Compliance Certification Services Inc. FCCID: WA6I675

Report No: KS120312A04-SF

Date of Issue :March 20, 2012

ANSI/IEEE Std. C95.1-1992 In accordance with the requirements of FCC Report and Order: ET Docket 93-62, and OET Bulletin 65 Supplement C

FCC SAR TEST REPORT

For

Product Name: GSM/GPRS Quad-band Mobile Phone **Brand Name: Verykool** Model No.: i675, i674 Series Model: N/A Test Report Number: KS120312A04-SF

Issued for

Verykool USA Inc

350 Executive Dr. #100, San Diego

Issued by

Compliance Certification Services Inc.

Kun shan Laboratory

No.10 Weiye Rd., Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China TEL: 86-512-57355888

FAX: 86-512-57370818

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by A2LA or any government agencies. The test results in the report only apply to the tested sample.

Compliance Certification Services Inc.Report No: K\$120312A04-SFFCCID: WA6I675Date of Issue :M

Date of Issue :March 20, 2012

TABLE OF CONTENTS

1.	CERTIFICATE OF COMPLIANCE (SAR EVALUATION)	3
2.	EUT DESCRIPTION	4
3.	REQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC	5
4.	TEST METHODOLOGY	5
5.	TEST CONFIGURATION	5
6.	DOSIMETRIC ASSESSMENT SETUP	5
	6.1 MEASUREMENT SYSTEM DIAGRAM	7
	6.2 SYSTEM COMPONENTS	8
7.	EVALUATION PROCEDURES	11
8.	MEASUREMENT UNCERTAINTY	14
9.	EXPOSURE LIMIT	15
10.	EUT ARRANGEMENT	16
	10.1 ANTHROPOMORPHIC HEAD PHANTOM	16
	10.2 DEFINITION OF THE "CHEEK/TOUCH" POSITION	17
	10.3 DEFINITION OF THE "TILTED" POSITION	18
11.	MEASUREMENT RESULTS	19
	11.1 TEST LIQUIDS CONFIRMATION	19
	11.2 LIQUID MEASUREMENT RESULTS	19
	11.3 SYSTEM PERFORMANCE CHECK	20
	11.4 EUT TUNE-UP PROCEDURES AND TEST MODE	23
	11.5 SAR HANDSETS MULTI XMITER ASSESSMENT	
	11.6 EUT SETUP PHOTOS	28
	11.7 SAR MEASUREMENT RESULTS	
12.	EUT PHOTO	
13.	EQUIPMENT LIST & CALIBRATION STATUS	
14.	FACILITIES	
15.	REFERENCES	
16.	ATTACHMENTS	
Арр	endix A: Plots of Performance Check	40
Арр	endix B: DASY Calibration Certificate	47
Арр	endix C: Plots of SAR Test Result	97

Compliance Certification Services Inc.Report No: KS120312A04-SFFCCID: WA6I675Date of Issue :M

Date of Issue :March 20, 2012

1. CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

Product Name:	Product Name: GSM/GPRS Quad-band Mobile Phone					
Trade Name:	Verykool	/erykool				
Model Name.:	i675, i674					
Series Model:	N/A					
Applicant Discrepancy:	Initial					
Devices supporting GPRS:	Class B					
Description Test Modes(worst case):	SIM 1 and SIM2 is a chipse	SIM 1 and SIM2 is a chipset unit and tested as single chipset				
Device Category:	PORTABLE DEVICES					
Exposure Category:	GENERAL POPULATION/L	JNCONTROLLED EXPOSURE				
Date of Test:	March 16, 2012					
Applicant:	Verykool USA Inc 350 Executive Dr. #100, Sa	n Diego				
Manufacturer:	Verykool Hong Kong Limi SUITE 2311 SHELL TOWE AY BAY HK	R TIMES SQUARE 1 MATHESON ST CAUSEW				
Application Type:	Certification					
AP	PLICABLE STANDARDS A	ND TEST PROCEDURES				
STANDARDS AND	TEST PROCEDURES	TEST RESULT				
FCC OET 65	5 Supplement C	No non-compliance noted				
Deviation from Applicable Standard						
None						
The device was tested by Compliance Certification Services Inc. in accordance with the measurement						

The device was tested by Compliance Certification Services Inc. in accordance with the measurement methods and procedures specified in OET Bulletin 65 Supplement C(Edition 01-01). The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Cadit . HOO

Hadiif Hoo **RF** Manager Compliance Certification Services Inc.

Tested by:

) nek Fu

Luck.Fu Test Engineer Compliance Certification Services Inc.

2. EUT DESCRIPTION

	-						
Product Name:	GSM/GPRS Quad-band Mobile Phor	ne					
Model Name:	i675, i674						
Series Model:	N/A						
Model Discrepancy:	N/A						
Brand Name:	Verykool						
FCC ID:	WA6I675						
GPRS Level:	Multi-Class 10						
Multi-slot Class:	2 Up +3 Down						
Power reduction:	NO						
DTM Description:	N/A						
Frequency Range:	GSM: 850: 824.2 ~ 848.8 MHz GSM: 1900: 1850.2 ~ 1909.8 MHz GPRS850: 850: 824.2 ~ 848.8 MHz GPRS1900:1850.2 ~ 1909.8 MHz	802.11b / g: 2412 ~ 2462 MHz n HT20: 2412 ~ 2462 MHz n HT40: 2422 ~ 2452 MHz Bluetooth: 2402 ~ 2480 MHz					
Transmit Power(Average):	GSM 850 Band: GSM 850: 32.19 dBm GPRS 850: 25.33 dBm GSM 1900 Band: GSM 1900: 30.93dBm GPRS 1900: 23.64dBm	WI-FI IEEE 802.11b:15.23 dBm WI-FI IEEE 802.11g:12.87 dBm WI-FI IEEE802.11n:20MHz: 11.77dBm WI-FI IEEE802.11n:40MHz: 11.35dBm Bluetooth:0.55 dBm					
Max. SAR:	GSM 850 Head: 0.589 W/kg ;Body:0. 549W/kg GSM 1900 Head: 0.553W/kg;Body: 0.598W/kg	WI-FI IEEE 802.11b:0.432 W/kg GPRS 850: 0.459 W/kg GPRS 1900: 0.538W/kg					
Modulation Technique:	GSM / GPRS : GMSK WI-FI 802.11b / 802.11g: WI-FI IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK)						
Accessories:	Power supply and ADP (rating) : Brand Name: Verykool Model No:ASUC30a-050050 INPUT:100-240V-50/60HZ 0.3A OUTPT:DC5.0V,500mA	Battery (rating) : Brand Name: Verykool Model:414455Ar Spec:3.7v 1100mAh(4.07Wh) Limited charger voltage:4.2v					
Antenna Specification:	GSM: PIFA antenna	WIFI: PIFA antenna Bluetooth : PIFA antenna					
Operating Mode:	Maximum continuous output						

3. REQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992. According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

4. TEST METHODOLOGY

The Specific Absorption Rate (SAR) testing specification, method and procedure for this Mobile Phone is in accordance with the following standards:

- X 47 CFR Part 2 (2.1093)
- IEEE C95.1-1999
- KDB 248227 D01 SAR measurement procedures for 802.11 b/g transmitters
- KDB 648474 D01 SAR evaluation considerations for handsets with multiple transmitters and _____ antennas
- KDB 447498 D01 Mobile Portable RF Exposure
- KDB 941225 D06 SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities
- OET Bulletin 65 Supplement C (Edition 01-01)

Preliminary Guidance for Reviewing Applications for Certification of 3G Device. May 2006.

5. TEST CONFIGURATION

The device was controlled by using a base station emulator R&S CMU200. Communication between the device and the emulator was established by air link. The distance between the DUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of DUT. The DUT was set from the emulator to radiate maximum output power during all tests.

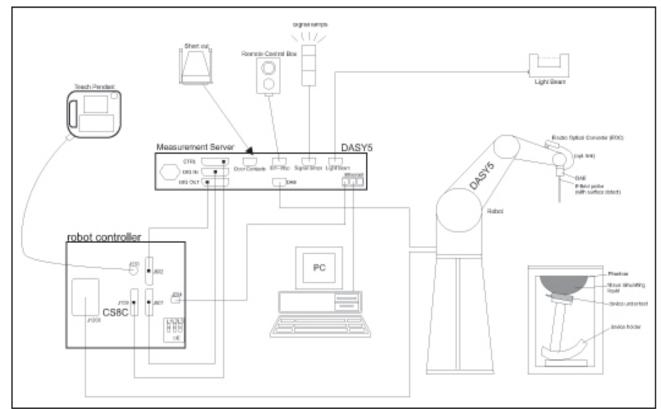
Measurements were performed on the lowest, middle, and highest channel for each testing position.

For SAR testing, EUT is in GSM/GPRS link mode. In GSM link mode, its crest factor is 8, In GPRS link mode, its crest factor is 2, because EUT is set in GPRS multi-slot class 12 with 4 uplink slots.

6. DOSIMETRIC ASSESSMENT SETUP

These measurements were performed with the automated near-field scanning system DASY 5 from ATTENNESSA. The system is based on a high precision robot (working range greater than 0.9 m), which positions the probes with a positional repeatability of better than \pm 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the E-field PROBE EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in [7] with accuracy of better than \pm 10%. The spherical isotropy was evaluated with the procedure described in [8] and found to be better than \pm 0.25 dB. The phantom used was the SAM Twin Phantom as described in FCC supplement C, IEE P1528 and CENELEC EN 62209. The Tissue simulation liquid used for each test is in according with the FCC OET65 supplement C as listed below.

Compliance Certification Services Inc.Report No: K\$120312A04-SFFCCID: WA61675Date of Issue :M


Ingredients	Frequency (MHz)									
(% by weight)	4	50	835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Report No: KS120312A04-SF

Date of Issue :March 20, 2012

Rev. 01

6.1 MEASUREMENT SYSTEM DIAGRAM

The DASY5 system for performing compliance tests consists of the following items:


- A standard high precision 6-axis robot (St"aubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical • of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal • filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

Report No: KS120312A04-SF

Date of Issue :March 20, 2012

Rev. 01

6.2 SYSTEM COMPONENTS


Compliance Certification Services Inc. FCCID: WA6I675

Report No: KS120312A04-SF

Date of Issue :March 20, 2012

Dimensions: Overall length: 337 mm (Tip: 9 mm) Tip diameter: 2.5 mm (Body: 10 mm) Distance from probe tip to dipole centers: 1 mm Application: High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6

GHz with precision of better 30%.

SAM Twin Phantom(V4.0)

Construction:

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-200X, CENELEC 50360 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Shell Thickness: 2 ±0.2 mm

Filling Volume: Approx. 25 liters

Height: 850mm; Length: 1000mm; Width: Dimensions: 750mm

SAM Phantom (ELI4)

Description Construction:

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209 Part II and all known tissue simulating liquids. ELI4 has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is supported by software version DASY4/DASY5.5 and higher and is compatible with all SPEAG dosimetric probes and dipoles

Shell Thickness: Filling Volume: Dimensions: Minor axis:

2.0 ± 0.2 mm (sagging: <1%) Approx. 25 liters Major ellipse axis: 600 mm 400 mm 500mm

Rev. 01

Page 9 of 97

Compliance Certification Services Inc. FCCID: WA6I675

Report No: KS120312A04-SF

Date of Issue :March 20, 2012

Device Holder for SAM Twin Phantom

Construction: In combination with the Twin SAM Phantom, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, and flat phantom).

System Validation Kits for SAM Twin Phantom

Construction: Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor.

Frequency: 900,1800,2450,5800 MHz

Return loss: > 20 dB at specified validation position

Power capability: > 100 W (f < 1GHz); > 40 W (f > 1GHz)

Dimensions:

D835V2: dipole length: 161 mm; overall height: 340 mm D1800V2: dipole length: 72.5 mm; overall height: 300 mm D1900V2: dipole length: 67.7 mm; overall height: 300 mm D2450V2: dipole length: 51.5 mm; overall height: 290 mm D5GHzV2: dipole length: 20.6 mm; overall height: 300mm

System Validation Kits for ELI4 phantom

Construction: Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor.

Frequency: 900, 1800, 2450, 5800 MHz

Return loss: > 20 dB at specified validation position

Power capability: > 100 W (f < 1GHz); > 40 W (f > 1GHz)

Dimensions:

D835V2: dipole length: 161 mm; overall height: 340 mm D1800V2: dipole length: 72.5 mm; overall height: 300 mm D1900V2: dipole length: 67.7 mm; overall height: 300 mm D2450V2: dipole length: 51.5 mm; overall height: 290 mm D5GHzV2: dipole length: 20.6 mm; overall height: 300 mm

7. EVALUATION PROCEDURES

DATA EVALUATION

The DASY 5 post processing software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

- Sensitivity	Norm _i , a_{i0} , a_{i1} , a_{i2}
- Conversion factor	ConvF _i
- Diode compression point	dcpi
- Frequency	f
- Crest factor	cf
- Conductivity	σ
- Density	ρ
	 Diode compression point Frequency Crest factor Conductivity

These parameters must be set correctly in the software. They can be found in the component documents or be imported into the software from the configuration files issued for the DASY 5 components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i

= Compensated signal of channel i(i = x, y, z)= Input signal of channel i (i = x, y, z)= Crest factor of exciting field

(DASY 5 parameter) (DASY 5 parameter)

 dcp_i = Diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

Ui

cf

$$E_i = \sqrt{\frac{V_i}{Norm_i \bullet ConvF}}$$

H-field probes:

$$H_i = \sqrt{Vi} \cdot \frac{a_{i10} + a_{i11}f + a_{i12}f}{f}$$

with V_i = Compensated signal of channel i(i = x, y, z)

*Norm*_i = Sensor sensitivity of channel i (i = x, y, z)

 μ V/(V/m)² for E0field Probes

ConvF

= Sensitivity enhancement in solution

Rev. 01

- = Sensor sensitivity factors for H-field probes aii
- = Carrier frequency (GHz) f
- Ei = Electric field strength of channel i in V/m
- Hi = Magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

Page 11 of 97

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

The power flow density is calculated assuming the excitation field as a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = Equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

SAR EVALUATION PROCEDURES

The procedure for assessing the peak spatial-average SAR value consists of the following steps:

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY 5 software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought-up, grid was at to 15 mm by 15 mm and can be edited by a user.

Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default zoom scan measures $5 \times 5 \times 7$ points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more then one maximum, the number of Zoom Scans has to be enlarged accordingly (The default number inserted is 1).

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have DASY 5 software stop the measurements if this limit is exceeded.

Report No: KS120312A04-SF FCCID: WA6I675

Date of Issue :March 20, 2012

Rev. 01

SPATIAL PEAK SAR EVALUATION

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1529 standard. It can be conducted for 1 g and 10 g.

The DASY 5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maximum searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation.

Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Cube Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 5x5x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1 g and 10 g cubes.

Boundary effect

For measurements in the immediate vicinity of a phantom surface, the field coupling effects between the probe and the boundary influence the probe characteristics. Boundary effect errors of different dosimetric probe types have been analyzed by measurements and using a numerical probe model. As expected, both methods showed an enhanced sensitivity in the immediate vicinity of the boundary. The effect strongly depends on the probe dimensions and disappears with increasing distance from the boundary. The sensitivity can be approximately given as:

$$S \approx S_o + S_b exp(-\frac{z}{a})cos(\pi \frac{z}{\lambda})$$

Since the decay of the boundary effect dominates for small probes ($a <<\lambda$), the cos-term can be omitted. Factors *Sb* (parameter Alpha in the DASY 5 software) and *a* (parameter Delta in the DASY 5 software) are assessed during probe calibration and used for numerical compensation of the boundary effect. Several simulations and measurements have confirmed that the compensation is valid for different field and boundary configurations.

This simple compensation procedure can largely reduce the probe uncertainty near boundaries. It works well as long as:

- the boundary curvature is small
- the probe axis is angled less than 30_ to the boundary normal
- the distance between probe and boundary is larger than 25% of the probe diameter
- the probe is symmetric (all sensors have the same offset from the probe tip)

Since all of these requirements are fulfilled in a DASY 5 system, the correction of the probe boundary effect in the vicinity of the phantom surface is performed in a fully automated manner via the measurement data extraction during post processing.

