Appendix D. Probe Calibration Data

	校准证书
	Calibration Certificate
	CNAS R AL
	でNAS L0447
器具名称 Instrumen	
型号/规格	EX3DV4
Type/Mod	lel
生产厂家	Schmid & Partner Engineering AG
Manufactu	urer
出厂编号	SN:3710
Serial No-	
客户名称	快特电波科技(苏州)有限公司
Name of C	Client
客户地址	苏州工业园区娄葑高新技术开发区宏业路 99 号
Address o	of Client
校准日期	2011.2.25
Calibratio	
所有的校	淮工作都是在屏蔽实验室中完成:环境温度 (22±3)℃ 湿度<70%
	prations have been conducted in the closed laboratory facility: environment
temperatu	ure (22±3) °C and humidity<70%
授权签	穿人: J S S J G → 第
Approv	wed by 校准报告专用章

QuieTek

国家无线电监测中心检测中心 The State Radio_monitoring_center Testing Center

校准规范 Reference documents of the measurement(Code, Name)

SRMC3003-V2.0.0 比吸收率 (SAR) 测试系统校准规范

校准环境及地点 Place and environmental condition of the measurement

温度 Temperature 23.2℃ 湿度 Humidity 32.5 % 地点 Location SRTC room 226

主要校准设备	型号	序列号	校准日期	校准有效期至
Primary Calibration Equipment	Model/Type	ID#	Cal Date	Scheduled
used				Calibration
功率计 Power meter	E4417A	SN: MY45101004	2010.8	2011.8
功率传感器 Power sensor	E9300B	SN: MY41496001	2010.8	2011.8
功率传感器 Power sensor	E9300B	SN: MY41496003	2010.8	2011.8
参考 DAE Reference DAE	DAE4	SN: 720	2011.1	2012.1
信号源 Signal generator	SML03	SN:103514	2010.8	2011.8
网络分析仪 Network analyzer	8714ET	SN:US40372083	2010.8	2011.8
次要校准设备	型号	序列号		
Secondary Calibration Equipment	Model/Type	ID#		
波导 Waveguide	WGLS R9	SN:1006		
波导 Waveguide	WGLS R14	SN:1003		
波导 Waveguide	WGLS R22	SN:1006		

地址:北京市西城区北礼士路 80 号 Add: No.80 Bei Lishi Road, Xi Cheng District Beijing 100037, P.R. China 电话 Tel: +86-10-68009202 68009203 传真 Fax: +86-10-68009205 68009195

第2页共7页

注:

1. 所使用的校准系统和计量标准可溯源到国家基准或标准。

测量和置信区间的不确定度都是证书的一部分,并将在以下内容中给出。

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

2. 除非拥有本实验室的书面许可,否则不得复制该校准证书。

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

3. 我中心仅对加盖"国家无线电监测中心检验中心"章的完整证书负责

SRTC is responsible for the whole of certificate only with stamp of SRTC.

4. 本证书的校准结果仅对所校准的计量器具有效

The calibration results would be valid only for the items calibration.

5. 本证书中英文两种语言表达,准确含义以中文为准。

The certification is written by Chinese and English. Exact meaning should be explained only on Chinese version.

地址:北京市西城区北礼士路 80 号 Add: No.80 Bei Lishi Road, Xi Cheng District Beijing 100037, P.R. China 电话 Tel: +86-10-68009202 68009203 传真 Fax: +86-10-68009205 68009195

备注	
Glossary	
TSL	模拟组织液 tissue simulating liquid
NORMx, y, z	自由空间灵敏度 sensitivity in free space
ConvF	模拟组织液中的灵敏度/自由空间的灵敏度 sensitivity in TSL/NORM x, y, z
DCP	二极管压缩点 diode compression point
角度 φ	沿探头轴向旋转 φ φ rotation around probe axis
角度θ	沿探头法平面中的一个轴旋转 0, 例如 0=0, 代表垂直于探头轴向
	θ rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\theta=0$ is normal to probe axis

本校准证书中使用的方法参考如下标准 Calibration is preformed according to the Following Standards

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in Human Head from Wireless Communication Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) Federal Communication Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

地址:北京市西城区北礼士路 80 号 Add: No.80 Bei Lishi Road, Xi Cheng District Beijing 100037, P.R. China 电话 Tel: +86-10-68009202 68009203 传真 Fax: +86-10-68009205 68009195

第4页 共7页

方法及参数介绍

Methods Applied	and Interpretation	of Parameters
-----------------	--------------------	---------------

• NORMx, y, z: NORMx, y, z 是中间变量,其不确定度不影响 TSL 中电场强度的不确定性。 NORM x, y, z are only intermediate valve, i.e., the uncertainties of NORM x, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF)

• NORM(f)x, y, z= NORMx, y, z*频率响应。在 DASY4.2 以后的版本中,这项工作由软件完成,频 率响应的不确定度包含在 ConvF 的不确定度中。

NORM(f) x, y, z= NORM x, y, z* frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software version later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.

