

TEST REPORT Report Reference No..... TRE15100174 R/C..... 27653 FCC ID.....: WA6S3502 Applicant's name..... Verykool USA Inc Address..... 3636 Nobel Drive, Suite 325, San Diego, CA92122 USA Manufacturer..... HUIZHOU QIAOXING ELECTRONICS TECHNOLOGY CO., LTD Room 1906 of VIA Building, No.9966 Shennan Avenue, Yuehai Address..... Street in Nanshan District, Shenzhen , China Mobile Phone Test item description: Trade Mark verykool Model/Type reference..... s3502 Listed Model(s) FCC 47 CFR Part2.1093 Standard:: ANSI/IEEE C95.1: 1999 IEEE 1528: 2013 Date of receipt of test sample...... Oct 28, 2015 Date of testing...... Oct 29, 2015- Nov 11,2015

Date of issue:	Nov 18, 2015			
Result:	PASS			
Compiled by				
(position+printed name+signature):	File administrators:	Candy Liu		

Lin

Toms Mu

1	1	
FI	ours	M

F

Hans Hu

Hans Hu

Testing Laboratory Name :	Shenzhen Huatongwei International Inspection Co., Ltd
Address:	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao Gongming, Shenzhen, China

Test Engineer:

Manager:

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely corresponds to the test sample.

Supervised by

Approved by

(position+printed name+signature)..:

(position+printed name+signature)..:

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1.</u>	Test Standards and Test Desciption	3
1.1.	Test Standards	3
1.2.	Test Description	3
<u>2.</u>	Summary	4
2.1.	Client Information	4
2.2.	Product Description	4
2.3.	EUT configuration	6
2.4.		6
<u>.</u>		/
3.1.	Address of the test laboratory	(
৩.∠. ৫ ৫	Test Facility	7
۵.5. ۵	Environmental conditions	8
<u></u> 5	Measurement Uncertainty	9
<u>o.</u> 6.	SAR Measurements System Configuration	
<u></u> 61	SAR Measurement Set-up	10
6.2.	DASY5 E-field Probe System	10
6.3.	Phantoms	12
6.4.	Device Holder	12
<u>7.</u>	SAR Test Procedure	13
7.1.	Scanning Procedure	13
7.2.	Data Storage and Evaluation	14
<u>8.</u>	Position of the wireless device in relation to the phantom	16
8.1.	Head Position	16
8.2.	Body Position	17
<u>9.</u>	System Check	18
9.1.	Tissue Dielectric Parameters	18
9.2.	SAR System Check	20
<u>10.</u>	SAR Exposure Limits	28
<u>11.</u>	Conducted Power Measurement Results	29
<u>12.</u>	Maximum Tune-up Limit	31
<u>13.</u>	Antenna Location	32
<u>14.</u>	SAR Measurement Results	33
<u>15.</u>	Simultaneous Transmission analysis	44
<u>16.</u>	TestSetup Photos	48
<u>17.</u>	External and Internal Photos of the EUT	50

1. Test Standards and Test Desciption

1.1. Test Standards

The tests were performed according to following standards:

FCC 47 Part 2.1093 Radiofrequency Radiation Exposure Evaluation:Portable Devices IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio

Frequency Electromagnetic Fields, 3 KHz to 300 GHz. <u>IEEE Std 1528™-2013:</u> IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement

Techniques. <u>KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r03:</u> SAR Measurement Requirements for 100 MHz to 6 GHz

<u>KDB865664 D02 SAR Reporting v01r01:</u> RF Exposure Compliance Reporting and Documentation Considerations

<u>KDB 447498 D01 Mobile Portable RF Exposure v05r02:</u> Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB 248227 D01 SAR meas for 802 11 a b g v01r02: SAR Measurement Procedures for 802.11 a/b/g Transmitters

<u>KDB 648474 D04 Handset SAR v01r02:</u> SAR Evaluation Considerations for Wireless Handsets KDB 941225 D01 SAR test for 3G devices v02: SAR Measurement Procedures for 3G Devices

KDB 941225 D03 Test Reduction GSM_GPRS_EDGE V01 : Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE

KDB 941225 D04 v01: SAR for GSM EGPRS Dual Xfer Mode

KDB 941225 D05 SAR for LTE Devices v02r03: SAR Evaluation Considerations for LTE Devices

KDB 941225 D06 Hotspot Mode SAR v01r01: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities

1.2. Test Description

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power

2. <u>Summary</u>

2.1. Client Information

Applicant:	Verykool USA Inc
Address:	3636 Nobel Drive, Suite 325, San Diego, CA92122 USA
Manufacturer:	HUIZHOU QIAOXING ELECTRONICS TECHNOLOGY CO., LTD
Address:	Room 1906 of VIA Building, No.9966 Shennan Avenue, Yuehai Street in Nanshan District, Shenzhen ,China

2.2. Product Description

Name of EUT	Mobile Phone		
Trade Mark:	verykool		
Model No.:	s3502		
Listed Model(s):			
Device Category:	Portable		
RF Exposure Environment:	General Population / Uncontrolled		
Power supply:	DC 3.8V From internal battery		
Adapter information:	Model:Q350 Input:AC 100-240V 50/60Hz 0.15A Output:5Vd.c., 700mA		
Hardware version:	s3502_VK_Generic_Dual_HW_1.0		
Software version:	s3502_VK_Generic_Dual_SW_1.3		
Maximum SAR Value			
Separation Distance:	Head: 0mm		
	Body: 10mm		
Max Report SAR Value (1g):	Head: 1.223 W/Kg		
	Body: 1.151 W/Kg		
2G			
Support Network:	GSM, GPRS, EGPRS		
Support Band:	GSM850, DCS1900		
Modulation:	GSM/GPRS: GMSK EGPRS: GMSK		
Transmit Frequency:	GSM850: 824.20MHz-848.80MHz PCS1900: 1850.20MHz-1909.80MHz		
Receive Frequency:	GSM850: 869.20MHz-893.80MHz PCS1900: 1930.20MHz-1989.80MHz		
GPRS Class:	12		
EGPRS Class:	12		
Antenna type:	Intergal Antenna		

E

WIFI	
Supported type:	802.11b/802.11g/802.11n(H20)/802.11n(H40)
Modulation:	802.11b: DSSS (DBPSK / DQPSK / CCK)
	802.11g/n(H20)/n(H40): OFDM (BPSK / QPSK / 16QAM / 64QAM)
Operation frequency:	802.11b/g/n(H20): 2412MHz~2462MHz
	802.11n(H40): 2422MHz~2452MHz
Channel number:	802.11b/g/n(H20): 11
	802.11n(H40): 7
Channel separation:	5MHz
Antenna type:	Internal Antenna
Bluetooth	
Version:	Supported BT4.0+EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	Internal Antenna
Bluetooth (BLE)	
Version:	Supported BT4.0+EDR
Modulation:	GFSK
Operation frequency:	2402MHz~2480MHz
Channel number:	40
Channel separation:	2MHz
Antenna type:	Internal Antenna

2.3. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- supplied by the lab

0	Power Cable	Length (m) :	1
		Shield :	1
		Detachable :	1
0	Multimeter	Manufacturer :	1
		Model No. :	/

2.4. Modifications

No modifications were implemented to meet testing criteria.

3. Test Environment

3.1. Address of the test laboratory

Laboratory:Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Labo

ratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for tec hnical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional progra m requirements in the identified field of testing. Valid time is until December 31, 2016.

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FC C is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017.

IC-Registration No.: 5377A&5377B

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016.

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on Dec.03, 2014, valid time is until Dec.03, 2017.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Aust ralian C-Tick mark as a result of our A2LA accreditation.

VCCI

The 3m Semi-

anechoic chamber (12.2m×7.95m×6.7m) of Shenzhen Huatongwei International Inspection Co., Ltd.

has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2484. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 29, 2015.

Radiated disturbance above 1GHz measurement of Shenzhen Huatongwei International Inspection Co., Ltd. h as been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-292. Date of Registration: Dec. 24, 2013. Valid time is until Dec. 23, 2016.

Main Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-2726. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 19, 2015.

Telecommunication Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with R egistration No.: T-1837. Date of Registration: May 07, 2013. Valid time is until May 06, 2016.

DNV

Shenzhen Huatongwei International Inspection Co., Ltd. has been found to comply with the requirements of D NV towards subcontractor of EMC and safety testing services in conjunction with the EMC and Low voltage Di rectives and in the voluntary field. The acceptance is based on a formal quality Audit and followups according to relevant parts of ISO/IEC Guide 17025 (2005), in accordance with the requirements of the D

NV Laboratory Quality Manual towards subcontractors. Valid time is until Aug. 24, 2016.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

4. Equipments Used during the Test

				Calibration		
Test Equipment	Manufacturer	Type/Model	Serial Number	Last Calibration	Calibration Interval	
Data Acquisition Electronics DAEx	SPEAG	DAE4	1315	2015/07/22	1	
E-field Probe	SPEAG	ES3DV3	3292	2015/08/15	1	
System Validation Dipole 835V2	SPEAG	D835V2	4d134	2014/12/13	1	
System Validation Dipole D900V2	SPEAG	D900V2	1d129	2015/09/01	1	
System Validation Dipole D1750V2	SPEAG	D1750V2	1062	2015/07/25	1	
System Validation Dipole D1900V2	SPEAG	D1900V2	5d150	2014/12/12	1	
System Validation Dipole 2450V2	SPEAG	D2450V2	884	2015/09/01	1	
Dielectric Probe Kit	Agilent	85070E	US44020288	/	/	
Power meter	Agilent	E4417A	GB41292254	2015/10/26	1	
Power sensor	Agilent	8481H	MY41095360	2015/10/26	1	
Network analyzer	Agilent	8753E	US37390562	2015/10/25	1	
Universal Radio Communication Tester	ROHDE & SCHWARZ	CMU200	112012	2015/10/23	1	

Note:

The Probe, Dipole and DAE calibration reference to the Appendix A.

5. <u>Measurement Uncertainty</u>

No.	Error Description	Туре	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measureme	nt System	-								
1	Probe calibration	В	5.50%	N	1	1	1	5.50%	5.50%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2	Axial isotropy	В	4.70%	R	√3	0.7	0.7	1.90%	1.90%	œ
3	Hemispherical isotropy	В	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4	Boundary Effects	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	∞
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	×
7	RF ambient conditions-noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
8	RF ambient conditions- reflection	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	8
9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	∞
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	00
11	RF ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	∞
12	Probe positioned mech. restrictions	В	0.40%	R	$\sqrt{3}$	1	1	0.20%	0.20%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13	Probe positioning with respect to phantom shell	В	2.90%	R	$\sqrt{3}$	1	1	1.70%	1.70%	∞
14	Max.SAR evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
				Test Sample Re	lated					
15	Test sample positioning	A	1.86%	N	1	1	1	1.86%	1.86%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16	uncertainty	A	1.70%	N	1	1	1	1.70%	1.70%	00
17	Drift of output power	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞
				Phantom and Se	et-up					
18	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
19	Liquid conductivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	œ
20	Liquid conductivity (meas.)	А	0.50%	Ν	1	0.64	0.43	0.32%	0.26%	œ
21	Liquid permittivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	×
22	Liquid cpermittivity (meas.)	А	0.16%	Ν	1	0.64	0.43	0.10%	0.07%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Combined s	tandard uncertainty	<i>u_c</i> = 1	$\sum_{i=1}^{22} c_i^2 u_i^2$	1	/	/	/	10.20%	10.00%	00
Expand	ded uncertainty	и	$_{r} = 2u_{c}$	R	K=2	/	/	20.40%	20.00%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(connuenc			· ·		1	1		1	1	

6. SAR Measurements System Configuration

6.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.

Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld Mobile Phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

6.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

• Probe Specification

Construction Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.

Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)
Dynamic Range	5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

• Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

6.3. Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

6.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

7. SAR Test Procedure

7.1. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^{\circ}$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x5 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as: • maximum search • extrapolation • boundary correction • peak search for averaged SAR During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x5 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x5 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

7.2. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	Sensitivity: Conversion factor:	Normi, ai0, ai1, ai2 ConvFi
	Diode compression point:	Dcpi
Device parameters:	Frequency:	f
	Crest factor:	cf
Media parameters:	Conductivity:	σ
	Density:	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

 $\mathbf{H}-\mathrm{field probes}$

Vi: compensated signal of channel (i = x, y, z)

- Ui: input signal of channel (i = x, y, z)
- cf: crest factor of exciting field (DASY parameter)

dcpi: diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E – fieldprobes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

	J
Vi:	compensated signal of channel (i = x, y, z)
Normi:	sensor sensitivity of channel (i = x, y, z),
	[mV/(V/m)2] for E-field Probes
ConvF:	sensitivity enhancement in solution
aij:	sensor sensitivity factors for H-field probes
f:	carrier frequency [GHz]
Ei:	electric field strength of channel i in V/m
Hi:	magnetic field strength of channel i in A/m

Report No: TRE15100174

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

SAR: local specific absorption rate in mW/g

Etot: total field strength in V/m

σ: conductivity in [mho/m] or [Siemens/m]

ρ: equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

8. <u>Position of the wireless device in relation to the phantom</u>

8.1. Head Position

The wireless device define two imaginary lines on the handset, the vertical centreline and the horizontal line, for the handset in vertical orientation as shown in Figures 5a and 5b.

The vertical centreline passes through two points on the front side of the handset: the midpoint of the width W_t of the handset at the level of the acoustic output (point A in Figures 5a and 5b), and the midpoint of the width W_b of the bottom of the handset (point B).

The horizontal line is perpendicular to the vertical centreline and passes through the centre of the acoustic output (see Figures 5a and 5b). The two lines intersect at point A.

Note that for many handsets, point A coincides with the centre of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centreline is not

necessarily parallel to the front face of the handset (see Figure 5b), especially for clam-shell handsets, handsets with flip cover pieces, and other irregularly shaped handsets.

- Figures ba
- W_t Width of the handset at the level of the acoustic
- W_b Width of the bottom of the handset
- A Midpoint of the widthwt of the handset at the level of the acoustic output
- B Midpoint of the width wb of the bottom of the handset

Cheek position

Picture 2 Cheek position of the wireless device on the left side of SAM

Tilt position

Picture 3 Tilt position of the wireless device on the left side of SAM

8.2. Body Position

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.

