

Full

TEST REPORT

No. I16D00274-BT

For

Client: VeryKool USA Inc

Production: Mobile Phone

Model Name: s4513

FCC ID: WA6S4513

Hardware Version: R615-MB-V2.0

Software Version: S4513_VK_Generic_Dual_SW_1.0

Issued date: 2017-02-22

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of ECIT Shanghai.

Test Laboratory:

ECIT Shanghai, East China Institute of Telecommunications

Add: 7-8F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China

Tel: (+86)-021-63843300, E-Mail: welcome@ecit.org.cn

Revision Version

Report No.: I16D00274-BT

Report Number	Revision	Date	Memo
I16D00274-BT	00	2017-02-16	Initial creation of test report
I16D00274-BT	01	2017-02-22	Second creation of test report

East China Institute of Telecommunications Page Number : 2 of 74
TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.22.2017

CONTENTS

Report No.: I16D00274-BT

Page Number : 3 of 74 Report Issued Date : Feb.22.2017

1.	TEST LABORATORY	5
1.1.	TESTING LOCATION	
1.2.	TESTING ENVIRONMENT	5
1.3.	PROJECT DATA	5
1.4.	SIGNATURE	5
2.	CLIENT INFORMATION	6
2.1.	APPLICANT INFORMATION	6
2.2.	MANUFACTURER INFORMATION	6
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	7
3.1.	ABOUT EUT	7
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	7
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	7
4.	REFERENCE DOCUMENTS	8
4.1.	REFERENCE DOCUMENTS FOR TESTING	8
5.	SUMMARY OF TEST RESULTS	9
5.1.	NOTES	10
5.2.	STATEMENTS	10
6.	TEST RESULT	11
6.1.	PEAK OUTPUT POWER-CONDUCTED	11
6.2.	FREQUENCY BAND EDGES-CONDUCTED	16
6.3.	CONDUCTED EMISSION	23
6.4.	RADIATED EMISSION	33
6.5.	TIME OF OCCUPANCY (DWELL TIME)	46
6.6.	20DB BANDWIDTH	56
6.7.	CARRIER FREQUENCY SEPARATION	62

ECI	т	RF Test Report	Report No.: I16D00274-BT
6.8.	NUME	BER OF HOPPING CHANNELS	64
6.9.	AC PO	OWERLINE CONDUCTED EMISSION	68
7.	TEST	EQUIPMENTS AND ANCILLARIES USED FOR	TESTS71
8.	TEST	ENVIRONMENT	72
ANNEX	A.	DEVIATIONS FROM PRESCRIBED TEST MET	HODS73
ANNEX	В.	ACCREDITATION CERTIFICATE	74

Page Number : 4 of 74 Report Issued Date : Feb.22.2017

1. Test Laboratory

1.1. Testing Location

Company Name:	ECIT Shanghai, East China Institute of Telecommunications	
Address:	7-8F, G Area, No. 668, Beijing East Road, Huangpu District,	
	Shanghai, P. R. China	
Postal Code:	200001	
Telephone:	(+86)-021-63843300	
Fax:	(+86)-021-63843301	

1.2. Testing Environment

Normal Temperature:	15-35℃
Extreme Temperature:	-10/+55℃
Relative Humidity:	20-75%

1.3. Project data

Project Leader:	Xu Yuting
Testing Start Date:	2016-12-26
Testing End Date:	2017-02-15

1.4. Signature

71/18/19

Zhang Shiyu (Prepared this test report)

丁豆

Report No.: I16D00274-BT

(Reviewed this test report)

Zheng Zhongbin
Director of the laboratory
(Approved this test report)

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 5 of 74 Report Issued Date : Feb.22.2017

2. Client Information

2.1. Applicant Information

Company Name: VeryKool USA Inc

Address: 3636 Nobel Drive, Suite 325, San Diego, CA92122 USA

Telephone: +1-858-373-1635

Postcode: CA92122

2.2. Manufacturer Information

Company Name: Fortune Ship

Address: 6/F, Kanghesheng Building, No.1 Chuangsheng Road,

Nanshan District, Shenzhen, Guangdong, China

Report No.: I16D00274-BT

Telephone: 0755-26397320

Postcode: 518055

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 6 of 74 Report Issued Date : Feb.22.2017

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

Report No.: I16D00274-BT

3.1. About EUT

EUT Description	Mobile Phone
Model name	s4513
UMTS Frequency Band	WCDMA BandII and V
GSM Frequency Band	GSM850/900/1800/1900
WLAN Frequency	2412MHz-2462MHz
WLAN Channel	Channel1-Channel11
WLAN type of modulation	802.11b:DSSS
	802.11g/n: OFDM
Extreme Temperature	-10/+55℃
Nominal Voltage	3.8V
Extreme High Voltage	4.2V
Extreme Low Voltage	3.4V

Note: Photographs of EUT are shown in ANNEX A of this test report.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
N01	352139069715266	R615-MB-V2.0	S4513_VK_Generic_Dua	2016-12-26
			1_SW_1.0	
N08	867400020316612	R615-MB-V2.0	S4513_VK_Generic_Dua	2016-12-26
			1_SW_1.0	

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	SN
AE1	RF cable	
AE2		

^{*}AE ID: is used to identify the test sample in the lab internally.

East China Institute of Telecommunications Page Number : 7 of 74
TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.22.2017

4. Reference Documents

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part15	FCC CFR 47, Part 15, Subpart C: 15.205 Restricted bands of operation; 15.209 Radiated emission limits, general requirements; 15.247 Operation within the bands 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.	Jun,2016 Edition
ANSI C63.10	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices	2013

Report No.: I16D00274-BT

East China Institute of Telecommunications Page Number: 8 of 74
TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date: Feb.22.2017

5. Summary of Test Results

A brief summary of the tests carried out is shown as following.

Measurement Items	Sub-clause of Part15C	Sub-claus e of IC	Verdict
Maximum Peak Output Power	15.247(b)	/	Р
Peak Power Spectral Density	15.247(d)	/	NA
20dB Occupied Bandwidth	15.247(a)	/	Р
Band Edges Compliance	15.247(b)	/	Р
Transmitter Spurious Emission-Conducted	15.247	/	Р
Transmitter Spurious Emission-Radiated	15.247,15.209,	/	Р
AC Powerline Conducted Emission	15.107,15.207	/	Р

Report No.: I16D00274-BT

: 9 of 74

Report Issued Date : Feb.22.2017

Page Number

Please refer to part 5 for detail.

The measurements are according to and ANSI C63.10.

Terms used in Verdict column

Р	Pass, the EUT complies with the essential requirements in the standard.	
NP	Not Perform, the test was not performed by ECIT.	
NA	Not Applicable, the test was not applicable.	
F	Fail, the EUT does not comply with the essential requirements in the standard.	

Test Conditions

Tnom	Normal Temperature
Tmin	Low Temperature
Tmax	High Temperature
Vnom	Normal Voltage
Vmin	Low Voltage
Vmax	High Voltage
Hnom	Norm Humidity
Anom	Norm Air Pressure

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301

For this report, all the test case listed above are tested under Normal Temperature and Normal Voltage, and also under norm humidity, the specific conditions as following:

Report No.: I16D00274-BT

: 10 of 74

Report Issued Date : Feb.22.2017

Page Number

Temperature	Tnom	22 °C
Voltage	Vnom	3.7V
Humidity	Hnom	32%
Air Pressure	Anom	1010hPa

Note:

- a. All the test data for each data were verified, but only the worst case was reported.
- b.The GFSK, π /4 DQPSK and 8DPSK were set in DH1 for GFSK, 2-DH1 for π /4 DQPSK, 3-DH1 for 8DPSK.
- c.The DC and low frequency voltages' measurement uncertainty is ±2%.

5.1. Notes

All reported tests were carried out on a sample equipment to demonstrate limited compliance with section 3.

The test results of this test report relate exclusively to the item(s) tested as specified in section 5.

The following deviation from, additions to, or exclusions from the test specifications have been made. See section 3.

5.2. Statements

The product name s4513, supporting GSM/GPRS /WCDMA/HSDPA/HSUPA/WLAN/BT, manufactured by Fortune Ship, is a new product for testing.

ECIT has verified that the compliance of the tested device specified in section 5 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 5 of this test report.

6. Test result

6.1. Peak Output Power-Conducted

6.1.1 Measurement Limit

Standard	Limit (dBm)
FCC Part 15.247(b)(1)	< 30

Report No.: I16D00274-BT

6.1.2 Test Condition:

Hopping Mode	RBW	VBW	Span	Sweeptime
Hopping OFF	3MHz	10MHz	9MHz	Auto

6.1.3 Test procedure

The measurement is according to ANSI C63.10 clause 7.8.5.

- The output power of EUT was connected to the spectrum analyzer and CBT32 by cable and divide. The path loss was compensated to the results for each measurement.
- 2. Enable EUT transmitter maximum power continuously.
- 3. Measure the conducted output power and record the results it.