• DCPx,y,z: DCP 是与探头的线性度相关的参数,其测试是基于功率扫描的方法进行的,另外 DCP 既不依赖于频率也不依赖于介质。

DCP x, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.

ConvF和边界效应: 当频率大于 800MHz 时,利用平坦模型中的电场或是波导中的人工电场进行测试。我们也利用相同的配置来得到边界效应的相关参数(alpha, depth)。DASY 软件的这项功能可以用来补偿测试中发生的边界效应,使在边界附近测试的时候能够更加准确。而ConvFx,y,z=NORMx, y, z*ConvF。DASY4.4 以后的版本允许的频率扩展范围为±50MHz 到±100MHz。

ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Stand for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurement for f>800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given .These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.

• 各向同向性: 探头暴露在平板天线和一个平面模型产生的电场中,这个电场的梯度较低。 Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

地址:北京市西城区北礼士路 80 号 Add: No.80 Bei Lishi Road, Xi Cheng District Beijing 100037, P.R. China 电话 Tel: +86-10-68009202 68009203 传真 Fax: +86-10-68009205 68009195

第5页共7页 证书编号

测试条件

Measurement Conditions

DASY 版本 DASY Version	DSAY 5	V52.2.0.163
模型 Phantom	Flat phantom	

探头敏感度参数

Probe Sensitivity Parameters

	数值 Value	单位 Unit
X 轴	1.00	$\mu V/(V/m)^2$
Y 轴	1.00	$\mu V / (V / m)^2$
Z轴	1.00	$\mu V / (V / m)^2$

1. 二极管压缩点

Diode Compression Point

	数值 Value	单位 Unit	不确定度 Uncertainty (k = 2)
X 轴	98.60	mV	10.82%
Y轴	97.38	mV	10.82%
Z轴	99.74	mV	10.82%

2. 转换因子: 头部 TSL

Probe Conversion Factors: Head Tissue Liquid

頻率(MHz) Frequency	频率范围 Validity (MHz)	介电常数 Permittivit	导电率 Conductivity	Alpha	Depth	ConvFa ConvFa µV/(V/		yl	不确定度 Uncertainty (k = 2)
850	±100	41.56	0.9106	0.395	0.882	3.843	4.303	4.435	13.02%
900	±100	41.24	0.9487	0.337	0.974	3.913	4.377	4.502	13.02%
1800	±100	39.21	1.348	0.156	1.648	3.784	4.193	4.328	13.02%
1900	±100	38.75	1.450	0.178	1.515	3.609	4.015	4.146	13.02%
2450	±100	38.23	1.982	0.126	1.725	3.214	3.653	3.661	13.02%

「「「「「」」」

地址:北京市西城区北礼士路 80 号 Add: No.80 Bei Lishi Road, Xi Cheng District Beijing 100037, P.R. China 电话 Tel: +86-10-68009202 68009203 传真 Fax: +86-10-68009205 68009195

第6页 共7页

QuieTek

国家无线电监测中心检测中心 The State Radio monitoring_center Testing Center

3. 转换因子: 腰部 TSL

Probe Conversion Factors: Body Tissue Liquid

频率(MHz) Frequency	频率范围 Validity (MHz)	介电常数 Permittivit	导电率 Conductivity	Alpha	Depth	ConvF2 ConvF2 µV/(V/	51 17.5	1	不确定度 Uncertainty (k=2)
850	±100	55.36	1.004	0.459	0.807	4.438	4.985	5.123	13.02%
900	±100	54.48	1.055	0.378	0.863	4.530	5.101	5.229	13.02%
1800	±100	52.83	1.501	0.152	1.732	4.333	4.832	4.991	13.02%
1900	±100	52.43	1.615	0.183	1.491	4.193	4.677	4.833	13.02%
2450	±100	52.95	1.911	0.137	1.758	3.702	4.126	4.265	13.02%