Picture 4 Test positions for body-worn devices

9. System Check

9.1. Tissue Dielectric Parameters

The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.The table 3 and table 4 show the detail solition.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

Tissue dielectric parameters for head and body phantoms				
Target Frequency	He	ead	E	Body
(MHz)	٤r	σ(s/m)	٤r	σ(s/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

Dielectric performance of Head tissue simulating liquid					
Frequency	Description	DielectricPa	arameters	Temp	
(MHz)	Description	εr	σ(s/m)	°C	
	Recommended result	41.50	0.90	/	
835	±5% window	39.43 to 43.58	0.86 to 0.95		
666	Measurement value 2015-10-29	41.48	0.91	21	
1900	Recommended result ±5% window	40.0 38.00 to 42.00	1.40 1.33 to 1.47	/	
1300	Measurement value 2015-11-02	40.01	1.41	21	
0.450	Recommended result ±5% window	39.2 37.24 to 41.16	1.80 1.71 to 1.89	/	
2450	Measurement value 2015-11-04	39.00	1.78	21	

Check Result:

Dielectric performance of Body tissue simulating liquid					
Frequency	Description	DielectricPa	DielectricParameters		
(MHz)	Description	٦3	σ(s/m)	°C	
025	Recommended result ±5% window	55.2 52.44 to 57.96	0.97 0.92 to 1.02	/	
835	Measurement value 2015-10-29	55.10	0.97	21	
1000	Recommended result ±5% window	53.3 50.64 to 55.97	1.52 1.44 to 1.60	/	
1900	Measurement value 2015-11-03	53.21	1.51	21	
2450	Recommended result ±5% window	52.7 50.07 to 55.34	1.95 1.85 to 2.05	/	
2450	Measurement value 2015-11-05	52.65	1.93	21	

9.2. SAR System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system $(\pm 10 \%)$.

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

The output power on dipole port must be calibrated to 24 dBm (250mW) before dipole is connected.

Photo of Dipole Setup

Check Result:

Head					
Frequency	Description	SAR(V	V/kg)	Temp	
(MHz)	Description	1g	10g	°C	
025	Recommended result ±5% window	2.41 2.29 - 2.53	1.57 1.49 - 1.65	/	
835	Measurement value 2015-10-29	2.37	1.56	21	
	Recommended result ±5% window	9.71 9.22 - 10.20	5.08 4.83 - 5.33	/	
1900	Measurement value 2015-11-02	9.66	4.98	21	
0.450	Recommended result ±5% window	13.1 11.79 - 14.41	6.17 5.56 - 6.78	/	
2450	Measurement value 2015-11-04	12.76	5.93	21	

Body				
Frequency	Description	SAR(\	N/kg)	Temp
(MHz)	Description	1g	10g	°C
02 <i>E</i>	Recommended result ±5% window	2.47 2.35 - 2.59	1.64 1.55 - 1.71	/
000	Measurement value 2015-10-29	2.45	1.63	21
	Recommended result	9.98	5.26	/
1000	±5% window	9.48 - 10.48	5.00 - 5.52	1
1900	Measurement value 2015-11-03	9.91	5.23	21
	Recommended result	13.1	6.11	/
2450	±5% window	11.79 -14.41	5.50 -6.72	1
2400	Measurement value 2015-11-05	12.53	6.09	21

Note:

the graph results see follow.
 Recommended Values used derive from the calibration certificate and 250 mW is used asfeeding power to the calibrated dipole.

System Performance Check at 835 MHz Head

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d134

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 835 MHz; σ = 0.91 S/m; ϵ r = 41.48; ρ = 1000 kg/m3 Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.1, 6.1, 6.1); Calibrated: 15/08/2015;
Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1315; Calibrated: 22/07/2015
Phantom: SAM 1; Type: SAM;
Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x91x1):Measurement grid: dx=15.00 mm, dy=15.00 mm Maximum value of SAR (interpolated) = 2.58 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.994 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 3.542 W/kg

SAR(1 g) = 2.37 mW/g; SAR(10 g) = 1.56 mW/g

Maximum value of SAR (measured) = 2.59 mW/g

System Performance Check 835MHz Head 250mW

System Performance Check at 835 MHz Body

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d134

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 835 MHz; σ = 0.97 S/m; ϵ_r = 55.1; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF(6.1, 6.1, 6.1); Calibrated: 15/08/2015;

- •Sensor-Surface: 4mm (Mechanical Surface Detection)
- •Electronics: DAE4 Sn1315; Calibrated: 22/07/2015
- •Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x91x1):Measurement grid: dx=15.00 mm, dy=15.00 mm Maximum value of SAR (interpolated) = 2.45 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 46.528 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 2.562 W/kg

SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.63 mW/g

Maximum value of SAR (measured) = 2.46 mW/g

System Performance Check 835MHz Body 250mW

System Performance Check at 1900 MHz Head

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d150

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1900 MHz; σ = 1.41S/m; ϵ r = 40.01; ρ = 1000 kg/m3 Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(5.07,5.07,5.07); Calibrated: 15/08/2015; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 22/07/2015 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1):Measurement grid: dx=15.00 mm, dy=15.00 mm Maximum value of SAR (interpolated) = 10.65 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.818 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 12.352 W/kg

SAR(1 g) = 9.66 W/kg; SAR(10 g) = 4.98 W/kg

Maximum value of SAR (measured) = 12.43 W/kg

System Performance Check 1900MHz Head 250mW

System Performance Check at 1900 MHz Body

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d150

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1900 MHz; σ = 1.51S/m; ϵ r = 53.21; ρ = 1000 kg/m3 Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(5.07,5.07,5.07); Calibrated: 15/08/2015; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 22/07/2015 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1):Measurement grid: dx=15.00 mm, dy=15.00 mm Maximum value of SAR (interpolated) = 11.46 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 83.816 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 16.826 W/kg

SAR(1 g) = 9.91 mW/g; SAR(10 g) = 5.23 mW/g

Maximum value of SAR (measured) = 16.34 mW/g

System Performance Check 1900MHz Body250mW

System Performance Check at 2450 MHz Head

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 884

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2450 MHz; σ = 1.78S/m; ϵ r = 39.00; ρ = 1000 kg/m3 Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(5.07,5.07,5.07); Calibrated: 15/08/2015; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 22/07/2015 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1):Measurement grid: dx=10.00 mm, dy=10.00 mm Maximum value of SAR (interpolated) = 14.9 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.714 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 26.08 mW/g

SAR(1 g) = 12.76 mW/g; SAR(10 g) = 5.93 mW/g

Maximum value of SAR (measured) = 14.8 mW/g

System Performance Check 2450MHz Head250mW

System Performance Check at 2450 MHz Body

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 884

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2450 MHz; σ = 1.93S/m; ϵ r = 52.65; ρ = 1000 kg/m3 Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(5.07,5.07); Calibrated: 15/08/2015; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 22/07/2015 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1):Measurement grid: dx=10.00 mm, dy=10.00 mm Maximum value of SAR (interpolated) = 15.15 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.986 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 18.08 mW/g

SAR(1 g) = 12.53 mW/g; SAR(10 g) = 6.09 mW/g

Maximum value of SAR (measured) = 18.18 mW/g

System Performance Check 2450MHz Body250mW

10. SAR Exposure Limits

SAR assessments have been made in line with the requirements of ANSI/IEEE C95.1-1992

	Limit (\	N/kg)
Type Exposure	General Population / Uncontrolled Exposure Environment	Occupational / Controlled Exposure Environment
Spatial Average SAR (whole body)	0.08	0.4
Spatial Peak SAR (1g cube tissue for head and trunk)	1.60	8.0
Spatial Peak SAR (10g for limb)	4.0	20.0

Population/Uncontrolled Environments: are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

11. Conducted Power Measurement Results

GSM Conducted Power

- 1. Per KDB 447498 D01v0502, the maximum output power channel is used for SAR testing and further SAR test reduction
- 2. Per KDB 941225 D01v03, considering the possibility of e.g. 3rd party VoIP operation for Head and Bodyworn SAR test reduction for GSM and GPRS modes is determined by the source-base time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the EUT was set in GPRS (4Tx slots) for GSM850 and GPRS (4Tx slots) for PCS1900.
- Per KDB941225 D01v03, for hotspot SAR test reduction for GPRS modes is determined by the sourcebased time-averaged output power including tune-up tolerance, For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the EUT was set in GPRS (4Tx slots) for GSM850 and GPRS (4Tx slots) for PCS1900.

		Condu	icted Power	(dBm)	Distates	Averager Power (dBm)		
Mode:	GSM850	CH128	CH190	CH251	Division Factors	CH128	CH190	CH251
		824.2MHz	836.6MHz	848.8MHz	1 40(013	824.2MHz	836.6MHz	848.8MHz
G	SM	32.35	32.44	32.29	-9.03	23.32	23.41	23.26
	1TXslot	32.32	32.42	32.28	-9.03	23.29	23.39	23.25
GPRS	2TXslots	30.67	30.66	30.48	-6.02	24.65	24.64	24.46
(GMSK)	3TXslots	29.70	29.76	29.57	-4.26	25.44	25.50	25.31
	4TXslots	28.60	28.61	28.48	-3.01	25.59	25.60	25.47
	1TXslot	25.66	25.61	25.50	-9.03	16.63	16.58	16.47
EGPRS	2TXslots	24.63	24.59	24.48	-6.02	18.61	18.57	18.46
(GMSK)	3TXslots	23.53	23.49	23.38	-4.26	19.27	19.23	19.12
	4TXslots	22.41	22.37	22.27	-3.01	19.40	19.36	19.26
		Conducted Power (dBm)						
		Condu	icted Power	(dBm)	D	Avera	ager Power (dBm)
Mode: F	PCS1900	Condu CH512	CH661	(dBm) CH810	Division Factors	Avera CH512	ager Power (CH661	dBm) CH810
Mode: F	PCS1900	CH512 1850.2MHz	CH661 1880.0MHz	(dBm) CH810 1909.8MHz	Division Factors	Avera CH512 1850.2MHz	ager Power (CH661 1880.0MHz	dBm) CH810 1909.8MHz
Mode: F	P CS1900 SM	Condu CH512 1850.2MHz 29.16	Icted Power CH661 1880.0MHz 29.38	(dBm) CH810 1909.8MHz 29.28	Division Factors -9.03	Avera CH512 1850.2MHz 20.13	ager Power (CH661 1880.0MHz 20.35	dBm) CH810 1909.8MHz 20.25
Mode: F	PCS1900 SM 1TXslot	Condu CH512 1850.2MHz 29.16 29.13	CH661 1880.0MHz 29.38 29.37	(dBm) CH810 1909.8MHz 29.28 29.27	Division Factors -9.03 -9.03	Avera CH512 1850.2MHz 20.13 20.10	ager Power (CH661 1880.0MHz 20.35 20.34	dBm) CH810 1909.8MHz 20.25 20.24
Mode: F	PCS1900 SM 1TXslot 2TXslots	Condu CH512 1850.2MHz 29.16 29.13 27.44	CH661 1880.0MHz 29.38 29.37 27.62	(dBm) CH810 1909.8MHz 29.28 29.27 27.46	Division Factors -9.03 -9.03 -6.02	Avera CH512 1850.2MHz 20.13 20.10 21.42	ager Power (CH661 1880.0MHz 20.35 20.34 21.60	dBm) CH810 1909.8MHz 20.25 20.24 21.44
Mode: F Gt GPRS (GMSK)	PCS1900 SM 1TXslot 2TXslots 3TXslots	Condu CH512 1850.2MHz 29.16 29.13 27.44 25.98	CH661 1880.0MHz 29.38 29.37 27.62 26.19	(dBm) CH810 1909.8MHz 29.28 29.27 27.46 26.10	Division Factors -9.03 -9.03 -6.02 -4.26	Avera CH512 1850.2MHz 20.13 20.10 21.42 21.72	ager Power (CH661 1880.0MHz 20.35 20.34 21.60 21.93	dBm) CH810 1909.8MHz 20.25 20.24 21.44 21.84
Mode: F GS GPRS (GMSK)	PCS1900 SM 1TXslot 2TXslots 3TXslots 4TXslots	Condu CH512 1850.2MHz 29.16 29.13 27.44 25.98 25.31	CH661 1880.0MHz 29.38 29.37 27.62 26.19 25.48	(dBm) CH810 1909.8MHz 29.28 29.27 27.46 26.10 25.38	Division Factors -9.03 -9.03 -6.02 -4.26 -3.01	Avera CH512 1850.2MHz 20.13 20.10 21.42 21.72 22.30	ager Power (CH661 1880.0MHz 20.35 20.34 21.60 21.93 22.47	dBm) CH810 1909.8MHz 20.25 20.24 21.44 21.84 22.37
Mode: F Gt GPRS (GMSK)	PCS1900 SM 1TXslot 2TXslots 3TXslots 4TXslots 1TXslot	Condu CH512 1850.2MHz 29.16 29.13 27.44 25.98 25.31 23.78	CH661 1880.0MHz 29.38 29.37 27.62 26.19 25.48 23.94	(dBm) CH810 1909.8MHz 29.28 29.27 27.46 26.10 25.38 23.85	Division Factors -9.03 -9.03 -6.02 -4.26 -3.01 -9.03	Avera CH512 1850.2MHz 20.13 20.10 21.42 21.72 22.30 14.75	ager Power (CH661 1880.0MHz 20.35 20.34 21.60 21.93 22.47 14.91	dBm) CH810 1909.8MHz 20.25 20.24 21.44 21.84 22.37 14.82
Mode: F GR GPRS (GMSK) EGPRS	PCS1900 SM 1TXslot 2TXslots 3TXslots 4TXslots 1TXslot 2TXslots	Condu CH512 1850.2MHz 29.16 29.13 27.44 25.98 25.31 23.78 22.68	CH661 1880.0MHz 29.38 29.37 27.62 26.19 25.48 23.94 22.83	(dBm) CH810 1909.8MHz 29.28 29.27 27.46 26.10 25.38 23.85 22.74	Division Factors -9.03 -9.03 -6.02 -4.26 -3.01 -9.03 -6.02	Avera CH512 1850.2MHz 20.13 20.10 21.42 21.72 22.30 14.75 16.66	ager Power (CH661 1880.0MHz 20.35 20.34 21.60 21.93 22.47 14.91 16.81	dBm) CH810 1909.8MHz 20.25 20.24 21.44 21.84 22.37 14.82 16.72
Mode: F GPRS (GMSK) EGPRS (GMSK)	CS1900 SM 1TXslot 2TXslots 3TXslots 4TXslots 1TXslot 2TXslots 3TXslots	Condu CH512 1850.2MHz 29.16 29.13 27.44 25.98 25.31 23.78 22.68 21.54	CH661 1880.0MHz 29.38 29.37 27.62 26.19 25.48 23.94 22.83 21.68	(dBm) CH810 1909.8MHz 29.28 29.27 27.46 26.10 25.38 23.85 22.74 21.60	Division Factors -9.03 -9.03 -6.02 -4.26 -3.01 -9.03 -6.02 -4.26	Avera CH512 1850.2MHz 20.13 20.10 21.42 21.72 22.30 14.75 16.66 17.28	ager Power (CH661 1880.0MHz 20.35 20.34 21.60 21.93 22.47 14.91 16.81 17.42	dBm) CH810 1909.8MHz 20.25 20.24 21.44 21.84 22.37 14.82 16.72 17.34

Note:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB 2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB 3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB 4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

WLAN Conducted Power

For 2.4GHz WLAN SAR testing, highest average RF output power channel for the lowest data rate for 802.11b were for SAR evaluation. 802.11g/n were not investigated since the average putput powers over all channels and data rates were not more than 0.25dB higher than the tested channel in the lowest data rate of 802.11b mode.

