 1.40 ±5 % 2100 39.8 ±5 % 1.49 ±5 % 2300 39.5 ±5 % 1.67 ±5 % 2450 39.2 ±5 % 1.80 ±5 % 2600 39.0 ±5 % 1.96 ±5 % 3000 38.5 ±5 % 2.40 ±5 % 3500 37.9 ±5 % 2.91 ±5 %

7.2 HEAD LIQUID MEASUREMENT

Page: 7/9

SIEMIC, INC. Accessing global markets Title: SAR Test Report of Mobile Phone Model : S470 to C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Ssue 4 and Safety Code 6

Serial# 13070170-FCC-H Issue Date July 26th, 2013 Page 94 of 111


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.4.11.SATU.A

7.3 MEASUREMENT RESULT

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Frequency MHz	1 g SAR	(W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56	9.59 (0.96)	6.22	6.25 (0.62)
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	
		-		+

SIEMIC, INC. Accessing global markets Title: SAR Test Report of Mobile Phone Model : S470 To C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

 Serial#
 13070170-FCC-H

 Issue Date
 July 26th, 2013

 Page
 95 of 111

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR, 158.4.11.SATU.A

8 LIST OF EQUIPMENT

	Equipment Summary Sheet			
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2010	02/2013
Calipers	Carrera	CALIPER-01	12/2010	12/2013
Reference Probe	Satimo	EPG122 SN 18/11	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Multimeter	Keithley 2000	1188656	11/2010	11/2013
Signal Generator	Agilent E4438C	MY49070581	12/2010	12/2013
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	11/2010	11/2013
Power Sensor	HP ECP-E26A	US37181460	11/2010	11/2013
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	3/2010	3/2012

Page: 9/9

SIEMIC, INC. Accessing global markets SAR Test Report of Mobile Phone

C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102

Model : S470

4 and Safety Code 6

Serial# 13070170-FCC-H Issue Date July 26th, 2013 Page 96 of 111 www.siemic.com

SAR Reference Dipole Calibration Report

Ref: ACR.158.7.11.SATU.A

SIEMIC TESTING AND CERTIFICATION SERVICES

SUITE 311, BUILDING 1, SECTION 30 ,NO.2 KEFA ROAD, SCIENCE AND TECHNOLOGY PARK NAN SHAN DISTRICT, SHENZHEN 518057 , GUANGDONG ,P.R.C.

SATIMO COMOSAR REFERENCE DIPOLE

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

06/01/2011

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SIEMIC, INC. Accessing global markets Title: SAR Test Report of Mobile Phone Model : S470 To C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

 Serial#
 13070170-FCC-H

 Issue Date
 July 26th, 2013

 Page
 97 of 111

ATIN 10

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.7.11.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	6/7/2011	JS
Checked by :	Jérôme LUC	Product Manager	6/7/2011	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	6/7/2011	sum mithoushi

	Customer Name
Distribution :	SIEMIC Testing and Certification Services

Issue	Date	Modifications	
Α	6/7/2011	Initial release	
1			

Page: 2/9

SIEMIC, INC. Accessing global markets Title: SAR Test Report of Mobile Phone Model : S470 To C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

 Serial#
 13070170-FCC-H

 Issue Date
 July 26th, 2013

 Page
 98 of 111

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.7.11.SATU.A

TABLE OF CONTENTS

1	Intro	duction	
2	Devi	ce Under Test	
3	Prod	uct Description	
	3.1	General Information	4
4	Mea	surement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results	
	6.1	Return Loss	6
	6.2	Mechanical Dimensions	6
7	Vali	dation measurement7	
	7.1	Measurement Condition	7
	7.2	Head Liquid Measurement	7
	7.3	Measurement Result	8
8	List	of Equipment	

Page: 3/9

Accessing global m SAR Test Report of Mobile Phone C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102

Issue Date July 26th, 2013 99 of 111 Page

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.7.11.SATU.A

1 INTRODUCTION

Model : S470

e 4 and Safety Code 6

SIEMIC, INC.

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST 2

Device Under Test				
Device Type COMOSAR 1900 MHz REFERENCE DIPOL				
Manufacturer	Satimo			
Model	SID1900			
Serial Number	SN 18/11 DIPG153			
Product Condition (new / used) new				

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/9

C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Page

Serial# Issue Date July 26th, 2013 www.siemic.com

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.7.11.SATU.A

MEASUREMENT METHOD 4

SIEMIC, INC.