4. 各向同向性

Probe Isotropy

	数值 Value	单位 Unit	不确定度 Uncertain (k=2)
轴向各向同向性 Axial Isotropy	0.157	dB	10.18%
球面各向同向性 Spherical Isotropy	0.125	dB	10.18%

校准员 Calibrated by 子KAI子 远 核验员 之 Checked by

MA

地址:北京市西城区北礼士路80号 Add: No.80 Bei Lishi Road, Xi Cheng District Beijing 100037, P.R. China

电话 Tel: +86-10-68009202 68009203 传真 Fax: +86-10-68009205 68009195

第7页 共7页 证书编号 Certificate No.SRTC2011-CAL002-001

QuieTek

Appendix E. Dipole Calibration Data

ccredited by the Swiss Accredita	tion Service (SAS)	Accreditation	No.: SCS 108
e Swiss Accreditation Service			
ultilateral Agreement for the re			
lient Quietek (Auder	2)	Cartificata N	o: D835V2-4d094_Mar10
lient Quietek (Auder	9	Certificate N	0: D055V2-40054_Wai 10
CALIBRATION C	ERTIFICATE		
Dbject	D835V2 - SN: 4d	094	
Calibration procedure(s)	QA CAL-05.v7		
		dure for dipole validation kits	
0-11	March 15, 0010		
Calibration date:	March 15, 2010		
he measurements and the unce	rtainties with confidence p	onal standards, which realize the physical un robability are given on the following pages an γ facility: environment temperature (22 ± 3)°	nd are part of the certificate.
The measurements and the unce	rtainties with confidence p	robability are given on the following pages an	nd are part of the certificate.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards	rtainties with confidence p oted in the closed laborator IE critical for calibration)	robability are given on the following pages ar y facility: environment temperature (22 ± 3)° Cal Date (Certificate No.)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration
The measurements and the unce NI calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10
The measurements and the unce all calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10
The measurements and the unce NI calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 03-Oct-09 (No. 217-01086) 031-Mar-09 (No. 217-01025)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10
The measurements and the unce NI calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10
The measurements and the unce all calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 03-Oct-09 (No. 217-01086) 031-Mar-09 (No. 217-01025)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe ES3DV3 DAE4	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5086 (20g) SN: 5087.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10 Mar-11
The measurements and the unce NII calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5087.2 / 06327 SN: 3205	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (209) SN: 5047.2 / 06327 SN: 601 ID #	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10 Jun-10 Mar-11 Scheduled Check
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-10
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
The measurements and the unce NII calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-10
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-10
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5087.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Dimce Iliev	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Laboratory Technician	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10
The measurements and the unce	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5087.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Dimce Iliev	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Laboratory Technician	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

CP 2 2

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d094_Mar10

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C	2222-2	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.43 mW / g
SAR normalized	normalized to 1W	9.72 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.70 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
	condition 250 mW input power	1.58 mW / g
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured SAR normalized		1.58 mW / g 6.32 mW / g

Certificate No: D835V2-4d094_Mar10

Page 3 of 9

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.3 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature during test	(21.3 ± 0.2) °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.55 mW / g
SAR normalized	normalized to 1W	10.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.90 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
	condition 250 mW input power	1.67 mW / g
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured SAR normalized		1.67 mW / g 6.68 mW / g

Certificate No: D835V2-4d094_Mar10

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.2 Ω - 2.7 jΩ	
Return Loss	- 29.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.0 Ω - 4.8 jΩ	
Return Loss	- 25.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.388 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the

feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 15, 2009

Certificate No: D835V2-4d094_Mar10

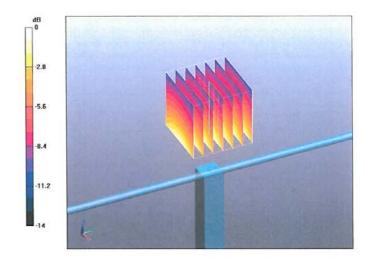
Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 08.03.2010 10:52:27

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d094

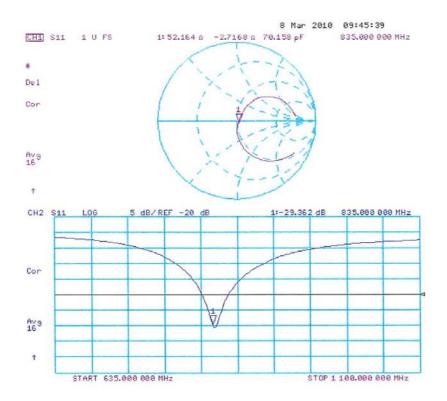

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL900 Medium parameters used: f = 835 MHz; σ = 0.91 mho/m; ϵ_r = 42.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.3 V/m; Power Drift = 0.00297 dB Peak SAR (extrapolated) = 3.65 W/kg SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.58 mW/g Maximum value of SAR (measured) = 2.84 mW/g