WIFI					
Mode	Channel	Frequency (MHz)	Conducted Peak Power (dBm)	Conducted Average Power (dBm)	Data rate
	01	2412	16.50	14.48	1 Mbps
802.11b	06	2437	16.59	14.58	1 Mbps
	11	2462	16.48	14.39	1 Mbps
	01	2412	15.33	13.28	6 Mbps
802.11g	06	2437	15.48	13.39	6 Mbps
	11	2462	15.38	13.26	6 Mbps
	01	2412	14.73	13.29	6.5 Mbps
802.11n(H20)	06	2437	14.49	13.02	6.5 Mbps
	11	2462	14.61	12.84	6.5 Mbps
	03	2422	13.77	12.12	13.5 Mbps
802.11n(H40)	06	2437	13.92	12.29	13.5 Mbps
	09	2452	13.86	12.15	13.5 Mbps

Note: The output power was test all data rate and recorded worst case at recorded data rate.

Bluetooth Conducted Power

General note:

Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100MHz to 6GHz at test separation distances \leq 50mm are determined by:

[(max. Power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] * [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR

Bluetooth				
Mode	Channel	Frequency (MHz)	Conducted power (dBm)	
	00	2402	1.77	
GFSK	39	2441	1.74	
	78	2480	1.16	
	00	2402	1.32	
π/4QPSK	39	2441	1.17	
	78	2480	0.62	
	00	2402	1.29	
8DPSK	39	2441	1.26	
	78	2480	0.47	
	00	2402	-5.44	
GFSK(BLE)	19	2440	-5.93	
	39	2480	-6.97	

Per KDB 447498 D01v05r02, when the minimum test separation distance is <5mm, a distance of 5mm is applied to determine SAR test exclusion. The test exclusion thereshold is 0.6 which is \leq 3, SAR testing is not required.

12. Maximum Tune-up Limit

Mode	Burst Average Power (dBm)			
Mode	GSM850	PCS1900		
GSM (GMSK, 1Tx Slot)	33.00	30.00		
GPRS (GMSK, 1Tx Slot)	33.00	30.00		
GPRS (GMSK, 2Tx Slot)	31.00	28.00		
GPRS (GMSK, 3Tx Slot)	30.00	27.00		
GPRS (GMSK, 4Tx Slot)	29.00	26.00		

WLAN	
Mode	Burst Average Power (dBm)
802.11b	15.00
802.11g	14.00
802.11n(HT20)	13.50
802.11n(HT40)	12.50

Mode	Burst Power (dBm)
Bluetooth V4.0+EDR	2.00
Bluetooth V4.0+BLE	-5.00

13. Antenna Location

Distance of the Antenna to the EUT surface/edge									
Antenna	Antenna Back Front Top side Bottom side Right side Left side								
WWAN	≦25mm	≦25mm ≦25mm		≦25mm	≦25mm	≦25mm			
WIFI+Bluetooth	≦25mm	≦25mm	≦25mm	85mm	≦25mm	47mm			

Positions for SAR tests; Hotspot mode										
Antenna Back Front Top side Bottom side Right side Left side										
WWAN	Yes	Yes	No	Yes	Yes	Yes				
WIFI+Bluetooth	WIFI+Bluetooth Yes Yes Yes No Yes No									

General note:

Referring to KDB941225 D06 v02, when the overall device length and width are >9cm*5cm, the test distance is 10mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge.

14. SAR Measurement Results

Head SAR

				G	SM850				
	Teet	Frequ	lency	Conducted Power (dBm)	Tune up	Tune	Devuer	Measured	Report
Mode	Position	СН	MHz		limit (dBm)	scaling factor	Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)
		128	824.2	28.66	29.00	1.08	-	-	-
	Left- Cheek	190	836.6	28.61	29.00	1.09	-0.01	0.664	0.726
	Oneon	251	848.8	28.48	29.00	1.13	-	-	-
	Left-Tilt	128	824.2	28.66	29.00	1.08	-	-	-
		190	836.6	28.61	29.00	1.09	-0.07	0.498	0.545
GPRS		251	848.8	28.48	29.00	1.13	-	-	-
(41x slot)		128	824.2	28.66	29.00	1.08	-	-	-
,	Right- Cheek	190	836.6	28.61	29.00	1.09	-0.05	0.584	0.639
	onoon	251	848.8	28.48	29.00	1.13	-	-	-
		128	824.2	28.66	29.00	1.08	-	-	-
	Right-Tilt	190	836.6	28.61	29.00	1.09	-0.04	0.451	0.493
		251	848.8	28.48	29.00	1.13	-	-	-
Worst c	ase mode- (GSM mod	е						
GSM	Left- Cheek	190	836.60	32.44	33.00	1.14	-0.03	0.616	0.701

	PCS1900											
	Test Position	Frequency		Conducted	Tune up	Tune	Dowor	Measured	Report			
Mode		СН	MHz	Power (dBm)	limit (dBm)	scaling factor	Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)			
		512	1850.2	25.31	26.00	1.17	-	-	-			
	Left- Cheek	661	1880.0	25.48	26.00	1.13	0.10	0.681	0.767			
		810	1909.8	25.38	26.00	1.15	-	-	-			
		512	1850.2	25.31	26.00	1.17	-	-	-			
	Left-Tilt	661	1880.0	25.48	26.00	1.13	-0.10	0.487	0.548			
GPRS		810	1909.8	25.38	26.00	1.15	-	-	-			
(41x slot)		512	1850.2	25.31	26.00	1.17	-	-	-			
,	Right- Cheek	661	1880.0	25.48	26.00	1.13	0.08	0.577	0.650			
	onoon	810	1909.8	25.38	26.00	1.15	-	-	-			
		512	1850.2	25.31	26.00	1.17	-	-	-			
	Right-Tilt	661	1880.0	25.48	26.00	1.13	0.03	0.414	0.466			
		810	1909.8	25.38	26.00	1.15	-	-	-			
Worst c	ase mode-G	SM mode	;									
GSM	Left- Cheek	661	1880.0	29.38	30.00	1.15	-0.04	0.624	0.720			

	WLAN										
	Test Position	Frequ	iency	Conducted Power (dBm)	Tune	Tune	6	Measured	Report		
Mode		СН	MHz		up limit (dBm)	up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)		
		01	2412	14.48	15.00	1.13	-	-	-		
	Left- Cheek	06	2437	14.58	15.00	1.10	-0.13	0.414	0.456		
	Oneek	11	2462	14.39	15.00	1.15	-	-	-		
	Left-Tilt	01	2412	14.48	15.00	1.13	-	-	-		
		06	2437	14.58	15.00	1.10	-0.15	0.296	0.326		
802.11b		11	2462	14.39	15.00	1.15	-	-	-		
1Mbps		01	2412	14.48	15.00	1.13	-	-	-		
	Right- Cheek	06	2437	14.58	15.00	1.10	0.11	0.351	0.387		
	Chook	11	2462	14.39	15.00	1.15	-	-	-		
		01	2412	14.48	15.00	1.13	-	-	-		
	Right-Tilt	06	2437	14.58	15.00	1.10	0.04	0.252	0.277		
		11	2462	14.39	15.00	1.15	-	-	-		

Note:

Per KDB865664 D01v01r03, Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg

Hotspot SAR

Distance of the Antenna to the EUT surface/edge										
Antenna Back Front Top side Bottom side Right side Left side										
WWAN	l ≦25mm ≦25mm		95mm ≦25mm		≦25mm	≦25mm				
WIFI+Bluetooth	≦25mm	≦25mm	≦25mm	85mm	≦25mm	47mm				

Positions for SAR tests; Hotspot mode										
Antenna Back Front Top side Bottom side Right side Left side										
WWAN	V Yes Yes		No	Yes	Yes	Yes				
WIFI+Bluetooth	Yes	Yes	Yes	No	Yes	No				

General note:

Referring to KDB941225 D06 v02, when the overall device length and width are >9cm*5cm, the test distance is 10mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge.

	GSM850											
	Test Position	Frequ	iency	Conducted	Tune up	Tune	-	Measured	Report			
Mode		СН	MHz	Power (dBm)	limit (dBm)	up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)			
		128	824.20	28.66	29.00	1.08	-	-	-			
	Front	190	836.60	28.61	29.00	1.09	0.11	0.36	0.40			
		251	848.80	28.48	29.00	1.13	-	-	-			
	Back	128	824.20	28.66	29.00	1.08	-	-	-			
GPRS		190	836.60	28.61	29.00	1.09	-0.01	0.549	0.600			
(41x slot)		251	848.80	28.48	29.00	1.13	-	-	-			
,	Left	128	824.20	28.61	29.00	1.09	-0.01	0.242	0.264			
	Right	128	824.20	28.61	29.00	1.09	0.04	0.141	0.154			
-	Тор	128	824.20	28.61	29.00	1.09	-	-	-			
	Bottom	128	824.20	28.61	29.00	1.09	0.01	0.313	0.342			

	PCS1900											
	_	Freq	uency	Conducted	Tune up limit (dBm)	Tune		Measured	Report			
Mode	Position	СН	MHz	Power (dBm)		up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)			
		512	1850.20	25.31	26.00	1.17	-	-	-			
	Front	661	1880.00	25.48	26.00	1.13	0.10	0.40	0.46			
		810	1909.80	25.38	26.00	1.15	-	-	-			
		512	1850.20	25.31	26.00	1.17	-	-	-			
GPRS	Back	661	1880.00	25.48	26.00	1.13	0.12	0.613	0.690			
(41x slot)		810	1909.80	25.38	26.00	1.15	-	-	-			
,	Left	810	1909.80	25.48	26.00	1.13	0.04	0.157	0.177			
	Right	810	1909.80	25.48	26.00	1.13	-0.07	0.270	0.304			
	Тор	810	1909.80	25.48	26.00	1.13	-	-	-			
	Bottom	810	1909.80	25.48	26.00	1.13	-0.08	0.349	0.393			

	WLAN										
	Test Position	Freq	uency	Conducted	Tune up limit (dBm)	Tune	1	Measured	Report		
Mode		СН	MHz	Power (dBm)		up scaling factor	Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)		
		1	2412	14.48	15.00	1.13	-	-	-		
	Front	6	2437	14.58	15.00	1.10	-0.08	0.28	0.30		
		11	2462	14.39	15.00	1.15	-	-	-		
		1	2412	14.48	15.00	1.13	-	-	-		
802.11b	Back	6	2437	14.58	15.00	1.10	-0.09	0.418	0.460		
1Mbps		11	2462	14.39	15.00	1.15	-	-	-		
	Left	6	2437	14.58	15.00	1.10	-0.05	0.184	0.203		
	Right	6	2437	14.58	15.00	1.10	-0.03	0.107	0.118		
-	Тор	6	2437	14.58	15.00	1.10	-0.03	0.238	0.262		
	Bottom	6	2437	14.58	15.00	1.10	-	-	-		
Body SAR

				G	SM850				
	+ +	Frequ	iency	Conducted	Tune up	Tune	l	Measured	Report
Mode	Position	СН	MHz	Power (dBm)	limit (dBm)	up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)
		128	824.2	28.66	29.00	1.08	-	-	-
	Front	190	836.6	28.61	29.00	1.09	0.11	0.36	0.40
		251	848.8	28.48	29.00	1.13	-	-	-
GPRS		128	824.2	28.66	29.00	1.08	-	-	-
(4Tx	Back	190	836.6	28.61	29.00	1.09	-0.01	0.549	0.600
slot)		251	848.8	28.48	29.00	1.13	-	-	-
	Back	128	824.2	28.66	29.00	1.08	-	-	-
	with	190	836.6	28.61	29.00	1.09	0.09	0.507	0.554
	headset	251	848.8	28.48	29.00	1.13	-	-	-

				PC	S1900				
	H ·	Frequ	iency	Conducted	Tune up	Tune	l	Measured	Report
Mode	Position	СН	MHz	Power (dBm)	limit (dBm)	up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)
		512	1850.2	25.31	26.00	1.17	-	-	-
	Front	661	1880.0	25.48	26.00	1.13	0.10	0.40	0.46
		810	1909.8	25.38	26.00	1.15	-	-	-
GPRS		512	1850.2	25.31	26.00	1.17	-	-	-
(4Tx	Back	661	1880.0	25.48	26.00	1.13	0.12	0.613	0.690
slot)		810	1909.8	25.38	26.00	1.15	-	-	-
	Back	512	1850.2	25.31	26.00	1.17	-	-	-
	with	661	1880.0	25.48	26.00	1.13	0.09	0.566	0.637
	headset	810	1909.8	25.38	26.00	1.15	-	-	-

