

Report No.: RZA2010-1169

OET 65 TEST REPORT

Product Name	GSM Dual Band GPRS Digital Mobile Phone
Model	i600
FCC ID	WA6I600
Client	Verykool USA Inc.

GENERAL SUMMARY

Product Name	GSM Dual Band GPRS Digital Mobile Phone	Model	i600	
FCC ID	WA6I600 Report No. RZA2010-1169			
Client	Verykool USA Inc.			
Manufacturer	SHENZHEN KONKA TELECOMMUNICATION TECHNOLOGY CO., LTD.			
Reference Standard(s)	 IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438 June 19, 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions. IEEE Std 1528[™]-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. 			
Conclusion	This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards. General Judgment: Pass (Stamp) Date of issue: August 4 th , 2010			
Comment	The test result only responds to the measured sample.			

杨伟 Approved by

质 Revised by_

Performed by

Yang Weizhong

Ling Minbao

Xue Chaofeng

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA2010-1169

TABLE OF CONTENT

1. (Gene	ral Information	. 5
1.1	. N	lotes of the Test Report	. 5
1.2	. т	esting Laboratory	. 5
1.3	5. A	pplicant Information	. 6
1.4	. N	Nanufacturer Information	. 6
1.5	. Ir	nformation of EUT	. 7
1.6	. т	he Maximum SAR _{1g} Values and Conducted Power of each tested band	. 8
1.7	. т	est Date	. 8
2. (Opera	ational Conditions during Test	. 9
2.1	. G	General Description of Test Procedures	. 9
2.2	. G	SSM Test Configuration	. 9
3. 8	SAR I	Measurements System Configuration 1	10
3.1	. S	AR Measurement Set-up 1	10
3.2	. D	DASY4 E-field Probe System	11
3	3.2.1.	EX3DV4 Probe Specification	11
3	3.2.2.	E-field Probe Calibration 1	12
3.3	. C	Other Test Equipment 1	12
3	3.3.1.	Device Holder for Transmitters 1	12
3	3.3.2.	Phantom1	13
3.4	. S	Scanning Procedure 1	13
3.5	. D	Data Storage and Evaluation 1	15
3	3.5.1.	Data Storage1	15
3	3.5.2.	Data Evaluation by SEMCAD 1	15
3.6	5. S	System Check 1	18
3.7	. Е	quivalent Tissues 1	19
4. L	_abor	atory Environment2	20
5. (Chara	acteristics of the Test	20
5.1	. A	pplicable Limit Regulations2	20
5.2	. A	pplicable Measurement Standards2	20
		ucted Output Power Measurement	
6.1		Summary	
6.2		2 Conducted Power Results	
7.]		Results	
7.1		Dielectric Performance	
7.2		System Check	
7.3		Summary of Measurement Results2	
	7.3.1.		
	7.3.2.		
	7.3.3.		
		urement Uncertainty	
J. 1			- '

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA2010-1169

9. Main Test Instruments	28
ANNEX A: Test Layout	29
ANNEX B: System Check Results	32
ANNEX C: Graph Results	36
ANNEX D: Probe Calibration Certificate	62
ANNEX E: D835V2 Dipole Calibration Certificate	71
ANNEX F: D1900V2 Dipole Calibration Certificate	80
ANNEX G: DAE4 Calibration Certificate	89
ANNEX H: The EUT Appearances and Test Configuration	94
ANNEX I: The Diagram of Antenna	99

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Yang Weizhong
Contact: Telephone:	Yang Weizhong +86-021-50791141/2/3
Telephone:	+86-021-50791141/2/3

1.2. Testing Laboratory

Report No. RZA2010-1169

1.3. Applicant Information

Company:	Verykool USA Inc.
Address:	4350 Executive Drive. Suite 100, San Diego, CA 92121, USA
City:	San Diego
Postal Code:	92121
Country:	United States
Contact:	/
Telephone:	858-373-1635
Fax:	858-373-1505

1.4. Manufacturer Information

Company:	SHENZHEN KONKA TELECOMMUNICATION TECHNOLOGY CO., LTD.
Address:	No. 9008 Shennan Road, Overseas Chinese Town, Shenzhen, Guangdong, China
City:	Shenzhen
Postal Code:	518053
Country:	P.R. China
Telephone:	0755-26917119
Fax:	0755-26919049

1.5. Information of EUT

General Information

Device Type :	Portable Device			
Exposure Category:	Uncontrolled Environment / General Population			
Product Name:	GSM Dual Band GPRS Digital Mobile Phone			
IMEI or SN:	354072046000072			
Device Operating Configurations :				
Operating Mode(s):	GSM 850; (tested) GSM 1900; (tested)			
Test Modulation:	GMSK			
	Band	Tx (MHz)	Rx (MHz)	
Operating Frequency Range(s):	GSM 850	824.2 ~ 848.8	869.2 ~ 893.8	
	GSM 1900	1850.2 ~ 1909.8	1930.2 ~ 1989.8	
Dawar Class	GSM 850: 4, tested with power level 5			
Power Class:	GSM 1900: 1, tested with power level 0			
Test Channel:	128 - 190 - 251	(GSM 850) (te	ested)	
(Low - Middle - High)	512 - 661 - 810	(GSM 1900) (t	ested)	
Hardware Version:	V1.1			
Software Version:	KAAW210_SAE_SP_EN_FR_0.92.713			
Antenna Type:	Internal Antenna			

Report No. RZA2010-1169

Auxiliary Equipment Details

AE1:Battery

Model:	KLB110N202
Manufacturer:	SHENZHEN OCT XINQIAO TECHNOLOGY CO., LTD.
SN:	AD10F2F00283
AE2:Travel Adapter	
Model:	KTC-08USB-D
Manufacturer:	SHENZHEN OCT XINQIAO TECHNOLOGY CO., LTD.
SN:	AD10B4C00025

Equipment Under Test (EUT) is a model of GSM Dual Band GPRS Digital Mobile Phone with internal antenna. The detail about Mobile phone, Lithium Battery and AC/DC Adapter is in chapter 1.5 in this report. SAR is tested for GSM 850 and GSM 1900.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.6. The Maximum SAR_{1g} Values and Conducted Power of each tested band

Band	SAR _{1g} (W/kg)		Maximum Conducted
Danu	Head	Body	Power (dBm)
GSM 850	0.304	0.209	32.21
GSM 1900	0.479	0.249	28.82

1.7. Test Date

The test is performed from August 2, 2010 to August 3, 2010.