Certificate No: D835V2-4d094_Mar10

Page 6 of 9

Certificate No: D835V2-4d094_Mar10

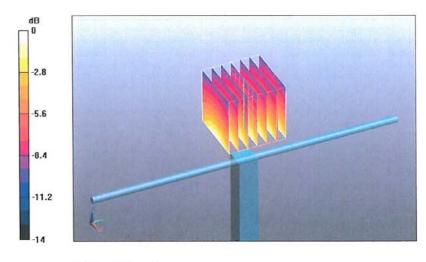
Page 7 of 9

DASY5 Validation Report for Body

Date/Time: 15.03.2010 11:52:53

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d094

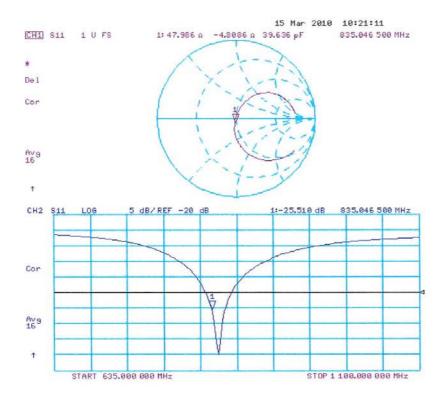

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL900 Medium parameters used: f = 835 MHz; σ = 1.01 mho/m; ϵ_r = 55.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.97, 5.97, 5.97); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.9 V/m; Power Drift = -0.00975 dB Peak SAR (extrapolated) = 3.77 W/kgSAR(1 g) = 2.55 mW/g; SAR(10 g) = 1.67 mW/gMaximum value of SAR (measured) = 2.98 mW/g


0 dB = 2.98 mW/g

Certificate No: D835V2-4d094_Mar10

Page 8 of 9

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-4d094_Mar10

Page 9 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS SC ZO RUBRATO S

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Quietek (Auden)

Certificate No: D1900V2-5d121_Mar10

Dbject	D1900V2 - SN: 5	id121	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	March 23, 2010		
The measurements and the unce	rtainties with confidence p	ional standards, which realize the physical un robability are given on the following pages an ry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
Calibration Equipment used (M&1	TE critical for calibration)		
	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards		Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086)	Scheduled Calibration Oct-10
Primary Standards Power meter EPM-442A	ID #		
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086)	Oct-10 Oct-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 SN: 5086 (209)	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025)	Oct-10 Oct-10 Mar-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5086 (209) SN: 5047.2 / 06327	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Oct-10 Oct-10 Mar-10 Mar-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 SN: 5086 (209) SN: 5047.2 / 06327 SN: 3205	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37480704 US37292783 SN: 5086 (209) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37480704 US37292783 SN: 5086 (209) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10 Signature
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 6047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function	Oct-10 Oct-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS CP Z Z PRIORATIO S Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d121_Mar10

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	1.45 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C	2222	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.8 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
	condition 250 mW input power	5.30 mW / g
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured SAR normalized		5.30 mW / g 21.2 mW / g

Certificate No: D1900V2-5d121_Mar10

Page 3 of 9

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	1.58 mho/m ± 6 %
Body TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.5 mW / g
SAR normalized	normalized to 1W	42.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.60 mW / g
SAR normalized	normalized to 1W	22.4 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.3 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d121_Mar10

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.6 Ω + 7.4 jΩ	
Return Loss	- 22.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.1 Ω + 7.1 jΩ	
Return Loss	- 21.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.205 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 25, 2009

Certificate No: D1900V2-5d121_Mar10

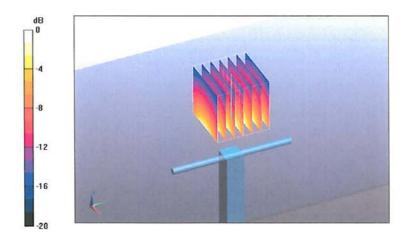
Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 23.03.2010 12:23:06