6.1.4 Measurement Results:

For GFSK

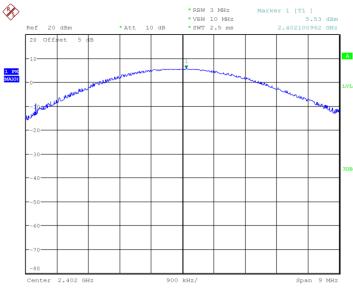
Channel	Ch0 2402 MHz	Ch39 2441 MHz	CH78 2480 MHz	Conclusion
Peak Conducted	5.53	4.98	4.9	Р
Output Power (dBm)	Fig.1	Fig.2	Fig.3	F

For π/4 DQPSK

Channel	Ch0 2402 MHz	Ch39 2441 MHz	CH78 2480 MHz	Conclusion
Peak Conducted	6.28	5.67	5.57	P
Output Power (dBm)	Fig.4	Fig.5	Fig.6	Г

For 8DPSK

Channal	Ch0 2402	Ch39 2441	CH78 2480	Canalysias
Channel	MHz	MHz	MHz	Conclusion


East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 11 of 74
Report Issued Date : Feb.22.2017

CCII	111 1001110			
Peak	5.57	5.79	5.79	
Conducted	3.37	3.79	3.79	D
Output Power	Fig 7	Eig 0	Fig 0	1
(dBm)	Fig.7	Fig.8	Fig.9	


Report No.: I16D00274-BT

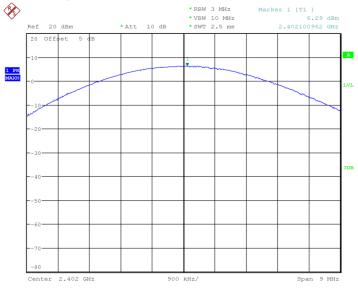
Conclusion: PASS
Test graphs an below

Date: 10.FEB.2017 15:11:52

Fig.1 Peak Conducted Output Power CH0, DH1

Date: 10.FEB.2017 15:12:06

Fig.2 Peak Conducted Output Power CH39, DH1


Page Number

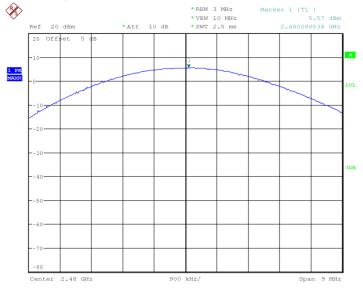
: 12 of 74

Date: 10.FEB.2017 15:12:21

Fig.3 Peak Conducted Output Power CH78, DH1

Date: 10.FEB.2017 15:12:36

Fig.4 Peak Conducted Output Power CH0, 2DH1


Page Number

: 13 of 74

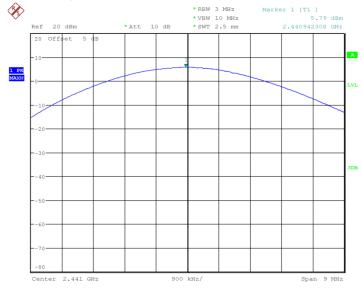
Date: 10.FEB.2017 15:12:51

Fig.5 Peak Conducted Output Power CH39, 2DH1

Date: 10.FEB.2017 15:13:07

Fig.6 Peak Conducted Output Power CH78, 2DH1

Page Number


: 14 of 74

Report No.: I16D00274-BT

Date: 10.FEB.2017 15:13:21

Fig.7 Peak Conducted Output Power CH0, 3DH1

Date: 10.FEB.2017 15:13:36

Fig.8 Peak Conducted Output Power CH39, 3DH1

Page Number

: 15 of 74

Date: 10.FEB.2017 15:13:51

Fig.9 Peak Conducted Output Power CH78, 3DH1

6.2. Frequency Band Edges-Conducted

6.2.1 Measurement Limit:

Standard	Limited(dBc)
FCC 47 CFR Part 15.247(d)	>20

6.2.2 Test procedure

The measurement is according to ANSI C63.10 clause 7.8.6.

- 1. Connect the EUT to spectrum analyzer.
- 2. Set RBW=100KHz, VBW=300KHz, span more than 1.5 times channel bandwidth (2MHz).
- 3. Detector =peak, sweep time=auto couple, trace mode=max hold.
- 4. Allow sweep to continue until the trace stabilizes.

6.2.3 Measurement results

For GFSK

Channel	Hopping	Band Edge Power (dBc)	Conclusion
0	Hopping OFF	Fig.10	Р
0	Hopping ON	Fig.11	Р
78	Hopping OFF	Fig.12	Р

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 16 of 74 Report Issued Date : Feb.22.2017

Report No.: I16D00274-BT

Hopping ON	Fig.13	Р	

Report No.: I16D00274-BT

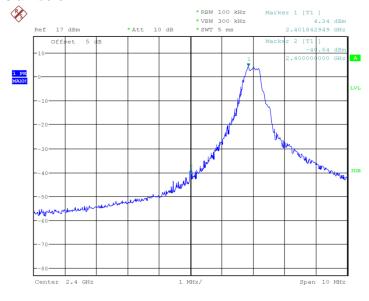
For π/4 DQPSK

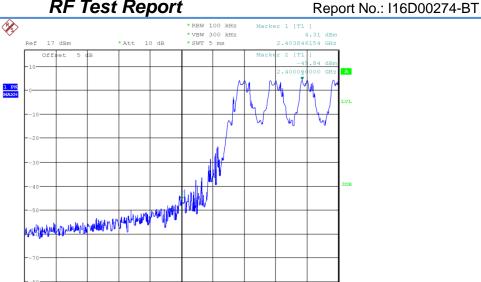
Channel	Hopping	Band Edge Power (dBc)	Conclusion
0	Hopping OFF	Fig.14	Р
0	Hopping ON	Fig.15	Р
78	Hopping OFF	Fig.16	Р
	Hopping ON	Fig.17	Р

For 8DPSK

Channel	Hopping	Band Edge Power (dBc)	Conclusion
0	Hopping OFF	Fig.18	Р
0	Hopping ON	Fig.19	Р
78	Hopping OFF	Fig.20	Р
	Hopping ON	Fig.21	Р

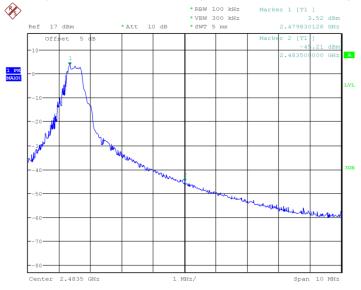
Conclusion: PASS
Test graphs an below




Fig.10 Frequency Band Edge: GFSK, Ch0, Hopping OFF

Page Number

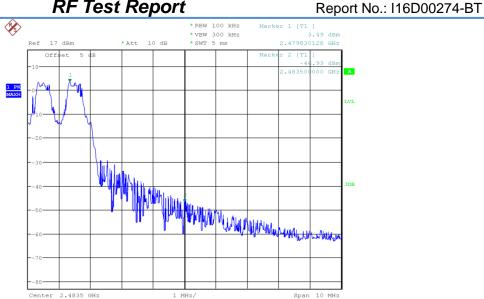
: 17 of 74


Report Issued Date : Feb.22.2017

Date: 10.FEB.2017 15:15:04

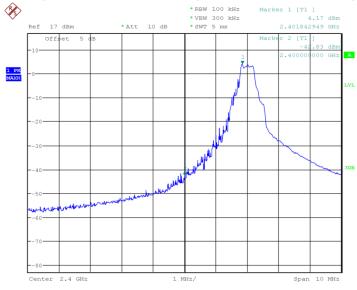
Date: 10.FEB.2017 15:17:11

Fig.11 Frequency Band Edge: GFSK, Ch0, Hopping ON



Date: 10.FEB.2017 15:26:04

Fig.12 Frequency Band Edge: GFSK, Ch78, Hopping OFF


Page Number

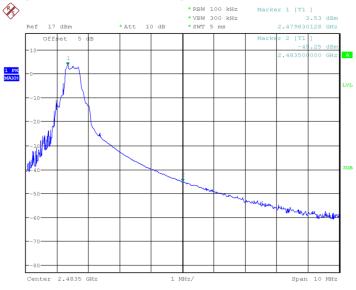
: 18 of 74

Date: 10.FEB.2017 15:28:11

Fig.13 Frequency Band Edge: GFSK, Ch78, Hopping ON

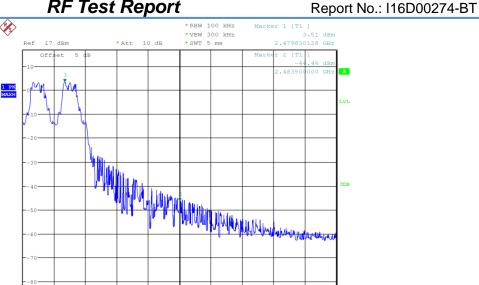
Date: 10.FEB.2017 15:20:34

Fig.14 Frequency Band Edge: $\pi/4$ DQPSK, Ch0, Hopping OFF

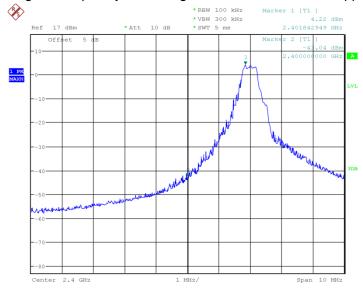

Page Number

: 19 of 74

Date: 10.FEB.2017 15:22:41


Fig.15 Frequency Band Edge: π/4 DQPSK, Ch0, Hopping ON

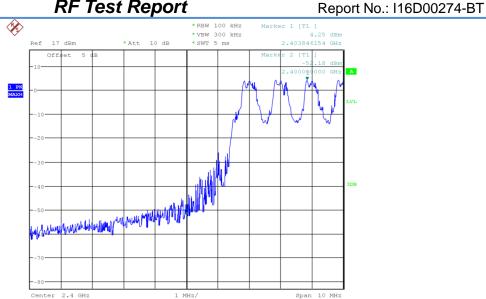
Date: 10.FEB.2017 15:23:19


Fig.16 Frequency Band Edge: $\pi/4$ DQPSK, Ch78, Hopping OFF

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 20 of 74 Report Issued Date : Feb.22.2017

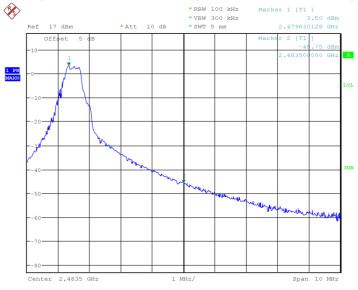
Date: 10.FEB.2017 15:25:26

Fig.17 Frequency Band Edge: $\pi/4$ DQPSK, Ch78, Hopping ON



Date: 10.FEB.2017 15:17:48

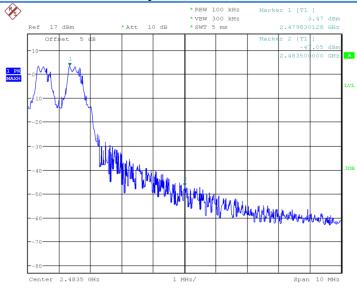
Fig.18 Frequency Band Edge: 8DPSK, Ch0, Hopping OFF


Page Number

: 21 of 74

Date: 10.FEB.2017 15:19:56

Fig.19 Frequency Band Edge: 8DPSK, Ch0, Hopping ON



Date: 10.FEB.2017 15:28:49

Fig.20 Frequency Band Edge: 8DPSK, Ch78, Hopping OFF

Page Number

: 22 of 74

Date: 10.FEB.2017 15:30:56

Fig.21 Frequency Band Edge: 8DPSK, Ch78, Hopping ON

6.3. Conducted Emission

6.3.1 Measurement Limit:

Standard	Limit	
FCC 47 CFR Part15.247 (d)	20dB below peak output power in 100KHz	
1 00 47 01 K Fait13.247 (u)	bandwidth	

6.3.2 Test procedures

The measurement is according to ANSI C63.10 clause 7.8.8.