2. Operational Conditions during Test

2.1. General Description of Test Procedures

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 128, 190 and 251 in the case of GSM 850, allocated to 512, 661 and 810 in the case of GSM 1900. The EUT is commanded to operate at maximum transmitting power.

Connection to the EUT is established via air interface with E5515C, and the EUT is set to maximum output power by E5515C. Using E5515C the power lever is set to "5" in SAR of GSM 850, set to "0" in SAR of GSM 1900. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

2.2. GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using E5515C the power lever is set to "5" in SAR of GSM 850, set to "0" in SAR of GSM 1900. The tests in the band of GSM 850 and GSM 1900 are performed in the mode of speech transfer function.

3. SAR Measurements System Configuration

3.1. SAR Measurement Set-up

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY4 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

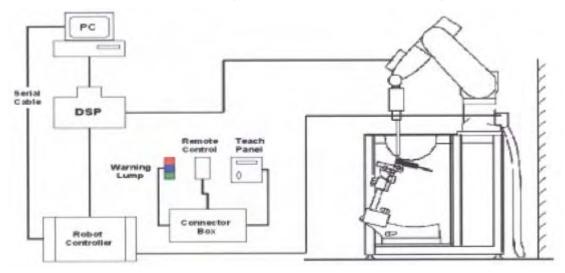


Figure 1. SAR Lab Test Measurement Set-up

3.2. DASY4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

3.2.1. EX3DV4 Probe Specification

- Construction Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
- Calibration ISO/IEC 17025 calibration service available
- 10 MHz to > 6 GHz Frequency Linearity: $\pm 0.2 \text{ dB}$ (30 MHz to 6 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)

Dynamic Range 10 μ W/g to > 100 mW/g Linearity:

 \pm 0.2dB (noise: typically < 1 μ W/g)

- Dimensions Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
- Application High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

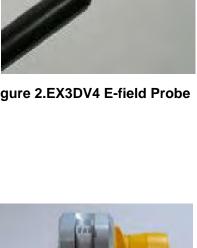


Figure 3. EX3DV4 E-field probe

Figure 2.EX3DV4 E-field Probe

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA2010-1169

3.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta \mathbf{T}}{\Delta t}$$

Where: Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. Or

$$\mathbf{SAR} = \frac{|\mathbf{E}|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

3.3. Other Test Equipment

3.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the die rent positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the

Figure 4.Device Holder

inference of the clamp on the test results could thus be lowered.

3.3.2. Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness2±0.1 mmFilling VolumeApprox. 20 litersDimensions810 x 1000 x 500 mm (H x L x W)AailableSpecial

Figure 5.Generic Twin Phantom

3.4. Scanning Procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)
- Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid

spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

• Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY4 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

• A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

3.5. Data Storage and Evaluation

3.5.1. Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

3.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Normi, a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvFi
	- Diode compression point	Dcpi
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	
	Develte	

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal,

the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With	V_i = compensated signal of channel i	(i = x, y, z)
	\boldsymbol{U}_i = input signal of channel i	(i = x, y, z)
	Cf = crest factor of exciting field	(DASY parameter)
	<i>dcp</i> _i = diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes:

 $H_{i} = (V_{i})^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^{2})/f$

With	Vi	= compensated signal of channel i	(i = x, y, z)
	Norm _i	= sensor sensitivity of channel i	(i = x, y, z)
		[mV/(V/m) ²] for E-field Probes	
	ConvF	= sensitivity enhancement in solution	
	a _{ij}	= sensor sensitivity factors for H-field probes	
	f	= carrier frequency [GHz]	
	E _i	= electric field strength of channel i in V/m	
ŀ	H i	= magnetic field strength of channel i in A/m	

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

 $SAR = (E_{tot}^{2} \cdot .) / (\cdot .1000)$

- with **SAR** = local specific absorption rate in mW/g
 - **E**_{tot} = total field strength in V/m
 - = conductivity in [mho/m] or [Siemens/m]
 - = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^{2} / 3770$$
 or $P_{pwe} = H_{tot}^{2} \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

3.6. System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 7 and table 8.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (± 10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY4 system.

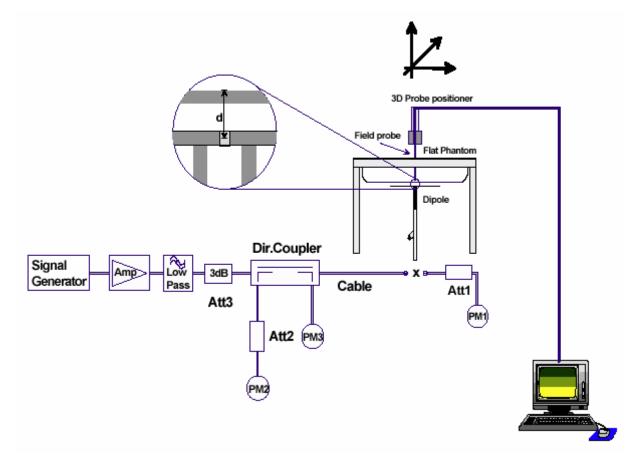


Figure 6. System Check Set-up

3.7. Equivalent Tissues

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The Table 1 and Table 2 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

Table 1: Composition of the Head Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Brain) 835MHz		
Water	41.45		
Sugar	56		
Salt	1.45		
Preventol	0.1		
Cellulose	1.0		
Dielectric Parameters Target Value	f=835MHz ε=41.5 σ=0.9		