8. MEASUREMENT UNCERTAINTY

UNCERTAINTY BUDGE ACCORDING TO IEEE 1528-2003										
Error Description		Probability distribution	Divisor	C₁1g	Standard unc.(1g) ±%	V ₁ or V _{eff}				
Measurement System										
Probe calibration	±5.5	normal	1	1	±5.5	×				
Axial isotropy of probe	±4.7	rectangular	√3	0.7	±1.9	00				
Hemispherical Isotropy of probe	±9.6	rectangular	√3	0.7	±3.9	∞				
Probe linearity	±4.7	rectangular	√3	1	±2.7	×				
Detection Limit	±1.0	rectangular	√3	1	±0.6	×				
Boundary effects	±1.0	rectangular	√3	1	±0.6	×				
Readout electronics	±0.3	normal	1	1	±0.3	×				
Response time	±0.8	rectangular	√3	1	±0.5	∞				
Integration time	±2.6	rectangular	√3	1	±1.5	∞				
Probe positioning	±2.9	rectangular	√3	1	±1.7	×				
Probe positioner	±0.4	rectangular	√3	1	±0.2	∞				
RF ambient Noise	±3.0	rectangular	√3	1	±1.7	×				
RF ambient Reflections	±3.0	rectangular	√3	1	±1.7	×				
Max.SAR Eval	±1.0	rectangular	√3	1	±0.6	∞				
Test Sample Related										
Device positioning	±2.9	normal	1	1	±2.9	145				
Device holder uncertainty	±3.6	normal	1	1	±3.6	5				
Power drift	±5.0	rectangular	√3	1	±2.9	×				
Phantom and Set up										
Phantom uncertainty	±4.0	rectangular	√3	1	±2.3	œ				
Liquid conductivity(target)	±5.0	rectangular	√3	0.64	±1.8	∞				
Liquid conductivity(meas.)	±2.5	rectangular	1	0.64	±1.6	∞				
Liquid permittivity(target)	±5.0	rectangular	√3	0.6	±1.7	∞				
Liquid permittivity(meas.)	±2.5	rectangular	1	0.6	±1.5	∞				
Combined Standard Uncertainty	,				±10.7	387				
Coverage Factor for 95%		kp=2								
Expanded Standard Uncertainty					±21.4					

Table: Worst-case uncertainty for DASY5 assessed according to IEEE1528-2003.

The budge is valid for the frequency range 300 MHz to 6G Hz and represents a worst-case analysis.

Report No: KS120312A04-SF

9. EXPOSURE LIMIT

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Note: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 10 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 1 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE **GENERAL POPULATION/UNCONTROLLED EXPOSURE** PARTIAL BODY LIMIT 1.6 W/kg

EUT ARRANGEMENT 10.

Please refer to IEEE1528-2003 illustration below.

10.1 ANTHROPOMORPHIC HEAD PHANTOM

Figure 7-1a shows the front, back and side views of SAM. The point "M" is the reference point for the center of mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15 mm posterior to the entrance to ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 7-1b. The plane passing through the two ear reference points and M is defined as the Reference Plane. The line N-F (Neck-Front) perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 7-1c). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines should be marked on the external phantom shell to facilitate handset positioning. Posterior to the N-F line, the thickness of the phantom shell with the shape of an ear is a flat surface 6 mm thick at the ERPs. Anterior to the N-F line, the ear is truncated as illustrated in Figure 7-1b. The ear truncation is introduced to avoid the handset from touching the ear lobe, which can cause unstable handset positioning at the cheek.

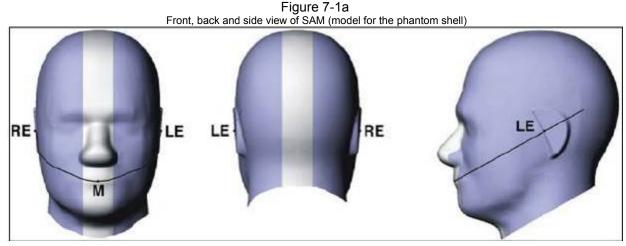


Figure 7-1b Close up side view of phantom showing the ear region

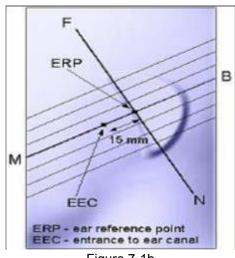
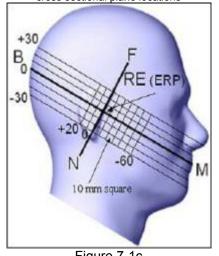
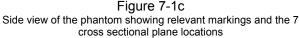




Figure 7-1b Close up side view of phantom showing the ear region

Figure 7-1c Side view of the phantom showing relevant markings and the 7 cross sectional plane locations

10.2 DEFINITION OF THE "CHEEK/TOUCH" POSITION

The "cheek" or "touch" position is defined as follows:

- a. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece, open the cover. (If the handset can also be used with the cover closed both configurations must be tested.)
- b. Define two imaginary lines on the handset: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width wt of the handset at the level of the acoustic output (point A on Figures 7-2a and 7-2b), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 7-2a). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 7-2b), especially for clamshell handsets, handsets with flip pieces, and other irregularly-shaped handsets.
- c. Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7-2c), such that the plane defined by the vertical center line and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
- d. Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the pinna.
- e. e) While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane).
- f. Rotate the handset around the vertical centerline until the handset (horizontal line) is symmetrical with respect to the line NF.
- g. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE and maintaining the handset contact with the pinna, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the pinna (cheek). See Figure 7-2c. The physical angles of rotation should be noted.

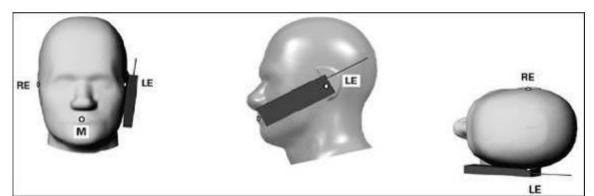
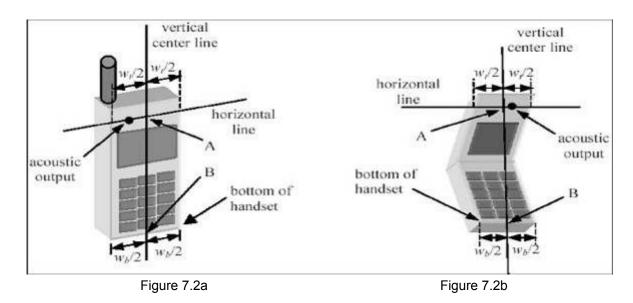
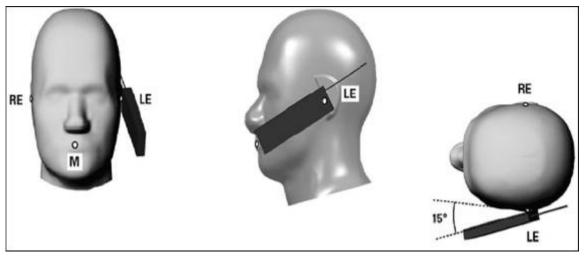



Figure 7.2c

Phone "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for handset positioning, are indicated.

Compliance Certification Services Inc. Report No: KS120312A04-SF FCCID: WA6I675


Date of Issue :March 20, 2012

10.3 DEFINITION OF THE "TILTED" POSITION

The "tilted" position is defined as follows:

- a. Repeat steps (a) (g) of 7.2 to place the device in the "cheek position."
- b. While maintaining the orientation of the handset move the handset away from the pinna along the line passing through RE and LE in order to enable a rotation of the handset by 15 degrees.
- c. Rotate the handset around the horizontal line by 15 degrees.
- d. While maintaining the orientation of the handset, move the handset towards the phantom on a line passing through RE and LE until any part of the handset touches the ear. The tilted position is obtained when the contact is on the pinna. If the contact is at any location other than the pinna (e.g., the antenna with the back of the phantom head), the angle of the handset should be reduced. In this case, the tilted position is obtained if any part of the handset is in contact with the pinna as well as a second part of the handset is contact with the phantom (e.g., the antenna with the back of the head).

Figure 7-3

Phone "tilted" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for handset positioning, are indicated.

Report No: KS120312A04-SF

MEASUREMENT RESULTS 11.

TEST LIQUIDS CONFIRMATION 11.1

SIMULATED TISSUE LIQUID PARAMETER CONFIRMATION

The dielectric parameters were checked prior to assessment using the HP85070C dielectric probe kit. The dielectric parameters measured are reported in each correspondent section.

IEEE SCC-34/SC-2 P1528 RECOMMENDED TISSUE DIELECTRIC PARAMETERS The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in P1528

Target Frequency	He	ad	Body		
(MHz)	ε _r σ (S/m)		ε _r	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800-2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	45.3	5.27	48.2	6.00	

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

11.2 LIQUID MEASUREMENT RESULTS

Ambient condition: Temperature: 21 °C Relative humidity: 58%

Liquid Type	Frequency	Temp. [°C]	Depth [cm]	Parameters	Target	Measured	Deviation[%]	Limited[%]	Measured Date
	050 141	21	15	Permitivity	41.50	41.52	0.05	± 5	Mar 16,2012
Head850	850 MHz	21	15	Conductivity	0.90	0.92	2.22	± 5	Mar 16,2012
Body850	850 MHz	21	15	Permitivity	55.20	55.25	0.09	± 5	Mar 16,2012
BOUY850		21	15	Conductivity	0.97	0.96	-1.03	± 5	Mar 16,2012
Head1900	1900 MHz	21	15	Permitivity	40.00	40.18	0.45	± 5	Mar 16,2012
Tiead 1900		21	15	Conductivity	1.40	1.41	0.71	± 5	Mar 16,2012
Body1900	1900 MHz	21	15	Permitivity	53.30	53.52	0.41	± 5	Mar 16,2012
Body 1900		21	15	Conductivity	1.52	1.54	1.32	± 5	Mar 16,2012
Head2450	2450 MHz	20	15	Permitivity	39.20	39.18	-0.05	± 5	Mar 16,2012
Ticau2400	2400 10112	20	15	Conductivity	1.80	1.81	0.56	± 5	Mar 16,2012
Body2450	2450 MHz	21	15	Permitivity	52.70	52.72	0.04	± 5	Mar 16,2012
200y2400	2400 10112	21	15	Conductivity	1.95	1.97	1.03	± 5	Mar 16,2012

FCCID: WA6I675

SYSTEM PERFORMANCE CHECK 11.3

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of ±10%. The system performance check results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

SYSTEM PERFORMANCE CHECK MEASUREMENT CONDITIONS

- The measurements were performed in the flat section of the SAM twin phantom filled with head • and body simulating liquid of the following parameters.
- The DASY5 system withan E-fileld probe EX3DV4 SN: 3755 was used for the measurements. .
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15 mm (below 1 GHz) and 10 mm (above 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 10mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube integration (dx= 5 mm, dy= 5 mm, dz= 5 mm). •
- Distance between probe sensors and phantom surface was set to 2.5 mm. .
- The dipole input power was 1W±3%.
- The results are normalized to 1 W input power.

Depth of Liquid is 15cm

Note: For SAR testing, the depth is larger than 15cm shown above

Compliance Certification Services Inc.Report No: KS120312A04-SFFCCID: WA61675Date of Issue :M

Date of Issue :March 20, 2012

Reference SAR values

The reference SAR values were using measurement results indicated in the dipole calibration document (see table below)

Frequency (MHz)	1g SAR	10g SAR	Local SAR at Surface (Above Feed Point)	Local SAR at Surface (y = 2cm offset from feed point)
850 Head	9.57	6.23	14.1	4.9
850 Body	9.92	6.55	14.1	4.5
1900 Head	40.50	21.10	67.6	6.6
1900 Body	39.70	21.10	07.0	0.0
2450 Head	54.80	25.30	104.2	7.7
2450 Body	52.90	24.50	104.2	1.1

Report No: KS120312A04-SF

Date of Issue :March 20, 2012

SYSTEM PERFORMANCE CHECK RESULTS

Ambient conduction

Temperature: 21 °C Relative humidity: 58% System Validation Dipole: D835V2-SN:4d114

System Vali	System Validation Dipole:D835V2-SN:4d114Date:March 16, 2012									
Head	d SimulatinfL	.iquid	Parameters	Target	Measured	Deviation[%]	Limited[%]			
Frequency	Temp. [°C]	Depth [cm]		Target	Wedsured	Beviation[70]	Linited[//]			
850 MH -	0 MHz 20.30 15.0	15.00	1g SAR	9.57	9.80	2.40	±10			
000 MHZ		20.30 15.00	10g SAR	6.23	6.28	0.80	±10			

Temperature: 21 °C Relative humidity: 58% System Validation Dipole: D835V2-SN-4d114

System vand			10, 2012				
Body Simulatinf Liquid				t Measured	Deviation[%]	Limited[%]	
Frequency	Temp. [°C]	Depth [cm]		Taiyet	Weasureu		Linneo[//j
850 M H z	0 MHz 20.30 15.00	15.00	1g SAR	9.92	10.08	1.61	±10
000 10112	20.30	15.00	10g SAR	6.55	6.52	-0.46	±10

Temperature: 21 °C Relative humidity: 58%

System Validation Dipole: D1900V2-SN:5d136

Head Simulatinf Liquid		Parameters	Target	Measured	Deviation[%]	Limited[%]	
Frequency	Temp.[°C]	Depth [cm]	T arameters	Target	Weasureu		Lunted[//]
1000 MH-7	20.20	15.00	1g SAR	40.50	40.12	-0.94	±10
1900 MHz 20.30		15.00	10g SAR	21.10	21.08	-0.09	±10

Temperature: 21 °C Relative humidity: 58% System Validation Dipole: <u>D1900V2-SN:5d136</u>

Date: March 16, 2012

Date: March 16, 2012

Date: March 16, 2012

Date: March 16, 2012

Body Simulatinf Liquid		Parameters	Target	Measured	Deviation[%]	Limited[%]	
Frequency	Temp.[°C]	Depth [cm]	T arameters	Target	Weasured		
1900 MHz	20.30	15.00	1g SAR	39.70	41.36	4.18	±10
1900 1112	20.30	13.00	10g SAR	21.10	20.64	-2.18	±10

Temperature: <u>21</u> °C Relative humidity: <u>58</u>% System Validation Dipole: D2450V2-SN:817

Head Simulatinf Liquid		Parameters	Target	Measured	Deviation[%]	Limited[%]	
Frequency	Temp.[°C]	Depth [cm]		Target Measur	Measureu		
2450 MHz	20.30	15.00	1g SAR	54.80	54.36	-0.80	±10
2450 10112	20.30	15.00	10g SAR	25.30	25.28	-0.08	±10

Temperature: 21 °C Relative humidity: 58% System Validation Dipole: D2450V2-SN:817

Date: March 16, 2012

Body Simulatinf Liquid		Parameters	Target	Measured	Deviation[%]	Limited[%]	
Frequency	Temp.[°C]	Depth [cm]		Target	Measured	Deviation[//]	
2450 MHz	20.30	15.00	1g SAR	52.90	53.32	0.79	±10
2430 10112	20.30	15.00	10g SAR	24.50	24.68	0.73	±10

Compliance Certification Services Inc. Report No: KS120312A04-SF

FCCID: WA6I675

Date of Issue :March 20, 2012

11.4 EUT TUNE-UP PROCEDURES AND TEST MODE

The following procedure had been used to prepare the EUT for the SAR test.

To setup the desire channel frequency and the maximum output power. A Radio Communication Tester "CMU200" was used to program the EUT.

GSM 850 / GPRS850:

Network Support: GSM only / GPRS Main Service: Circuit Switched / Packet data Power Setting: 33dBm / 33dBm

GSM 1900 / GPRS 1900:

Network Support: GSM only / GPRS Main Service: Circuit Switched / Packet data Power Setting: 30dBm / 30dBm

Maximum conducted power was measured by replacing the antenna with an adapter for conductive measurement.