- 1. Connect the EUT to spectrum analyzer.
- 2. Set RBW=100KHz, VBW=300KHz.
- 3. Detector =peak, sweep time=auto couple, trace mode=max hold.

6.3.3 Measurement Results:

For GFSK

Channel	Frequency Range	Test Results	Conclusion
Ch0 2402MHz	Center Freq.	Fig.22	Р
	30MHz~26GHz	Fig.23	Р
01.00.04448811	Center Freq.	Fig.24	Р
Ch39 2441MHz	30MHz~26GHz	Fig.25	Р
Ch78 2480MHz	Center Freq.	Fig.26	Р

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 23 of 74 Report Issued Date : Feb.22.2017

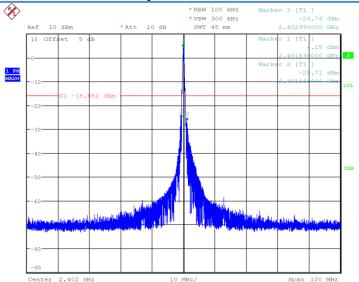
Report No.: I16D00274-BT

30MHz~26GHz	Fig.27	Р
-------------	--------	---

Report No.: I16D00274-BT

Page Number : 24 of 74 Report Issued Date : Feb.22.2017

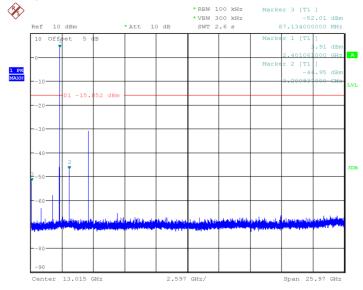
For $\pi/4$ DQPSK


Channel	Frequency Range	Test Results	Conclusion
	Center Freq.	Fig.28	Р
Ch0 2402MHz	30MHz~26GHz	Fig.29	Р
Ch39 2441MHz	Center Freq.	Fig.30	Р
	30MHz~26GHz	Fig.31	Р
Ch78 2480MHz	Center Freq.	Fig.32	Р
	30MHz~26GHz	Fig.33	Р

For 8DPSK

Channel	Frequency Range	Test Results	Conclusion
01.0.04004411	Center Freq.	Fig.34	Р
Ch0 2402MHz	30MHz~26GHz	Fig.35	Р
	Center Freq.	Fig.36	Р
Ch39 2441MHz	30MHz~26GHz	Fig.37	Р
Ch78 2480MHz	Center Freq.	Fig.38	Р
	30MHz~26GHz	Fig.39	Р

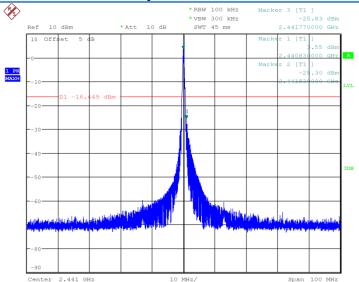
Conclusion: PASS
Test graphs as below


East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301

Report No.: I16D00274-BT

Date: 10.FEB.2017 15:31:54

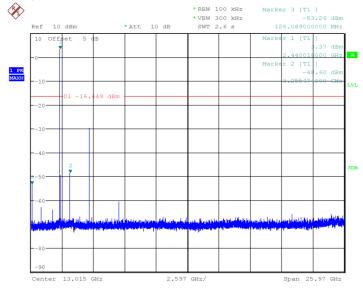
Fig.22 Conducted spurious emission: GFSK, Ch0, 2402MHz



Date: 10.FEB.2017 15:32:20

Fig.23 Conducted spurious emission: GFSK, Ch0, 30MHz~26GHz

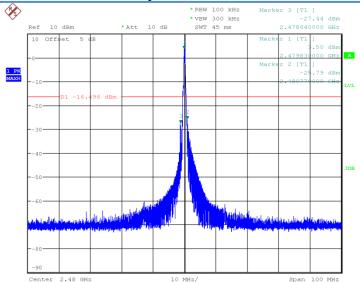
Page Number


: 25 of 74

Report No.: I16D00274-BT

Date: 10.FEB.2017 15:32:47

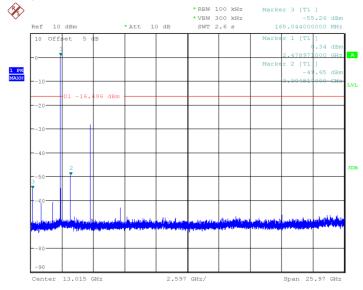
Fig.24 Conducted spurious emission: GFSK, Ch39, 2441MHz



Date: 10.FEB.2017 15:33:14

Fig.25 Conducted spurious emission: GFSK, Ch39, 30MHz~26GHz

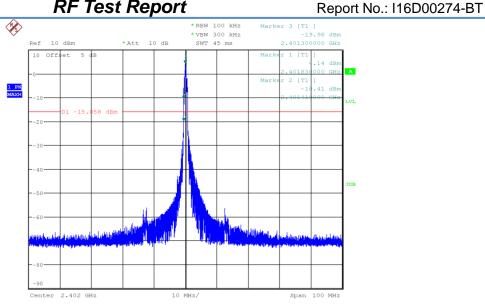
Page Number


: 26 of 74

Report No.: I16D00274-BT

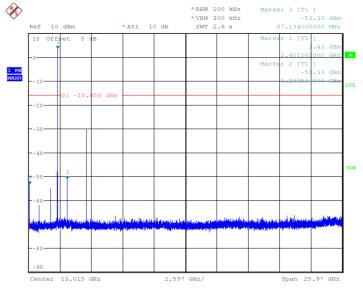
Date: 10.FEB.2017 15:33:41

Fig.26 Conducted spurious emission: GFSK, Ch78, 2480MHz



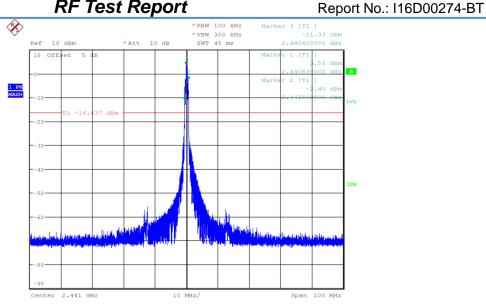
Date: 10.FEB.2017 15:34:07

Fig.27 Conducted spurious emission: GFSK, Ch78, 30MHz~26GHz

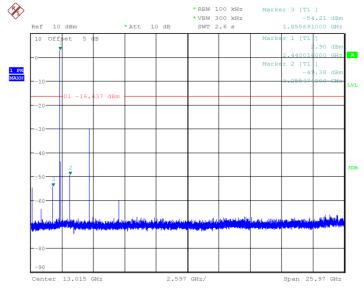

Page Number

: 27 of 74

Date: 10.FEB.2017 15:34:35

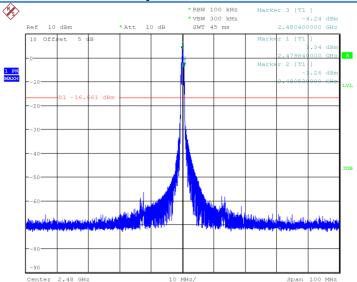

Fig.28 Conducted spurious emission: π/4 DQPSK, Ch0, 2402MHz

Date: 10.FEB.2017 15:35:01

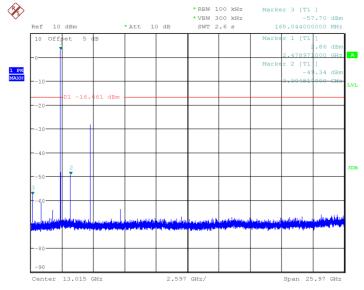

Fig.29 Conducted spurious emission: $\pi/4$ DQPSK, Ch0, 30MHz~26GHz

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 28 of 74 Report Issued Date : Feb.22.2017

Date: 10.FEB.2017 15:35:28


Fig.30 Conducted spurious emission: π/4 DQPSK, Ch39, 2441MHz

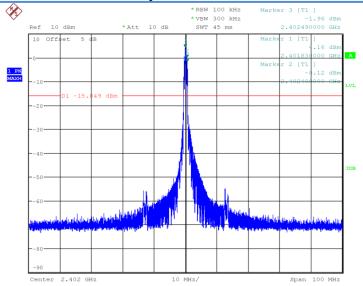
Date: 10.FEB.2017 15:35:54


Fig.31 Conducted spurious emission: $\pi/4$ DQPSK, Ch39, 30MHz~26GHz

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 29 of 74 Report Issued Date : Feb.22.2017

Date: 10.FEB.2017 15:36:21

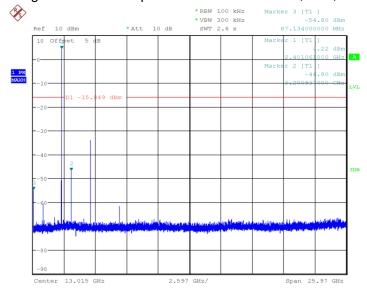
Fig.32 Conducted spurious emission: $\pi/4$ DQPSK, Ch78, 2480MHz



Date: 10.FEB.2017 15:36:47

Fig.33 Conducted spurious emission: $\pi/4$ DQPSK, Ch78, 30MHz~26GHz

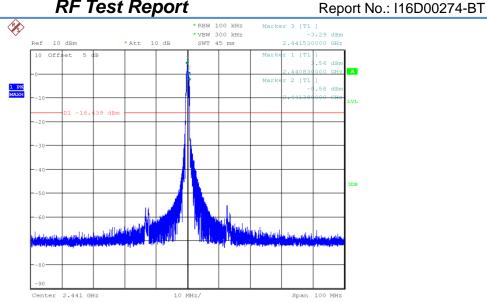
East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 30 of 74 Report Issued Date : Feb.22.2017