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d121

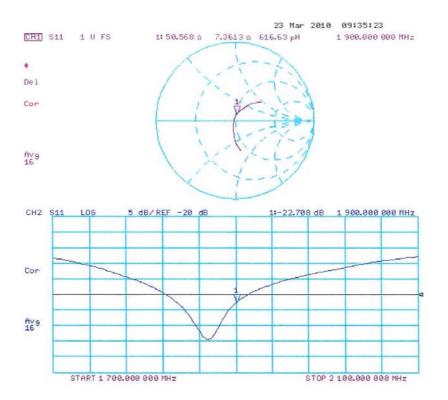

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U11 BB Medium parameters used: f = 1900 MHz; σ = 1.45 mho/m; ϵ_r = 41.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.6 V/m; Power Drift = 0.00658 dBPeak SAR (extrapolated) = 18.5 W/kgSAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.3 mW/gMaximum value of SAR (measured) = 12.8 mW/g



Certificate No: D1900V2-5d121_Mar10

Page 6 of 9

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d121_Mar10

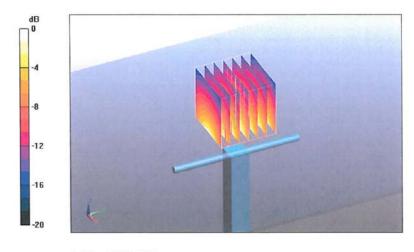
Page 7 of 9

DASY5 Validation Report for Body

Date/Time: 17.03.2010 13:29:09

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d121

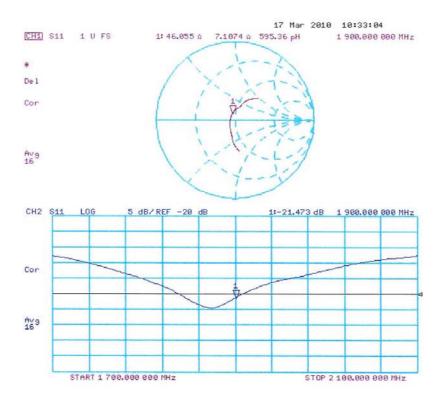

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U11 BB Medium parameters used: f = 1900 MHz; σ = 1.58 mho/m; ϵ_r = 55; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97 V/m; Power Drift = 0.00345 dB Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.6 mW/g Maximum value of SAR (measured) = 13.3 mW/g