MIXTURE%	FREQUENCY(Brain) 1900MHz	
Water	55.242	
Glycol monobutyl	44.452	
Salt	0.306	
Dielectric Parameters		
Target Value	f=1900MHz ε=40.0 σ=1.40	

Table 2: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body) 835MHz		
Water	52.5		
Sugar	45		
Salt	1.4		
Preventol	0.1		
Cellulose	1.0		
Dielectric Parameters Target Value	f=835MHz ε=55.2 σ=0.97		

MIXTURE%	FREQUENCY (Body) 1900MHz		
Water	69.91		
Glycol monobutyl	29.96		
Salt	0.13		
Dielectric Parameters			
Target Value	f=1900MHz ε=53.3 σ=1.52		

4. Laboratory Environment

Table 3: The Ambient Conditions during Test

Temperature	Min. = 20°C, Max. = 25 °C			
Relative humidity	Min. = 30%, Max. = 70%			
Ground system resistance	< 0.5 Ω			
Ambient noise is checked and found very low and in compliance with requirement of standards				
Reflection of surrounding objects is minimized	ed and in compliance with requirement of standards.			

5. Characteristics of the Test

5.1. Applicable Limit Regulations

IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

5.2. Applicable Measurement Standards

IEEE Std 1528[™]-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438 June 19, 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions.

6. Conducted Output Power Measurement

6.1. Summary

The DUT is tested using an E5515C communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted power. Conducted output power was measured using an integrated RF connector and attached RF cable. This result contains conducted output power for the EUT.

6.2. Conducted Power Results

GSM 850	С	onducted Power (dBn	n)		
63141 630	Channel 128	Channel 190	Channel 251		
Before Test	32.08	32.07	32.20		
After Test	32.07	32.09	32.21		
GSM 1900	С	onducted Power (dBn	m)		
G SW 1900	Channel 512	Channel 661	Channel 810		
Before Test	28.59	28.81	28.66		
After Test	28.57	28.82	28.65		

Table 4: Conducted Power Measurement Results

7. Test Results

7.1. Dielectric Performance

Table 5: Dielectric Performance of Head Tissue Simulating Liquid

Frequency	Description	Dielectric Par	tric Parameters		
Frequency	Description	٤r	σ(s/m)	Ĉ	
	Target value	41.5	0.90	,	
835MHz	±5% window	39.43 — 43.58	0.86 — 0.95	/	
(head)	Measurement value	42.82	0.01	21.8	
	2010-8-2	42.02	0.91	21.0	
	Target value	40.0	1.40	,	
1900MHz	5% window	38 — 42	1.33 — 1.47	/	
(head)	Measurement value	40.20	1.41	21.9	
	2010-8-3	40.20	1.41	21.9	

Table 6: Dielectric Performance of Body Tissue Simulating Liquid

Frequency	Description	Dielectric Parameters		Temp
Frequency	Description	٤ _r	σ(s/m)	°C
	Target value	55.20	0.97	1
835MHz	±5% window	52.44 — 57.96	0.92 — 1.02	/
(body)	Measurement value	54.92	1.00	21.9
	2010-8-2	54.92	1.00	21.9
	Target value	53.3	1.52	1
1900MHz	±5% window	50.64 — 55.97	1.44 — 1.60	/
(body)	Measurement value	52.01	1 50	21.7
	2010-8-3	53.01	1.56	21.7

7.2. System Check

Frequency	Description	SAR	(W/kg)	Dielectric Parameters		Temp
		10g	1g	٤ _r	σ(s/m) 0.89	°C
	Recommended result	1.56	2.39	11 0	0 00	1
835MHz	±10% window	1.40 — 1.72	2.15 — 2.63	41.2 42.82	0.89	1
03511112	Measurement value	1.62 2.	2.48	42.82	0.91	21.8
	2010-8-2	1.02	2.40			
	Recommended result	5.22	10.00	39.5	1.44	,
1900MHz	10% window	4.70 — 5.74	9.00 — 11.00	39.5	1.44	/
	Measurement value	5.46	10.6	40.00	1.41	21.9
	2010-8-3	5.40	10.0	40.20		

Table 7: System Check for Head Tissue Simulating Liquid

Note: 1. the graph results see ANNEX B.

2. Recommended Values used derive from the calibration certificate and 250 mW is used as feeding power to the calibrated dipole.

Table 8: System Check for Body Tissue Simulating Liquid

Frequency	Description	SAR	(W/kg)		ectric neters	Temp
		10g	1g	٤r	σ(s/m)	°C
025MU-	Recommended result ±10% window	1.63 1.47 — 1.79	2.49 2.24 — 2.74	54.6	0.98	/
835MHz	Measurement value 2010-8-2	1.68	2.56	54.92	1.00	21.9
1900 MHz	Recommended result ±10% window	5.52 4.97 — 6.57	10.30 9.27 — 11.33	53.5	1.54	/
	Measurement value 2010-8-3	5.17	9.73	53.01	1.56	21.7

Note: 1. The graph results see ANNEX B.

2. Target Values used derive from the calibration certificate and 250 mW is used as feeding power to the Calibrated dipole.