Report No.: I16D00274-BT

Report No.: I16D00274-BT

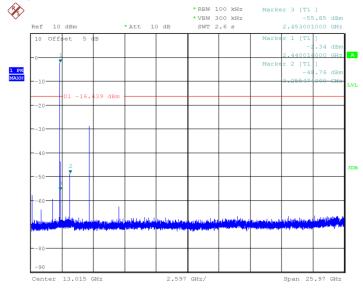
Date: 10.FEB.2017 15:37:15

Fig.34 Conducted spurious emission: 8DPSK, Ch0, 2402MHz



Date: 10.FEB.2017 15:37:41

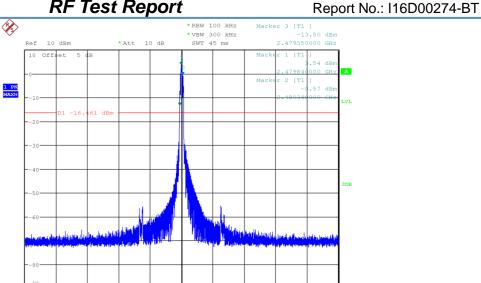
Fig.35 Conducted spurious emission: 8DPSK, Ch0, 30MHz~26GHz


Page Number

: 31 of 74

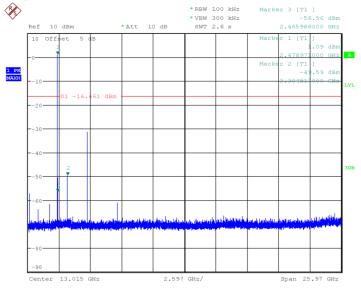
Date: 10.FEB.2017 15:38:09

Fig.36 Conducted spurious emission: 8DPSK, Ch39, 2441MHz



Date: 10.FEB.2017 15:38:34

Fig.37 Conducted spurious emission: 8DPSK, Ch39, 30MHz~26GHz


Page Number

: 32 of 74

Date: 10.FEB.2017 15:39:02

Fig.38 Conducted spurious emission: 8DPSK, Ch78, 2480MHz

Date: 10.FEB.2017 15:39:28

Fig.39 Conducted spurious emission: 8DPSK, Ch78, 30MHz~26GHz

6.4. Radiated Emission

6.4.1 Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power

In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a),

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 33 of 74 Report Issued Date : Feb.22.2017

Report No.: I16D00274-BT

must also comply with the radiated emission limits specified in 15.209(a) (see 15.205(c)).

Limit in restricted band:

Frequency of emission (MHz)	Field strength (uV/m)	Field strength (dBuV/m)
30~88	100	40
88~216	150	43.5
216~960	200	46
Above 960	500	54

6.4.2 Test Method

Portable, small, lightweight, or modular devices that may be handheld, worn on the body, or placed on a table during operation shall be positioned on a non-conducting platform, the top of which is 80 cm above the reference ground plane. The preferred area occupied by the EUT arrangement is 1 m by 1.5 m, but it may be larger or smaller to accommodate various sized EUTs. For testing purposes, ceiling- and wall-mounted devices also shall be positioned on a tabletop (see also ANSI C63.10-2009 section 6.3.4 and 6.3.5). In making any tests involving handheld, body-worn, or ceiling-mounted equipment, it is essential to recognize that the measured levels may be dependent on the orientation (attitude) of the three orthogonal axes of the EUT. Thus, exploratory tests as specified in 8.3.1 shall be carried out for various axes orientations to determine the attitude having maximum or near-maximum emission level.

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission (MHz)	RBW/VBW	Sweep Time (s)
30~1000	100KHz/300KHz	5
1000~4000	1MHz/1MHz	15
4000~18000	1MHz/1MHz	40
18000~26500	1MHz/1MHz	20

6.4.3 Measurement Results:

A "reference path loss" is established and A_{Rpi} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss. The measurement results are obtained as described below:

A_{Roi} = Cable loss + Antenna Gain-Preamplifier gain

East China Institute of Telecommunications Page Number : 34 of 74 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.22.2017

Report No.: I16D00274-BT

Result= $P_{Mea} + A_{Rpi}$

For GFSK

Channel	Frequency Range	Test Results	Conclusion
	30MH~1GHz	Fig.40	Р
Ch0 2402MHz	1GHz~3GHz	Fig.41	Р
	3GHz~18GHz	Fig.42	Р
Power	2.38GHz~2.4GHz	Fig.43	Р
Power	2.45GHz~2.5GHz	Fig.44	Р

For $\pi/4$ DQPSK

Channel	Frequency Range	Test Results	Conclusion
	30MH~1GHz	Fig.45	Р
Ch0 2402MHz	1GHz~3GHz	Fig.46	Р
	3GHz~18GHz	Fig.47	Р
Power	2.38GHz~2.4GHz	Fig.48	Р
Power	2.45GHz~2.5GHz	Fig.49	Р

For 8DPSK

Channel	Frequency Range	Test Results	Conclusion
	30MH~1GHz	Fig.50	Р
Ch0 2402MHz	1GHz~3GHz	Fig.51	Р
	3GHz~18GHz	Fig.52	Р
Power	2.38GHz~2.4GHz	Fig.53	Р
Power	2.45GHz~2.5GHz	Fig.54	Р

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 35 of 74 Report Issued Date : Feb.22.2017

GFSK Ch0 30MHz-1GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
34.196496	10.47	-26.8	37.27	V
246.554416	8.26	-23.1	31.36	Н
356.300656	10.19	-19	29.19	Н
476.993116	12.74	-16.1	28.84	V
602.286436	16.29	-13	29.29	Н
781.216484	18.02	-11	29.02	Н

Report No.: I16D00274-BT

GFSK Ch0 1GHz-3GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2201.0732	47.88	4.5	43.38	V
2577.080385	51.32	8.6	42.72	Н
2684.265385	52.61	9.4	43.21	V
2794.411154	52.63	9.7	42.93	Н
2861.988846	52.97	10.8	42.17	V
2941.579808	53.95	10.7	43.25	V

GFSK Ch0 3GHz-18GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
14901.7152	56.73	22.2	34.53	V
15349.8026	57.12	22.5	34.62	Н
15692.48673	57.87	23.8	34.07	V
16500.11907	59.19	26.9	32.29	V
16812.48173	59.96	27.3	32.66	Н
17620.70553	62.35	29.3	33.05	V

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 36 of 74 Report Issued Date : Feb.22.2017

π/4 DQPSK Ch0 30MHz-1GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
34.183728	11.2	-26.8	38	V
34.869124	9.77	-26.8	36.57	V
41.095488	8.92	-25.8	34.72	V
69.081108	3.59	-28.8	32.39	V
852.602304	19.83	-9.4	29.23	Н
905.008268	20.88	-8	28.88	Н

Report No.: I16D00274-BT

π/4 DQPSK Ch0 1GHz-3GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2752.700577	52.76	9.4	43.36	Н
2834.525769	53.61	10.5	43.11	Н
2873.887884	54.89	10.8	44.09	Н
2900.801731	53.81	10.8	43.01	V
2985.6375	54.89	11.2	43.69	Н
2994.778269	54.35	11.4	42.95	V

$\pi/4$ DQPSK Ch0 3GHz-18GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
14898.68533	56.95	22.2	34.75	Н
15474.0282	56.75	23.3	33.45	Н
15975.5196	59.16	25.2	33.96	Н
16475.37907	59.21	26.6	32.61	Н
16775.05393	59.02	26.8	32.22	Н
17537.63453	61.98	29.3	32.68	Н

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 37 of 74 Report Issued Date : Feb.22.2017

8DPSK 30MHz-1GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
34.312628	9.73	-26.8	36.53	V
140.05188	1.82	-28.2	30.02	V
249.508768	8.35	-22.9	31.25	Н
476.22854	12.77	-16.1	28.87	V
615.638256	16.5	-12.8	29.3	Н
931.124812	21.64	-7.6	29.24	V

Report No.: I16D00274-BT

8DPSK 1GHz-3GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2618.957308	52.51	9	43.51	V
2704.291346	52.22	9.5	42.72	Н
2783.252116	52.8	9.6	43.2	Н
2845.774615	53.91	10.8	43.11	V
2888.85827	53.81	10.8	43.01	Н
2983.500576	54.1	11.2	42.9	Н

8DPSK 3GHz-18GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
14906.67267	56.63	22.2	34.43	Н
15670.41807	57.59	23.6	33.99	V
16242.62093	58.34	25.5	32.84	Н
16508.0858	59.25	26.8	32.45	V
16874.7596	60.54	27.2	33.34	Н
17625.31533	61.67	29.3	32.37	V

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 38 of 74 Report Issued Date : Feb.22.2017

Note: all the test data shown was peak detected.

Conclusion: PASS
Test graphs as below:

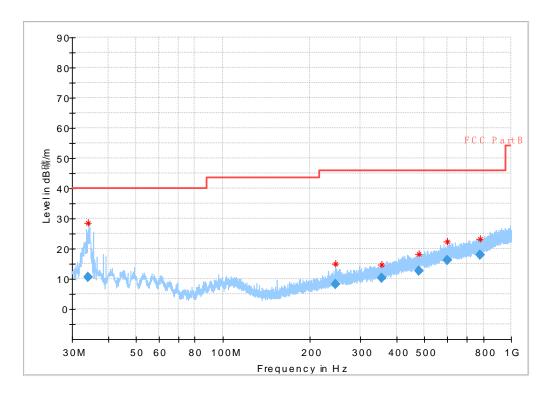


Fig.40 Radiated emission: GFSK, Ch0, 30MHz~1GHz

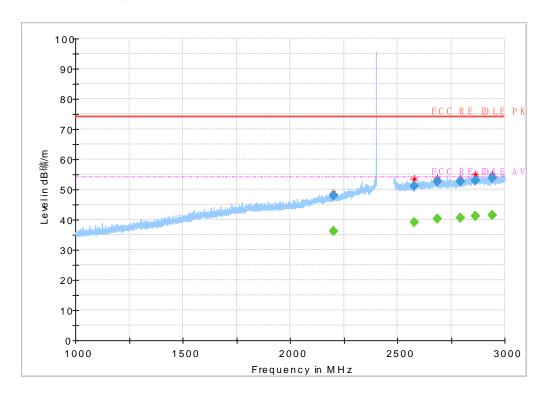


Fig.41 Radiated emission: GFSK, Ch0, 1GHz~3GHz

Page Number

: 39 of 74

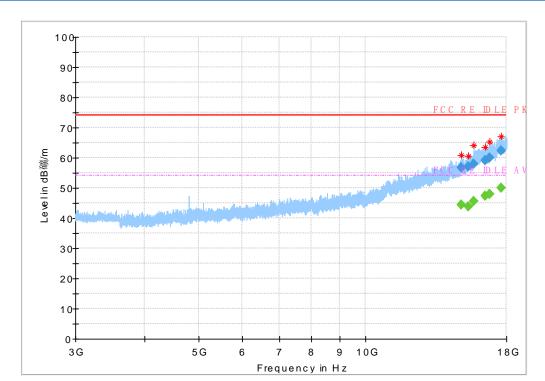
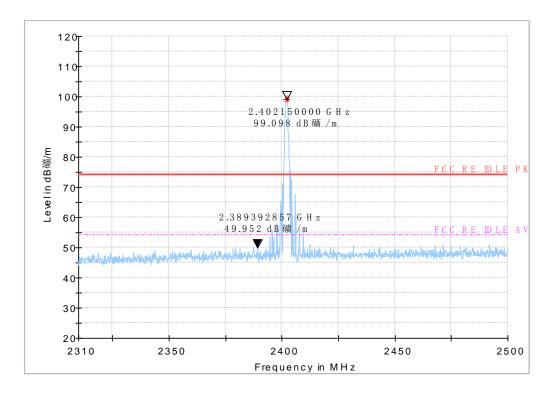
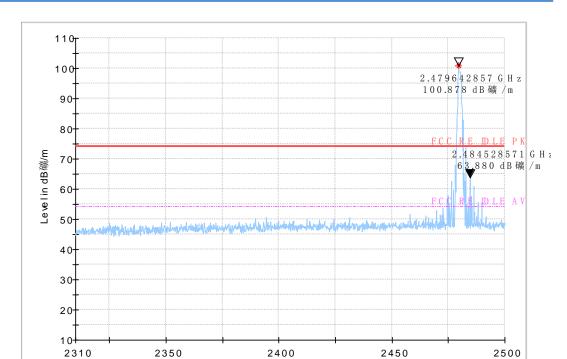


Fig.42 Radiated emission: GFSK, Ch0, 3GHz~18GHz




Fig.43 Radiated emission (Power): GFSK, low channel

Page Number

: 40 of 74

2310

Report No.: I16D00274-BT

2500

Fig.44 Radiated emission (Power): GFSK, high channel

Frequency in MHz

2450

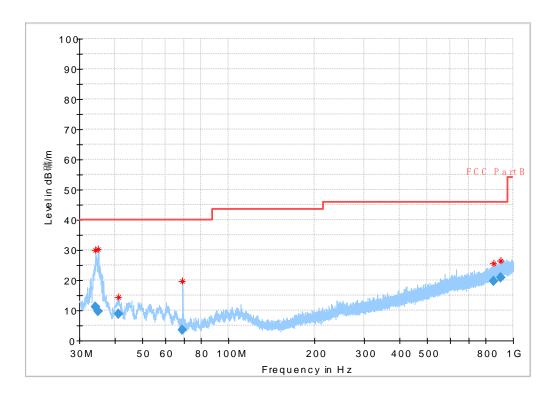


Fig.45 Radiated emission: π/4 DQPSK, Ch0, 30MHz~1GHz

Page Number

: 41 of 74

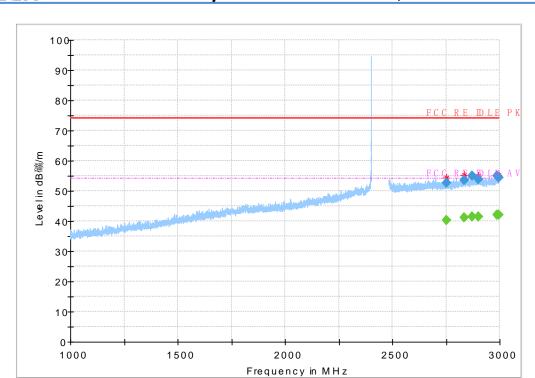


Fig.46 Radiated emission: π/4 DQPSK, Ch0, 1GHz~3GHz

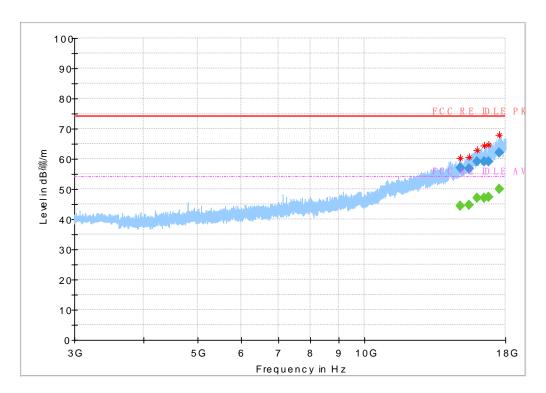


Fig.47 Radiated emission: π/4 DQPSK, Ch0, 3GHz~18GHz

Page Number

: 42 of 74

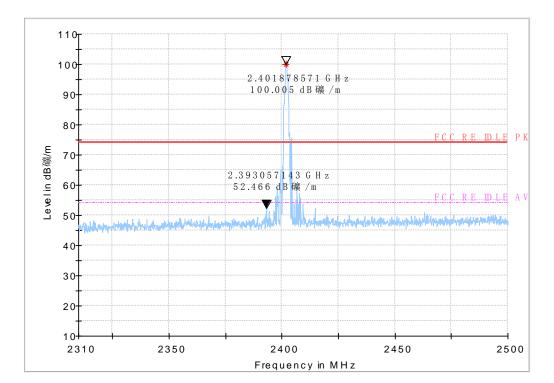


Fig.48 Radiated emission (Power): π/4 DQPSK, low channel

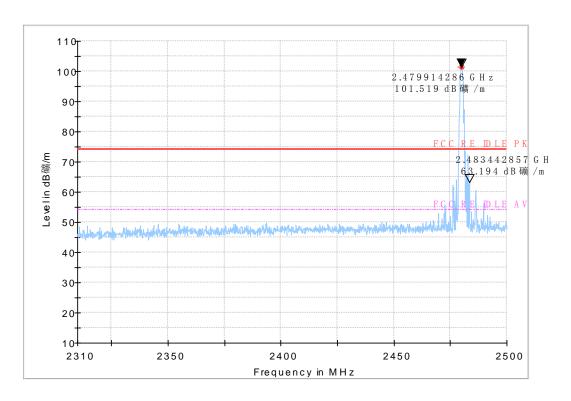


Fig.49 Radiated emission (Power): π/4 DQPSK, high channel

Page Number

: 43 of 74

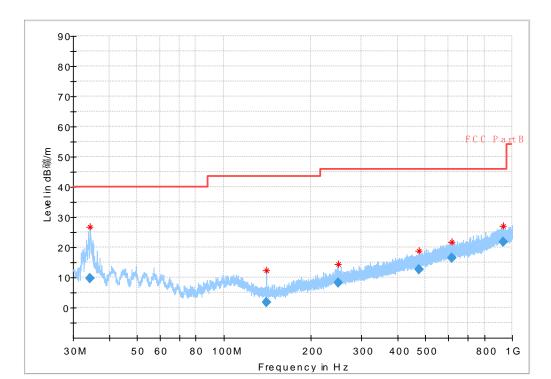


Fig.50 Radiated emission: 8DPSK, Ch0, 30MHz~1GHz

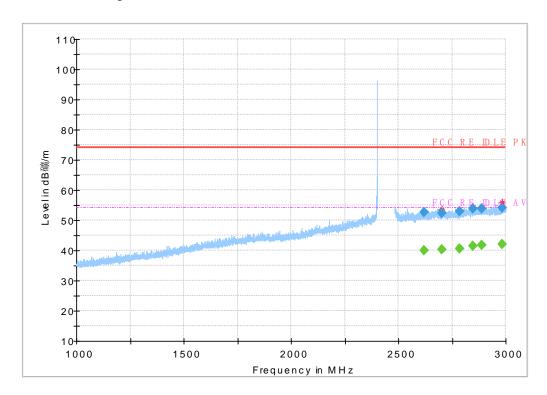


Fig.51 Radiated emission: 8DPSK, Ch0, 1GHz~3GHz

Page Number

: 44 of 74

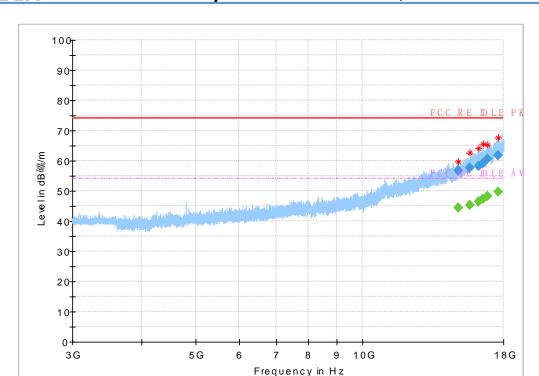


Fig.52 Radiated emission: 8DPSK, Ch0, 3GHz~18GHz

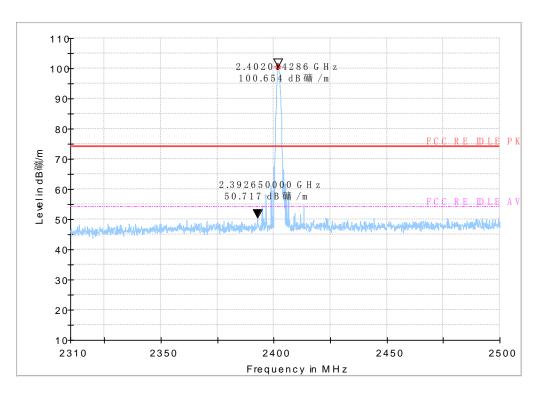
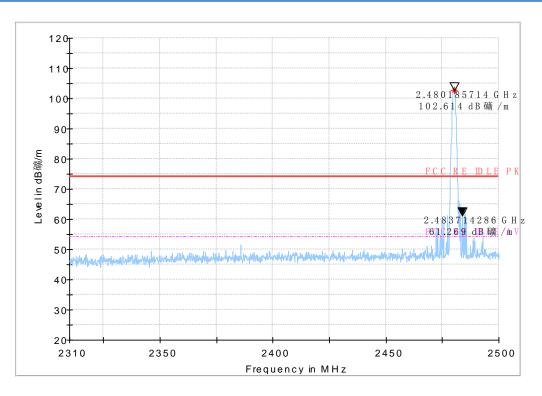



Fig.53 Radiated emission (Power): 8DPSK, low channel

Page Number

: 45 of 74

: 46 of 74

Report Issued Date : Feb.22.2017

Fig.54 Radiated emission (Power): 8DPSK, high channel

6.5. Time Of Occupancy (Dwell Time)

6.5.1 Measurement Limit:

Standard	Limit (ms)
FCC 47CFR Part 15.247 (a) (1) (iii)	< 400

6.5.2 Test procedures

The measurement is according to ANSI C63.10 clause 7.8.4

- 1. Connect the EUT through cable and divide with CBT32 and spectrum analyzer.
- 2. Enable the EUT transmit maximum power.
- 3. Set the spectrum analyzer as step 4 to step 8.
- 4. Span: Zero span, centered on a hopping channel.
- 5. RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 6. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to showtwo successive hops on a channel.