Conducted output power (Average):

GSM	Freq	uency	GSM mode			
GSIM	Channel	MHz	before	after		
	128	824.2	32.13	32.10		
GSM850	190	836.6	32.15	32.13		
	251	848.8	32.19	32.16		
GSM	Freq	uency	GSM mode			
GSIWI	Channel	MHz	before	after		
	512	1850.2	30.65	30.62		
GSM1900	661	1880.0	30.17	30.15		
	810	1910.0	30.93	30.90		

Compliance Certification Services Inc. FCCID: WA61675

Report No: KS120312A04-SF

Date of Issue :March 20, 2012

For GPRS: It support GPRS Class 10:

System and Channel	Power values (dbm)	Average factor (db)	Time average (dbm) (before)	Time average (dbm) (after)
GSM850 CH251(1TS)				
GPRS850 CH251				
1TS	32.21	-9.03	23.18	
2TS	31.35	-6.02	25.33	25.31
GSM1900 Ch 810(1TS)				
GPRS1900 Ch 810				
1TS	30.12	-9.03	21.09	
2TS	29.66	-6.02	23.64	23.60

NOTE: 1)For GSM ,complete set of tests are performed ,For GPRS ,only the modes with maximum time average power values need to be tested respectively, So GPRS 850 only 2timeslot mode and GPRS 1900 only 2timeslot mode are tested.

2)For GPRS ,the test modes are the worst case of GSM modes

3)GSM has 8 timeslot

Average factor: when 1TS : 10*LOG1/8=-9.03

2TS: 10*LOG2/8=-6.02

3TS: 10*LOG3/8=-4.26

4TS: 10*LOG4/8=-3.01

Time average power: when 1TS=Power value+ Average factor=32.21+(-9.03)=23.18dbm 2TS,3TS and 4TS in a similar way

GSM Multi-slot classes supported by the devices:

Multislot	Max Slot Allocation			Allowable	Max Data Rate
Class	Downlink	Uplink	Active	Configuration	Max Data Nate
				1 up; 4 down	8-12K bps Send 32-48K bps Receive
10	4	2	5	2 up; 3 down	16-24K bps Send 24-36K bps Receive

Report No: KS120312A04-SF FCCID: WA6I675

Date of Issue :March 20, 2012

Bluetooth & WIFI (IEEE802.11b/g/n)

- a. The client supplied a special driver to program the EUT, allowing it to continually transmit the specified maximum power and change the channel frequency.
- b. Maximum conducted power was measured by replacing the antenna with an adapter for conductive measurement.
- c. The conducted power was measured at the high, middle and low channel frequency before and after the SAR measurement.
- d. During SAR test, the highest output channel per band measured first, and then if necessary, the other channels were measured according to the normal procedures.

802.11b/g/n Conducted output power (Average)(dBm) Before:

Mode Frequency	802.11b 1M	802.11g 6M	802.11n (20MHz)	802.11n (40MHz)
1(2412 MHz)	15.23	12.87	11.77	11.35
6(2437 MHz)	15.20	12.83	11.75	11.22
11(2462 MHz)	15.16	12.75	11.71	11.20

After:

Mode Frequency	802.11b 1M	802.11g 6M	802.11n (20MHz)	802.11n (40MHz)
1(2412 MHz)	15.20	N/A	N/A	N/A
6(2437 MHz)	N/A	N/A	N/A	N/A
11(2462 MHz)	N/A	N/A	N/A	N/A

Ps:

WIFI 802.11b Mode Max output power 15.23 dBm(=31.84mW) >PRef and antenna is <2.5 cm from GSM antenna, so **802.11b stand-alone SAR is required**.

WIFI 802.11g Mode Max output power 12.87 dBm(=19.36mW) >PRef and antenna is <2.5 cm from GSM antenna, so 802.11g stand-alone SAR is required.

According to the KDB248227,g mode maximum average power 1/4dB < b mode test channels power So 802.11g stand-alone SAR is not required.

WIFI 802.11n Mode Max output power 11.77 dBm(=15.03mW) >PRef and antenna is <2.5 cm from GSM antenna, so 802.11n stand-alone SAR is required.

According to the KDB248227,n mode maximum average power 1/4dB < b mode test channels power So **802.11n stand-alone SAR is not required**.

Bluetooth output power (Average)(dBm)

Mode Frequency	DATA1 1M	DATA3 3M
2402 MHz	0.55	0.11
2441 MHz	0.35	0.10
2480 MHz	0.21	0.09

Ps.

GSM and BT Antenna distance<2.5 cm, BT power 0.55 dBm(=1.135mW) ≤Pref ,so **BT stand-alone SAR is not required**

Compliance Certification Services Inc.Report No: KS120312A04-SFFCCID: WA61675Date of Issue :M

Date of Issue :March 20, 2012

11.5 SAR HANDSETS MULTI XMITER ASSESSMENT

	GSM 850 head	GSM 850 body	GPRS 850 body
GSM 850 SAR(worst)	0.589	0.549	0.459
802.11b SAR(worst)	0.285	0.432	0.432
Σ1g-SAR	0.874	0.981	0.891
remark	Less than 1.6W/kg(limit)	Less than 1.6W/kg(limit)	Less than 1.6W/kg(limit)

	GSM 1900 head	GSM 1900 body	GPRS 1900 body
GSM 1900 SAR(worst)	0.553	0.598	0.538
802.11b SAR(worst)	0.285	0.432	0.432
Σ1g-SAR	0.838	1.030	0.970
remark	Less than 1.6W/kg(limit)	Less than 1.6W/kg(limit)	Less than 1.6W/kg(limit)

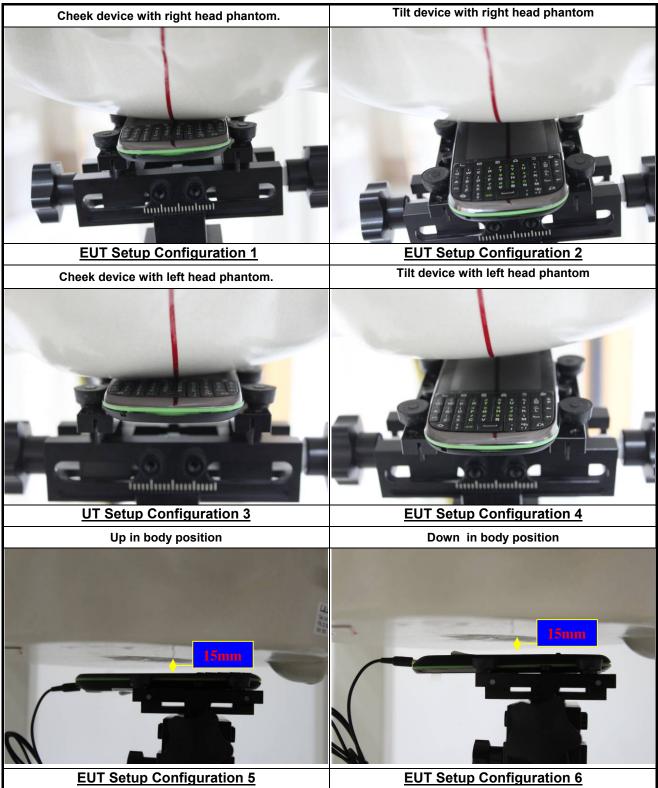
	GSM 850 head	GSM 850 body	GPRS 850 body
GSM 850 SAR(worst)	0.589	0.549	0.459
Bluetooth SAR(worst)	0	0	0
Σ1g-SAR	0.589	0.549	0.459
remark	Less than 1.6W/kg(limit)	Less than 1.6W/kg(limit)	Less than 1.6W/kg(limit)

	GSM 1900 head	GSM 1900 body	GPRS 1900 body
GSM 1900 SAR(worst)	0.553	0.598	0.538
Bluetooth SAR(worst)	0	0	0
Σ1g-SAR	0.553	0.598	0.538
remark	Less than 1.6W/kg(limit)	Less than 1.6W/kg(limit)	Less than 1.6W/kg(limit)

KDB 648474 simultaneous SAR evaluation: Antenna Location:

antenn	a1	antenna2	GSM to WIFI antenna distance(cm)	remark
GSM		WIFI and BT	0.7cm	Please refer to page 27

Device mode, f	P, dBm P, mW		stand-alone SAR(W/kg)	
GSM 850/1900	Please refe	r to page 23	Yes, Please refer to page 29,30	
GPRS 850/1900	Please refe	r to page 24	Yes, Please refer to page 30,31	
WIFI, 802.11b	15.23	31.84	Yes, Please refer to page 32	
Bluetooth, 2402	0.55	1.135	No, Please refer to page 25	


(x,y)	d _{xy} , cm	simultaneous Tx SAR	remarks
WIFI to GSM antenna distance(cm)	0.7 cm	No	GSM/WIFI , Antenna distance is less than 2.5cm , the GSM maximum SAR is less than 1.2 W/kg. so no Simultaneous SAR needed.
GSM to Bluetooth antenna distance(cm)	0.7 cm	No	GSM/Bluetooth , Antenna distance is less than 2.5cm , BT Power is less than Pref. so no Simultaneous SAR needed.

NOTE: 1)Wifi and BT is the same transmission unit, so no apply the dual emission

Compliance Certification Services Inc. Report No: KS120312A04-SF FCCID: WA6I675 Date of Issue :March 20, 2012

11.6 EUT SETUP PHOTOS

Compliance Certification Services Inc.Report No: KS120312A04-SFFCCID: WA6I675Date of Issue :M

Date of Issue :March 20, 2012

SAR MEASUREMENT RESULTS

GSM850& GSM1900:

Head Position mode: EUT Configuration 1&2&3&4

Date of Measurement: March 16, 2012

Test mode: GS	5M 850 , Dut	ty Cycle: 12.5	5%, Crest Fac	tor: 8 Depth	of liquid: 20.0) cm
EUT Setup Condition		Frequency		Liquid	SAR(1g)	Limit
Position	Antenna	Channel	MHz	Temp [°C]	(W/kg)	(W/kg)
Right Check	Fixed	251	848.8	20.0	0.589	
Right Title	Fixed	251	848.8	20.0	0.396	1.6
Left Check	Fixed	251	848.8	20.0	0.569	
Left Title	Fixed	251	848.8	20.0	0.376	
Test mode: DC	S1900 , Du	ty Cycle: 12.5	5%, Crest Fac	ctor: 8 Depth	of liquid: 20.0) cm
EUT Setup C	Condition	Frequ	uency Liquid	SAR(1g)	Limit	
Position	Antenna	Channel	MHz	Temp [°C]	(W/kg)	(W/kg)
Right Check	Fixed	810	1910.00	20.0	0.553	
Right Title	Fixed	810	1910.00	20.0	0.476	1.6
Left Check	Fixed	810	1910.00	20.0	0533	1.0
Left Title	Fixed	810	1910.00	20.0	0.360	
Remarks: For (Duty cycle: 1:		, EUT is in G	SM link mode	e. In GSM850	/1900 link mc	ode, its crest factor is 8.

Compliance Certification Services Inc.Report No: K\$120312A04-SFFCCID: WA6I675Date of Issue :Magentation

Date of Issue :March 20, 2012

Body Position mode: EUT Configuration 5&6 GSM 850 & GPRS 850

Date of Measurement: March 16, 2012

Test mode: G	SM 850 EUT	⁻ Configuratio	n 5:UP Depth	n of liquid: 20	.0 cm	
EUT Setup Condition		Frequ	lency	Liquid	SAR(1g)	Limit
Position	Antenna	Channel	MHz	Temp [°C]	(W/kg)	(W/kg)
Flat(1.5cm)	Fixed	251	848.8	20.0	0.251	1.6
Test mode: G	SM 850 EUT	Configuratio	n 6:Down De	pth of liquid:	20.0 cm	
EUT Setup	Condition	Frequ	lency	Liquid	SAR(1g)	Limit
Position	Antenna	Channel	MHz	Temp [°C]	(W/kg)	(W/kg)
Flat(1.5cm)	Fixed	251	848.8	20.0	0.549	1.6
Test mode: G	SPRS 850 CL	ASS 10 EUT	Configuratio	on 5:UP Dept	h of liquid: 20	.0 cm
EUT Setup	Condition	Frequ	lency	Liquid	SAR(1g) (W/kg)	Limit (W/kg)
Position	Antenna	Channel	MHz	Temp [°C]		
Flat(1.5cm)	Fixed	251	848.8	20.0	0.163	1.6
Test mode: G	SPRS 850 CL	ASS 10 EUT	Configuratio	on 6:Down De	epth of liquid:	20.0 cm
EUT Setup	Condition	Frequ	lency	Liquid	SAR(1g)	Limit
Position	Antenna	Channel	MHz	Temp [°C]	(W/kg)	(W/kg)
Flat(1.5cm)	Fixed	251	848.8	20.0	0.459	1.6
		, In GSM link ode, its crest			(Duty cycle: 4)	1:8);

GSM 1900 & GPRS 1900

Test mode: GSM 1900 EUT Configuration 5:UP Depth of liquid: 20.0 cm									
EUT Setup	Condition	Frequ	lency	Liquid	SAR(1g)	Limit			
Position	Antenna	Channel	MHz	Temp [°C]	(W/kg)	(W/kg)			
Flat(1.5cm)	Fixed	810	1910.00	20.0	0.296	1.6			
Test mode: G	Test mode: GSM 1900 EUT Configuration 6:Down Depth of liquid: 20.0 cm								
EUT Setup	Condition	Frequency		Liquid	SAR(1g)	Limit			
Position	Antenna	Channel	MHz	Temp [°C]	(W/kg)	(W/kg)			
Flat(1.5cm)	Fixed	810	1910.00	20.0	0.598	1.6			
Test mode: G	SPRS 1900 C	LASS 10 EL	IT Configurat	on 5:UP Dep	th of liquid: 2	0.0 cm			
EUT Setup	Condition	Frequ	lency	Liquid	SAR(1g)	Limit			
Position	Antenna	Channel	MHz	Temp [°C]	(W/kg)	(W/kg)			
Flat(1.5cm)	Fixed	810	1910.00	20.0	0.203	1.6			

Compliance Certification Services Inc.Report No: K\$120312A04-SFFCCID: WA61675Date of Issue :M

Test mode: GPRS 1900 CLASS 10 EUT Configuration 6:Down Depth of liquid: 20.0 cm								
EUT Setup	Setup Condition Frequ		lency	Liquid	SAR(1g)	Limit		
Position	Antenna	Channel	MHz	Temp [°C]	(W/kg)	(W/kg)		
Flat(1.5cm)	Fixed	810	1910.00	20.0	0.538	1.6		
	Remarks: For SAR testing, In GSM link mode, its crest factor is 8. (Duty cycle: 1:8); In GPRS link mode, its crest factor is 4. (Duty cycle: 1:4)							

WIFI:

Flat(1.0cm)

Fixed

1

Head Position mode: EUT Configuration 1&2&3&4

Date of Measurement: March 16, 2012

1.6

Test mode: IEEE 802.11b , Duty Cycle: 100%, Crest Factor: 1 Depth of liquid: 20.0 cm								
EUT Setup	Condition	Frequ	iency	Liquid	SAR(1g)	Limit		
Position	Antenna	Channel	MHz	Temp [°C]	(W/kg)	(W/kg)		
Right Check	Fixed	1	2412	20.0	0.285			
Right Title	Fixed	1	2412	20.0	0.209	1.6		
Left Check	Fixed	1	2412	20.0	0.237	1.0		
Left Title	Fixed	1	2412	20.0	0.253			
Body Positio	on mode: EU	T Configura	tion 7&8	Date	e of Measurer	nent: March 16, 2012		
Test mode: IEEE 802.11b EUT Configuration 7:UP Depth of liquid: 20.0 cm								
EUT Setup	EUT Setup Condition Frequency		Liquid	SAR(1g)	Limit			
Position	Antenna	Channel	MHz	Temp [°C]	(W/kg)	(W/kg)		

Test mode: IEEE 802.11b EUT Configuration 8:Down Depth of liquid: 20.0 cm							
EUT Setup	Condition	Frequency		Liquid	SAR(1g)	Limit	
Position	Antenna	Channel	MHz	Temp [°C]	(W/kg)	(W/kg)	
Flat(1.0cm)	Fixed	1	2412	20.0	0.432	1.6	

20.0

0.104

2412

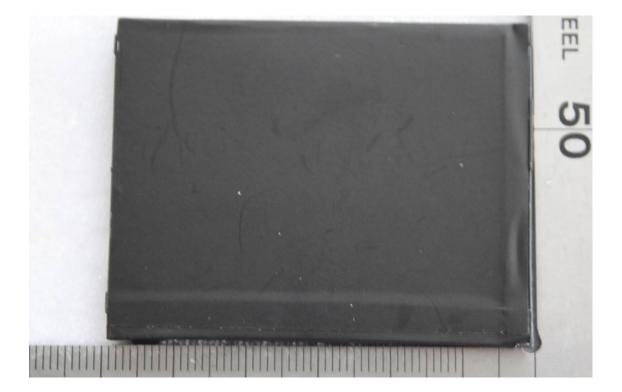
Compliance Certification Services Inc.Report No: KS120312A04-SFFCCID: WA6I675Date of Issue :M

Date of Issue :March 20, 2012

12. **EUT PHOTO**

Compliance Certification Services Inc.Report No: K\$120312A04-SFFCCID: WA6I675Date of Issue :M

Compliance Certification Services Inc.Report No: KS120312A04-SFFCCID: WA6I675Date of Issue :M



Compliance Certification Services Inc.Report No: K\$120312A04-SFFCCID: WA6I675Date of Issue :M

EQUIPMENT LIST & CALIBRATION STATUS 13.