7.3. Summary of Measurement Results

7.3.1. GSM 850

Table 9: SAR Values (GSM 850)

Limit of SAR		10 g Average	1 g Average	Power Drift	
Limit of SAR		2.0 W/kg	1.6 W/kg	± 0.21 dB	Graph
	Ohannal	Measurement Result(W/kg)		Power Drift	Results
Different Test Position	Channel	10 g Average	1 g Average	(dB)	
		Test Position of	Head		
Left hand, Touch cheek	Middle	0.110	0.150	-0.018	Figure 11
Left hand, Tilt 15 Degree	nd, Tilt 15 Degree Middle 0.075 0.105		0.105	0.057	Figure 12
	High	0.055	0.077	0.055	Figure 13
Right hand, Touch cheek	Middle	0.113	0.158	0.006	Figure 14
	Low	0.217	0.304	-0.062	Figure 15
Right hand, Tilt 15 Degree	Middle	0.077	0.077 0.115		Figure 16
	Test P	osition of Body (Di	istance 15mm)		
	High	0.045	0.068	0.033	Figure 17
Towards Ground	Middle	0.085	0.125	-0.051	Figure 18
	Low	0.146	0.209	-0.006	Figure 19
Towards phantom	Middle	0.050	0.068	-0.002	Figure 20
Worst	Case Posit	ion of Body with E	arphone (Distance	e 15mm)	
Towards Ground	Low	0.129	0.187	0.032	Figure 21

Note: 1.The value with blue color is the maximum SAR Value of each test band.

2. Upper and lower frequencies were measured at the worst position.

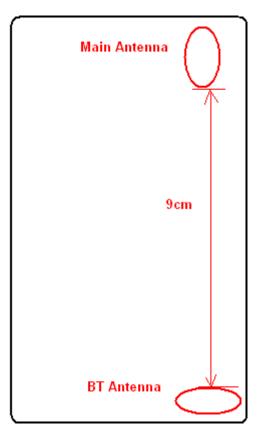
3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8W/kg), testing at the high and low channels is optional.</p>

7.3.2. GSM 1900

Table 10: SAR Values (GSM 1900)

Limit of SAR		10 g Average	1 g Average	Power Drift		
		2.0 W/kg	1.6 W/kg	± 0.21 dB	Graph	
	Ohannal	Measurement Result(W/kg)		Power Drift	Results	
Different Test Position	Channel	10 g Average	1 g Average	(dB)		
		Test Position of	Head			
Left hand, Touch cheek	Middle	0.134	0.234(max.cube)	-0.139	Figure 22	
Left hand, Tilt 15 Degree	Middle	0.149	0.267(max.cube)	-0.072	Figure 23	
	High	0.189	0.361	-0.084	Figure 24	
Right hand, Touch cheek	Middle	0.184	0.352	-0.159	Figure 25	
	Low	0.249	0.479	-0.046	Figure 26	
Right hand, Tilt 15 Degree	Middle	0.174 0.333		0.072	Figure 27	
	Test P	osition of Body (D	istance 15mm)			
	High	0.144	0.249(max.cube)	-0.007	Figure 28	
Towards Ground	Middle	0.118	0.199(max.cube)	-0.036	Figure 29	
	Low	0.139	0.217(max.cube)	-0.003	Figure 30	
Towards phantom	Middle	0.047 0.080		-0.009	Figure 31	
Worst	Case Posit	ion of Body with E	arphone (Distance	15mm)		
Towards Ground	High	0.123	0.216(max.cube)	-0.082	Figure 32	

Note: 1.The value with blue color is the maximum SAR Value of each test band.


2. Upper and lower frequencies were measured at the worst position.

3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8W/kg), testing at the high and low channels is optional.</p>

4. The (max.cube) labeling indicates that during the grid scanning an additional peak was found which was within 2.0dB of the highest peak. The value of the highest cube is given in the table above; the value from the second assessed cube is given in the SAR distribution plots (See ANNEX C).

7.3.3. BT function

The distance between BT antenna and main antenna is >5cm. The location of the antennas inside mobile phone is shown below (see ANNEX I):

The output power of BT antenna is as following:

Channel	Ch 0	Ch 39	Ch 78	
	2402 MHz	2441 MHz	2480 MHz	
GFSK Test result (dBm)	3.11	3.64	2.11	

Stand-alone SAR

According to the output power measurement result and the distance between BT antenna and main antenna we can draw the conclusion that: stand-alone SAR are not required for BT, because the output power of BT transmitter is $\leq 2P_{Ref}$ and its antenna is >5cm from other antenna.

Simultaneous SAR

because stand-alone SAR are not required for BT, so Simultaneous SAR are not required for BT.

8. Measurement Uncertainty

No.	source	Туре	Uncertaint y Value (%)	Probability Distributio n	k	Ci	Standard ncertainty $u_i'(\%)$	Degree of freedom V _{eff} or v _i
1	System repetivity	А	0.5	Ν	1	1	0.5	9
		Mea	asurement sys	tem				
2	probe calibration	В	5.9	Ν	1	1	5.9	8
3	axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞
4	Hemispherical isotropy of the probe	В	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	8
6	boundary effect	В	1.9	R	$\sqrt{3}$	1	1.1	∞
7	probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	8
8	System detection limits	В	1.0	R	$\sqrt{3}$	1	0.6	∞
9	readout Electronics	В	1.0	Ν	1	1	1.0	∞
10	response time	В	0	R	$\sqrt{3}$	1	0	∞
11	integration time	В	4.32	R	$\sqrt{3}$	1	2.5	∞
12	noise	В	0	R	$\sqrt{3}$	1	0	∞
13	RF Ambient Conditions	В	3	R	$\sqrt{3}$	1	1.73	∞
14	Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	8
15	Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	∞
16	Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	×
		Tes	t sample Rela	ited				
17	-Test Sample Positioning	А	2.9	Ν	1	1	2.9	5
18	-Device Holder Uncertainty	А	4.1	Ν	1	1	4.1	5
19	-Output Power Variation - SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.9	∞
		Ph	ysical parame	ter				

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA2010-1169

Page 28 of 99

20	-phantom	В	4.0	R	$\sqrt{3}$	1	2.3	∞
21	-liquid conductivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.6 4	1.8	∞
22	-liquid conductivity (measurement uncertainty)	В	5.0	N	1	0.6 4	3.2	∞
23	-liquid permittivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.6	1.7	8
24	-liquid permittivity (measurement uncertainty)	В	5.0	Ν	1	0.6	3.0	8
Combined standard uncertainty		<i>u</i> _c =	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$				12.0	
Expa 95 %	nded uncertainty (confidence interval of)	и	$u_c = 2u_c$	N	k=	2	24.0	