Page Number

7. Detector function: Peak.

8. Trace: Max hold.

9. Use the marker-delta function, and record it.

6.5.3 Measurement Result

For GFSK

Channel	Packet	Dwell Time (ms)		Conclusion
	DH1	Fig.55	146.734	Р
		Fig.56		
20	BUIG	Fig.57	074.000	
39	DH3	Fig.58	274.329	Р
	DUE	Fig.59	245 707	D
DH5	Fig.60	315.797	Р	

Report No.: I16D00274-BT

For $\pi/4$ DQPSK

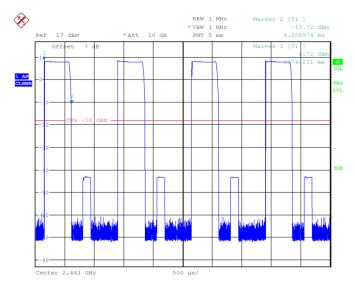
Channel	Packet	Dwell Time (ms)		Conclusion
	2DH1	Fig.61	146.734	Р
		Fig.62		
20	39 2DH3	Fig.63	- 272.734	Р
39		Fig.64		
	2DH5	Fig.65	- 314.734	Р
		Fig.66		

For 8DPSK

10100101				
Channel	Packet	Dwell Time (ms)		Conclusion
	2DU4	Fig.67	146.734	Р
	3DH1	Fig.68		
20	39 3DH3	Fig.69	070 704	9
39		Fig.70	272.734	Р
	3DH5	Fig.71	24 / 72 /	Р
30		Fig.72	314.734	P

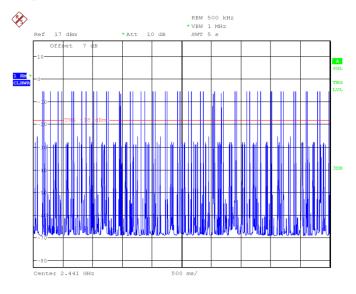
Note: the dwell time is Calculated of the sum of test time about 31.5 seconds.

East China Institute of Telecommunications Page Number : 47 of 74
TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.22.2017


Report No.: I16D00274-BT Equation: dwell time = pusletime *(1600/N)/79*T . N is the number of timeslot; T is

the time about 31.5s.

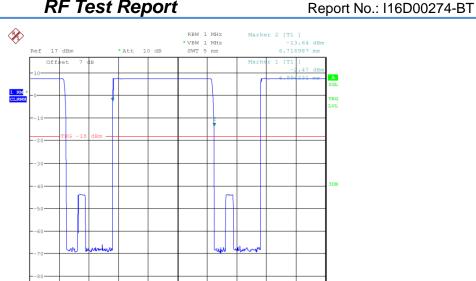
The time of DH5=3.01*(1600/6)/79*31.6=321.06ms.


Conclusion: PASS

Test graphs as below:

Date: 13.FEB.2017 14:45:02

Fig.55 Time of occupancy (Dwell Time): Ch39, Packet DH1



Date: 13.FEB.2017 14:45:51

Fig.56 Number of Transmissions Measurement: Ch39, Packet DH1

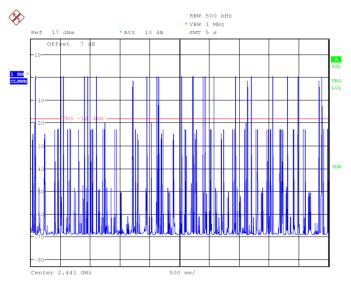
Page Number

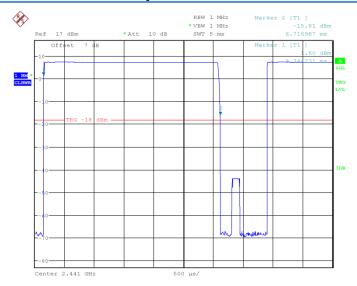
: 48 of 74

Date: 13.FEB.2017 14:46:11

Center 2.441 GHz

Fig.57 Time of occupancy (Dwell Time): Ch39, Packet DH3

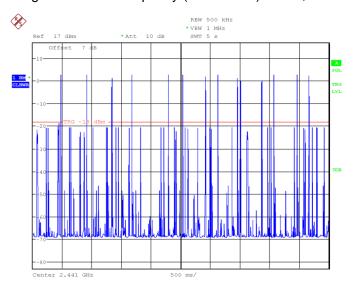



Fig.58 Number of Transmissions Measurement: Ch39, Packet DH3

Page Number

: 49 of 74

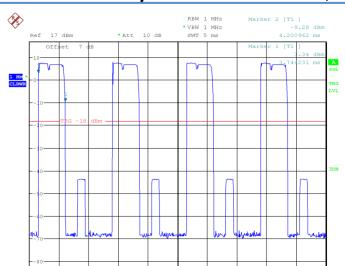
Report Issued Date : Feb.22.2017


Date: 13.FEB.2017 14:47:00

Report No.: I16D00274-BT

Date: 13.FEB.2017 14:47:21

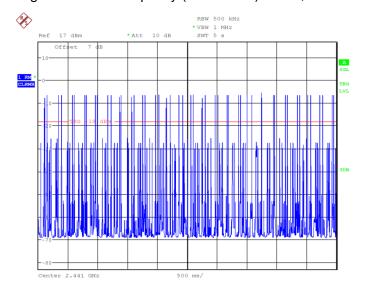
Fig.59 Time of occupancy (Dwell Time): Ch39, Packet DH5



Date: 13.FEB.2017 14:48:10

Fig.60 Number of Transmissions Measurement: Ch39, Packet DH5

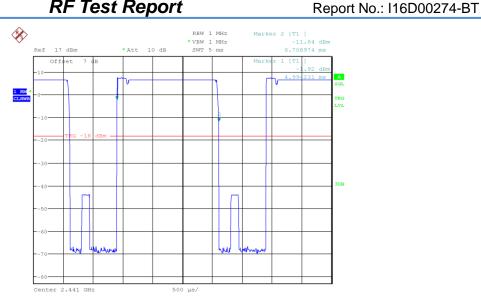
Page Number


: 50 of 74

Report No.: I16D00274-BT

Date: 13.FEB.2017 14:48:30

Fig.61 Time of occupancy (Dwell Time): Ch39, Packet 2-DH1



Date: 13.FEB.2017 14:49:19

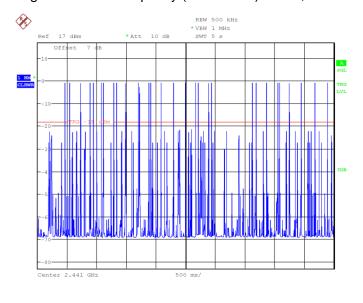
Fig.62 Number of Transmissions Measurement: Ch39, Packet 2-DH1

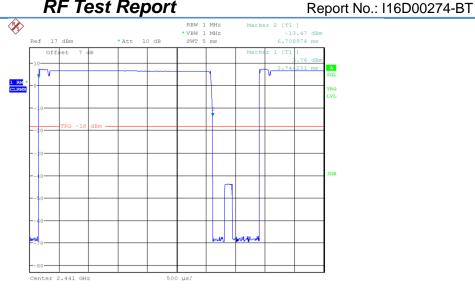
Page Number

: 51 of 74

Date: 13.FEB.2017 14:49:39

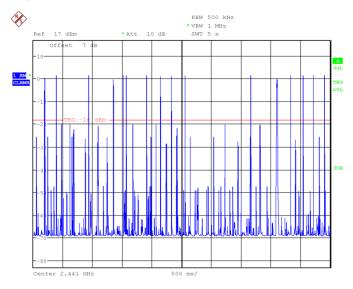
Fig.63 Time of occupancy (Dwell Time): Ch39,Packet 2-DH3




Fig.64 Number of Transmissions Measurement: Ch39, Packet 2-DH3

Page Number

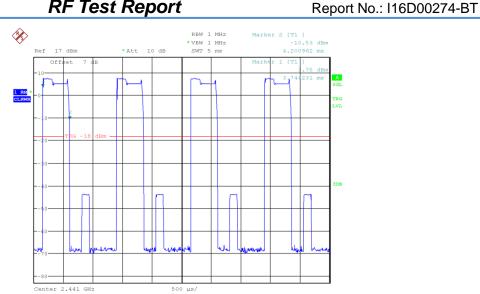
: 52 of 74


Report Issued Date : Feb.22.2017

Date: 13.FEB.2017 14:50:28

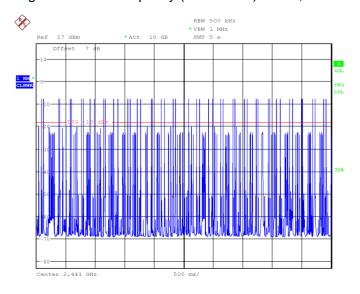
Date: 13.FEB.2017 14:50:49

Fig.65 Time of occupancy (Dwell Time): Ch39, Packet 2-DH5



Date: 13.FEB.2017 14:51:38

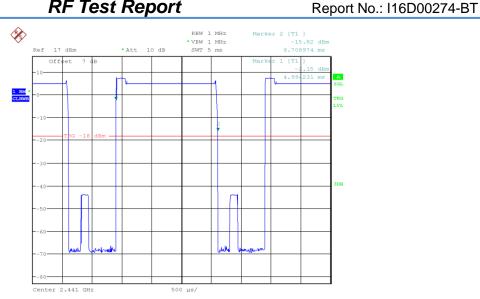
Fig.66 Number of Transmissions Measurement: Ch39, Packet 2-DH5