 $0 \, dB = 13.3 \, mW/g$

Certificate No: D1900V2-5d121_Mar10

Page 8 of 9

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d121_Mar10

Page 9 of 9

Appendix F. DAE Calibration Data

Calibration Laboratory Schmid & Partner Engineering AG eughausstrasse 43, 8004 Zurich		BAC MRA	S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service
Accredited by the Swiss Accredita The Swiss Accreditation Service Multilateral Agreement for the re	is one of the signatories	to the EA	ditation No.: SCS 108
Client Quietek (Auder	1)	Certif	icate No: DAE4-1220_Dec10
CALIBRATION C	ERTIFICATE		
Object	DAE4 - SD 000 D	04 BJ - SN: 1220	
Calibration procedure(s)	QA CAL-06.v22 Calibration procee	dure for the data acquisitio	n electronics (DAE)
Calibration date:	December 3, 2010	0	
The measurements and the unce	rtainties with confidence pr	onal standards, which realize the phy obability are given on the following p y facility: environment temperature (bages and are part of the certificate.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards	rtainties with confidence protected in the closed laboratory FE critical for calibration)	obability are given on the following p y facility: environment temperature (Cal Date (Certificate No.)	22 ± 3)°C and humidity < 70%, Scheduled Calibration
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards Keithley Multimeter Type 2001	rtainties with confidence protected in the closed laboratory I'E critical for calibration) ID # SN: 0810278	obability are given on the following p y facility: environment temperature (Cal Date (Certificate No.) 28-Sep-10 (No:10376)	22 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Keithley Multimeter Type 2001 Secondary Standards	rtainties with confidence pre- sted in the closed laboratory FE critical for calibration) ID # SN: 0810278 ID #	obability are given on the following p y facility: environment temperature (Cal Date (Certificate No.)	22 ± 3)°C and humidity < 70%, Scheduled Calibration
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Keithley Multimeter Type 2001 Secondary Standards	rtainties with confidence pro- sted in the closed laboratory FE critical for calibration) ID # SN: 0810278 ID # SE UMS 006 AB 1004	obability are given on the following p y facility: environment temperature (Cal Date (Certificate No.) 28-Sep-10 (No:10376) Check Date (in house) 07-Jun-10 (in house check)	22 ± 3)°C and humidity < 70%, Scheduled Calibration Sep-11 Scheduled Check In house check; Jun-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	rtainties with confidence pre- sted in the closed laboratory FE critical for calibration) ID # SN: 0810278 ID #	obability are given on the following p y facility: environment temperature (Cal Date (Certificate No.) 28-Sep-10 (No:10376) Check Date (in house)	22 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-11 Scheduled Check
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	rtainties with confidence pro- sted in the closed laboratory FE critical for calibration) ID # SN: 0810278 ID # SE UMS 006 AB 1004	obability are given on the following p y facility: environment temperature (<u>Cal Date (Certificate No.)</u> 28-Sep-10 (No:10376) <u>Check Date (in house)</u> 07-Jun-10 (in house check) Function	Scheduled Calibration Scheduled Calibration Sep-11 Scheduled Check In house check; Jun-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	rtainties with confidence pro- sted in the closed laboratory FE critical for calibration) ID # SN: 0810278 ID # SE UMS 006 AB 1004	obability are given on the following p y facility: environment temperature (<u>Cal Date (Certificate No.)</u> 28-Sep-10 (No:10376) <u>Check Date (in house)</u> 07-Jun-10 (in house check) Function	22 ± 3)°C and humidity < 70%, Scheduled Calibration Sep-11 Scheduled Check In house check; Jun-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards Keithley Multimeter Type 2001 Secondary Standards Galibrator Box V1.1 Calibrated by: Approved by:	rtainties with confidence pro- sted in the closed laboratory (FE critical for calibration) ID # SN: 0810278 ID # SE UMS 006 AB 1004 SE UMS 006 AB 1004 Name Eric Hainfeld Fin Bomholt	Cal Date (Certificate No.) 28-Sep-10 (No:10376) Check Date (in house) 07-Jun-10 (in house check) Function Technician	Arages and are part of the certificate. 22 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-11 Scheduled Check In house check: Jun-11 Signature IN ROLLER Issued: December 3, 2010

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

SWISS BRD

S

С

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Glossary

DAE

data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1220 Dec10

Page 2 of 5

DC Voltage Measurement

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV .	full range =	-1+3mV

Calibration Factors	X	Y	Z
High Range	405.229 ± 0.1% (k=2)	404.950 ± 0.1% (k=2)	404.184 ± 0.1% (k=2)
Low Range	3.97007 ± 0.7% (k=2)	3.98601 ± 0.7% (k=2)	3.99287 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	177.5 ° ± 1 °

Certificate No: DAE4-1220_Dec10

Page 3 of 5

QuieTek

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Inpu	t 200002.4	1.22	0.00
Channel X + Inpu	20001.01	0.91	0.00
Channel X - Input	-19997.57	2.63	-0.01
Channel Y + Inpu	200008.1	-2.52	-0.00
Channel Y + Inpu	19998.92	-1.38	-0.01
Channel Y - Input	-20001.39	-1.29	0.01
Channel Z + Inpu	200011.1	1.59	0.00
Channel Z + Inpu	t 19998.31	-1.89	-0.01
Channel Z - Input	-20000.79	-0.99	0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	1999.8	-0.22	-0.01
Channel X + Input	199.68	-0.32	-0.16
Channel X - Input	-200.45	-0.25	0.12
Channel Y + Input	1999.6	-0.27	-0.01
Channel Y + Input	199.03	-1.07	-0.54
Channel Y - Input	-200.66	-0.76	0.38
Channel Z + Input	2000.0	-0.04	-0.00
Channel Z + Input	198.94	-1.26	-0.63
Channel Z - Input	-201.36	-1.46	0.73

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	10.60	8.62
	- 200	-7.59	-9.45
Channel Y	200	-9.68	-9.86
	- 200	9.01	8.51
Channel Z	200	12.06	12.10
	- 200	-13.84	-14.49

3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	(1)	2.85	-0.96
Channel Y	200	1.60	-	3.41
Channel Z	200	2.29	-1.66	25

Certificate No: DAE4-1220_Dec10

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15905	14404
Channel Y	16020	13780
Channel Z	15698	14978

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10 $M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-0.06	-1.34	1.46	0.43
Channel Y	-0.85	-2.00	0.10	0.32
Channel Z	-0.99	-2.44	0.46	0.44

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1220_Dec10

Page 5 of 5