9. Main Test Instruments

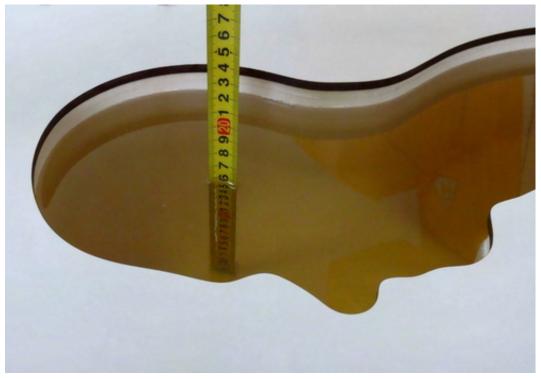
Table 11: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 13, 2009	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Req	uested
03	Power meter	Agilent E4417A	GB41291714	March 13, 2010	One year
04	Power sensor	Agilent 8481H	MY41091316	March 26, 2010	One year
05	Signal Generator	HP 8341B	2730A00804	September 13, 2009	One year
06	Amplifier	IXA-020	0401	No Calibration Requested	
07	BTS	E5515C	MY48360988	December 4, 2009	One year
08	E-field Probe	EX3DV4	3677	September 23, 2009	One year
09	DAE	DAE4	871	November 11, 2009	One year
10	Validation Kit 835MHz	D835V2	4d092	January 14, 2010	One year
11	Validation Kit 1900MHz	D1900V2	5d018	June 15, 2010	One year

*****END OF REPORT BODY*****

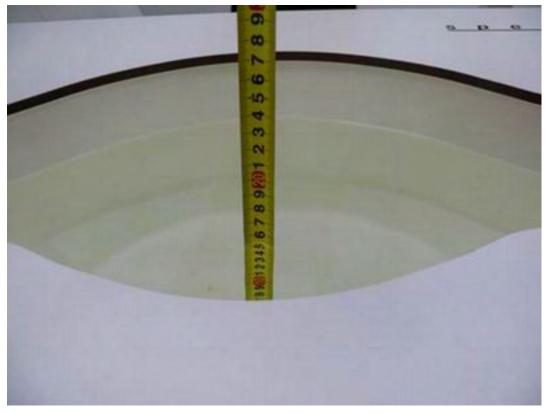
Report No. RZA2010-1169


ANNEX A: Test Layout


Picture 1: Specific Absorption Rate Test Layout

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA2010-1169


Picture 2: Liquid depth in the flat Phantom (835MHz, 15.4cm depth)

Picture 3: Liquid depth in the head Phantom (835MHz, 15.4cm depth)

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA2010-1169

Picture 4: Liquid depth in the flat Phantom (1900 MHz, 15.3cm depth)

Picture 5: liquid depth in the head Phantom (1900 MHz, 15.1cm depth)

ANNEX B: System Check Results

System Performance Check at 835 MHz Head TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d092

Date/Time: 8/2/2010 1:40:02 PM

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; σ = 0.91 mho/m; ϵ_r = 42.82; ρ = 1000 kg/m³

Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.71 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.5 V/m; Power Drift = -0.092 dB

Peak SAR (extrapolated) = 3.75 W/kg

```
SAR(1 g) = 2.48 mW/g; SAR(10 g) = 1.62 mW/g
```

Maximum value of SAR (measured) = 2.67 mW/g

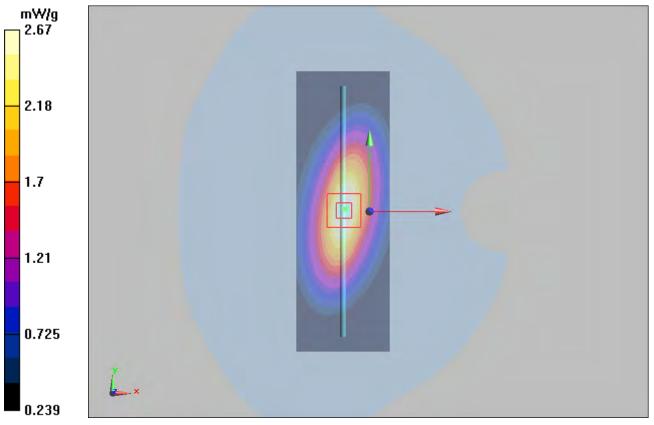
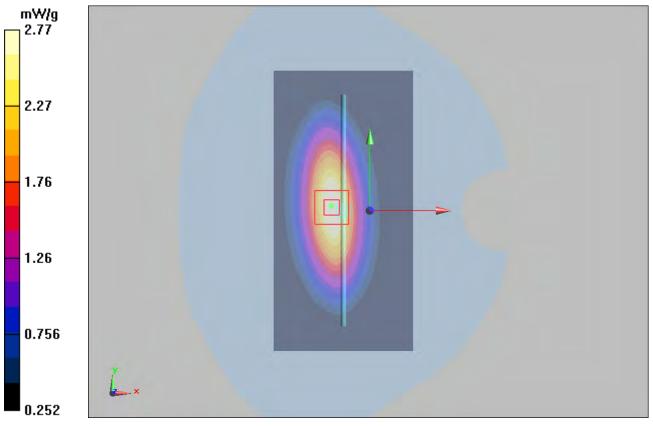


Figure 7 System Performance Check 835MHz 250mW

Report	No.	RZA2010-1169	

System Performance Check at 835 MHz Body TSL DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d092 Date/Time: 8/2/2010 12:12:20 PM Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 1.00 mho/m; ε_r = 54.92; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.77 mW/g


d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.9 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 3.68 W/kg

```
SAR(1 g) = 2.56 mW/g; SAR(10 g) = 1.68 mW/g
```