Accessing global r SAR Test Report of Mobile Phone

Model : S470

4 and Safety Code 6

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

RETURN LOSS REQUIREMENTS 4.1

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

DIMENSION MEASUREMENT 5.2

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

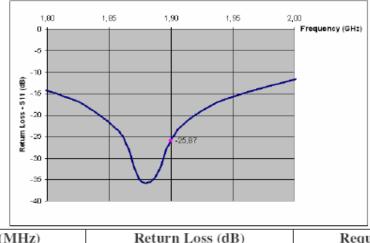
5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	16.19 %
10 g	15.86 %

Page: 5/9

Serial# 13070170-FCC-H Issue Date July 26th, 2013 Page 101 of 111



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.7.11.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS

Frequency (MHz)	Return Loss (dB)	Requirement (dB)
1900	-25.9	-20

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.	PASS	39.5 ±1 %.	PASS	3.6 ±1 %.	PASS
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

Page: 6/9

Accessing global ma SAR Test Report of Mobile Phone C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 e 4 and Safety Code 6

Issue Date July 26th, 2013 Page 102 of 111

ATIMO

Model : S470

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR, 158, 7, 11, SATU, A

7 VALIDATION MEASUREMENT

SIEMIC, INC.

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 38.5 sigma : 1.42
Distance between dipole center and liquid	10.0 mm
A rea scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

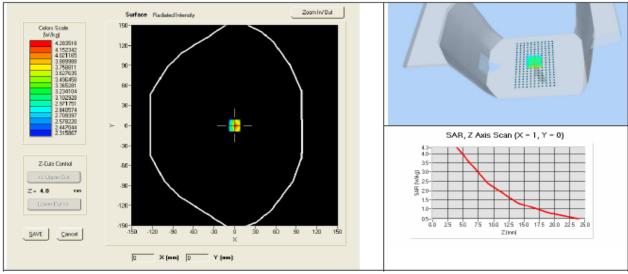
7.1 MEASUREMENT CONDITION

Frequency MHz	Relative per	mittivity (ɛˌ')	Conductiv	ivity (ơ) S/m	
	required	measured	required	measured	
300	45.3 ±5 %		0.87 ±5 %		
450	43.5 ±5 %		0.87 ±5 %		
750	41.9 ±5 %		0.89 ±5 %		
835	41.5 ±5 %		0.90 ±5 %		
900	41.5 ±5 %		0.97 ±5 %		
1450	40.5 ±5 %		1.20 ±5 %		
1500	40.4 ±5 %		1.23 ±5 %		
1640	40.2 ±5 %		1.31 ±5 %		
1750	40.1 ±5 %		1.37 ±5 %		
1800	40.0 ±5 %		1.40 ±5 %		
1900	40.0 ±5 %	PASS	1.40 ±5 %	PASS	
1950	40.0 ±5 %		1.40 ±5 %		
2000	40.0 ±5 %		1.40 ±5 %		
2100	39.8 ±5 %		1.49 ±5 %		
2300	39.5 ±5 %		1.67 ±5 %		
2450	39.2 ±5 %		1.80 ±5 %		
2600	39.0 ±5 %		1.96 ±5 %		
3000	38.5 ±5 %		2.40 ±5 %		
3500	37.9 ±5 %		2.91 ±5 %		

7.2 HEAD LIQUID MEASUREMENT

Page: 7/9

Serial# 13070170-FCC-H Issue Date July 26th, 2013 Page 103 of 111


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.7.11.SATU.A

7.3 MEASUREMENT RESULT

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7	39.92 (3.99)	20.5	20.49 (2.05)
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

Page: 8/9

SIEMIC, INC. Accessing global markets Title: SAR Test Report of Mobile Phone Model : S470 To C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

 Serial#
 13070170-FCC-H

 Issue Date
 July 26th, 2013

 Page
 104 of 111

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.7.11.SATU.A

LIST OF EQUIPMENT 8

Equipment Summary Sheet								
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date				
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.				
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.				
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2010	02/2013				
Calipers	Carrera	CALIPER-01	12/2010	12/2013				
Reference Probe	Satimo	EPG122 SN 18/11	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Multimeter	Keithley 2000	1188656	11/2010	11/2013				
Signal Generator	Agilent E4438C	MY49070581	12/2010	12/2013				
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Power Meter	HP E4418A	US38261498	11/2010	11/2013				
Power Sensor	HP ECP-E26A	US37181460	11/2010	11/2013				
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Temperature and Humidity Sensor	Control Company	11-661-9	3/2010	3/2012				

Page: 9/9