Name of Equipment	Manufacturer	Type/Model	Serial Number	Calibration Due
PC	HP	Core(rm)3.16G	CZCO48171H	N/A
Signal Generator	Agilent	E8257C	MY43321570	05/13/2012
S-Parameter Network Analyzer	Agilent	E5071B	MY42301382	03/16/2013
Wireless Communication Test Set	R&S	CMU200	SN:B23-03291	05/13/2012
Power Meter	Agilent	E4416A	QB41292714	03/16/2013
Peak & Average sensor	Agilent	E9327A	CF0001	03/16/2013
E-field PROBE	SPEAG	EX3DV4	3755	01/20/2013
DIPOLE 835MHZ ANTENNA	SPEAG	D835V2	4d114	01/10/2013
DIPOLE 1900MHZ ANTENNA	SPEAG	D1900V2	5d136	01/05/2013
DIPOLE 2450MHZ ANTENNA	SPEAG	D2450V2	817	01/26/2013
DUMMY PROBE	SPEAG	DP_2	SPDP2001AA	N/A
SAM PHANTOM	SPEAG	SAM29	SN 41_05	N/A
PHANTON WOOD TABLE	SPEAG	1609	QD000P40CD	N/A
ROBOT	SPEAG	TX60	F10/5E6AA1/A101	N/A
ROBOT KRC	SPEAG	CS8C	F10/5E6AA1/C101	N/A
LIQUID CALIBRATION KIT	ANTENNESSA	41/05 OCP9	00425167	N/A
DAE	SD000D04BJ	DEA4	1245	01/11/2013

Report No: KS120312A04-SF FCCID: WA6I675

Date of Issue :March 20, 2012

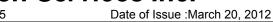
Rev. 01

14. FACILITIES

All measurement facilities used to collect the measurement data are located at

No.10, Weiye Rd., Innovation Park, Eco & Tec. Development Part, Kunshan City, Jiangsu Province, China.

15. REFERENCES


- [1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environ-mental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.
- [2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commision, O_ce of Engineering & Technology, Washington, DC, 1997.
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.
- [4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645{652, May 1997.
- [5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
- [6] ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- [7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-_eld probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15{17, 1997, pp. 120{124.
- [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-_eld probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23{25 June, 1996, pp. 172{175.
- [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions onMicrowave Theory and Techniques, vol. 44, no. 10, pp. 1865{1873, Oct. 1996.
- [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.
- [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [12] W. H. Press, S. A. Teukolsky,W. T. Vetterling, and B. P. Flannery, Numerical Receptes in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992..Dosimetric Evaluation of Sample device, month 1998 9
- [13] NIS81 NAMAS, \The treatment of uncertainity in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
- [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10

ATTACHMENTS 16.

Exhibit

Content

- 1 System Performance Check Plots
- 2 SAR Test Plots
- 3 Probe calibration report EX3DV4 SN3755
- Dipole calibration report D835V2 SN:4d114 4
- 5 Dipole calibration report D1900V2-SN:5d136
- 6 Dipole calibration report D2450V2 SN: 817
- 7 DAE calibration report DEA4 SD000D04BJ SN: 1245

APPENDIX A: PLOTS OF PERFORMANCE CHECK

The plots are showing as followings.

Report No: KS120312A04-SF FCCID: WA6I675

Date of Issue :March 20, 2012

Test Laboratory: Compliance Certification Services Inc.

System Performance Head Check-D850_2012.03.16 DUT: Dipole 850 MHz D835V2; Type: D835V2; SN:4d114

Communication System: CW; Frequency: 850 MHz

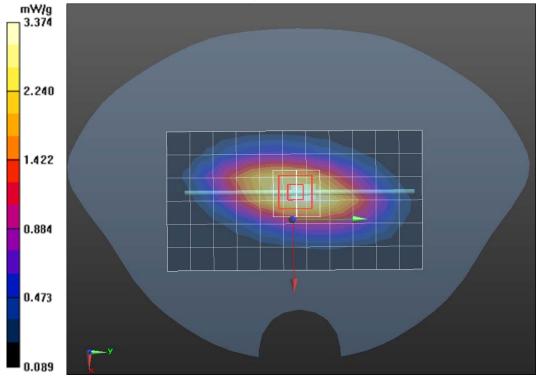
Medium parameters used: f = 850 MHz; σ = 0.92 mho/m; ε_r = 41.52; ρ = 1000 kg/m³ Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(8.99, 8.99, 8.99); Calibrated: 1/20/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2012
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

System Performance Check at Frequencies below 1 GHz/d=15mm, Pin=250 mW, dist=3.0mm (EX-Probe)/Area Scan (7x12x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.355mW/g

System Performance Check at Frequencies below 1 GHz/d=15mm, Pin=250 mW, dist=3.0mm (EX-Probe)/Zoom Scan (7x7x7) /Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.77 V/m; Power Drift = 0.0052 dB Peak SAR (extrapolated) = 3.594W/kg

SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.57 mW/g

Maximum value of SAR (measured) =3.374 mW/g

Report No: KS120312A04-SF FCCID: WA6I675

Date of Issue :March 20, 2012

Test Laboratory: Compliance Certification Services Inc.

System Performance Body Check-D850_2012.03.16 DUT: Dipole 850 MHz D835V2; Type: D835V2; SN:4d114

Communication System: CW; Frequency: 850 MHz

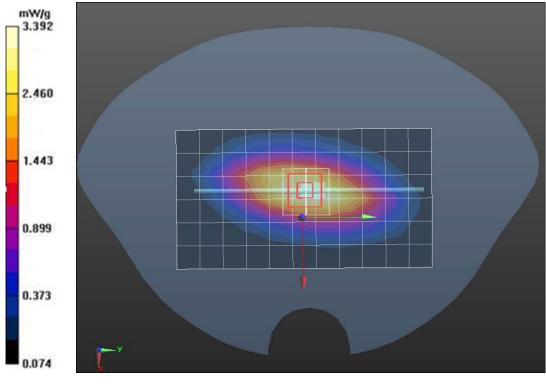
Medium parameters used: f = 850 MHz; σ = 0.96 mho/m; ϵ_r = 55.25; ρ = 1000 kg/m³ Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(9.07, 9.07, 9.07); Calibrated: 1/20/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2012
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609 Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

System Performance Check at Frequencies below 1 GHz/d=15mm, Pin=250 mW, dist=3.0mm (EX-Probe)/Area Scan (7x12x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.271mW/g

System Performance Check at Frequencies below 1 GHz/d=15mm, Pin=250 mW, dist=3.0mm (EX-Probe)/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.83 V/m; Power Drift = 0.0021 dB Peak SAR (extrapolated) = 3.428 W/kg

SAR(1 g) = 2.52 mW/g; SAR(10 g) = 1.63 mW/g

Maximum value of SAR (measured) = 3.392 mW/g

Compliance Certification Services Inc. Report No: KS120312A04-SF

FCCID: WA6I675

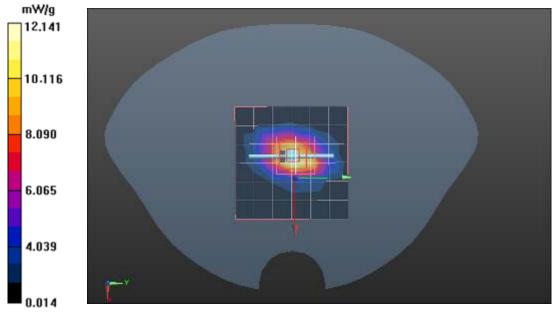
Date of Issue :March 20, 2012

Test Laboratory: Compliance Certification Services Inc.

System Performance Head Check-D1900 2012.03.16 DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d136 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.41 mho/m; ε_r = 40.18; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN3755; ConvF(7.84, 7.84, 7.84); Calibrated: 1/20/2012 • Sensor-Surface: 2.5mm (Mechanical Surface Detection) Electronics: DAE4 Sn1245; Calibrated: 1/11/2012 Phantom: SAM1; Type: SAM; Serial: 1609

Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (EX-Probe) 2/Area Scan (7x7x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 11.958 mW/g

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (EX-Probe) 2/Zoom Scan (7x7x7) /Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.61 V/m; Power Drift = 0.032 dB Peak SAR (extrapolated) = 17.549 W/kg

SAR(1 q) = 10.03 mW/q; SAR(10 q) = 5.27 mW/q

Maximum value of SAR (measured) = 12.141 mW/g

FCCID: WA6I675

Date of Issue :March 20, 2012

Report No: KS120312A04-SF

Test Laboratory: Compliance Certification Services Inc.

System Performance Body Check-D1900_2012.03.16 DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d136 Communication System: CW; Frequency: 1900 MHz

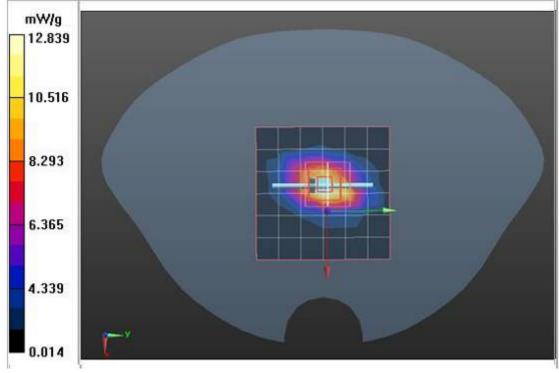
Medium parameters used: f = 1900 MHz; σ = 1.54 mho/m; ϵ_r = 53.52; ρ = 1000 kg/m³ Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.23, 7.23, 7.23); Calibrated: 1/20/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2012
- Phantom: SAM1; Type: SAM; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (EX-Probe) 2/Area Scan (7x7x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 12.533mW/g

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=xx mW, dist=3.0mm (EX-Probe) 2/Zoom Scan (7x7x7) /Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.5V/m; Power Drift = 0.0001 dB Peak SAR (extrapolated) = 16.529 W/kg

SAR(1 g) = 10.34 mW/g; SAR(10 g) = 5.16 mW/g

Maximum value of SAR (measured) = 12.839mW/g

Compliance Certification Services Inc. Report No: KS120312A04-SF

FCCID: WA6I675

Date of Issue :March 20, 2012

Test Laboratory: Compliance Certification Services Inc.

SystemPerformanceHeadCheck-D2450-2012.03.16

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; SN:817

Communication System: CW; Frequency: 2450 MHz

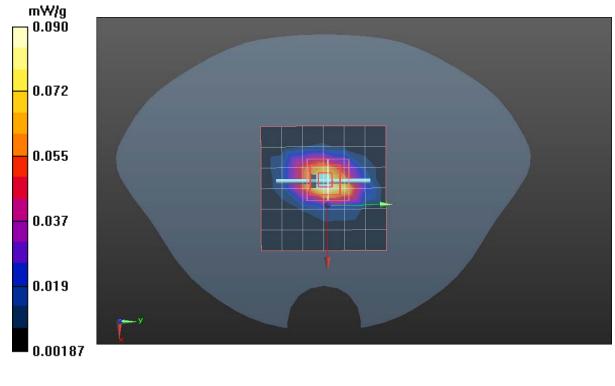
Medium parameters used: f = 2450 MHz; σ = 1.81 mho/m; ε_r = 39.18; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3755; ConvF(7.07, 7.07, 7.07); Calibrated: 1/20/2012 •
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 1/11/2012
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)


System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (EX-Probe)/Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 103.55 V/m; Power Drift = 0.003 dB Peak SAR (extrapolated) = 27.671 W/kg

SAR(1 g) = 13.59 mW/g; SAR(10 g) = 6.32 mW/g

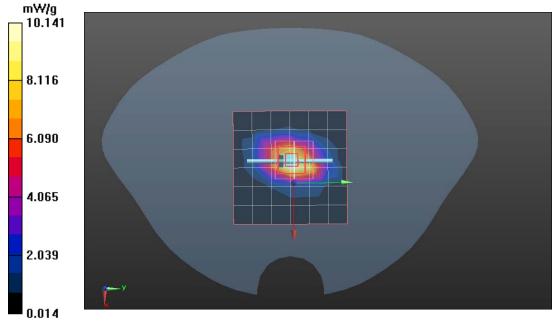
Maximum value of SAR (measured) = 17.409 mW/g

Compliance Certification Services Inc. Report No: KS120312A04-SF

FCCID: WA6I675

Date of Issue :March 20, 2012

Test Laboratory: Compliance Certification Services Inc. SystemPerformanceBodyCheck-D2450-2012.03.16 DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; SN:817 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.97 mho/m; ε_r = 52.72; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN3755; ConvF(7.06, 7.06, 7.06); Calibrated: 1/20/2012 • Sensor-Surface: 3mm (Mechanical Surface Detection), Electronics: DAE4 Sn1245; Calibrated: 1/11/2012 Phantom: SAM1; Type: SAM; Serial: 1609 Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)


System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (EX-Probe) 2/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (EX-Probe) 2/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.831V/m; Power Drift = 0.002 dB Peak SAR (extrapolated) = 27.853W/kg

SAR(1 q) = 13.33 mW/q; SAR(10 q) = 6.17 mW/q

Maximum value of SAR (measured) = 17.413mW/g

APPENDIX B: DASY CALIBRATION CERTIFICATE

The DASY Calibration Certificates are showing as followings .

and the second second		_	
Calibration Laborato Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zur		IBC MRA	Service suisse d'étalonnage Servizio svizzero di taratura
Accredited by the Swiss Accred The Swiss Accreditation Servi Multilateral Agreement for the	ce is one of the signatorie	es to the EA	n No.: SCS 108
Client CCS (Auden)			o: D835V2-4d114_Jan11
CALIBRATION	CERTIFICATI		
Object	D835V2 - SN: 40	1114	
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	edure for dipole validation kits	
Calibration date:	January 10, 201	1	
This calibration contificate docu	ments the traceshilly to net	inal standards, which maline the physical (u	site of moneumonte (CI)
The measurements and the unc	entainties with confidence p ucted in the closed laborato	ional standards, which realize the physical up probability are given on the following pages a ry facility: environment temperature $(22 \pm 3)^2$	nd are part of the certificate.
The measurements and the unc All calibrations have been cond Calibration Equipment used (Me	entainties with confidence p ucted in the closed laborato &TE critical for calibration)	probability are given on the following pages a ry facility: environment temperature $(22\pm3)^{\circ}$	nd are part of the certificate. C and humidity < 70%.
The measurements and the unc	entainties with confidence p ucted in the closed laborato	probability are given on the following pages a	nd are part of the certificate.
The measurements and the une All calibrations have been cond Calibration Equipment used (Ma Primary Standards Power meter EPM-442A Power sensor HP 8481A	entainties with confidence p ucted in the closed laborato KTE critical for calibration) ID # G837480704 US37292783	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11
The measurements and the unc All calibrations have been cond Calibration Equipment used (Ma Primary Standards Power meter EPM-442A	entainties with confidence p ucted in the closed laborato KTE critical for calibration) ID # GB37480704	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11
The measurements and the une All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Mar-11
The measurements and the une All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11
The measurements and the une All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11
The measurements and the une All calibrations have been condi- Calibration Equipment used (Mi Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5086 (20g) SN: 5047.2 / 08327 SN: 3205 SN: 601 ID # MY41092317	cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205, Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11
The measurements and the une All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 08327 SN: 3205 SN: 601 ID #	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. 213-3205, Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check
The measurements and the unc All calibrations have been cond Calibration Equipment used (Me Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # ID # G837480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 08327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	orobability are given on the following pages a ry facility: environment temperature (22 ± 3)' Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01158) 30-Apr-10 (No. 217-01162) 30-Apr-10 (No. 217-01162) 30-Apr-10 (No. 283-3205, Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
The measurements and the unc All calibrations have been cond Calibration Equipment used (Me Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	entainties with confidence p ucted in the closed laborato &TE critical for calibration) ID # G837480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 08327 SN: 3205 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. 213-01162) 30-Apr-10 (No. 253-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
The measurements and the unc All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 08327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-0158) 30-Mar-10 (No. 217-01162) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. 217-01162) 30-Apr-10 (No. 217-01162) 30-Apr-10 (No. 217-01162) 30-Apr-10 (No. 216-001_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
The measurements and the une All calibrations have been condi Calibration Equipment used (Ma Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	Autor in the closed laborato acted in the closed laborato KTE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5	robability are given on the following pages a ny facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01162) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. 217-01162) 30-Apr-10 (No. 217-01162) 30-Apr-10 (No. 233-3205, Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function Laboratory Technician	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11 Signature
The measurements and the une All calibrations have been condi Calibration Equipment used (Ma Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	Autor in the closed laborato acted in the closed laborato KTE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01162) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205, Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) 18-Oct-01 (in house check Oct-10) Function Laboratory Technician	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11 Signature