Page Number

: 53 of 74

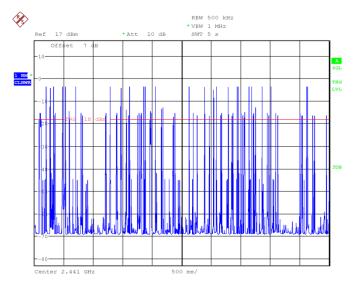
Date: 13.FEB.2017 14:51:58

Fig.67 Time of occupancy (Dwell Time): Ch39, Packet 3-DH1



Date: 13.FEB.2017 14:52:47

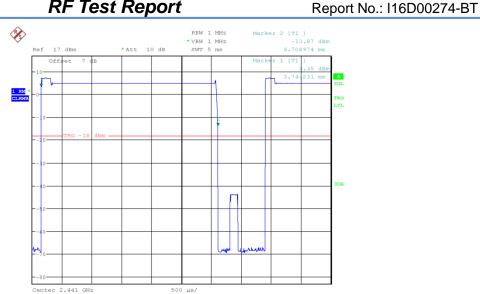
Fig.68 Number of Transmissions Measurement: Ch39, Packet 3-DH1


Page Number

: 54 of 74

Date: 13.FEB.2017 14:53:08

Fig.69 Time of occupancy (Dwell Time): Ch39,Packet 3-DH3



Date: 13.FEB.2017 14:53:57

Fig.70 Number of Transmissions Measurement: Ch39, Packet 3-DH3

Page Number

: 55 of 74

Date: 13.FEB.2017 14:54:17

Fig.71 Time of occupancy (Dwell Time): Ch39,Packet 3-DH5

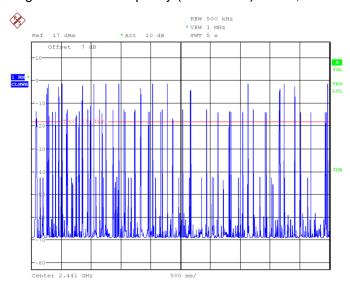


Fig.72 Number of Transmissions Measurement: Ch39, Packet 3-DH5

6.6. 20dB Bandwidth

6.6.1 Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (a) (1)	N/A

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301

Date: 13.FEB.2017 14:55:06

Page Number : 56 of 74 Report Issued Date : Feb.22.2017

6.6.2 Test procedures

The measurement is according to ANSI C63.10 clause 7.8.7

1. Connect the EUT through cable and divide with CBT32 and spectrum analyzer.

Report No.: I16D00274-BT

- 2. Enable the EUT transmit maximum power.
- 3. Set the spectrum analyzer as step 4 to step 7.
- 4. Span: two or five times of OBW
- 5. RBW= 1% to 5% of the OBW; VBW ≥ 3RBW; Max Hold.
- 6. Select the max peak, and N DB DOWN=20dB.
- 7. Record the results.

Measurement Result:

For GFSK

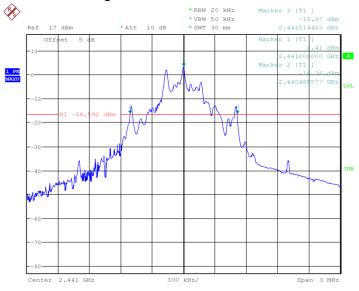
Channel	20dB Band	Conclusion	
0	Fig.73	1.029	Р
39	Fig.74	1.029	Р
78	Fig.75	1.029	Р

For π/4 DQPSK

Channel	20dB Bandwidth (KHz)		Conclusion
0	Fig.76	1.091	Р
39	Fig.77	1.091	Р
78	Fig.78	1.091	Р

For 8DPSK

Channel	20dB Band	width (KHz)	Conclusion
0	Fig.79	1.178	Р
39	Fig.80	1.178	Р
78	Fig.81	1.178	Р


Conclusion: PASS
Test graphs as below:

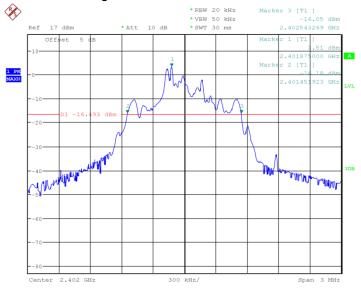
East China Institute of Telecommunications Page Number : 57 of 74
TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.22.2017

Date: 10.FEB.2017 15:51:19

Fig.73 20dB Bandwidth: GFSK, Ch0

Date: 10.FEB.2017 15:51:36

Fig.74 20dB Bandwidth: GFSK, Ch39


Page Number

: 58 of 74

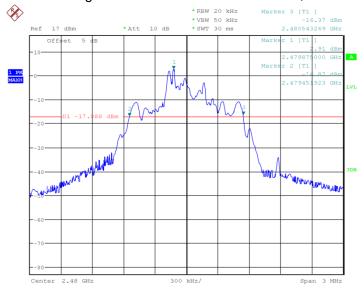
Date: 10.FEB.2017 15:51:52

Fig.75 20dB Bandwidth: GFSK, Ch78

Date: 10.FEB.2017 15:52:09

Fig.76 20dB Bandwidth: $\pi/4$ DQPSK, Ch0

Page Number


: 59 of 74

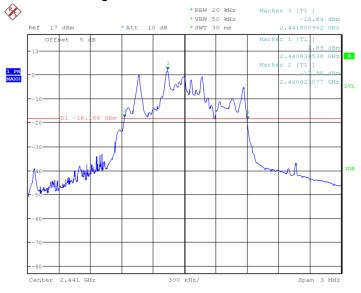
Report No.: I16D00274-BT

Date: 10.FEB.2017 15:52:25

Fig.77 20dB Bandwidth: π/4 DQPSK, Ch39

Date: 10.FEB.2017 15:52:43

Fig.78 20dB Bandwidth: $\pi/4$ DQPSK, Ch78


Page Number

: 60 of 74

Date: 10.FEB.2017 15:53:00

Fig.79 20dB Bandwidth: 8DPSK, Ch0

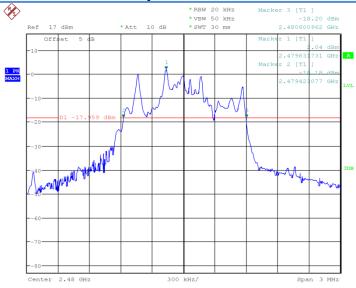

Date: 10.FEB.2017 15:53:16

Fig.80 20dB Bandwidth: 8DPSK, Ch39

Page Number

: 61 of 74

Report No.: I16D00274-BT

Date: 10.FEB.2017 15:53:33

Fig.81 20dB Bandwidth: 8DPSK, Ch78

6.7. Carrier Frequency Separation

6.7.1 Measurement Limit:

Standard	Limit (KHz)
FCC 47 CFR Part 15.247 (a) (1)	Over 25KHz or (2/3)*20dB bandwidth

6.7.2 Test procedures

The measurement is according to ANSI C63.10 clause 7.8.2.

- 1. Connect the EUT through cable and divide with CBT32 and spectrum analyzer.
- 2. Enable the EUT transmit in hopping mode.
- 3. Span: Wide enough to capture the peaks of two adjacent channels.
- 4. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 5. Video (or average) bandwidth (VBW) ≥ RBW.
- 6. Sweep: Auto.
- 7. Detector function: Peak.
- 8. Trace: Max hold.
- 9. Allow the trace to stabilize.

6.7.3 Measurement Result:

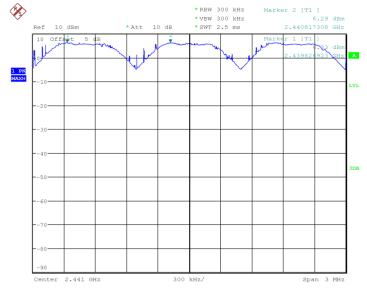
For GFSK

Channel	Carrier separation (KHz)	Conclusion
---------	--------------------------	------------

East China Institute of Telecommunications Page Number : 62 of 74 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.22.2017

39	Fig.82	990.3846	Р

Report No.: I16D00274-BT


For π/4 DQPSK

Channel	Carrier sepa	ration (KHz)	Conclusion
39	Fig.83	1043.2692	Р

For 8DPSK

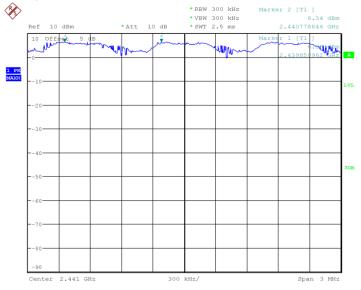
Channel	Carrier sepa	ration (KHz)	Conclusion
39	Fig.84	927.8846	Р

Conclusion: PASS Test graphs as below:

Date: 13.FEB.2017 15:08:23

Fig.82 Carrier separation measurement: GFSK, Ch39

Page Number : 63 of 74 Report Issued Date : Feb.22.2017



Report No.: I16D00274-BT

Date: 13.FEB.2017 15:10:17

Fig.83 Carrier separation measurement: π/4 DQPSK, Ch39

Date: 13.FEB.2017 15:12:10

Fig.84 Carrier separation measurement: 8DPSK, Ch39

6.8. Number Of Hopping Channels

6.8.1 Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (a)(1)(iii)	At least 15 non-overlapping channels

6.8.2 Test procedure

East China Institute of Telecommunications Page Number : 64 of 74 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.22.2017

Report No.: I16D00274-BT

The measurement is according to ANSI C63.10 clause 7.8.3.

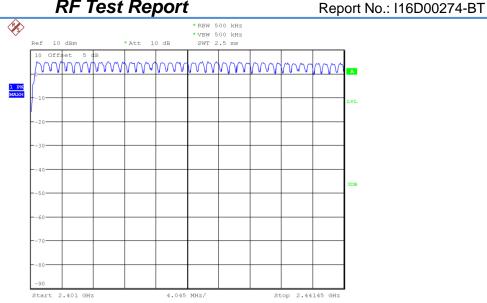
- 1. Connect the EUT through cable and divide with CBT32 and spectrum analyzer.
- 2. Enable the EUT transmit in hopping mode.
- 3. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- 4. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 5. VBW \geq RBW.
- 6. Sweep: Auto.
- 7. Detector function: Peak.
- 8. Trace: Max hold.
- 9. Allow the trace to stabilize.
- 10. Record the test rsults.