				WL	AN				
		Freq	uency	Conducted	Tune	Tune	_	Measured	Report
Mode	l est Position	СН	MHz	Power (dBm)	up limit (dBm)	up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)
		1	2412	14.48	15.00	1.13	-	-	-
	Front	6	2437	14.58	15.00	1.10	-0.08	0.28	0.30
		11	2462	14.39	15.00	1.15	-	-	-
000 445		1	2412	14.48	15.00	1.13	-	-	-
802.11D 1Mbps	Back	6	2437	14.58	15.00	1.10	-0.09	0.418	0.460
TMDp3		11	2462	14.39	15.00	1.15	-	-	-
	Back	6	2437	15.89	16.00	1.03	-	-	-
	with	6	2437	15.89	16.00	1.03	-0.06	0.386	0.396
	headset	6	2437	15.89	16.00	1.03	-	-	-

SAR Test Data Plots

Left Head Cheek (GSM850 GPRS 4TS Middle Channel)

Communication System: Customer System; Frequency:836.6 MHz;Duty Cycle:1:2 Medium parameters used (interpolated): f=836.6 MHz; σ =0.91S/m; ϵ r=41.48; ρ =1000 kg/m3 Phantom section: Left Head Section:

DASY 5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF(6.23, 6.23, 6.23); Calibrated: 15/08/2015;

- •Sensor-Surface: 4mm (Mechanical Surface Detection)
- •Electronics: DAE4 Sn1315; Calibrated: 22/07/2015
- •Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) =0.809 W/kg

Zoom Scan (5x5x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm Reference Value =13.892 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.835 mW/g

SAR(1 g) = 0.664 mW/g; SAR(10 g) = 0.418 mW/g

Left Head Cheek (GSM850 GPRS 4TS Middle Channel)

Left Head Tilt (PCS1900 GPRS 4TS Middle Channel)

Communication System: Customer System; Frequency: 1880.0 MHz;Duty Cycle: 1:2 Medium parameters used: f = 1880.0 MHz; σ = 1.41 mho/m; ϵ = 40.01; ρ = 1000 kg/m 3 Phantom section: Left Head Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF(5.03, 5.03, 5.03); Calibrated: 15/08/2015;

- •Sensor-Surface: 4mm (Mechanical Surface Detection)
- •Electronics: DAE4 Sn1315; Calibrated: 22/07/2015
- •Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) =0.742 W/kg

Zoom Scan (5x5x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm Reference Value =8.376 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.985 mW/g

SAR(1 g) = 0.681 mW/g; SAR(10 g) = 0.362 mW/g

Maximum value of SAR (measured) = 0.737 W/kg

Left Head Tilt (PCS1900 Middle Channel)

Left Head Cheek (WLAN2450 High Channel)

Communication System: Customer System; Frequency: 2437.0 MHz;Duty Cycle:1:1 Medium parameters used (interpolated): f=2737.0 MHz; σ =1.78S/m; ϵ r=39.00; ρ =1000 kg/m3 Phantom section: Left Head Section:

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF(4.43, 4.43, 4.43); Calibrated: 15/08/2015;

- •Sensor-Surface: 4mm (Mechanical Surface Detection)
- •Electronics: DAE4 Sn1315; Calibrated: 22/07/2015
- •Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) =0.438 W/kg

Zoom Scan (5x5x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm Reference Value =5.291 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.631mW/g

SAR(1 g) = 0.414 mW/g; SAR(10 g) = 0.229 mW/g

Left Head Cheek (WLAN802.11b Middle Channel)

Body- worn Rear Side (GSM850 GPRS 4TS Middle Channel)

Communication System: Customer System; Frequency:836.6 MHz;Duty Cycle:1:2 Medium parameters used (interpolated): f=836.6 MHz; σ =0.97S/m; ϵ r=55.10; ρ =1000 kg/m3 Phantom section: Flat Section:

DASY 5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF(6.11, 6.11, 6.11); Calibrated: 15/08/2015;

- •Sensor-Surface: 4mm (Mechanical Surface Detection)
- •Electronics: DAE4 Sn1315; Calibrated: 22/07/2015
- •Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.559 W/kg

Zoom Scan (5x5x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm Reference Value =21.955 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.718 mW/g

SAR(1 g) = 0.549 mW/g; SAR(10 g) = 0.339 mW/g

Maximum value of SAR (measured) = 0.560 W/kg

Body- worn Rear Side (GSM850 GPRS 4TS Middle Channel)

Body- worn Rear Side (PCS1900 GPRS 4TS Middle Channel)

Communication System: Customer System; Frequency: 1880.0 MHz;Duty Cycle: 1:2 Medium parameters used: f = 1880.0 MHz; σ = 1.51 mho/m; ϵ = 53.21; ρ = 1000 kg/m 3 Phantom section: Flat Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF(4.66, 4.66, 4.66); Calibrated: 15/08/2015;

- •Sensor-Surface: 4mm (Mechanical Surface Detection)
- •Electronics: DAE4 Sn1315; Calibrated: 22/07/2015
- •Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) =0.667 W/kg

Zoom Scan (5x5x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm Reference Value = 9.488 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.825 mW/g

SAR(1 g) = 0.613 mW/g; SAR(10 g) = 0.328 mW/g

Maximum value of SAR (measured) = 0.669 W/kg

Body- worn Rear Side (PCS1900 GPRS 4TS Middle Channel)

Body- worn Rear side (WLAN 802.11b Middle Channel)

Communication System: Customer System; Frequency: 2442.0 MHz;Duty Cycle:1:1 Medium parameters used (interpolated): f=2442.0 MHz; σ =1.93S/m; ϵ r=52.65; ρ =1000 kg/m3 Phantom section : Body- worn

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF(4.23, 4.23, 4.23); Calibrated: 15/08/2015;

- •Sensor-Surface: 4mm (Mechanical Surface Detection)
- •Electronics: DAE4 Sn1315; Calibrated: 22/07/2015
- •Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) =0.471 W/kg

Zoom Scan (5x5x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm Reference Value = 12.278 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.613 mW/g

SAR(1 g) = 0.418 mW/g; SAR(10 g) = 0.243 mW/g

Maximum value of SAR (measured) = 0.480 W/kg

Body- worn Rear side (WLAN802.11b Middle Channel)

15. Simultaneous Transmission analysis

No.	Simultaneous Transmission Configurations	Head	Body-worn	Hotspot	Note
1	GSM(voice) + WIFI (data)	Yes	Yes		
2	GSM(voice) + Bluetooth (data)	Yes	Yes		
3	GPRS (data) + WIFI (data)	Yes	Yes	Yes	
4	GPRS (data) + Bluetooth (data)	Yes	Yes	Yes	

General note:

- 1. This device support VoIP in GPRS and WCDMA
- 2. WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously.
- 3. EUT will choose either GSM or WCDMA according to the network signal condition; therefore, they will not operate simultaneously at any moment.
- 4. The reported SAR summation is calculated based on the same configuration and test position
- 5. For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v05r02 based on the formula below
 - a) [(max. Power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] * $[\sqrt{f(GHz)/x}]W/kg$ for test separation distances ≤ 50 mm; whetn x=7.5 for 1-g SAR, and x=18.75 for 10-g SAR.
 - b) When the minimum separation distance is <5mm, the distance is used 5mm to determine SAR test exclusion
 - c) 0.4 W/kg for 1-g SAR and 1.0W/kg for 10-g SAR, when the test separation distances is >50mm.

Bluetooth	Exposure position	Head	Hotspot	Body worn
Max power	Test separation	0mm	10mm	10mm
2.00dBm	Estimated SAR (W/kg)	0.066 W/kg	0.033W/kg	0.033W/kg

Head Exposure condition

		WWAN PCE + \	WLAN DTS		
\\/\/\4	N Band	Exposure Position	Max SAF	R (W/kg)	Summed SAR
	N Dana		WWAN PCS	WLAN DTS	(W/kg)
		Left Cheek	0.726	0.456	1.182
	COMPEO	Left Tilted	0.545	0.326	0.871
	63101050	Right Cheek	0.639	0.387	1.026
CSM		Right Tilted	0.493	0.277	0.771
GSIM		Left Cheek	0.767	0.456	1.223
	DCS1000	Left Tilted	0.548	0.326	0.874
	PC31900	Right Cheek	0.650	0.387	1.037
		Right Tilted	0.466	0.277	0.744

		WWAN PCE +Blu	uetooth DSS		
			Max SAF	R (W/kg)	Summed SAR
WWAI	N Band	Exposure Position	WWAN PCS	Bleutooth DTS	(W/kg)
		Left Cheek	0.726	0.066	0.792
	CSM950	Left Tilted	0.545	0.066	0.611
	GS101850	Right Cheek	0.639	0.066	0.705
CSM		Right Tilted	0.493	0.066	0.559
GSIM		Left Cheek	0.767	0.066	0.833
	DCS1000	Left Tilted	0.548	0.066	0.614
	PC31900	Right Cheek	0.650	0.066	0.716
		Right Tilted	0.466	0.066	0.532

Hotspot Exposure condition

		WWAN PCE +	WLAN DTS		
	N Rand	Exposure Position	Max SAF	R (W/kg)	Summed SAR
			WWAN PCS	WLAN DTS	(W/kg)
		Front	0.396	0.304	0.700
		Back	0.600	0.460	1.061
	CSM950	Left side	0.154	0.118	0.272
	GSIVIOSU	Right side	0.264	0.203	0.467
		Top side	0.000	0.262	0.262
CSM		Bottom side	0.342	0.000	0.342
GSIM		Front	0.456	0.304	0.759
		Back	0.690	0.460	1.151
	DCS1000	Left side	0.177	0.118	0.295
	FC31900	Right side	0.304	0.203	0.506
		Top side	0.000	0.262	0.262
		Bottom side	0.393	0.000	0.393

		WWAN PCE + BI	eutooth DTS		
			Max SAF	t (W/kg)	Summed SAR
WWA	N Band	Exposure Position	WWAN PCS	Bleutooth DTS	(W/kg)
		Front	0.396	0.033	0.429
		Back	0.600	0.033	0.633
	CSM950	Left side	0.154	0.033	0.187
	GSIVIOSO	Right side	0.264	0.033	0.297
		Top side	0.000	0.033	0.033
CSM		Bottom side	0.342	0.033	0.375
GSIM		Front	0.456	0.033	0.489
		Back	0.690	0.033	0.723
	DCS1000	Left side	0.177	0.033	0.210
	FC31900	Right side	0.304	0.033	0.337
		Top side	0.000	0.033	0.033
		Bottom side	0.393	0.033	0.426

Body-Worn Accessory Exposure condition

		WWAN PCE + \	WLAN DTS		
	N Rond	Exposure Position	Max SAF	R (W/kg)	Summed SAR
	N Danu		WWAN PCS	WLAN DTS	(W/kg)
		Front	0.396	0.304	0.700
	GSM850	Back	0.600	0.460	1.061
CSM		Back with headset	0.554	0.396	0.950
GSIM		Front	0.456	0.304	0.759
	PCS1900	Back	0.690	0.460	1.151
		Back with headset	0.637	0.396	1.033

		WWAN PCE + BI	eutooth DTS		
			Max SAF	t (W/kg)	Summed SAR
WWAI	N Band	Exposure Position	WWAN PCS	Bleutooth DTS	(W/kg)
		Front	0.396	0.033	0.429
	GSM850	Back	0.600	0.033	0.633
CSM		Back with headset	0.554	0.033	0.587
GSIM		Front	0.456	0.033	0.489
	PCS1900	Back	0.690	0.033	0.723
		Back with headset	0.637	0.033	0.670

16. TestSetup Photos

850MHz

1900MHz

2450MHz

Left Head Touch

Left Head Tilt (15°)

Right Head Tilt (15°)

Body-worn Front Side (10mm)

Body-worn Rear Side (10mm)

17. External and Internal Photos of the EUT

Please reference to the report No.: TRE1510017501

-----End of Report-----

1.1. Probe Calibration Certificate

by the Swiss Accreditation Se Accreditation Service is on Agreement for the recogni CIQ (Auden) BRATION CEF ES procedure(s) QA	iervice (SAS) ne of the signatories to hition of calibration cert RTIFICATE S3DV3 - SN:3292	Accreditation N Accreditation N Ificates Certificate No: 1	b.: SCS 108 ES3-3292_Aug15
Accreditation Service is on Agreement for the recogn CIQ (Auden) BRATION CER ES procedure(s) QA	RTIFICATE S3DV3 - SN:3292	the EA ificates Certificate No: I	ES3-3292_Aug15
CIQ (Auden) BRATION CEF ES procedure(s) QA	RTIFICATE S3DV3 - SN:3292	Certificate No:	ES3-3292_Aug15
Procedure(s)	RTIFICATE S3DV3 - SN:3292		
procedure(s) Q/	S3DV3 - SN:3292		
procedure(s) QA			
Ca	A CAL-01.v9, QA alibration procedur	CAL-12.v9, QA CAL-23.v5, QA re for dosimetric E-field probes	CAL-25.v6
date: Au	ugust 15, 2015		
landards ID		Cal Date (Certificate No.)	Scheduled Calibration
ter E44198 GB4	41293874	03-Apr-15 (No. 217-01911)	Apr-16
BOF E4412A MY4	41498087 SECEA (2a)	03-Apt-15 (No. 217-01911)	Apr-10
20 dB Attenuator SN	S5277 (20v)	03-Apr-15 (No. 217-01919)	Apr-16
30 dB Attenuator SN	S5129 (30b)	03-Apr-15 (No. 217-01920)	Apr-16
Probe ES30V2 SN	3013	30-Dec-14 (No. ES3-3013_Dec13)	Dec-15
SN	660	13-Dec-14 (No. DAE4-660_Dec13)	Dec-15
y Standards ID		Check Date (in house)	Scheduled Check
ator HP 8648C US3	3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
unalyzer HP 8753E US3	37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
N	lame	Function	Signature
	Saudio Leubler	Laboratory Technician	UC .
by: C.			nam
sor E4412A MY4 3 dB Attenuator SN: 20 dB Attenuator SN: 30 dB Attenuator SN: 9 Probe ES30V2 SN: y Standards ID ator HP 8648C US3 Analyzer HP 8753E US3 N	41498087 \$5054 (3c) \$5277 (20k) \$5129 (30b) 3013 660 3642U01700 37390585 Name Ziaudio Leubler	03-Apr-15 (No. 217-01911) 03-Apr-15 (No. 217-01915) 03-Apr-15 (No. 217-01919) 03-Apr-15 (No. 217-01920) 30-Dec-14 (No. 283-3013, Dec13) 13-Dec-14 (No. DAE4-660, Dec13) 	Apr-16 Apr-16 Apr-16 Dec-15 Dec-15 Scheduled Check In house check: C