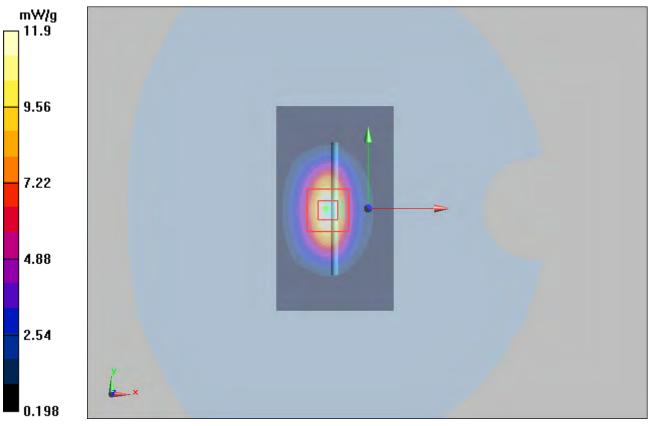
Maximum value of SAR (measured) = 2.77 mW/g

Report No. RZA2010-1169

Page 34 of 99

System Performance Check at 1900 MHz Head TSL DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d018 Date/Time: 8/3/2010 8:46:04 AM Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.41 mho/m; ϵ_r = 40.20; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.9 mW/g


d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.8 V/m; Power Drift = 0.040 dB

Peak SAR (extrapolated) = 20.1 W/kg

Maximum value of SAR (measured) = 11.9 mW/g

Report No. RZA2010-1169

Page 35 of 99

System Performance Check at 1900 MHz Body TSL DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d018 Date/Time: 8/3/2010 7:18:19 AM Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.56 mho/m; ϵ_r = 53.01; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.5 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 75.9 V/m; Power Drift = 0.051 dB

Peak SAR (extrapolated) = 16.8 W/kg

```
SAR(1 g) = 9.73 mW/g; SAR(10 g) = 5.17 mW/g
```

Maximum value of SAR (measured) = 11 mW/g

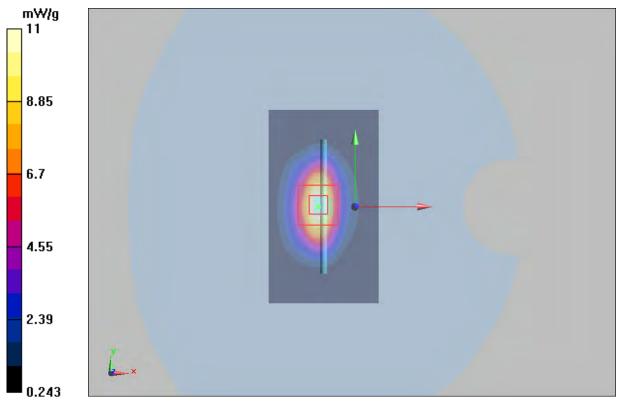
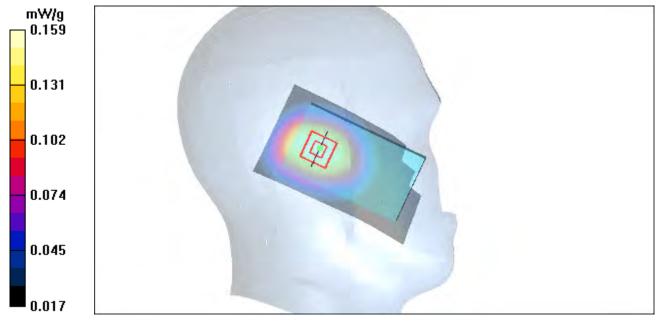


Figure 10 System Performance Check 1900MHz 250mW

ANNEX C: Graph Results


GSM 850 Left Cheek Middle

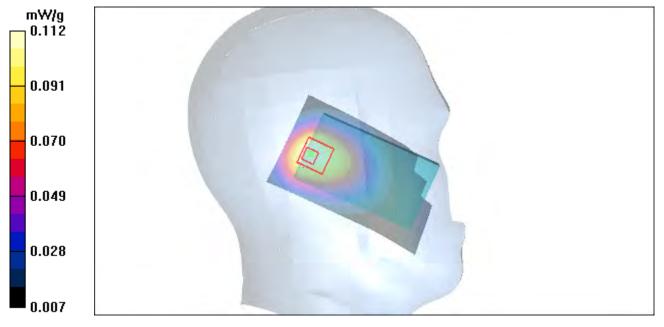
Date/Time: 8/2/2010 4:06:40 PM Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; $\sigma = 0.91$ mho/m; $\epsilon_r = 42.8$; $\rho = 1000$ kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Left Section DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.160 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.9 V/m; Power Drift = -0.018 dB Peak SAR (extrapolated) = 0.187 W/kg SAR(1 g) = 0.150 mW/g; SAR(10 g) = 0.110 mW/g

Maximum value of SAR (measured) = 0.159 mW/g

Report No. RZA2010-1169


GSM 850 Left Tilt Middle

Date/Time: 8/2/2010 4:25:37 PM Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 42.8$; $\rho = 1000$ kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Left Section DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

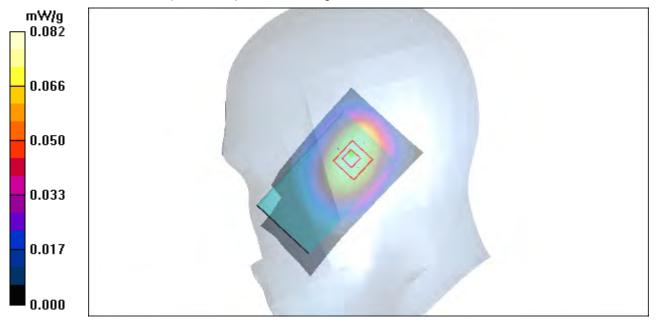
Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.120 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.1 V/m; Power Drift = 0.057 dB Peak SAR (extrapolated) = 0.143 W/kg SAR(1 g) = 0.105 mW/g; SAR(10 g) = 0.075 mW/g