 Page 48 of 97
 Rev. 01

 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Report No: KS120312A04-SF FCCID: WA6I675

Date of Issue :March 20, 2012

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SNISS D Z BRIBRATH

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

Accreditation No.: SCS 108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d114_Jan11

Page 2 of 9

Page 49 of 97 Rev. 01 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.3 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		4885

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.38 mW / g
SAR normalized	normalized to 1W	9.52 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.57 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.65 mW / g
SAR normalized	normalized to 1W	6.20 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.23 mW /g ± 16.5 % (k=2)

Certificate No: D835V2-4d114_Jan11

Page 3 of 9

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature during test	(21.6 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.53 mW / g
SAR normalized	normalized to 1W	10.1 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.92 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ² (10 g) of Body TSL	condition	
	condition 250 mW input power	1.66 mW / g
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured SAR normalized		1.66 mW / g 6.64 mW / g

Certificate No: D835V2-4d114_Jan11

Page 4 of 9

Compliance Certification Services Inc.Report No: K\$120312A04-SFFCCID: WA6I675Date of Issue :M

Date of Issue :March 20, 2012

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.3 Ω - 2.6 jΩ
Return Loss	~ 29.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.6 Ω - 4.6 jΩ
Return Loss	- 25.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.400 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 29, 2010

Certificate No: D835V2-4d114 Jan11

Page 5 of 9

Compliance Certification Services Inc. Report No: KS120312A04-SF

FCCID: WA6I675

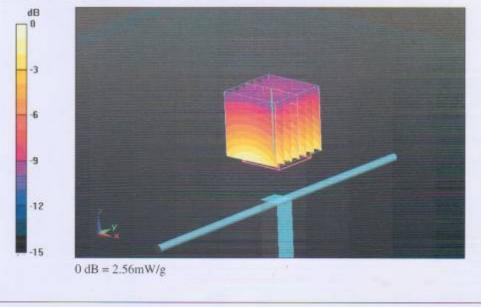
Date of Issue :March 20, 2012

DASY5 Validation Report for Head TSL

Date/Time: 03.01.2011 14:35:06

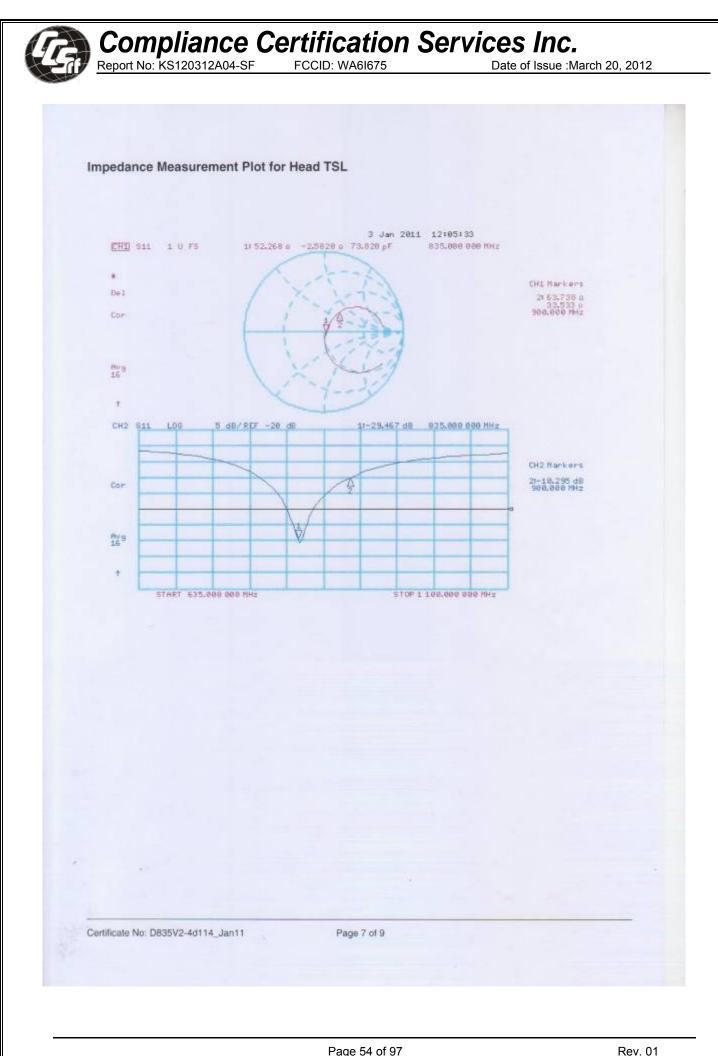
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d114


Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL900 Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\epsilon r = 40.9$; $\rho = 1000$ kg/m3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.03, 6.03, 6.03); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595) ٠


Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.3 V/m; Power Drift = 0.000428 dB Peak SAR (extrapolated) = 3.59 W/kg SAR(1 g) = 2.38 mW/g; SAR(10 g) = 1.55 mW/g Maximum value of SAR (measured) = 2.56 mW/g

Certificate No: D835V2-4d114_Jan11

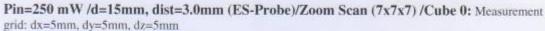
Page 6 of 9

Report No: KS120312A04-SF FCCID: WA6I675

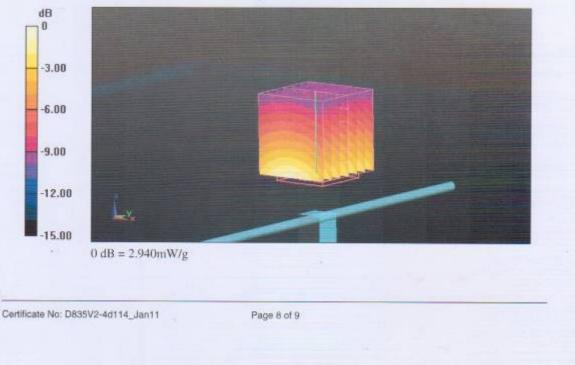
Date of Issue :March 20, 2012

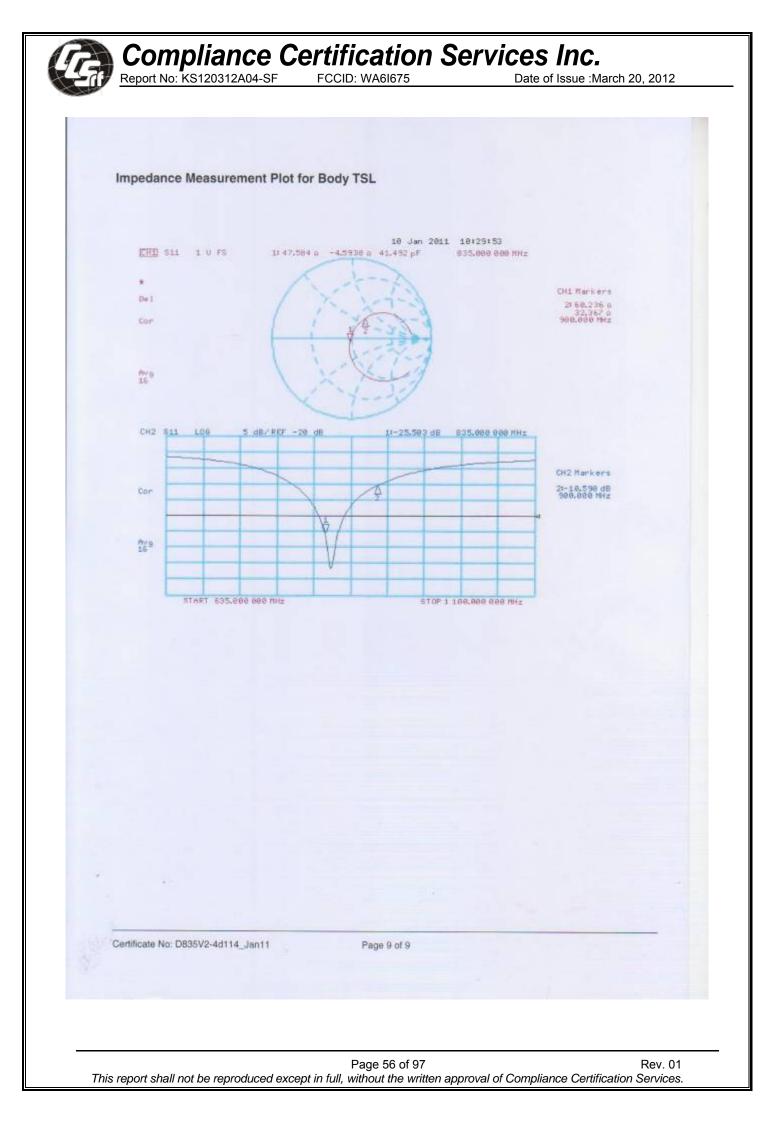
DASY5 Validation Report for Body

Date/Time: 10.01.2011 10:33:12


Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d114

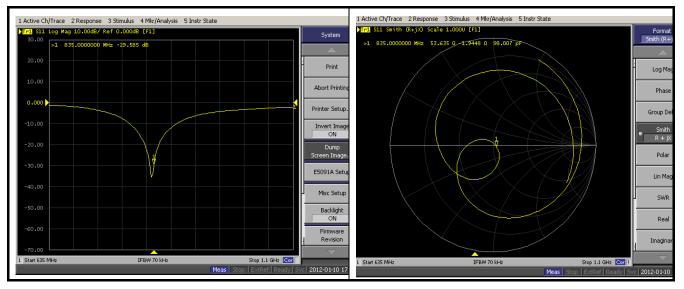

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL900 Medium parameters used: f = 835 MHz; σ = 0.99 mho/m; ϵ_r = 54.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)


DASY5 Configuration:

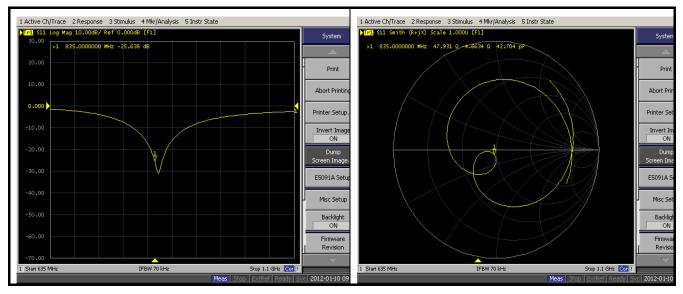
- Probe: ES3DV3 SN3205; ConvF(5.86, 5.86, 5.86); Calibrated: 30.04.2010
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY52, V52.6.1 Build (408)
- · Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Peak SAR (extrapolated) = 3.727 W/kgSAR(1 g) = 2.53 mW/g; SAR(10 g) = 1.66 mW/gMaximum value of SAR (measured) = 2.944 mW/g

DASY Calibration Certificate-Extended Dipole-835MHz Calibrations


According to KDB 450824 D02, Dipoles must be recalibrated at least once every three years; however, immediate re-calibration is required for the following conditions. The test laboratory must ensure that the required supporting information and documentation have been included in the SAR report to gualify for the extended 3-year calibration interval

1)When the most recent return-loss, measured at least annually, deviates by more than 20% from the previous measurement (i.e. 0.2 of the dB value) or not meeting the required -20 dB return-loss specification


2)When the most recent measurement of the real or imaginary parts of the impedance, measured at least annually, deviates by more than 5 Ω from the previous measurement

Dipole Verification plot : D835V2 S/N:4d114

835MHz for Head:

835MHz for Body:

	D835V2 S/N:4d114 For HEAD					
Return-Loss (dB)	Deviate (dB)	Real Impedance (Ω)	Deviate (Ω)	Imaginary Impedance (Ω)	Deviate (Ω)	Calibrate Date
-29.466		52.262		-2.5822		2011-01-10
-29.585	0.119	53.635	1.373	-1.9448	0.6374	2012-01-10
	D835V2 S/N:4d114 For BODY					
Return-Loss (dB)	Deviate (dB)	Real Impedance (Ω)	Deviate (Ω)	Imaginary Impedance (Ω)	Deviate (Ω)	Calibrate Date
-25.505		47.585		-4.5941		2011-01-10
-25.638	0.133	47.931	0.346	-4.6634	0.0693	2012-01-10

According to up table, the return loss is <-20dB, deviates by less than 20% from the previous measurement ; the Real Impedance and Imaginary Impedance are all within 5Ω compared to the previous measurement.

So, the verification result should extended calibration.