Schmid & Pa Engineerin Zeughausstrasse	Laboratory of Inther g AG 43, 8004 Zurich, Switzerland
Accredited by the S The Swiss Accred Multilateral Agree	Swiss Accreditation Service (SAS) Accreditation No.: SCS 108 litation Service is one of the signatories to the EA iment for the recognition of calibration certificates
Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization o	o rotation around probe axis
Polarization 9	e rotation around an axis that is in the plane normal to probe axis (at measurement center)
Connector Anal	information used in DASY system to align prohe senses V is the relations of the
Connector Ang	e aniomation used in DAST system to aligh probe sensor X to the robot coordinate system
Calibration i	s Performed According to the Following Standarde:
Methods Ap	ues", June 2013 209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in clo by to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 pfied and Interpretation of Parameters: x,y,z : Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguid x,y,z : Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguid x,y,z : Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguid x,y,z are only intermediate values, i.e., the uncertainties of NORMx, y,z does not affect the E ² -field intrustice TSL (see below Com/E).
	Ny v z = NORMy v z * fraguaticy, rasponsa (see Fraguaticy Desponse Charl). This linearization is
 NORM implem in the s 	anted in DASY4 software versions later than 4.2. The uncertainty of the frequency response is inclu- tated uncertainty of <i>ConvF</i> .
 NORM implem in the s DCPx,y signal (tated uncertainty of <i>ConvF</i> . z: DCP are numerical linearization parameters assessed based on the data of power sweep with C no uncertainty required). DCP does not depend on frequency nor media.
 NORM implem in the s DCPx,y signal (PAR: P charact 	 anted in DASY4 software versions later than 4.2. The uncertainty of the frequency response is includated uncertainty of <i>ConvF</i>. DCP are numerical linearization parameters assessed based on the data of power sweep with C no uncertainty required). DCP does not depend on frequency nor media. AR is the Peak to Average Ratio that is not calibrated but determined based on the signal eristics
 NORAM implem in the s DCPx.y signal (PAR: P charact Ax.y.z: the dat media. 	In the interview of
 NORM, implem in the s DCPx,y signal (PAR: P charact Ax,y,z; the dat media. ConvF Standa measur bounda used in to NOR ConvF MHz. 	The probability of the probability of the probability of the probability of the frequency response is includented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is includented uncertainty of <i>ConvF</i> . Are DCP are numerical linearization parameters assessed based on the data of power sweep with C no uncertainty required). DCP does not depend on frequency nor media. AR is the Peak to Average Ratio that is not calibrated but determined based on the signal eristics Bx, y, z; Cx, y, z; Dx, y, z; VRx, y, z; A, B, C, D are numerical linearization parameters assessed based o a of power sweep for specific modulation signal. The parameters do not depend on frequency nor VR is the maximum calibration range expressed in RMS voltage across the diode. and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer df of f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power ements for f > 800 MHz. The same setups are used for assessment of the parameters applied for ry compensation (alpha, depth) of which typical uncertainty values are given. These parameters are DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL correspond Mx, y, z^* <i>ConvF</i> whereby the uncertainty corresponds to that given for <i>ConvF</i> . A frequency dependent is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100
 NORM, implem in the s DCPx, signal (PAR: P charact Ax,y,z; the data media. ConvF Standa measu bounda used in to NOR ConvF MHz. Spheria expose 	<i>inc.y.i.e.</i> The uncertainty of the product by the sponse (see the queriety response) charter of the frequency response is includented uncertainty of <i>ConvF</i> . <i>i.z.</i> DCP are numerical linearization parameters assessed based on the data of power sweep with C no uncertainty required). DCP does not depend on frequency nor media. AR is the Peak to Average Ratio that is not calibrated but determined based on the signal eristics <i>Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D</i> are numerical linearization parameters assessed based o a of power sweep for specific modulation signal. The parameters do not depend on frequency nor <i>VR</i> is the maximum calibration range expressed in RMS voltage across the diode. <i>and Boundary Effect Parameters:</i> Assessed in flat phantom using E-field (or Temperature Transfer rd for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power ements for f > 800 MHz). The same setups are used for assessment of the parameters applied for ry compensation (alpha, depth) of which typical uncertainty values are given. These parameters are DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL correspond <i>Mx,y,z</i> * <i>ConvF</i> whereby the uncertainty corresponds to that given for <i>ConvF</i> . A frequency dependent is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 and isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom d by a patch antenna.
 NORAM implem in the s DCPx.y signal (PAR: P charact Ax.y.z; the dat media. ConvF Standa measuu bounda used in to NOR ConvF MHz. Spherici expose Sensor (on pro 	<i>Signature</i> (<i>inclusion of the sensor offset corresponds to the offset of virtual measurement center from the probe decided of low gradients realized using a flat phantom of the probe tip be axis). No tolerance required.</i>

ES3DV3 - SN:3292

August 15, 2015

Probe ES3DV3

SN:3292

Manufactured: July 6, 2010 Repaired: July 28, 2015 Calibrated: August 15, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3292_Aug15

Page 3 of 11

ES3DV3- SN:3292

August 15, 2015

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.89	0.95	1.46	± 10.1 %
DCP (mV) ⁸	107.1	106.1	103,9	- 10.1 10

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	с	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	209.7	±3.8 %
		Y	0.0	0.0	1.0		218.8	
		Z	0.0	0.0	1.0		198.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

⁶ The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
⁶ Numerical linearization parameter: uncertainty not required.
² Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ES3-3292_Aug15

Page 4 of 11

ES3DV3-SN:3292

August 15, 2015

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	43.5	0.87	6.71	6.71	6.71	0.18	1.80	± 13.3 %
835	41.5	0.90	6.23	6.23	6.23	0.80	1.11	± 12.0 %
900	41.5	0.97	6.71	6.71	6.10	6.71	1.17	± 12.0 %
1810	40.0	1.40	5.07	5.07	5.07	0.61	1.36	± 12.0 %
1900	40.0	1.40	5.03	5.03	5.03	0.45	1.55	± 12.0 %
2100	39.8	1.49	5.04	5.04	5.04	0.77	1.17	± 12.0 %
2450	39.2	1.80	4.43	4.43	4.43	0.73	1.23	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz.
^R At frequencies below 3 GHz, the validity of tissue parameters (s and e) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and e) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
^R AlphaCloph are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies below in 4.6 GHz at any distance larger than half the probe to diameter from the boundary.

Certificate No: ES3-3292_Aug15

Page 5 of 11

ES3DV3-SN:3292

August 15, 2015

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	56.7	0.94	7.10	7.10	7.10	0.13	1.00	± 13.3 %
835	55.2	0.97	6.11	6.11	6.11	0.36	1.78	± 12.0 %
900	55.0	1.05	5.97	5.97	5.97	0.73	1.22	± 12.0 %
1810	53.3	1.52	4.79	4.79	4.79	0.59	1.45	± 12.0 %
1900	53.3	1.52	4.66	4.66	4.66	0.41	1.79	± 12.0 %
2100	53.2	1.62	4.77	4.77	4.77	0.63	1.42	± 12.0 %
2450	52.7	1.95	4.23	4.23	4.23	0.66	0.98	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^(a) A frequencies below 5 GHz, the validity of lissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to the ConvF uncertainty for indicated larget lissue parameters. (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to the ConvF uncertainty for indicated larget lissue parameters. (ϵ and σ) can be relaxed to ± 0% if liquid compensation formula is applied to the ConvF uncertainty for indicated larget lissue parameters. (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to the ConvF uncertainty for indicated larget lissue parameters. (ϵ and σ) can be relaxed to ± 0% if liquid compensation formula is applied to the ConvF uncertainty for indicated larget lissue parameters. (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated larget lissue parameters. (ϵ and σ) can be the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: ES3-3292_Aug15

Page 6 of 11

ES3DV3- SN:3292

August 15, 2015

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-8.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3292_Aug15

Page 11 of 11

1.2. D835V2 Dipole Calibration Certificate

Chern Ciu-32		Contribuonte Mar. 745 OTAGE
En la companya da companya	-(Auden)	Certificate No: 215-97067
CALIBRATION	CERTIFICATE	
Object	D835V2 -	- SN: 4d134
Calibration Procedure(s)	TMC-OS Calibratio	-E-02-194 on procedure for dipole validation kits
Calibration date:	July 24, 2	2015
All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards	es and are part of th a conducted in the c ad (M&TE critical for d ID # Cal Date	e certificate. closed laboratory facility: environment temperature(22±3) calibration) e(Calibrated by, Certificate No.) Scheduled Calibration
All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4	es and are part of th n conducted in the c d (M&TE critical for o ID # Cal Date 102083 100595 4 SN 3846 SN 4224	calibration) e(Calibrated by, Certificate No.) 11-Sep-14 (TMC, No.JZ13-443) Sep-15 3-Sep-14 (SPEAG, No.EX3-3846_Sep13) Sep-15
All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Signal Generator E4438 Network Analyzer E8362E	es and are part of th a conducted in the c d (M&TE critical for of ID # Cal Date 102083 100595 4 SN 3846 SN 1331 IC MY49070393 3 MY43021135	e certificate. closed laboratory facility: environment temperature(22±3) calibration) e(Calibrated by, Certificate No.) Scheduled Calibration 11-Sep-14 (TMC, No.JZ13-443) Sep-15 11-Sep-14 (TMC, No.JZ13-443) Sep-15 3- Sep-14 (SPEAG, No.EX3-3846_Sep13) Sep-15 23-Jan-15 (SPEAG, DAE4-1331_Jan14) Jan -16 13-Nov-14 (TMC, No.JZ13-394) Nov-15 19-Oct-14 (TMC, No.JZ13-278) Oct-15
All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Signal Generator E4438 Network Analyzer E8362E	es and are part of th a conducted in the c d (M&TE critical for d ID # Cal Date 102083 100595 4 SN 3846 SN 1331 3C MY49070393 3 MY43021135 Name Yu Zongying	e certificate. closed laboratory facility: environment temperature(22±3)1 calibration) e(Calibrated by, Certificate No.) Scheduled Calibration 11-Sep-14 (TMC, No.JZ13-443) Sep-15 11-Sep-14 (TMC, No.JZ13-443) Sep-15 3- Sep-14 (SPEAG, No.EX3-3846_Sep13) Sep-15 23-Jan-15 (SPEAG, DAE4-1331_Jan14) Jan -16 13-Nov-14 (TMC, No.JZ13-394) Nov-15 19-Oct-14 (TMC, No.JZ13-278) Oct-15 Function Signature SAR Test Engineer
All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Signal Generator E4438 Network Analyzer E8362E Calibrated by: Reviewed by:	es and are part of th a conducted in the c d (M&TE critical for d ID # Cal Date 102083 100595 4 SN 3846 SN 1331 3C MY49070393 3 MY43021135 Name Yu Zongying Qi Dianyuan	e certificate. closed laboratory facility: environment temperature(22±3) calibration) e(Calibrated by, Certificate No.) Scheduled Calibratio 11-Sep-14 (TMC, No.JZ13-443) Sep-15 11-Sep-14 (TMC, No.JZ13-443) Sep-15 3- Sep-14 (SPEAG, No.EX3-3846_Sep13) Sep-15 23-Jan-15 (SPEAG, DAE4-1331_Jan14) Jan -16 13-Nov-14 (TMC, No.JZ13-394) Nov-15 19-Oct-14 (TMC, No.JZ13-278) Oct-15 Function Signature SAR Test Engineer
All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Signal Generator E4438 Network Analyzer E8362E Calibrated by: Reviewed by: Approved by:	es and are part of th a conducted in the c ed (M&TE critical for a ID # Cal Date 102083 100595 4 SN 3846 SN 1331 3C MY49070393 3 MY43021135 Name Yu Zongying Qi Dianyuan Lu Bingsong	All of the uncertainties with confidence probability are certificate. closed laboratory facility: environment temperature(22±3) calibration) e(Calibrated by, Certificate No.) Scheduled Calibration 11-Sep-14 (TMC, No.JZ13-443) Sep-15 3-Sep-14 (SPEAG, No.EX3-3846_Sep13) Sep-15 (SPEAG, No.EX3-3846_Sep13) 23-Jan-15 (SPEAG, DAE4-1331_Jan14) Jan-16 13-Nov-14 (TMC, No.JZ13-278) Oct-15 Function Signature SAR Test Engineer SAR Project Leader Deputy Director of the laboratory

c	ALIBRATION LAB	ORATORY			
Add: No.51 Xueyuan Road, Ha Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com	aidian District, Beiji Fax: +86-10-623 Http://www.chir	ng, 100191, China 304633-2504 hattl.cn		"Inha	No. L05
Measurement Conditions	(
DASY Version	tar as not given o	DASY52		5	2 8 8 1222
Extrapolation	Advan	ced Extrapolation			
Phantom	Triple	Triple Flat Phantom 5.1C		1000	V
Distance Dipole Center - TS	L	15 mm		with	Spacer
Zoom Scan Resolution	dx.	dy, dz = 5 mm			
Frequency	83	5 MHz ± 1 MHz			
Head TSL parameters					
The following parameters and c	alculations were a	applied.	D		
		Temperature	Permitti	vity	Conductivity
Nominal Head TSL paramet	ers	22.0 °C	41.5		0.90 mho/m
Measured Head TSL parame	eters	(22.0 ± 0.2) °C	41.7 ±	6 %	0.90 mho/m ± 6 %
Head TSL temperature chan	ige during test	<1.0 °C			
SAR result with Head TSL	1 a) of Hood TSI	Condit	tion		The second second
SAR averaged over 1 cm (ig) of Head ISL	250 mW in			2 41 mW// a
SAR for nominal Head TSL pr	arameters	pormalize	d to 1W	9.62	2.41 mv / g
CAR for Hominia riead rol pe		Condit	tion	5.02	11 y /g 1 20.0 % (K-2
SAR averaged over 10 Cm	(10 g) of Head 13	250 mW/in			1.57 m/// a
SAR for pominal Haad TSL pr	aramatara	230 million	d to 114	6 27	
Body TSI parameters	arameters	normalize		6.27	mw/g ± 20.4 % (K=2
The following parameters and c	alculations were a	applied.			
		Temperature	Permitti	vity	Conductivity
Nominal Body TSL paramet	ers	22.0 °C	55.2		0.97 mho/m
Measured Body TSL parame	eters	(22.0 ± 0.2) °C	55.6 ± 0	5 %	0.99 mho/m ± 6 %
Body TSL temperature char	nge during test	<1.0 °C			-
SAR result with Body TSL			- Angel	-	
SAR averaged over 1 cm ³ (1 g) of Body TSL	Condit	ion		
SAR measured		250 mW in	put power		2.47 mW/g
SAR for nominal Body TSL pa	arameters	normalize	d to 1W	9.77 r	mW /g ± 20.8 % (k=2
SAR averaged over 10 cm ³	(10 g) of Body TS	SL Condit	ion		
		000 141	nut nouvor		164 mW/a