Maximum value of SAR (measured) = 0.112 mW/g

TA Technology (Shanghai) Co., Ltd. Test Report

Page 38 of 99


GSM 850 Right Cheek High

Date/Time: 8/2/2010 5:09:43 PM Communication System: GSM 850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 849 MHz; $\sigma = 0.92$ mho/m; $\epsilon_r = 42.6$; $\rho = 1000$ kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Right Section DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.083 mW/g

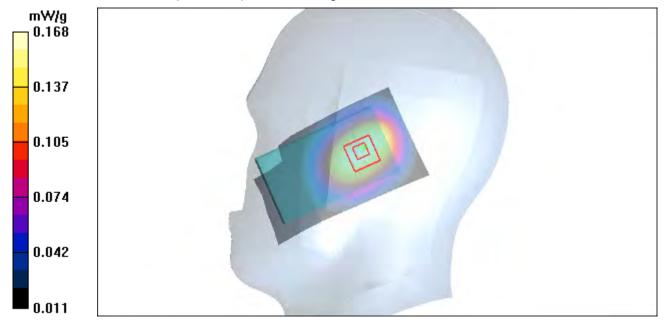
Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.16 V/m; Power Drift = 0.055 dB Peak SAR (extrapolated) = 0.105 W/kg SAR(1 g) = 0.077 mW/g; SAR(10 g) = 0.055 mW/g

Maximum value of SAR (measured) = 0.082 mW/g

TA Technology (Shanghai) Co., Ltd. Test Report

Page 39 of 99

GSM 850 Right Cheek Middle


Date/Time: 8/2/2010 4:50:33 PM Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; $\sigma = 0.91$ mho/m; $\epsilon_r = 42.8$; $\rho = 1000$ kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Right Section DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

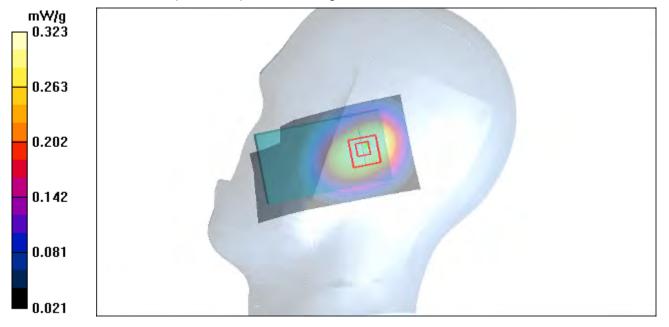
Maximum value of SAR (interpolated) = 0.171 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.2 V/m; Power Drift = 0.006 dB Peak SAR (extrapolated) = 0.212 W/kg SAR(1 g) = 0.158 mW/g; SAR(10 g) = 0.113 mW/g

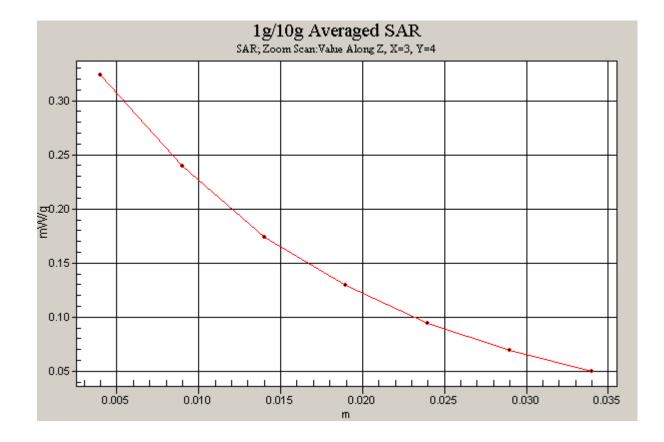
Maximum value of SAR (measured) = 0.168 mW/g

TA Technology (Shanghai) Co., Ltd. Test Report

Page 40 of 99


GSM 850 Right Cheek Low

Date/Time: 8/2/2010 6:15:25 PM Communication System: GSM 850; Frequency: 824.2 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.897$ mho/m; $\epsilon_r = 42.9$; $\rho = 1000$ kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Right Section DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

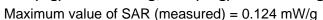

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.329 mW/g

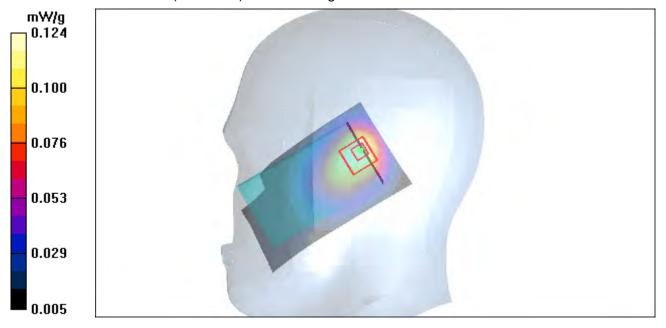
Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.8 V/m; Power Drift = -0.062 dB Peak SAR (extrapolated) = 0.400 W/kg SAR(1 g) = 0.304 mW/g; SAR(10 g) = 0.217 mW/g

Maximum value of SAR (measured) = 0.323 mW/g

Report No. RZA2010-1169

TA Technology (Shanghai) Co., Ltd. Test Report


Page 42 of 99


GSM 850 Right Tilt Middle

Date/Time: 8/2/2010 6:37:56 PM Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; $\sigma = 0.91$ mho/m; $\epsilon_r = 42.8$; $\rho = 1000$ kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Right Section DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.135 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.6 V/m; Power Drift = 0.035 dB Peak SAR (extrapolated) = 0.177 W/kg SAR(1 g) = 0.115 mW/g; SAR(10 g) = 0.077 mW/g

TA Technology (Shanghai) Co., Ltd. Test Report

Page 43 of 99

GSM 850 Towards Ground High

Date/Time: 8/2/2010 3:45:51 PM Communication System: GSM 850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 849 MHz; σ = 1.01 mho/m; ε_r = 54.8; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.079 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.98 V/m; Power Drift = 0.033 dB