Calibration Laborator Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zuric		INISS SHISS S	Service suisse d'étalonnage Servizio svizzero di taratura
Accredited by the Swiss Accredit The Swiss Accreditation Servic Multilateral Agreement for the r	e is one of the signatorie	s to the EA	n No.: SCS 108
Client CCS (Auden)			lo: D1900V2-5d136_Jan11
CALIBRATION	CERTIFICATE		
Object	D1900V2 - SN: 5	d136	
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	dure for dipole validation kits	
Calibration date:	January 05, 2011		
		onal standards, which realize the physical u robability are given on the following pages a	the second se
The measurements and the unce	ertainties with confidence p		nd are part of the certificate.
The measurements and the unco	ertainties with confidence p	robability are given on the following pages a	nd are part of the certificate.
The measurements and the unov All calibrations have been condu Calibration Equipment used (M& Primary Standards Power metar EPM-442A	artainties with confidence p cted in the closed laborato TE critical for calibration) ID # 0B37480704	robability are given on the following pages a ny facility: environment temperature (22 ± 3)* Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration Oct-11
The measurements and the unov All calibrations have been condu Calibration Equipment used (M& Primary Standards Power metar EPM-442A Power sensor HP 8481A	artainties with confidence p cted in the closed laborato TE critical for calibration) ID # 0B37480704 US37292783	robability are given on the following pages a ny facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11
The measurements and the unov All calibrations have been condu Calibration Equipment used (M& Primary Standards Power metar EPM-442A	artainties with confidence p cted in the closed laborato TE critical for calibration) ID # 0B37480704	robability are given on the following pages a ny facility: environment temperature (22 ± 3)* Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration Oct-11
The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	artainties with confidence p cted in the closed laborato TE critical for calibration) ID # 0B37480704 US37292783 SN: 5086 (20g)	robability are given on the following pages a ny facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158)	nd are part of the certificate. "C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Mar-11
The measurements and the unov All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	artainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10)	nd are part of the certificate *C and humidity < 70%: Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11
The measurements and the unov All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	artainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10)	nd are part of the certificate "C and humidity < 70%: Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11
The measurements and the unov All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	artainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 3205 SN: 601	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01168) 30-Mar-10 (No. 217-01162) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house)	nd are part of the certificate *C and humidity < 70%: Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check
The measurements and the unov All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	artainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5086 (20g) SN: 5086 (20g) SN: 5086 (20g) SN: 5086 (20g) SN: 5087.2 / 06327 SN: 3205 SN: 3205 SN: 601 ID # MY41092317 100005	robability are given on the following pages a ry facility: environment temperature (22 ± 3) ⁴ Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01168) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. 217-01162) 30-Apr-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	rC and humidity < 70%: C and humidity < 70%: Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
The measurements and the unov All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	artainties with confidence p ctod in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	robability are given on the following pages a ry facility: environment temperature (22 ± 3) ⁴ Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01162) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. 253-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	nd are part of the certificate C and humidity < 70%: Scheduled Calibration Oct-11 Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
The measurements and the unov All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	artainties with confidence p ctod in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	robability are given on the following pages a ry facility: environment temperature (22 ± 3) ² Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01152) 30-Apr-10 (No. 217-01162) 30-Apr-10 (No. 233-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-39 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	nd are part of the certificate C and humidity < 70%: Scheduled Calibration Oct-11 Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power mater EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 6481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	artainties with confidence p cted in the closed laborato TE critical for calibration) ID # 0837480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Jeton Kastrati	robability are given on the following pages a ry facility: environment temperature (22 ± 3) ⁴ Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01162) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. 217-01162) 30-Apr-10 (No. 233-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	nd are part of the certificate. *C and humidity < 70%: Scheduled Calibration Oct-11 Oct-11 Oct-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11 Signature Signature
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power matar EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: Approved by:	artainties with confidence p cted in the closed laborato TE critical for calibration) ID # 0837480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Jeton Kastrati Katja Pokovic	robability are given on the following pages a ry facility: environment temperature (22 ± 3) ⁴ Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01162) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. 217-01162) 30-Apr-10 (No. 233-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	nd are part of the certificate. *C and humidity < 70%: Scheduled Calibration Oct-11 Oct-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11 Signature Signature March March Mar

Page 59 of 97 Rev. 01 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Report No: KS120312A04-SF FCCID: WA6I675

Date of Issue :March 20, 2012

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura S Swiss Calibration Service

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d136_Jan11

Page 2 of 9

Page 60 of 97 Rev. 01 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) "C	38.5 ± 6 %	1.43 mho/m ± 6 %
Head TSL temperature during test	(20.6 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR normalized	normalized to 1W	41.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.5 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.33 mW / g
	and the subscription	area units i B
SAR normalized	normalized to 1W	21.3 mW / g

Certificate No: D1900V2-5d136_Jan11

Page 3 of 9

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.56 mha/m ± 6 %
Body TSL temperature during test	(21.2 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	39.7 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.31 mW/g
SAR measured SAR normalized	250 mW input power normalized to 1W	5.31 mW / g 21.2 mW / g

Certificate No: D1900V2-5d136_Jan11

Page 4 of 9

Compliance Certification Services Inc.Report No: K\$120312A04-SFFCCID: WA6I675Date of Issue :M

Date of Issue :March 20, 2012

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.7 Ω + 8.2 jΩ
Return Loss	- 21.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.2 Ω + 7.6 jΩ	
Return Loss	- 21.6 dB	

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 14, 2010

Certificate No: D1900V2-5d136 Jan11

Page 5 of 9

Report No: KS120312A04-SF FCCID: WA6I675

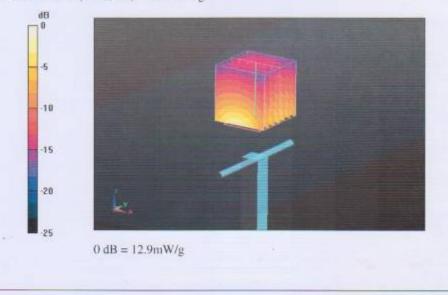
Date of Issue :March 20, 2012

DASY5 Validation Report for Head TSL

Date/Time: 04.01.2011 11:58:06

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d136

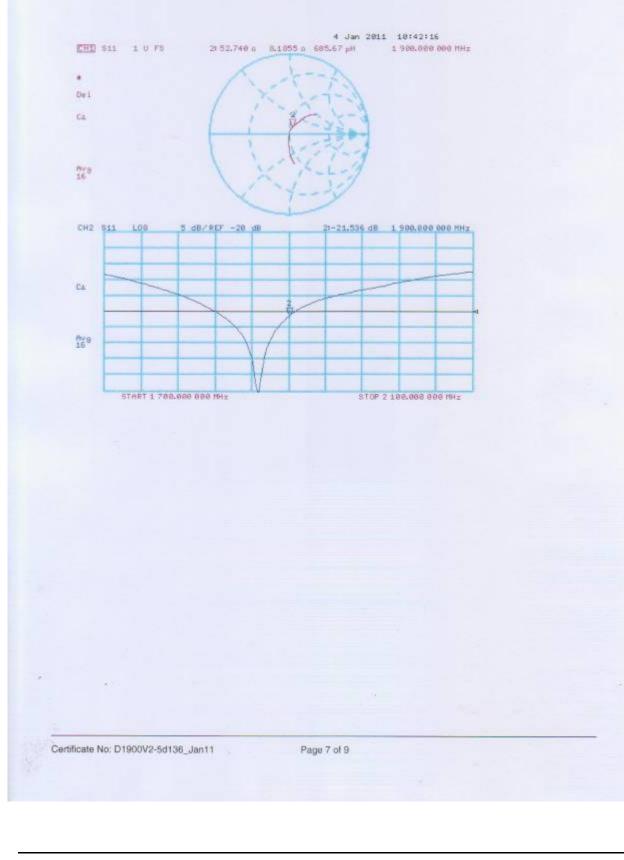

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U12 BB Medium parameters used: f = 1900 MHz; σ = 1.42 mho/m; ε_r = 38.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- · Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.6 Build (401)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.7 V/m; Power Drift = 0.035 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.33 mW/g Maximum value of SAR (measured) = 12.9 mW/g



Certificate No: D1900V2-5d136_Jan11

Page 6 of 9

Impedance Measurement Plot for Head TSL

Report No: KS120312A04-SF FCCID: WA6I675

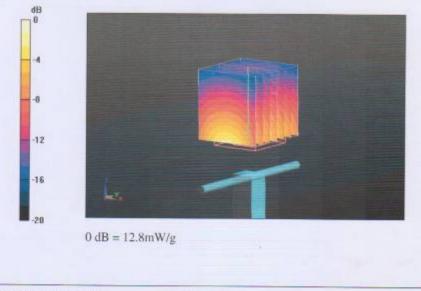
Date of Issue :March 20, 2012

DASY5 Validation Report for Body

Date/Time: 05.01.2011 10:43:48

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d136

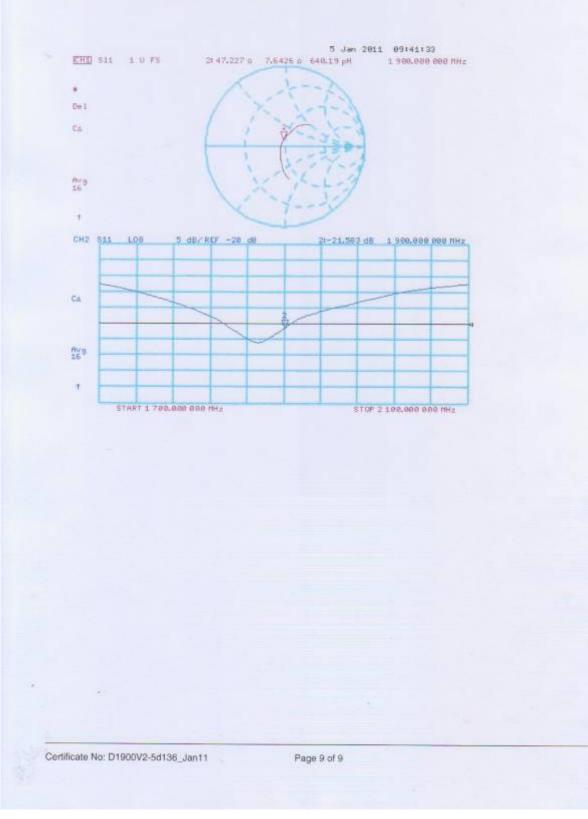

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U12 BB Medium parameters used: f = 1900 MHz; $\sigma = 1.56$ mho/m; $\varepsilon_r = 53$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.6 Build (401)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.3 V/m; Power Drift = -0.054 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.31 mW/g Maximum value of SAR (measured) = 12.8 mW/g



Certificate No: D1900V2-5d136_Jan11

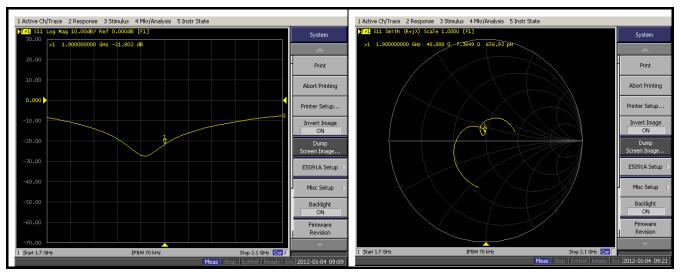
Page 8 of 9

Impedance Measurement Plot for Body TSL

Page 67 of 97 Rev. 01 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

According to KDB 450824 D02, Dipoles must be recalibrated at least once every three years; however, immediate re-calibration is required for the following conditions. The test laboratory must ensure that the required supporting information and documentation have been included in the SAR report to qualify for the extended 3-year calibration interval

1)When the most recent return-loss, measured at least annually, deviates by more than 20% from the previous measurement (i.e. 0.2 of the dB value) or not meeting the required -20 dB return-loss specification


2)When the most recent measurement of the real or imaginary parts of the impedance, measured at least annually, deviates by more than 5 Ω from the previous measurement

Dipole Verification plot : D1900V2-S/N:5d136

1 Active Ch/Trace 2 Response 3 Stimulus 4 Mkr/Analysis 5 Instr State 1 Active Ch/Trace 2 Response 3 Stimulus 4 Mkr/Analysis 5 Instr State System -21,560 dE 0000 GHz 52.132 Q Print Recall State Abort Printing Recall by File Nam 0.000 Printer Setup. Save Channel Invert Image ON Recall Channel Save Type State & Cal E5091A Setup Channel/Trace Disp Only ice Data Backlight ON Explore 60.00 Firmware Return Start 1.7 GH Start 1.7 GHz IFBW 70 kHz Stop 2.1 GHz Cor ! IFBW 70 kH p 2.1 GHz Cor ! 2012-01-04 09

1900MHz for Head:

1900MHz for Body:

D1900V2-S/N:5d136 For HEAD						
Return-Loss (dB)	Deviate (dB)	Real Impedance (Ω)	Deviate (Ω)	Imaginary Impedance (Ω)	Deviate (Ω)	Calibrate Date
-21.536		52.740		8.1855		2011-01-04
-21.560	0.024	52.132	0.608	8.8463	0.6608	2012-01-04
	D1900V2-S/N:5d136 For BODY					
Return-Loss (dB)	Deviate (dB)	Real Impedance (Ω)	Deviate (Ω)	Imaginary Impedance (Ω)	Deviate (Ω)	Calibrate Date
-21.583		47.227		7.6426		2011-01-05
-21.802	0.219	48.888	1.661	7.3649	0.2777	2012-01-04

According to up table, the return loss is <-20dB, deviates by less than 20% from the previous measurement ; the Real Impedance and Imaginary Impedance are all within 5Ω compared to the previous measurement.

So, the verification result should extended calibration.

Page 69 of 97	Rev. 01
This report shall not be reproduced except in full, without the written approval of Compliance Cer	tification Services.

Calibration Laborator Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zuric		ILAC-MRA	S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S wies Calibration Service
Accredited by the Swiss Accredita The Swiss Accreditation Servic Multilateral Agreement for the r	e is one of the signatorie	es to the EA	ion No.: SCS 108
Client CCS (Auden)		Certificate	No: D2450V2-817_Jan11
CALIBRATION C	ERTIFICATE		
Object	D2450V2 - SN: 8	317	and the second second
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	dure for dipole validation kits	
Calibration date	January 26, 2011	1	
Calibration Equipment used (M&1		ry facility: environment temperature (22 ±)	s)°C and humidity < 70%.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A Power sensor HP 8481A	GB37480704 US37292783	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266)	Oci-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01266)	Oct-11 Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES30V3 DAE4	SN: 3205 SN: 601	30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10)	Apr-11
10022		in part to free parts of induity	Jun-11
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Devent and the prove	MY41092317 100005	18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Power sensor HP 8481A	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-11 In house check: Oct-11
Power sensor HP 6481A RF generator R&S SMT-06 Network Analyzer HP 6753E			
RF generator R&S SMT-06	Name Dimce Iliev	Function Laboratory Technician	Signature
RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	Name Dimce Illev		
RF generator R&S SMT-06 Network Analyzer HP 8753E	Name		Signature O. Hiev J.C. Ky
PF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: Approved by:	Name Dimce Iliev Katja Pokovic	Laboratory Technician	0. Dieu Al-Kg Issued January 27, 2011

 Page 70 of 97
 Rev. 01

 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Report No: KS120312A04-SF FCCID: WA6I675

Date of Issue :March 20, 2012

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS RIGRATO

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura S Swiss Calibration Service

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-817_Jan11

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.74 mho/m ± 6 %
Head TSL temperature during test	(20.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 mW / g
SAR normalized	normalized to 1W	54.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	54.8 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.33 mW / g
SAR normalized	normalized to 1W	25.3 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.3 mW /g ± 16.5 % (k=2)

Certificate No: D2450V2-817_Jan11

Page 3 of 9

Date of Issue :March 20, 2012

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6 %	1.96 mho/m ± 6 %
Body TSL temperature during test	(20.8 ± 0.2) °C		+++=

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.3 mW / g
SAR normalized	normalized to 1W	53.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	52.9 mW / g ± 17.0 % (k=2)
or in the monimum body for parameters	HOITHBILZED TO TWY	Sera mu / g z 11.0 /c (k=z)
	condition	oeld inin / g ± (1.0 /0 (n=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL		6.15 mW/g
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured SAR normalized	condition	

Certificate No: D2450V2-817_Jan11

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω + 3.4 jΩ		
Return Loss	- 26.6 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.9 Ω + 5.5 jΩ
Return Loss	- 25.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.159 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 23, 2007

Certificate No: D2450V2-817_Jan11

Page 5 of 9

Compliance Certification Services Inc.

Report No: KS120312A04-SF FCCID: WA6I675

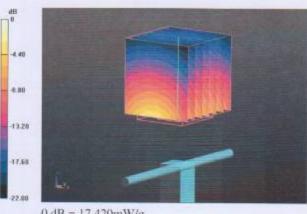
Date of Issue :March 20, 2012

DASY5 Validation Report for Head TSL

Date/Time: 24.01.2011 13:51:29

Test Laboratory: SPEAG, Zurich, Switzerland

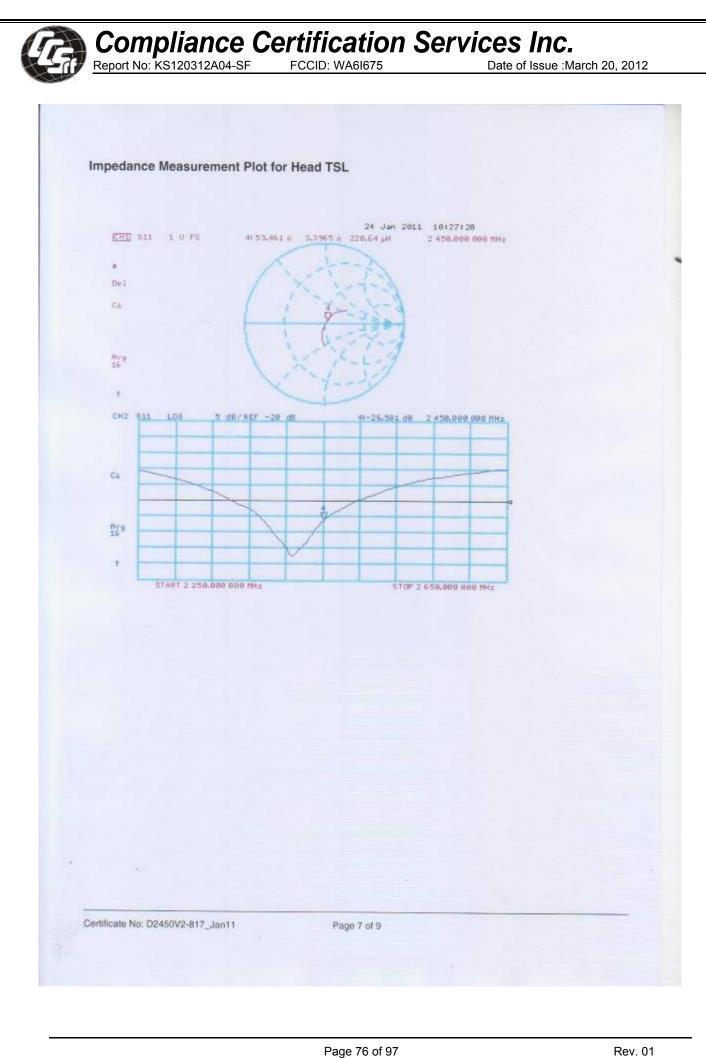
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:817


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U12 BB Medium parameters used: f = 2450 MHz; $\sigma = 1.75 \text{ mho/m}$; $\epsilon_r = 38.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010 .
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.6.1 Build (408) .
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 103.6 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 27.760 W/kg SAR(1 g) = 13.6 mW/g; SAR(10 g) = 6.33 mW/g Maximum value of SAR (measured) = 17.417 mW/g

0 dB = 17.420 mW/g

Certificate No: D2450V2-817_Jan11

Page 6 of 9

Compliance Certification Services Inc.