Certificate No: Z15-97067

Page 3 of 8

Ad Tel E-1	d: No.51 Xueyuan Road, Haidian District, Beijing : +86-10-62304633-2079 Fax: +86-10-6230 nail: cttl@chinattl.com Http://www.china	g. 100191, China 14633-2504 1411 cn
Append	lix	
Antenn	a Parameters with Head TSL	
Impec	lance, transformed to feed point	48.8Ω + 3.34jΩ
Return	n Loss	- 28.9dB
Antenna	a Parameters with Body TSL	
Imped	ance, transformed to feed point	50.9Ω + 7.08jΩ
Return	Loss	- 23.0dB
After long be measu The dipole directly co DC-signal	term use with 100W radiated power, or red. a is made of standard semirigid coaxial nnected to the second arm of the dipo s. On some of the dipoles, small end c	I cable. The center conductor of the feeding line is le. The antenna is therefore short-circuited for raps are added to the dipole arms in order to improve
After long be measu The dipole directly co DC-signal matching paragraph the Standa No excess connection	term use with 100W radiated power, or red. a is made of standard semirigid coaxial nnected to the second arm of the dipol s. On some of the dipoles, small end c when loaded according to the position . The SAR data are not affected by this ard. sive force must be applied to the dipole as near the feedpoint may be damaged	nly a slight warming of the dipole near the feedpoint can leable. The center conductor of the feeding line is le. The antenna is therefore short-circuited for aps are added to the dipole arms in order to improve as explained in the "Measurement Conditions" s change. The overall dipole length is still according to e arms, because they might bend or the soldered d.
After long be measu The dipole directly co DC-signal matching ' paragraph the Standa No excess connection	term use with 100W radiated power, or red. a is made of standard semirigid coaxial nnected to the second arm of the dipol s. On some of the dipoles, small end c when loaded according to the position . The SAR data are not affected by this ard. sive force must be applied to the dipole is near the feedpoint may be damaged al EUT Data	nnly a slight warming of the dipole near the feedpoint can a cable. The center conductor of the feeding line is le. The antenna is therefore short-circuited for taps are added to the dipole arms in order to improve as explained in the "Measurement Conditions" is change. The overall dipole length is still according to a arms, because they might bend or the soldered d.
After long be measu The dipole directly co DC-signal matching y paragraph the Standa No excess connection Addition	term use with 100W radiated power, or red. a is made of standard semirigid coaxial nnected to the second arm of the dipois s. On some of the dipoles, small end c when loaded according to the position the SAR data are not affected by this ard. sive force must be applied to the dipole is near the feedpoint may be damaged al EUT Data	I cable. The center conductor of the feeding line is le. The antenna is therefore short-circuited for caps are added to the dipole arms in order to improve as explained in the "Measurement Conditions" is change. The overall dipole length is still according to e arms, because they might bend or the soldered d.
After long be measu The dipole directly co DC-signal matching y paragraph the Standa No excess connection	term use with 100W radiated power, or red. a is made of standard semirigid coaxial nnected to the second arm of the dipole s. On some of the dipoles, small end c when loaded according to the position . The SAR data are not affected by this ard. sive force must be applied to the dipole is near the feedpoint may be damaged al EUT Data	nly a slight warming of the dipole near the feedpoint can be antenna is therefore short-circuited for the approve as explained in the "Measurement Conditions" is change. The overall dipole length is still according to the arms, because they might bend or the soldered at the speed statement of the soldered at the speed statement of the soldered at the speed statement of the speed statemen

1.3. D900V2 Dipole Calibration Certificate

	om Http://www.china	ttl.en	No. L0570
Client CIQ-SZ	(Auden)	Certificate No: Z15-97068	
CALIBRATION	CERTIFICATE		
Object	D900V2 - :	SN: 1d129	-
Calibration Procedure(s)	TMC-OS-E Calibration	E-02-194 procedure for dipole validation kits	
Calibration date:	Septembe	r 1, 2015	
units of measurements() given on the following pa All calibrations have bee and humidity<70%. Calibration Equipment us Primary Standards	SI). The measuremen ages and are part of the en conducted in the cl sed (M&TE critical for c ID # Cal Date	ts and the uncertainties with confidence pro e certificate. osed laboratory facility: environment tempera alibration) (Calibrated by, Certificate No.) Scheduled	bbability ar hture(22±3)1 1 Calibratio
units of measurements() given on the following pa All calibrations have bee and humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE3	SI). The measuremen ages and are part of the en conducted in the cl sed (M&TE critical for c ID # Cal Date 102083 5 100595 IV3 SN 3149 SN 536	ts and the uncertainties with confidence pro- e certificate. osed laboratory facility: environment tempera alibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ13-443) 11-Sep-14 (TMC, No.JZ13-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sep13) 23-Jan-15 (SPEAG, DAE3-536 Jan14)	ture(22±3) Calibratio Sep-15 Sep-15 Sep-15 Jan -16
units of measurements() given on the following pa All calibrations have bee and humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-25 Reference Probe ES3D DAE3 Signal Generator E44 Network Analyzer E836	SI). The measuremen ages and are part of the en conducted in the cl sed (M&TE critical for c ID # Cal Date 102083 5 100595 IV3 SN 3149 SN 536 38C MY49070393 2B MY43021135	ts and the uncertainties with confidence pro- e certificate. osed laboratory facility: environment tempera alibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ13-443) 11-Sep-14 (TMC, No.JZ13-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sep13) 23-Jan-15 (SPEAG, DAE3-536_Jan14) 13-Nov-14 (TMC, No.JZ13-394) 19-Oct-14 (TMC, No.JZ13-278)	ature(22±3) ¹ 1 Calibratio Sep-15 Sep-15 Jan -16 Nov-15 Oct-15
units of measurements() given on the following pa All calibrations have bee and humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE3 Signal Generator E44 Network Analyzer E836	SI). The measuremen ages and are part of the en conducted in the cl sed (M&TE critical for c ID # Cal Date 102083 5 100595 IV3 SN 3149 SN 536 38C MY49070393 2B MY43021135	ts and the uncertainties with confidence pro- e certificate. osed laboratory facility: environment tempera alibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ13-443) 11-Sep-14 (TMC, No.JZ13-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sep13) 23-Jan-15 (SPEAG, DAE3-536_Jan14) 13-Nov-14 (TMC, No.JZ13-394) 19-Oct-14 (TMC, No.JZ13-278) Function Si	ature(22±3) ¹ 1 Calibratio Sep-15 Sep-15 Jan -16 Nov-15 Oct-15 ignature
units of measurements() given on the following pa All calibrations have bee and humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE3 Signal Generator E44 Network Analyzer E836 Calibrated by:	SI). The measuremen ages and are part of the en conducted in the cl sed (M&TE critical for c ID # Cal Date 102083 5 100595 IV3 SN 3149 SN 536 38C MY49070393 2B MY43021135 Name Zhao Jing	ts and the uncertainties with confidence pro- e certificate. osed laboratory facility: environment tempera alibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ13-443) 11-Sep-14 (TMC, No.JZ13-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sep13) 23-Jan-15 (SPEAG, DAE3-536_Jan14) 13-Nov-14 (TMC, No.JZ13-394) 19-Oct-14 (TMC, No.JZ13-278) Function Si SAR Test Engineer	ature(22±3) ¹ ature(22±3) ¹ Calibratio Sep-15 Sep-15 Jan -16 Nov-15 Oct-15 ignature
units of measurements() given on the following para All calibrations have bee and humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE3 Signal Generator E44 Network Analyzer E836 Calibrated by: Reviewed by:	SI). The measuremen ages and are part of the en conducted in the cl sed (M&TE critical for c ID # Cal Date 102083 5 100595 IV3 SN 3149 SN 536 38C MY49070393 MY43021135 Name Zhao Jing Qi Dianyuan	ts and the uncertainties with confidence pro- e certificate. osed laboratory facility: environment tempera alibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ13-443) 11-Sep-14 (TMC, No.JZ13-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sep13) 23-Jan-15 (SPEAG, DAE3-536_Jan14) 13-Nov-14 (TMC, No.JZ13-394) 19-Oct-14 (TMC, No.JZ13-278) Function Si SAR Test Engineer	ature(22±3) ¹ ature(22±3) ¹ Calibratio Sep-15 Sep-15 Jan -16 Nov-15 Oct-15 Ignature
units of measurements() given on the following pa All calibrations have bee and humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE3 Signal Generator E44 Network Analyzer E836 Calibrated by: Reviewed by: Approved by:	SI). The measuremen ages and are part of the en conducted in the cl sed (M&TE critical for c ID # Cal Date 102083 5 100595 IV3 SN 3149 SN 536 38C MY49070393 MY43021135 Name Zhao Jing Qi Dianyuan Lu Bingsong	ts and the uncertainties with confidence pro- e certificate. osed laboratory facility: environment tempera alibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ13-443) 11-Sep-14 (TMC, No.JZ13-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sep13) 23-Jan-15 (SPEAG, DAE3-536_Jan14) 13-Nov-14 (TMC, No.JZ13-278) Function Si SAR Test Engineer SAR Project Leader	ature(22±3)" ature(22±3)" 1 Calibratio Sep-15 Sep-15 Sep-15 Jan -16 Nov-15 Oct-15 ignature

CALIBRATIO	N LABO	RATORY		HOL	-MICA	
Add: No.51 Xueyuan Road, Haidian Distric Tel: +86-10-62304633-2079 Fax: +86 E-mail: ettl@chinattl.com Http://w	rt, Beijing, -10-6230- ww.chinat	, 100191, China 4633-2504 tll.en		Technil	No. L057	
Measurement Conditions	aiven on	1 0000				
DASY Version	1.40.1	DASY52		5	2.8.8.1222	
Extrapolation	Advance	ed Extrapolation				
Phantom	Triple Flat Phantom 5.1C					
Distance Dipole Center - TSL	15 mm			with Spacer		
Zoom Scan Resolution	dx, d	ly, dz = 5 mm				
Frequency	900 1	MHz ± 1 MHz				
Head TSL parameters						
The following parameters and calculations	were ap	Temperature	Permitti	vity	Conductivity	
Nominal Head TSL parameters		22.0 °C	41.5		0.97 mbo/m	
Measured Head TSL parameters		(22.0 ± 0.2) °C	41.7 ±	6%	0.98 mbo/m ± 6 %	
Head TSL temperature change during	test	<1.0 °C				
SAR result with Head TSL					1	
SAR averaged over 1 cm ³ (1 g) of Hea	ad TSL	Condit	lion			
SAR measured		250 mW in	put power		2.64 mW / g	
SAR for nominal Head TSL parameters		normalize	d to 1W	10.5 1	mW /g ± 20.8 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of H	lead TSL	Condit	tion			
SAR measured		250 mW in	put power		1.70 mW / g	
SAR for nominal Head TSL parameters		normalize	d to 1W	6.78 mW /g ± 20.4 % (k=2)		
Body TSL parameters						
The following parameters and calculations	were ap	Temperature	Permitti	vity	Conductivity	
Nominal Body TSL parameters		22.0 °C	55.0		1.05 mho/m	
Measured Body TSL parameters		(22.0 ± 0.2) °C	56.4 ±1	5 %	1.05 mho/m ± 6 %	
Body TSL temperature change during	test	<1.0 °C				
SAR result with Body TSL						
SAR averaged over 1 cm ³ (1 g) of Bor	dy TSL	Condit	lion			
SAR measured		250 mW in	put power		2.64 mW/g	
SAR for nominal Body TSL parameters		normalize	d to 1W	10.7 г	nW /g ± 20.8 % (k=2)	
SAR averaged over 10 cm^3 (10 g) of E	Body TSL	Condit	lion			
SAR measured		250 mW in	put power		1.73 mW/g	
		a second and a second sec		0.00		
E-mail: cttl@chinattl.com Http://www.chinattl.cn	504 No. L057					
--	--					
Appendix						
Antenna Parameters with Head TSL						
Impedance, transformed to feed point	45.8Ω + 4.28jΩ					
Return Loss	- 24.0dB					
Antenna Parameters with Body TSL						
Impedance, transformed to feed point	48.5Ω + 6.67jΩ					
Return Loss	- 23.2dB					
After long term use with 100W radiated power, only a be measured.	slight warming of the dipole near the feedpoint c					
After long term use with 100W radiated power, only a be measured. The dipole is made of standard semirigid coaxial cabl directly connected to the second arm of the dipole. Th DC-signals. On some of the dipoles, small end caps a matching when loaded according to the position as ep paragraph. The SAR data are not affected by this cha the Standard. No excessive force must be applied to the dipole arm connections near the feedpoint may be damaged.	e slight warming of the dipole near the feedpoint of le. The center conductor of the feeding line is he antenna is therefore short-circuited for are added to the dipole arms in order to improve xplained in the "Measurement Conditions" ange. The overall dipole length is still according to is, because they might bend or the soldered					
After long term use with 100W radiated power, only a be measured. The dipole is made of standard semirigid coaxial cabi directly connected to the second arm of the dipole. Th DC-signals. On some of the dipoles, small end caps a matching when loaded according to the position as ep paragraph. The SAR data are not affected by this charthe Standard. No excessive force must be applied to the dipole arm connections near the feedpoint may be damaged. Additional EUT Data	e slight warming of the dipole near the feedpoint of the center conductor of the feeding line is the antenna is therefore short-circuited for are added to the dipole arms in order to improve xplained in the "Measurement Conditions" ange. The overall dipole length is still according to is, because they might bend or the soldered					
After long term use with 100W radiated power, only a be measured. The dipole is made of standard semirigid coaxial cabl directly connected to the second arm of the dipole. Th DC-signals. On some of the dipoles, small end caps a matching when loaded according to the position as ep paragraph. The SAR data are not affected by this cha the Standard. No excessive force must be applied to the dipole arm connections near the feedpoint may be damaged. Additional EUT Data Manufactured by	e slight warming of the dipole near the feedpoint of the antenna is therefore short-circuited for are added to the dipole arms in order to improve xplained in the "Measurement Conditions" ange. The overall dipole length is still according to is, because they might bend or the soldered SPEAG					
After long term use with 100W radiated power, only a be measured. The dipole is made of standard semirigid coaxial cabil directly connected to the second arm of the dipole. Th DC-signals. On some of the dipoles, small end caps a matching when loaded according to the position as ep paragraph. The SAR data are not affected by this charthe Standard. No excessive force must be applied to the dipole arm connections near the feedpoint may be damaged. Additional EUT Data Manufactured by	e. The center conductor of the feeding line is the antenna is therefore short-circuited for are added to the dipole arms in order to improve xplained in the "Measurement Conditions" ange. The overall dipole length is still according to is, because they might bend or the soldered SPEAG					
After long term use with 100W radiated power, only a be measured. The dipole is made of standard semirigid coaxial cabl directly connected to the second arm of the dipole. Th DC-signals. On some of the dipoles, small end caps a matching when loaded according to the position as exparagraph. The SAR data are not affected by this chather Standard. No excessive force must be applied to the dipole arm connections near the feedpoint may be damaged. Additional EUT Data	e SPEAG					
After long term use with 100W radiated power, only a be measured. The dipole is made of standard semirigid coaxial cable directly connected to the second arm of the dipole. Th DC-signals. On some of the dipoles, small end caps a matching when loaded according to the position as exparagraph. The SAR data are not affected by this charthe Standard. No excessive force must be applied to the dipole arm connections near the feedpoint may be damaged. Additional EUT Data	e slight warming of the dipole near the feedpoint of the antenna is therefore short-circuited for are added to the dipole arms in order to improve xplained in the "Measurement Conditions" ange. The overall dipole length is still according to is, because they might bend or the soldered SPEAG					