6.8.3 Measurement Result:

For GFSK

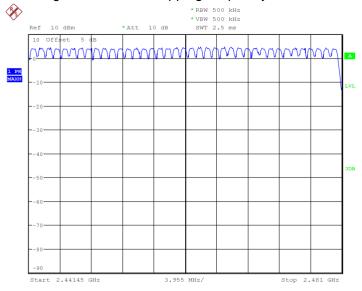
Channel	Number of hopping channels		Conclusion
0~39	Fig.85	70	Р
40~78	Fig.86	79	Р

For π/4 DQPSK


Channel	Number of hopping channels		Conclusion
0~39	Fig.87	79	Р
40~78	Fig.88	79	Р

For 8DPSK

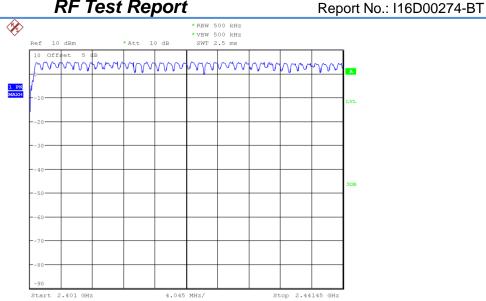
Channel	Number of hopping channels		Conclusion
0~39	Fig.89	70	Р
40~78	Fig.90	79	Р


Conclusion: PASS
Test graphs as below:

East China Institute of Telecommunications Page Number : 65 of 74
TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.22.2017

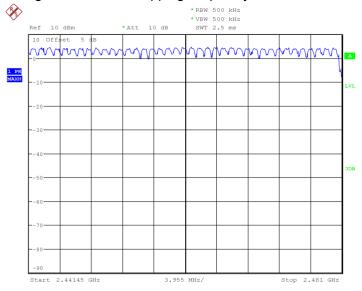
Date: 10.FEB.2017 16:04:44

Fig.85 Number of hopping frequency: GFSK, Ch0~39



Date: 10.FEB.2017 16:06:49

Fig.86 Number of hopping frequency: GFSK, Ch40~78


Page Number

: 66 of 74

Date: 10.FEB.2017 16:08:54

Fig.87 Number of hopping frequency: $\pi/4$ DQPSK, Ch0~39

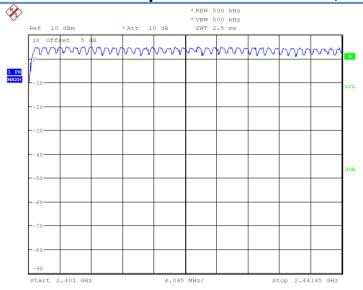
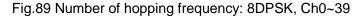
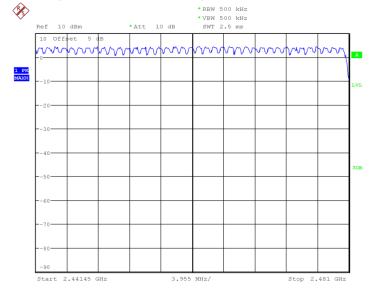

Date: 10.FEB.2017 16:10:59

Fig.88 Number of hopping frequency: $\pi/4$ DQPSK, Ch40~78

Page Number


: 67 of 74



Report No.: I16D00274-BT

Date: 10.FEB.2017 16:15:08

Fig.90 Number of hopping frequency: 8DPSK, Ch40~78

6.9. AC Powerline Conducted Emission

Method of Measurement: See ANSI C63.10-2013-clause 6.2

- 1 The one EUT cable configuration and arrangement and mode of operation that produced the emission with the highest amplitude relative to the limit is selected for the final measurement, while applying the appropriate modulating signal to the EUT.
- 2 If the EUT is relocated from an exploratory test site to a final test site, the highest emissions shall be remaximized at the final test location before final ac power-line conducted emission measurements are performed.
- 3 The final test on all current-carrying conductors of all of the power cords to the

Page Number

Report Issued Date : Feb.22.2017

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301

equipment that comprises the EUT (but not the cords associated with other non-EUT equipment in the system) is then performed for the full frequency range for which the EUT is being tested for compliance without further variation of the EUT arrangement, cable positions, or EUT mode of operation.

Report No.: I16D00274-BT

: 69 of 74

4 If the EUT is comprised of equipment units that have their own separate ac power connections, e.g., floor-standing equipment with independent power cords for each shelf that are able to connect directly to the ac power network, each current-carrying conductor of one unit is measured while the other units are connected to a second (or more) LISN(s). All units shall be separately measured. If a power strip is provided by the manufacturer, to supply all of the units making up the EUT, only the conductors in the power cord of the power strip shall be measured.

If the EUT uses a detachable antenna, these measurements shall be made with a suitable dummy load connected to the antenna output terminals; otherwise, the tests shall be made with the antenna connected and, if adjustable, fully extended. When measuring the ac conducted emissions from a device that operates between 150 kHz and 30 MHz a non-detachable antenna may be replaced with a dummy load for the measurements within the fundamental emission band of the transmitter, but only for those measurements.36 Record the six highest EUT emissions relative to the limit of each of the current-carrying conductors of the power cords of the equipment that comprises the EUT over the frequency range specified by the procuring or regulatory agency. Diagram or photograph the test setup that was used. See Clause 8 for full reporting requirements.

Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Measurement Result and limit:

(Quasi-peak-average Limit)

			Result (dBμV)	
Frequency range (MHz)	Quasi-peak Limit (dBμV)	Average Limit (dB _µ V)	With charger	Conclusion
	. , .		802.11b	
0.15 to 0.5	66 to 56	56 to 46		
0.5 to 5	56	46	Fig.91	Р
5 to 30	60	50		

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Conclusion: Pass

East China Institute of Telecommunications Page Number TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.22.2017

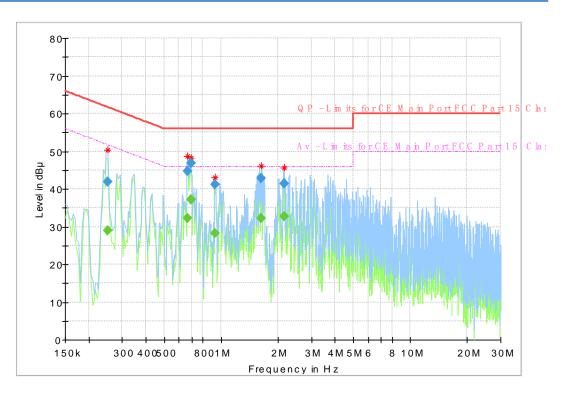


Fig.91 AC Powerline Conducted Emission

rigio i Alo i ovorimo dendados Emicolon									
Frequency	QuasiPeak	Average	Limit	Margin	Meas.	Bandwidth	Line	Filter	Corr.
(MHz)	(dB µ V)	(dB µ V)	(dB μ V)	(dB)	Time	(kHz)			(dB)
0.250744	41.85	I	61.73	19.88	1000.0	9.000	N	ON	9.7
0.250744		29.00	51.73	22.73	1000.0	9.000	N	ON	9.7
0.664912	44.78		56.00	11.22	1000.0	9.000	L1	ON	9.7
0.664912		32.24	46.00	13.76	1000.0	9.000	L1	ON	9.7
0.691031	46.76		56.00	9.24	1000.0	9.000	L1	ON	9.7
0.691031		37.26	46.00	8.74	1000.0	9.000	L1	ON	9.7
0.929831	41.21		56.00	14.79	1000.0	9.000	L1	ON	9.7
0.929831		28.17	46.00	17.83	1000.0	9.000	L1	ON	9.7
1.635038	42.74		56.00	13.26	1000.0	9.000	L1	ON	9.7
1.635038		32.28	46.00	13.72	1000.0	9.000	L1	ON	9.7
2.153681	41.51		56.00	14.49	1000.0	9.000	L1	ON	9.7
2.153681		32.61	46.00	13.39	1000.0	9.000	L1	ON	9.7

Page Number : 70 of 74 Report Issued Date : Feb.22.2017

7. Test Equipments and Ancillaries Used For Tests

The test equipments and ancillaries used are as follows.

Conducted test system

No.	Equipmen	Model	Serial	Manufactur	Calibration	Cal.interval
NO.	t		Number	er	date	
1	Vector	FSQ26	101096	Rohde&Sch	2016-05-12	1 Year
	Signal	F3Q20	101096	warz	2016-05-12	
2	DC Power	ZUP60-14	LOC-220Z0	TDL-Lambd	2016-05-12	1 Year
~	Supply	20100-14	06	а	2010-05-12	
3	Bluetooth	CBT32	100785	Rohde&Sch	2016-05-12	1 Year
3	Tester	CD132	100765	warz	2016-05-12	

Report No.: I16D00274-BT

Radiated emission test system

No.	Equipment	Model	Serial Number	Manufactu rer	Calibration date	Cal.interval
1	Universal Radio Communication Tester	CMU20 0	123101	R&S	2016-05-12	1 Year
3	Test Receiver	ESU40	100307	R&S	2016-05-12	1 Year
4	Trilog Antenna	VULB9 163	VULB916 3-515	Schwarzbe ck	2014-11-05	3 Year
5	Double Ridged Guide Antenna	ETS-31 17	135885	ETS	2014-05-06	3 Year
8	2-Line V-Network	ENV21 6	101380	R&S	2016-05-12	1 Year

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301

: 71 of 74 Page Number Report Issued Date : Feb.22.2017

Anechoic chamber

Fully anechoic chamber by Frankonia German.

8. Test Environment

Shielding Room1 (6.0 meters × 3.0 meters × 2.7 meters) did not exceed following limits along the conducted RF performance testing:

Report No.: I16D00274-BT

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 25 %, Max. = 75 %
Shielding effectiveness	> 110 dB
Ground system resistance	< 0.5 Ω

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =30 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω

Fully-anechoic chamber1 (6.9 meters×10.9 meters×5.4 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 25 %, Max. = 75 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω
VSWR	Between 0 and 6 dB, from 1GHz to 18GHz
Site Attenuation Deviation	Between -4 and 4 dB,30MHz to 1GHz
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000 MHz

Page Number

: 72 of 74

ANNEX A. Deviations from Prescribed Test Methods

Report No.: I16D00274-BT

No deviation from Prescribed Test Methods.

East China Institute of Telecommunications Page Number : 73 of 74
TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.22.2017

ANNEX B. Accreditation Certificate

Accredited Laboratory

A2LA has accredited

EAST CHINA INSTITUTE OF TELECOMMUNICATIONS

Shanghai, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005
General requirements for the competence of testing and calibration laboratories. This laboratory also meets the requirements of any additional program requirements in the field of Electrical. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 10% day of December 2014.

Report No.: I16D00274-BT

President & CEO V
For the Accreditation Council
Certificate Number 3682.01

Page Number

: 74 of 74

Report Issued Date : Feb.22.2017

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation

*******End The Report******