Report No: KS120312A04-SF FCCID: WA6I675

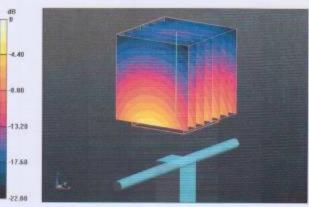
Date of Issue :March 20, 2012

DASY5 Validation Report for Body TSL

Date/Time: 26.01.2011 14:20:14

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:817


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL U12 BB Medium parameters used: f = 2450 MHz; $\sigma = 1.97$ mho/m; $\varepsilon_r = 52.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.826 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 27.854 W/kg SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.15 mW/g Maximum value of SAR (measured) = 17.412 mW/g

 $0 \, dB = 17.410 \, mW/g$

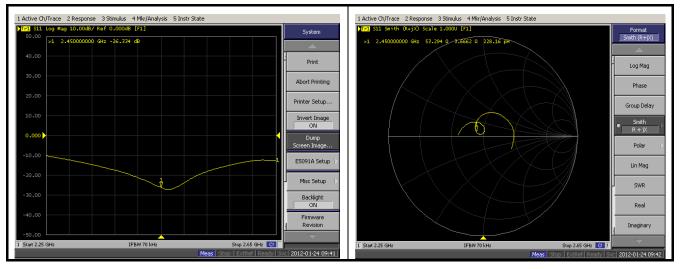
Certificate No: D2450V2-817_Jan11

Page 8 of 9

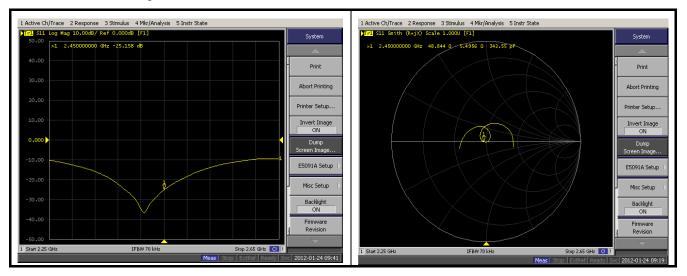
Certificate No: D2450V2-817_Jan11

Page 9 of 9

DASY Calibration Certificate-Extended Dipole-2450MHz Calibrations


According to KDB 450824 D02, Dipoles must be recalibrated at least once every three years; however, immediate re-calibration is required for the following conditions. The test laboratory must ensure that the required supporting information and documentation have been included in the SAR report to qualify for the extended 3-year calibration interval

1)When the most recent return-loss, measured at least annually, deviates by more than 20% from the previous measurement (i.e. 0.2 of the dB value) or not meeting the required -20 dB return-loss specification


2)When the most recent measurement of the real or imaginary parts of the impedance, measured at least annually, deviates by more than 5 Ω from the previous measurement

Dipole Verification plot : D2450V2 S/N: 817

2450MHz for Head:

2450MHz for Body:

D2450V2 S/N: 817 For HEAD								
Return-Loss (dB)	Deviate (dB)	Real Impedance (Ω)	Deviate (Ω)	Imaginary Impedance (Ω)	Deviate (Ω)	Calibrate Date		
-26.581		53.461		3.3965		2011-01-24		
-26.334	0.247	53.294	0.167	3.6662	0.2697	2012-01-24		
		D2450V2	2 S/N: 817 For	BODY				
Return-Loss (dB)	Deviate (dB)	Real Impedance (Ω)	Deviate (Ω)	Imaginary Impedance (Ω)	Deviate (Ω)	Calibrate Date		
-24.981		48.936		5.4785		2011-01-26		
-25.158	0.177	48.844	0.092	5.4956	0.0171	2012-01-24		

According to up table, the return loss is <-20dB, deviates by less than 20% from the previous measurement ; the Real Impedance and Imaginary Impedance are all within 5Ω compared to the previous measurement.

So, the verification result should extended calibration.

Calibration Laborato	ny of	and share and	
Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zuri		HAC MRA	Service suisse d'étalonnage Servizio svizzero di taratura
Accredited by the Swiss Accredit The Swiss Accreditation Servic Multilateral Agreement for the	ce is one of the signator	ies to the EA	n No.: SCS 108
Client CCS (Auden)		Certificate N	a: EX3-3755_Jan12
CALIBRATION	CERTIFICAT	E	
Object	EX3DV4 - SN:3		needs and series
Calibration procedure(s)		QA CAL-14.v3, QA CAL-23.v4 an edure for dosimetric E-field probe	
Calibration date:	January 20, 20	12	
		tional standards, which realize the physical un probability are given on the following pages an	
The measurements and the unc	ertainties with confidence ucted in the closed laborat	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*(d are part of the certificate.
The measurements and the uno All calibrations have been condu Calibration Equipment used (M8	ertainties with confidence ucted in the closed laboral ITE critical for calibration)	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*(nd are part of the certificate. C and humidity < 70%.
The measurements and the uno	ertainties with confidence ucted in the closed laborat	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*(d are part of the certificate.
The measurements and the uno All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A	ertainties with confidence acted in the closed laboral (TE critical for calibration) ID # GB41293874 MY41495277	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*(Cal Date (Certificate No.) 1-Apr-11 (No. 217-01136) 1-Apr-11 (No. 217-01136)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration
The measurements and the uno All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A	ertainties with confidence acted in the closed laboral (TE critical for calibration) ID # GB41293874 MY41495277 MY41498087	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*(Cal Date (Certificate No.) 1-Apr-11 (No. 217-01136) 1-Apr-11 (No. 217-01136) 1-Apr-11 (No. 217-01136)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12
The measurements and the uno All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ertainties with confidence acted in the closed laboral (TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*(Cal Date (Certificate No.) 1-Apr-11 (No. 217-01136) 1-Apr-11 (No. 217-01136) 1-Apr-11 (No. 217-01136) 30-Mar-11 (No. 217-01136)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Mar-12
The measurements and the uno All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A	ertainties with confidence acted in the closed laboral (TE critical for calibration) ID # GB41293874 MY41495277 MY41498087	probability are given on the following pages an ony facility: environment temperature (22 ± 3)*(Cal Date (Certificate No.) 1-Apr-11 (No. 217-01136) 1-Apr-11 (No. 217-01136) 30-Mar-11 (No. 217-01136) 30-Mar-11 (No. 217-01159) 30-Mar-11 (No. 217-01161)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Mar-12 Mar-12 Mar-12
The measurements and the uno All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2	ertainties with confidence ucted in the closed laboral ID # GB41293874 MY41498277 MY41498087 SN: S5054 (3c) SN: S5058 (20b)	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*(Cal Date (Certificate No.) 1-Apr-11 (No. 217-01136) 1-Apr-11 (No. 217-01136) 1-Apr-11 (No. 217-01136) 30-Mar-11 (No. 217-01136)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Mar-12
The measurements and the uno All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator	ertainties with confidence inted in the closed laborat ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5088 (20b) SN: S5129 (30b)	probability are given on the following pages an ony facility: environment temperature (22 ± 3)*(Call Date (Certificate No.) 1-Apr-11 (No. 217-01136) 1-Apr-11 (No. 217-01136) 30-Mar-11 (No. 217-01136) 30-Mar-11 (No. 217-01161) 30-Mar-11 (No. 217-01161)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Mar-12 Mar-12 Mar-12 Mar-12
The measurements and the uno All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2	ertainties with confidence acted in the closed laboral ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013	probability are given on the following pages an ony facility: environment temperature (22 ± 3)*(Cal Date (Certificate No.) 1-Apr-11 (No. 217-01136) 1-Apr-11 (No. 217-01136) 30-Mar-11 (No. 217-01136) 30-Mar-11 (No. 217-01136) 30-Mar-11 (No. 217-01136) 29-Dec-11 (No. ES3-3013_Dec11)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Mar-12 Mar-12 Mar-12 Mar-12 Mar-12 Dec-12
The measurements and the uno All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ertainties with confidence ucted in the closed laboral ITE critical for calibration) ID # GB41293674 MY41496277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 660	probability are given on the following pages an ony facility: environment temperature (22 ± 3)*(d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Mar-12 Mar-12 Mar-12 Mar-12 Dec-12 Apr-12
The measurements and the uno All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ertainties with confidence ucted in the closed laboral ICE critical for calibration) ID # GB41293874 MY41498277 MY41498087 SN: S5086 (20b) SN: S5086 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Gal Date (Certificate No.) 1-Apr-11 (No. 217-01136) 1-Apr-11 (No. 217-01136) 1-Apr-11 (No. 217-01136) 30-Mar-11 (No. 217-01161) 30-Mar-11 (No. 217-01161) 30-Mar-11 (No. 217-01161) 30-Mar-11 (No. 217-01160) 29-Dec-11 (No. ES3-3013_Dec11) 20-Apr-11 (No. DAE4-680_Apr11) Check Date (in house) 4-Aug-99 (in house check Oct-10)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Mar-12 Mar-12 Mar-12 Dec-12 Apr-12 Dec-12 Apr-12 Scheduled Check In house check: Oct-12
The measurements and the uno All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 9 DB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ertainties with confidence ucted in the closed laboral ID # GB41293874 MY41498277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5058 (20b) SN: S5129 (30b) SN: S5129 (probability are given on the following pages an ory facility: environment temperature (22 ± 3)*(Cal Date (Certificate No.) 1-Apr-11 (No. 217-01136) 1-Apr-11 (No. 217-01136) 1-Apr-11 (No. 217-01136) 30-Mar-11 (No. 217-01136) 30-Mar-11 (No. 217-01136) 30-Mar-11 (No. 217-01161) 30-Mar-11 (No. 217-01161) 30-Mar-11 (No. 217-01161) 30-Mar-11 (No. 217-01161) 29-Dec-11 (No. 217-01161) 20-Apr-11 (No. 217-01161)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Mar-12 Mar-12 Mar-12 Dec-12 Apr-12 Scheduled Checx In house check: Oct-12 In house check: Oct-12
The measurements and the uno All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ertaintiles with confidence inted in the closed laboral iTE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5058 (20b) SN: S5129 (30b) SN: S5129	probability are given on the following pages an ony facility: environment temperature (22 ± 3)*(Cal Date (Certificate No.) 1-Apr-11 (No. 217-01136) 1-Apr-11 (No. 217-01136) 1-Apr-11 (No. 217-01136) 30-Mar-11 (No. 217-01159) 30-Mar-11 (No. 217-01161) 30-Mar-11 (No. 217-01160) 29-Dec-11 (No. 217-01160) 20-Apr-11 (No. 217-01160) 20-Apr-11 (No. 217-01160) 20-Apr-11 (No. 217-01160) 20-Apr-11 (No. 200-Apr-11) Check Date (in house) 4-Aug-99 (in house check Oct-10) 18-Oct-01 (in house check Oct-11) Function	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Mar-12 Mar-12 Mar-12 Dec-12 Apr-12 Scheduled Checx In house check: Oct-12 In house check: Oct-12
The measurements and the uno All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	ertainties with confidence uted in the closed laboral TE critical for calibration) ID # GB41293874 MY41498087 SN 55054 (3c) SN 55054 (probability are given on the following pages an ony facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-11 (No. 217-01136) 1-Apr-11 (No. 217-01136) 30-Mar-11 (No. 217-0116) 30-Mar-11 (No. 217-01160) 29-Dec-11 (No. ES3-3013_Dec11) 20-Apr-11 (No. DAE4-680_Apr11) Check Date (in house) 4-Aug-99 (in house check Oct-10) 18-Oct-01 (in house check Oct-10) 18-Oct-01 (in house check Oct-10) Technical Manager Ouality Manager	ad are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Mar-12 Mar-12 Mar-12 Dec-12 Apr-12 Scheduled Checx In house check: Oct-12 In house check: Oct-12 Signature Signature Insued: January 20, 2012
The measurements and the uno All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	ertainties with confidence uted in the closed laboral TE critical for calibration) ID # GB41293874 MY41498087 SN 55054 (3c) SN 55054 (probability are given on the following pages an ony facility: environment temperature (22 ± 3)*(Cal Date (Certificate No.) 1-Apr-11 (No. 217-01136) 1-Apr-11 (No. 217-01136) 30-Mar-11 (No. 217-01165) 30-Mar-11 (No. 217-01165) 30-Mar-11 (No. 217-01165) 29-Dec-11 (No. 217-01165) 29-Dec-11 (No. ES3-3013_Dec11) 20-Apr-11 (No. DAE4-660_Apr11) Check Date (in house) 4-Aug-99 (in house check Oct-10) 18-Oct-01 (in house check Oct-10) 18-Oct-01 (in house check Oct-10) Technical Manager	ad are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Mar-12 Mar-12 Mar-12 Dec-12 Apr-12 Scheduled Checx In house check: Oct-12 In house check: Oct-12 Signature Signature Insued: January 20, 2012

 Page 81 of 97
 Rev. 01

 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Compliance Certification Services Inc. Report No: KS120312A04-SF

FCCID: WA6I675

Date of Issue :March 20, 2012

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWIS,

0

ARB

Schweizerlacher Kalibrierdienst S

- Service suisse d'étalonnage C
- Servizio svizzero di taratura S
- Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,v.z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y.z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization @	e rotation around probe axis
Polarization 9	3 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, 'IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
- Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax y, z; Bx y, z; Cx, y, z, VRx, y, z; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3755 Jan12

Page 2 of 11

Date of Issue :March 20, 2012

EX3DV4 SN:3755

January 20, 2012

Probe EX3DV4

SN:3755

Manufactured: Calibrated:

March 16, 2010 January 20, 2012

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3755_Jan12

Page 3 of 11

Date of Issue :March 20, 2012

EX3DV4 SN:3755

January 20, 2012

DASY/EASY - Parameters of Probe: EX3DV4 SN:3755

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.49	0.47	0.50	± 10.1%
DCP (mV) [®]	99,9	99.3	101.0	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	с	VR mV	Unc ¹ (k=2)
10000	CW	0.00	х	0.00	0.00	1.00	157.0	± 2.4 %
			Y	0.00	0.00	1.00	147.8	
			Z	0.00	0.00	1.00	157.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

* The uncertainties of NormX, Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

* Numerical linearization parameter: uncertainty not required.