1.4. D1750V2 Dipole Calibration Certificate

E-mail: cttl@chinattl.com	79 Fax: +86-10-6230 Http://www.chin	4633-2504 attl.cn	No. L0570
Client CIQ-SZ(Au	den)	Certificate No: Z15-97069	
CALIBRATION C	ERTIFICATE		
Object	D1750V2	- SN: 1062	
Calibration Procedure(s)	TMC-OS-E Calibration	E-02-194 n procedure for dipole validation kits	
Calibration date:	July 25, 20	015	
This calibration Certificate units of measurements(SI) given on the following page All calibrations have been and humidity<70%. Calibration Equipment used Primary Standards	documents the trac The measuremen s and are part of the conducted in the cl (M&TE critical for c ID # Cal Date	ceability to national standards, which realize to the and the uncertainties with confidence pro- e certificate. losed laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled	the physica obability ar ature(22±3) 1 Calibratio
This calibration Certificate units of measurements(SI) given on the following page All calibrations have been and humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4	documents the trac The measurements and are part of the conducted in the cl (M&TE critical for cl ID# Cal Date 102083 100595 SN 3846 SN 1331	ceability to national standards, which realize to the and the uncertainties with confidence pro- e certificate. losed laboratory facility: environment temperal calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ13-443) 11-Sep-14 (TMC, No.JZ13-443) 3- Sep-14 (SPEAG, No.EX3-3846_Sep13) 23-Jan-15 (SPEAG, DAE4-1331_Jan14)	the physica obability ar ature(22±3) ¹ d Calibratio Sep-15 Sep-15 Sep-15 Jan -16
This calibration Certificate units of measurements(SI) given on the following page All calibrations have been and humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Signal Generator E4438 Network Analyzer E8362B	documents the trac The measurements and are part of the conducted in the cl (M&TE critical for cl ID # Cal Date 102083 100595 SN 3846 SN 1331 C MY49070393 MY43021135	ceability to national standards, which realize to the and the uncertainties with confidence pro- electrificate. losed laboratory facility: environment temperal calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ13-443) 11-Sep-14 (TMC, No.JZ13-443) 3- Sep-14 (SPEAG, No.EX3-3846_Sep13) 23-Jan-15 (SPEAG, DAE4-1331_Jan14) 13-Nov-14 (TMC, No.JZ13-394) 19-Oct-14 (TMC, No.JZ13-278)	the physica obability ar ature(22±3) 1 Calibratio Sep-15 Sep-15 Sep-15 Jan -16 Nov-15 Oct-15
This calibration Certificate units of measurements(SI) given on the following page All calibrations have been and humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Signal Generator E44380 Network Analyzer E8362B	documents the trac The measurements and are part of the conducted in the cl (M&TE critical for cl ID # Cal Date 102083 100595 SN 3846 SN 1331 C MY49070393 MY43021135 Name Yu Zongying	ceability to national standards, which realize to the and the uncertainties with confidence pro- e certificate. losed laboratory facility: environment temperal calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ13-443) 11-Sep-14 (TMC, No.JZ13-443) 3- Sep-14 (SPEAG, No.EX3-3846_Sep13) 23-Jan-15 (SPEAG, DAE4-1331_Jan14) 13-Nov-14 (TMC, No.JZ13-394) 19-Oct-14 (TMC, No.JZ13-278) Function Si SAR Test Engineer	the physica obability ar ature(22±3)1 1 Calibratio Sep-15 Sep-15 Sep-15 Jan -16 Nov-15 Oct-15 gnature
This calibration Certificate units of measurements(SI) given on the following page All calibrations have been and humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Signal Generator E44380 Network Analyzer E8362B Calibrated by: Reviewed by:	documents the trac The measurements and are part of the conducted in the cl (M&TE critical for cl ID # Cal Date 102083 100595 SN 3846 SN 1331 C MY49070393 MY43021135 Name Yu Zongying Qi Dianyuan	ceability to national standards, which realize to the and the uncertainties with confidence pro- e certificate. losed laboratory facility: environment temperal calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ13-443) 11-Sep-14 (TMC, No.JZ13-443) 3- Sep-14 (SPEAG, No.EX3-3846_Sep13) 23-Jan-15 (SPEAG, DAE4-1331_Jan14) 13-Nov-14 (TMC, No.JZ13-394) 19-Oct-14 (TMC, No.JZ13-278) Function SAR Test Engineer	the physical obability are ature(22±3) ¹¹ 1 Calibration Sep-15 Sep-15 Sep-15 Jan -16 Nov-15 Oct-15 gnature
This calibration Certificate units of measurements(SI) given on the following page All calibrations have been and humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power Sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Signal Generator E44380 Network Analyzer E8362B Calibrated by: Reviewed by: Approved by:	documents the trac The measurements and are part of the conducted in the cl (M&TE critical for cl ID # Cal Date 102083 100595 SN 3846 SN 1331 C MY49070393 MY49070393 MY43021135 Name Yu Zongying Qi Dianyuan Lu Bingsong	ceability to national standards, which realize to the and the uncertainties with confidence process certificate. losed laboratory facility: environment temperalization) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ13-443) 11-Sep-14 (TMC, No.JZ13-443) 23-Jan-15 (SPEAG, No.EX3-3846_Sep13) 23-Jan-15 (SPEAG, No.JZ13-394) 19-Oct-14 (TMC, No.JZ13-278) Function SAR Test Engineer SAR Project Leader Deputy Director of the laboratory	the physica obability ar ature(22±3) 1 Calibratio Sep-15 Sep-15 Sep-15 Jan -16 Nov-15 Oct-15 gnature

Add No SI Xumana Road Helder Dire	DN LABO	RATORY		HC	
Tel: +86-10-62304633-2079 Fax: +8 E-mail: cttl@chinattLcom Http://w	6-10-6230 www.china	2, 100191, China)4633-2504 ittl.en		and	No. LOS
Measurement Conditions DASY system configuration, as far as not					
DASY Version	greenen	DASY52			52 8 8 1222
Extrapolation	Advance	ed Extrapolation	2		and the second sec
Phantom	Triple F	lat Phantom 5.10	c		
Distance Dipole Center - TSL	10 mm			with Spacer	
Zoom Scan Resolution	dx, dy, dz = 5 mm		7	with Spacer	
Frequency	1750	MHz ± 1 MHz			
Head TSL parameters					
The following parameters and calculations	were ap	plied.			A State State
Naminal Hand TOL anomalan	_	Temperature	Permit	tivity	Conductivity
Nominal Head TSL parameters		22.0 °C	40.1		1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ±	6 %	1.35 mho/m ± 6 %
Head TSL temperature change during	test	<1.0 °C			
SAR result with Head TSL		Coord		-	
SAR measured	dist	250 mW/ ii	ition		
SAR for nominal Head TSL parameters		200 11100 11	nput power		9.20 mW/g
SAR averaged over 10 cm ³ (10 c) of H	1 701	Cond	ed to 1vv	37.1	mW /g ± 20.8 % (k=2)
SAR measured	Bad ISL	050	tion	-	
SAR for nominal Heard TSL parameters		250 mw ir	iput power		4.97 mW/g
Body TSL parameters		normalize	ed to 1W	20.0 1	mW /g ± 20.4 % (k=2)
The following parameters and calculations	were app	lied.			
		Temperature	Permitt	ivity	Conductivity
Nominal Body TSL parameters		22.0 °C	53.4		1.49 mho/m
Measured Body TSL parameters	(2	22.0 ± 0.2) °C	54.3 ±	6 %	1.47 mho/m ± 6 %
Body TSL temperature change during t	test	<1.0 °C			
AR result with Body TSL					
SAR averaged over 1 cm ³ (1 g) of Body	TSL	Condit	tion		4
SAR measured		250 mW input power		9.22 mW/g	
SAR for nominal Body TSL parameters		normalized	d to 1W	37.3 п	nW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Bo	dy TSL	Condit	ion		
SAR measured		250 mW inp	put power		4.95 mW / g
CADE		and the second second	1 1 - 1101		

Certificate No: Z15-97069

Page 3 of 8

5110+162/0
51 10+ 1 62/0
51 10+ 1 520
51 10+ 1 62(0
24.24B
- 04.20D
49 20+ 4 25i0
- 27.2dB
ntenna is therefore short-circuited for added to the dipole arms in order to improve ined in the "Measurement Conditions" e. The overall dipole length is still according to because they might bend or the soldered
SPEAG

1.5. D2450V2 Dipole Calibration Certificate

and the second second						
CALIBRATION	CERTIFICATE					
Object	D2450V2 -	450V2 - SN: 884				
Calibration Procedure(s)	TMC-OS-E Calibration	E-02-194 procedure for dipole validation kits				
Calibration date:	Septembe	r 1, 2015				
All calibrations have bee and humidity<70%. Calibration Equipment us Primary Standards	en conducted in the cl sed (M&TE critical for c ID # Cal Date	osed laboratory facility: environment temperat calibration) (Calibrated by, Certificate No.) Scheduled	ture(22±3) Calibratio			
All calibrations have bee and humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-74	en conducted in the cl sed (M&TE critical for c ID # Cal Date 102083 5 100595	(Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ13-443) 11-Sep-14 (TMC, No. JZ13-443)	Calibratio Sep-15 Sep -15			
All calibrations have bee and humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-23 Reference Probe ES3D	en conducted in the cl sed (M&TE critical for c ID # Cal Date 102083 5 100595 DV3 SN 3149	(Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ13-443) 11-Sep-14 (SPEAG, No.ES3-3149_Sep13)	Calibratio Sep-15 Sep-15 Sep-15			
All calibrations have bee and humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-25 Reference Probe ES3D DAE3	en conducted in the cl sed (M&TE critical for c ID # Cal Date 102083 5 100595 DV3 SN 3149 SN 536	osed laboratory facility: environment temperat calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ13-443) 11-Sep-14 (TMC, No. JZ13-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sep13) 23-Jan-15 (SPEAG, DAE3-536_Jan14)	Calibratio Sep-15 Sep-15 Sep-15 Jan -16			
All calibrations have bee and humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-25 Reference Probe ES3D DAE3 Signal Generator E44 Network Analyzer E836	en conducted in the cl sed (M&TE critical for c ID # Cal Date 102083 5 100595 5V3 SN 3149 SN 536 438C MY49070393 52B MY43021135	osed laboratory facility: environment temperat calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ13-443) 11-Sep-14 (TMC, No. JZ13-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sep13) 23-Jan-15 (SPEAG, DAE3-536_Jan14) 13-Nov-14 (TMC, No.JZ13-394) 19-Oct-14 (TMC, No.JZ13-278)	Calibratio Sep-15 Sep-15 Sep-15 Jan -16 Nov-15 Oct-15			
All calibrations have bee and humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-24 Reference Probe ES3D DAE3 Signal Generator E44 Network Analyzer E836	en conducted in the cl sed (M&TE critical for c ID # Cal Date 102083 5 100595 5V3 SN 3149 SN 536 438C MY49070393 52B MY43021135	osed laboratory facility: environment temperat calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ13-443) 11-Sep-14 (TMC, No.JZ13-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sep13) 23-Jan-15 (SPEAG, DAE3-536_Jan14) 13-Nov-14 (TMC, No.JZ13-394) 19-Oct-14 (TMC, No.JZ13-278) Function	Calibratio Sep-15 Sep-15 Sep-15 Jan -16 Nov-15 Oct-15			
All calibrations have bee and humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z! Reference Probe ES3D DAE3 Signal Generator E44 Network Analyzer E836 Calibrated by:	en conducted in the cl sed (M&TE critical for c ID # Cal Date 102083 5 100595 5V3 SN 3149 SN 536 438C MY49070393 52B MY43021135 Name Zhao Jing	osed laboratory facility: environment temperat calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ13-443) 11-Sep-14 (TMC, No.JZ13-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sep13) 23-Jan-15 (SPEAG, DAE3-536_Jan14) 13-Nov-14 (TMC, No.JZ13-394) 19-Oct-14 (TMC, No.JZ13-278) Function	Calibratio Sep-15 Sep-15 Sep-15 Jan -16 Nov-15 Oct-15			
All calibrations have bee and humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z! Reference Probe ES3D DAE3 Signal Generator E44 Network Analyzer E836 Calibrated by: Reviewed by:	en conducted in the cl sed (M&TE critical for c ID # Cal Date 102083 5 100595 5V3 SN 3149 SN 536 438C MY49070393 52B MY43021135 Name Zhao Jing Qi Dianyuan	osed laboratory facility: environment temperat calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ13-443) 11-Sep-14 (TMC, No.JZ13-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sep13) 23-Jan-15 (SPEAG, DAE3-536_Jan14) 13-Nov-14 (TMC, No.JZ13-394) 19-Oct-14 (TMC, No.JZ13-394) 19-Oct-14 (TMC, No.JZ13-278) Function SAR Test Engineer	Calibratio Sep-15 Sep-15 Sep-15 Jan -16 Nov-15 Oct-15			
All calibrations have bee and humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z3 Reference Probe ES3D DAE3 Signal Generator E44 Network Analyzer E836 Calibrated by: Reviewed by: Approved by:	en conducted in the cl sed (M&TE critical for c ID # Cal Date 102083 5 100595 5V3 SN 3149 SN 536 438C MY49070393 52B MY49070393 MY43021135 Name Zhao Jing Qi Dianyuan Lu Bingsong	osed laboratory facility: environment temperat calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ13-443) 11-Sep-14 (TMC, No.JZ13-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sep13) 23-Jan-15 (SPEAG, DAE3-536_Jan14) 13-Nov-14 (TMC, No.JZ13-394) 19-Oct-14 (TMC, No.JZ13-278) Function SAR Test Engineer SAR Project Leader Deputy Director of the laboratory	Calibratio Sep-15 Sep-15 Sep-15 Jan -16 Nov-15 Oct-15 gnature			