⁶ Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the hold value

Certificate No: EX3-3755_Jan12

Page 4 of 11

Page 84 of 97 Rev. 01 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Date of Issue :March 20, 2012

EX3DV4 SN:3755

January 20, 2012

DASY/EASY - Parameters of Probe: EX3DV4 SN:3755

Calibration Parameter Determined in Head Tissue Simulating Media

Validity [MHz] ^C	Permittivity	Conductivity	ConvFX Co	nvF Y	ConvF Z	Alpha	Depth Unc (k=2)
± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	8.99	8.99	8.99	0.64	0.68 ± 11.0%
± 50 / ± 100	40.1 ± 5%	1.36 ± 5%	8.18	8.18	8.18	0.74	0.63 ± 11.0%
±50/±100	40.0 ± 5%	1.40 ± 5%	7.84	7.84	7.84	0.63	0.66 ± 11.0%
± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	7.78	7,78	7.78	0.45	0.80 ± 11.0%
± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	7.07	7.07	7.07	0.30	1.02 ± 11.0%
± 50 / ± 100	36.0 ± 5%	4.67 ± 5%	4.64	4.64	4.64	0.40	1.80 ± 13.1%
± 50 / ± 100	35,9±5%	4.78 ± 5%	4.48	4.48	4.48	0.40	1.80 ± 13.1%
± 50 / ± 100	35.6 ± 5%	4.96 ± 5%	4.45	4,45	4.45	0.45	1.80 ± 13.1%
± 50 / ± 100	35.5 ± 5%	5.07 ± 5%	4.15	4.15	4.15	0.50	1.80 ± 13.1%
± 50 / ± 100	35.3 ± 5%	$5.28\pm5\%$	4.31	4.31	4.31	0.45	1.80 ± 13.1%
	± 50 / ± 100 ± 50 / ± 100	$\begin{array}{cccc} \pm 50 \ / \pm 100 & 41.5 \pm 5\% \\ \pm 50 \ / \pm 100 & 40.1 \pm 5\% \\ \pm 50 \ / \pm 100 & 40.0 \pm 5\% \\ \pm 50 \ / \pm 100 & 40.0 \pm 5\% \\ \pm 50 \ / \pm 100 & 39.2 \pm 5\% \\ \pm 50 \ / \pm 100 & 36.0 \pm 5\% \\ \pm 50 \ / \pm 100 & 35.9 \pm 5\% \\ \pm 50 \ / \pm 100 & 35.5 \pm 5\% \\ \pm 50 \ / \pm 100 & 35.5 \pm 5\% \end{array}$	$\begin{array}{ccccccc} \pm 50 \ / \pm 100 & 41.5 \pm 5\% & 0.90 \pm 5\% \\ \pm 50 \ / \pm 100 & 40.1 \pm 5\% & 1.36 \pm 5\% \\ \pm 50 \ / \pm 100 & 40.0 \pm 5\% & 1.40 \pm 5\% \\ \pm 50 \ / \pm 100 & 40.0 \pm 5\% & 1.40 \pm 5\% \\ \pm 50 \ / \pm 100 & 39.2 \pm 5\% & 1.80 \pm 5\% \\ \pm 50 \ / \pm 100 & 36.0 \pm 5\% & 4.67 \pm 5\% \\ \pm 50 \ / \pm 100 & 35.9 \pm 5\% & 4.96 \pm 5\% \\ \pm 50 \ / \pm 100 & 35.5 \pm 5\% & 5.07 \pm 5\% \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	± 50 / ± 100 41.5 ± 5% 0.90 ± 5% 8.99 8.99 ± 50 / ± 100 40.1 ± 5% 1.36 ± 5% 8.18 8.18 ± 50 / ± 100 40.0 ± 5% 1.40 ± 5% 7.84 7.84 ± 50 / ± 100 40.0 ± 5% 1.40 ± 5% 7.78 7.78 ± 50 / ± 100 39.2 ± 5% 1.80 ± 5% 7.07 7.07 ± 50 / ± 100 36.0 ± 5% 4.87 ± 5% 4.64 4.64 ± 50 / ± 100 35.9 ± 5% 4.96 ± 5% 4.45 4.45 ± 50 / ± 100 35.6 ± 5% 4.96 ± 5% 4.15 4.15	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

² The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncortainty for the indicated frequency band

Certificate No: EX3-3755_Jan12

Page 5 of 11

Date of Issue :March 20, 2012

EX3DV4 SN:3755

January 20, 2012

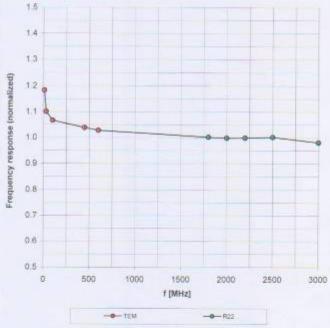
DASY/EASY - Parameters of Probe: EX3DV4 SN:3755

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^G	Permittivity	Conductivity	ConvF X Co	nvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	$55.2 \pm 5\%$	0.98±5%	9.07	9.07	9.07	0.66	0.68 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	1.49±5%	7.48	7.48	7.48	0.91	0.60 ± 11.0%
1900	± 50 / ± 100	$53.3\pm5\%$	1.52 ± 5%	7.23	7.23	7.23	0.60	0.72 ± 11.0%
2000	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	7.31	7.31	7.31	0.58	0.74 ± 11.0%
2450	± 50 / ± 100	52.6±5%	1.95 ± 5%	7.06	7.06	7.06	0.58	0.72 ± 11.0%
5200	± 50 / ± 100	49.0 ± 5%	5.29 ± 5%	4.02	4.02	4.02	0.50	1.90 ± 13.1%
5300	± 50 / ± 100	48.9 ± 5%	5.42±5%	3.86	3.86	3.86	0.50	1.90 ± 13.1%
5500	± 50 / ± 100	48.6 ± 5%	5.66±5%	3.62	3.62	3.62	0.55	1.90 ± 13.1%
5600	±50/±100	48.5 ± 5%	5.78±5%	3.26	3.26	3.26	0.65	1.90 ± 13.1%
5800	± 50 / ± 100	48.2 ± 5%	6.00±5%	3.78	3.78	3.78	0.60	1.90 ± 13.1%

E The validity of a 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

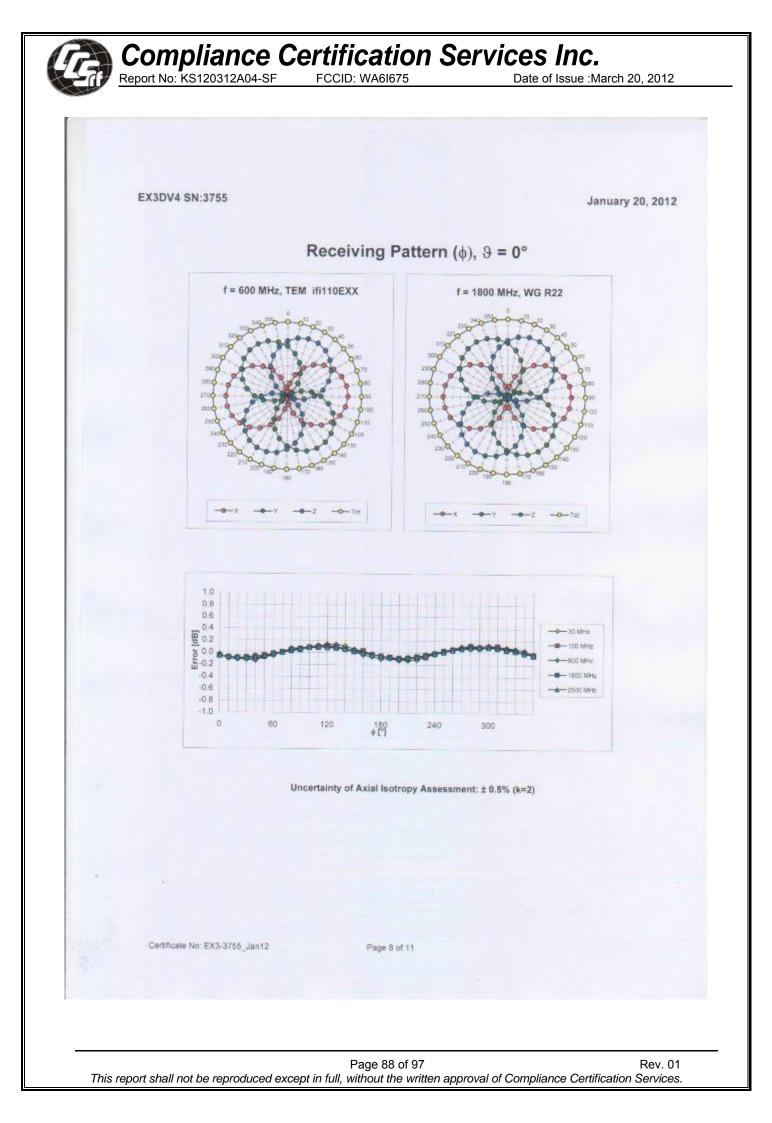
Certificate No: EX3-3755_Jan12

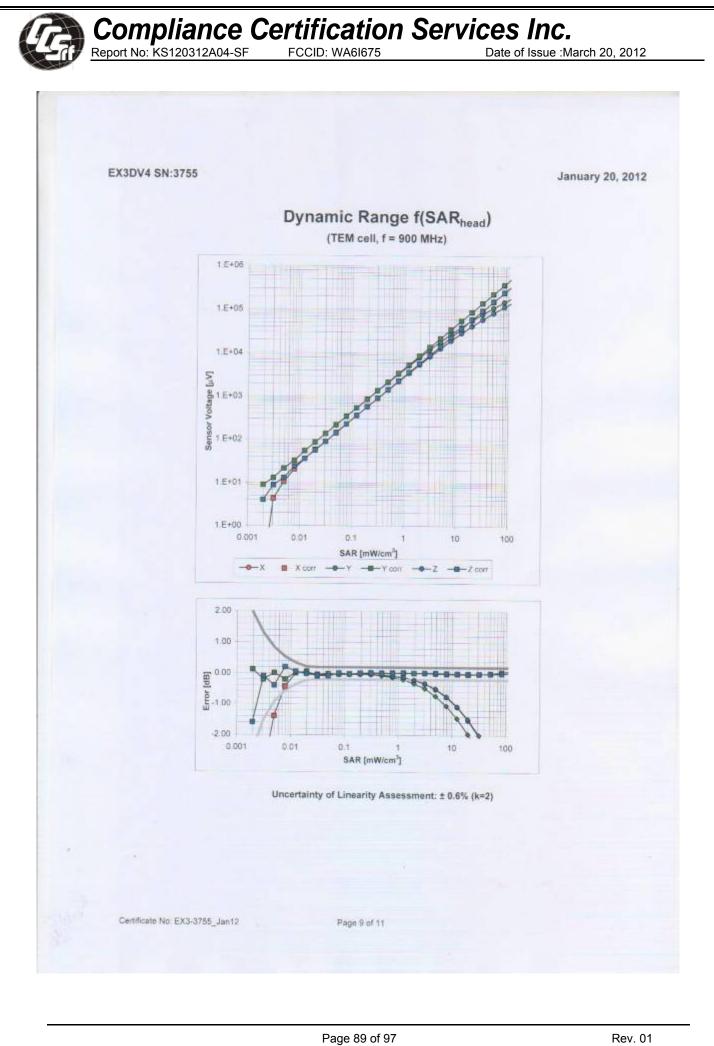

Page 8 of 11

EX3DV4 SN:3755

January 20, 2012

Frequency Response of E-Field

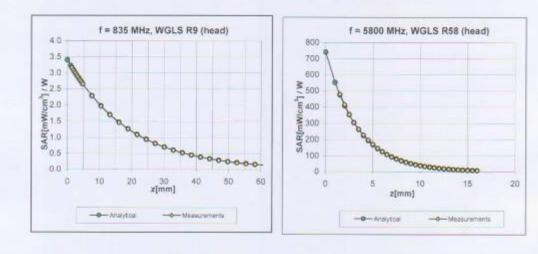

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

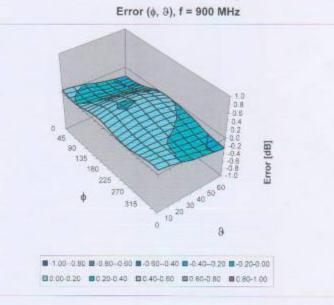
Certificate No. EX3-3755_Jan12

Page 7 of 11



This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Date of Issue :March 20, 2012


EX3DV4 SN:3755

January 20, 2012

Conversion Factor Assessment

Deviation from Isotropy in HSL

Certificate No: EX3-3755_Jan12

Page 10 of 11

Date of Issue :March 20, 2012

EX3DV4 SN:3755

January 20, 2012

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3755_Jan12

Page 11 of 11

Accredited by the Swiss Accred		ARD CORD	S Servizio svizzero di taratura S Swiss Calibration Service
	Itation Service (SAS) Accreditation No.: SCS 108 ice is one of the signatories to the EA erecognition of calibration certificates		
Client CCS (Auden)			rtificate No: DAE4-1245 Jan12
CALIBRATION	CERTIFICATE		
Object	DAE4 - SD 000 D	004 BJ - SN: 1245	a to the second second
Calibration procedure(s)	QA CAL-06.v22 Calibration proces	dure for the data acquisiti	ion electronics (DAE)
Calibration date:	January 11, 2012		
Primary Standards Keithley Multimeter Type 2001	BTE critical for calibration) Cal Date (Certificate No.) ID # Cal Date (Certificate No.) SN: 0810278 28-Sep-11 (No:10376)		Scheduled Calibration Sep-12
Secondary Standards	1D #	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	and the second s	07-Jun-11 (in house check)	In house check: Jun-12
Pathonical has	Name	Function	Signature
Calibrated by:	Eric Hainfeld	Technician	-7-0-
Approved by:	Fin Bomholt	R&D Director	IN Bellune
. This exclusion continuous shall	nut be reproduced except in t	full without written approval of the l	Issued: January 11, 2012 laboratory.
This camprention ceruscate snap			

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Compliance Certification Services Inc.

Report No: KS120312A04-SF FCCID: WA6I675

Date of Issue :March 20, 2012

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst
- C Service suisse d'étalonnage
 - Servizio avizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure gives corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1245_Jan12

Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

 High Range:
 1LSB =
 6.1µV
 full range =
 -100...+300 mV

 Low Range:
 1LSB =
 61nV
 full range =
 -1....+3mV
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	405.949 ± 0.1% (k=2)	404.668 ± 0.1% (k=2)	405.811 ± 0.1% (k=2)
Low Range	3.99652 ± 0.7% (k=2)	3.99470 ± 0.7% (k=2)	3.98099 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	32.0°±1°
---	----------

Certificate No: DAE4-1245_Jan12

Page 3 of 5

Date of Issue :March 20, 2012

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199999.6	-1.22	-0.00
Channel X + Input	20001.67	2.27	0.01
Channel X - Input	-19997.79	1.81	-0.01
Channel Y + Input	200009.5	-0.71	-0.00
Channel Y + Input	20000.17	0.67	0.00
Channel Y - Input	-19998.63	0.87	-0.00
Channel Z + Input	200008.1	-1.41	-0.00
Channel Z + Input	19999.37	-0.03	-0.00
Channel Z - Input	-19999.79	-0.39	0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	1999.1	-0.69	-0.03
Channel X + Input	199.90	-0.10	-0.05
Channel X - Input	-200.48	-0.38	0.19
Channel Y + Input	2000.3	0.29	0.01
Channel Y + Input	199.10	-1.00	-0.50
Channel Y - Input	-201.03	-1.23	0.62
Channel Z + Input	2000.0	0.05	0.00
Channel Z + Input	198.48	-1.52	-0.76
Channel Z - Input	-201.27	-1.27	0.64

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)	
Channel X	200	-7.88	-9.62	
	- 200	10.45	8.89	
Channel Y	200	-7.79	-7.99	
	- 200	6.00	6.40	
Channel Z	200	-6.22	-6.24	
	- 200	5.35	5.19	

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		2.91	-0.13
Channel Y	200	2.57	· •	4.74
Channel Z	200	1.27	-0.99	

Certificate No: DAE4-1245_Jan12

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15884	14899
Channel Y	16498	15256
Channel Z	15933	16202

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	-0.03	-1.14	1.28	0.46
Channel Y	-0.76	-2.25	0.38	0.45
Channel Z	-1.13	-3.14	0.64	0.59

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for Information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1245_Jan12

Page 5 of 5

APPENDIX C: PLOTS OF SAR TEST RESULT

The plots are showing in the file named Appendix C Plots of SAR Test Result

END REPORT