Add: No.51 X Tel: +86-10-6 E-mail: ettl@	ueyuan Road, Haidian District, Beijing, 10 2304633-2079 Fax: +86-10-62304633 chinattl.com Http://www.chinattl.com	0191, China 3-2504	CALIBRATIO No. L0570
Glossary:	The state of the s		
TSL ConvF	tissue simulating liquid sensitivity in TSL / NORM	N 11 7	
N/A	not applicable or not meas	sured	
Calibration is P	erformed According to the I	Following Standar	ds:
a) IEEE Std 152 Spatial-Averac	8-2013, "IEEE Recommended and Specific Absorption Rate (Practice for Deten (SAR) in the Human	mining the Peak
Communicatio	ns Devices: Measurement Te	chniques", June 20	13
devices used February 2005	in close proximity to the ear (f	requency range of	Rate (SAR) For hand-held 300MHz to 3GHz)",
c) KDB865664, \$	SAR Measurement Requireme	ents for 100 MHz to	6 GHz
Additional Docu	imentation:		
a) DAS14/5 Sys	ет напороок		
Methods Applie	d and Interpretation of Para	meters:	
 Measurement end of the ce indicated 	nt Conditions: Further details a ertificate. All figures stated in the	are available from the certificate are va	ne Validation Report at the lid at the frequency
Antenna Par point exactly	ameters with TSL: The dipole below the center marking of t	is mounted with the	e spacer to position its feed ction, with the arms
Feed Point In	mpedance and Return Loss: T	hese parameters a	re measured with the
dipole position from the mean	ned under the liquid filled pha surement at the SMA connect reflected power. No upped and	antom. The impeda tor to the feed poin	nce stated is transformed t. The Return Loss
Electrical Del point. No uno	lay: One-way delay between t	the SMA connector	and the antenna feed
SAR measur	ed: SAR measured at the stat	ed antenna input p	ower.
connector.	i i non as measured, nonne	anzeu to an input po	ower of 1 vv at the antenna
the nominal s	inal TSL parameters: The mea SAR result.	asured TSL parame	ters are used to calculate
The reported	uncertainty of measuremen	nt is stated as the	e standard uncertainty of
Measurement Corresponds t	multiplied by the coverage o a coverage probability of ap	factor k=2, which proximately 95%.	for a normal distribution
	all the start of the		and states in the

Add: No.51 Xueyuan Road, Haidian Dis	strict, Beijin	g, 100191, China		Mala.	CALIBRATI
Tel: +86-10-62304633-2079 Fax: + E-mail: cttl@chinattl.com Http:/	86-10-6230 /www.china	4633-2504 attl.cn			No. LUSA
Measurement Conditions					
DASY system configuration, as far as no	ot given on	page 1.			
DAST version	1.1.000	DAST52		0	2.8.8.1222
Extrapolation	Advanc	ed Extrapolation			
Phantom	Triple F	lat Phantom 5.1C			
Distance Dipole Center - 1SL		10 mm		with	Spacer
Zoom Scan Resolution	dx, d	dy, dz = 5 mm			
Frequency	245	0 MHz ± 1 MHz			
Head TSL parameters The following parameters and calculation	ns were a	oplied.			
		Temperature	Permitt	vity	Conductivity
Nominal Head TSL parameters		22.0 °C	39.2		1.80 mho/m
Measured Head TSL parameters		(22.0 ± 0.2) °C	40.2 ±	6 %	1.84 mho/m ± 6 %
Head TSL temperature change durin	ng test	<1.0 °C			
SAR result with Head TSL					
SAR averaged over 1 cm ³ (1 g) of H	ead TSL	Condit	lion		
SAR measured		250 mW in	put power		13.1 mW/g
SAR for nominal Head TSL parameter	s	normalize	d to 1W	52.1	mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of	f Head TS	L Condi	lion		
SAR measured		250 mW in	put power		6.17 mW/g
SAR for nominal Head TSL parameter	rs	normalize	d to 1W	24.6	mW /g ± 20.4 % (k=2)
Body TSL parameters		1			
The following parameters and calculation	ns were ap	oplied.	Demitt		Conductivity
No. 1 A Data TOL segmentary		Temperature	Permita	vity	Conductivity
Nominal Body ISL parameters		22.0 °C	52.1		1.95 mho/m
Measured Body TSL parameters		(22.0 ± 0.2) °C	51.3 ± 1	\$ %	2.00 mho/m ± 6 %
Body TSL temperature change durin	ng test	<1.0 °C			
SAR result with body TSL	to Tel	Condi	linn	1	
SAR averaged over 1 cm (1g) of b	ody ISL	250 mW in	ion and conver		12.1
SAR for nominal Rody TSL parameter		normalize	the 1W	51.61	13.1 mvv / g
SAK for nominal body roc parameter	5	Condi	3 to 100	51.0	NW /g I 20.0 /0 (n-2/
SAR averaged over 10 cm (10 g) of	Body ISL	- Obridia	ion		
SAM MADOUVAR		250 11100 111	out power 6.11 mW / g		6.11 mw/g

12121225

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, C Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn	hina CALIBRATI No. L057
Appendix	
Antenna Parameters with Head TSL	
Impedance, transformed to feed point	58.30, 0.780
Return Loss	- 22 3dB
Antenna Parameters with Body TSL	
Impedance, transformed to feed point	58.1Ω+2.61jΩ
Return Loss	- 22.1dB
Electrical Delay (one direction)	1.224 ns
After long term use with 100W radiated power, only a slig be measured. The dipole is made of standard semirigid coaxial cable. T directly connected to the second arm of the dipole. The a DC-signals. On some of the dipoles, small end caps are a	aht warming of the dipole near the feedpoint of the center conductor of the feeding line is intenna is therefore short-circuited for added to the dipole arms in order to improve
After long term use with 100W radiated power, only a slig be measured. The dipole is made of standard semirigid coaxial cable. T directly connected to the second arm of the dipole. The a DC-signals. On some of the dipoles, small end caps are a matching when loaded according to the position as expla paragraph. The SAR data are not affected by this change the Standard. No excessive force must be applied to the dipole arms, b connections near the feedpoint may be damaged.	ght warming of the dipole near the feedpoint of "he center conductor of the feeding line is intenna is therefore short-circuited for added to the dipole arms in order to improve ined in the "Measurement Conditions" a. The overall dipole length is still according to recause they might bend or the soldered
After long term use with 100W radiated power, only a slig be measured. The dipole is made of standard semirigid coaxial cable. T directly connected to the second arm of the dipole. The a DC-signals. On some of the dipoles, small end caps are a matching when loaded according to the position as expla paragraph. The SAR data are not affected by this change the Standard. No excessive force must be applied to the dipole arms, b connections near the feedpoint may be damaged. Additional EUT Data Manufactured by	ght warming of the dipole near the feedpoint of "he center conductor of the feeding line is intenna is therefore short-circuited for added to the dipole arms in order to improve ined in the "Measurement Conditions" a. The overall dipole length is still according to recause they might bend or the soldered SPEAG
After long term use with 100W radiated power, only a slig be measured. The dipole is made of standard semirigid coaxial cable. T directly connected to the second arm of the dipole. The a DC-signals. On some of the dipoles, small end caps are a matching when loaded according to the position as expla paragraph. The SAR data are not affected by this change the Standard. No excessive force must be applied to the dipole arms, b connections near the feedpoint may be damaged. Additional EUT Data Manufactured by	ght warming of the dipole near the feedpoint of The center conductor of the feeding line is antenna is therefore short-circuited for added to the dipole arms in order to improve ined in the "Measurement Conditions" a. The overall dipole length is still according to recause they might bend or the soldered SPEAG

1.6. DAE4 Calibration Certificate

Unorit i	IQ-SZ(Auden)		Certificate No: Z15-97066
CALIBRATION	CERTIFICA	TE	
Object	DAE	- SN: 1315	and the second second
Calibration Procedure(s) TMC- Calibri (DAE	OS-E-01-198 ration Procedure for the Data A x)	Acquisition Electronics
Calibration date:	July 2	2, 2015	
humidity<70%.			
humidity<70%. Calibration Equipment u Primary Standards Documenting	sed (M&TE critical ID # C	for calibration) al Date(Calibrated by, Certificate N	No.) Scheduled Calibration
humidity<70%. Calibration Equipment u Primary Standards Documenting Process Calibrator 753	sed (M&TE critical ID # C 1971018	for calibration) al Date(Calibrated by, Certificate N 01-July-15 (CTTL, No:J14X0214	Vo.) Scheduled Calibration 17) July-16
humidity<70%. Calibration Equipment u Primary Standards Documenting Process Calibrator 753	sed (M&TE critical ID # C 1971018 Name Yu Zongying	for calibration) al Date(Calibrated by, Certificate N 01-July-15 (CTTL, No.J14X0214 Function SAR Test Engineer	No.) Scheduled Calibration (7) July-16 Signature
humidity<70%. Calibration Equipment u Primary Standards Documenting Process Calibrator 753 Calibrated by: Reviewed by:	ID # C 1971018 Name Yu Zongying Qi Dianyuan	for calibration) al Date(Calibrated by, Certificate N 01-July-15 (CTTL, No:J14X0214 Function SAR Test Engineer SAR Project Leader	Vo.) Scheduled Calibration (7) July-16 Signature
humidity<70%. Calibration Equipment u Primary Standards Documenting Process Calibrator 753 Calibrated by: Reviewed by: Approved by:	ID # C ID # C 1971018 Name Yu Zongying Qi Dianyuan Lu Bingsong	for calibration) al Date(Calibrated by, Certificate N 01-July-15 (CTTL, No:J14X0214 Function SAR Test Engineer SAR Project Leader Deputy Director of the labo	No.) Scheduled Calibration 17) July-16 Signature Sig
humidity<70%. Calibration Equipment u Primary Standards Documenting Process Calibrator 753 Calibrated by: Reviewed by: Approved by:	ID # C ID # C 1971018 Name Yu Zongying Qi Dianyuan Lu Bingsong	for calibration) al Date(Calibrated by, Certificate N 01-July-15 (CTTL, No.J14X0214 Function SAR Test Engineer SAR Project Leader Deputy Director of the labo	No.) Scheduled Calibration 17) July-16 Signature Signature Tatory Ph 14M 4-3 Issued: July 23, 2015

Description Manage 1.58 ± 6.1µV full range ± 1.00+300 mV Low Range 1.58 ± 6.1µV full range ± 1.00+300 mV DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec: Migh Range 1.58 ± 6.1µV full range ± 1.00+300 mV DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec: Manage 1.05.162 ± 0.15% (k=2) 405.006 ± 0.15% (k=2) 404.963 ± 0.15% (k=2) Low Range 3.99072 ± 0.7% (k=2) 3.98481 ± 0.7% (k=2) 3.98836 ± 0.7% (k=2) 4.0836 ± 0.7% (k=2) Low Range 3.99072 ± 0.7% (k=2) 3.98481 ± 0.7% (k=2) 3.98836 ± 0.7% (k=2) 4.0963 ± 0.7% (k=2)	Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = 6.1μλ Low Range: 1LSB = 6.1nλ DASY measurement parameters: Auto Ze	(, full range = -		
Calibration Factors X Y Z High Range 405.162 ± 0.15% (k=2) 405.006 ± 0.15% (k=2) 404.963 ± 0.15% (k=2) Low Range 3.99072 ± 0.7% (k=2) 3.98481 ± 0.7% (k=2) 3.98836 ± 0.7% (k=2)		Time: 3 sec: Measurin	100+300 mV 1+3mV	
High Range 405.162 ± 0.15% (k=2) 405.006 ± 0.15% (k=2) 404.963 ± 0.15% (k=2) Low Range 3.99072 ± 0.7% (k=2) 3.98481 ± 0.7% (k=2) 3.98836 ± 0.7% (k=2) Connector Angle Connector Angle to be used in DASY system 22° ± 1°	Calibration Factors X	Y	g unit. U duc	7
Low Range 3.99072 ± 0.7% (k=2) 3.98481 ± 0.7% (k=2) 3.98836 ± 0.7% (k=2) Connector Angle 22° ± 1° 22° ± 1° 22° ± 1°	High Range 405.162 ± 0.	15% (k=2) 405.006 ± 0	0.15% (k=2) 404.9	963 ± 0.15% (k=2)
Connector Angle Connector Angle to be used in DASY system 22° ± 1°	Low Range 3.99072 ± 0.	7% (k=2) 3.98481 ± (0.7% (k=2) 3.988	36 ± 0.7% (k=2)

-----End------