Peak SAR (extrapolated) = 0.103 W/kg

0.004

SAR(1 g) = 0.068 mW/g; SAR(10 g) = 0.045 mW/g

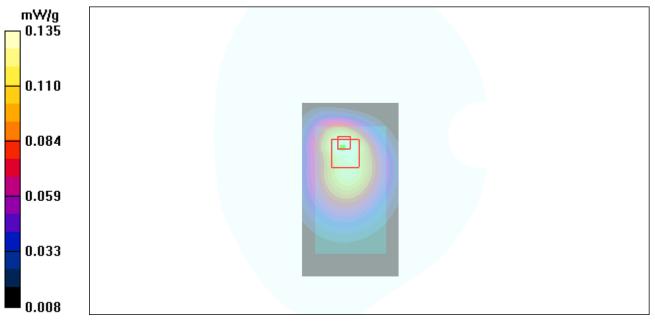
Maximum value of SAR (measured) = 0.074 mW/g 0.074 0.060 0.046 0.032 0.018

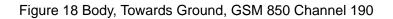
Figure 17 Body, Towards Ground, GSM 850 Channel 251

TA Technology (Shanghai) Co., Ltd. Test Report

Page 44 of 99

GSM 850 Towards Ground Middle


Date/Time: 8/2/2010 3:28:10 PM Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; $\sigma = 1$ mho/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Towards Ground Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.146 mW/g

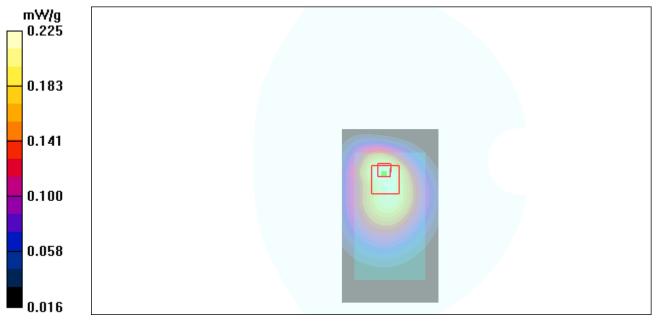
Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.0 V/m; Power Drift = -0.051 dB Peak SAR (extrapolated) = 0.185 W/kg

Maximum value of SAR (measured) = 0.135 mW/g

TA Technology (Shanghai) Co., Ltd. Test Report

Page 45 of 99

GSM 850 Towards Ground Low


Date/Time: 8/2/2010 6:56:14 PM Communication System: GSM 850; Frequency: 824.2 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.242 mW/g

Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.2 V/m; Power Drift = -0.006 dB Peak SAR (extrapolated) = 0.305 W/kg

SAR(1 g) = 0.209 mW/g; SAR(10 g) = 0.146 mW/g

Maximum value of SAR (measured) = 0.225 mW/g

Report No. RZA2010-1169

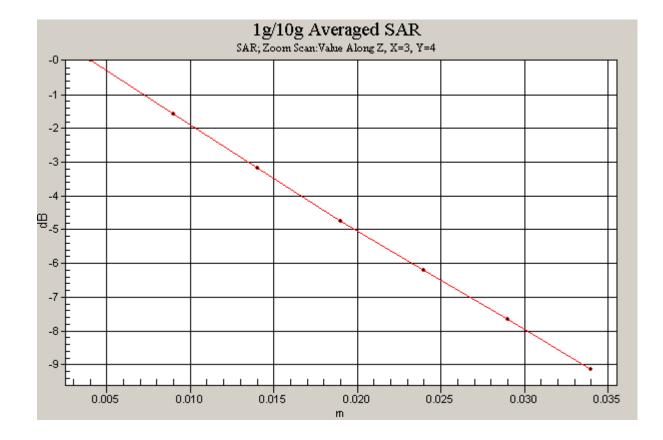
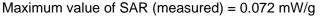


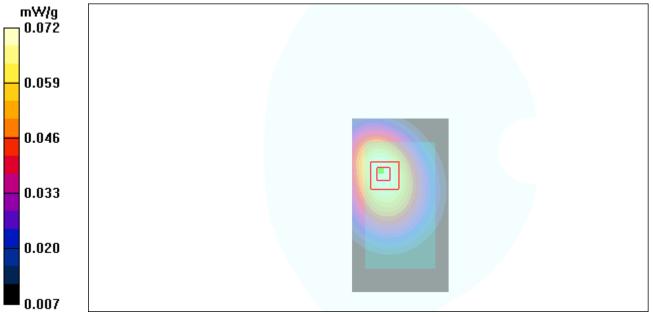
Figure 19 Body, Towards Ground, GSM 850 Channel 128

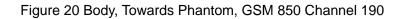
TA Technology (Shanghai) Co., Ltd. Test Report

Page 47 of 99

GSM 850 Towards Phantom Middle


Date/Time: 8/2/2010 3:09:10 PM Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; $\sigma = 1$ mho/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Towards Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.073 mW/g


Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

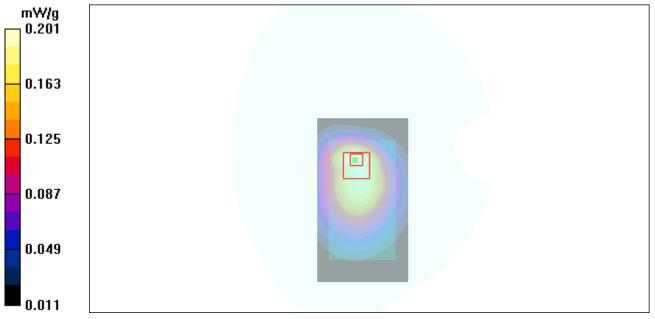
Reference Value = 6.88 V/m; Power Drift = -0.002 dB Peak SAR (extrapolated) = 0.089 W/kg

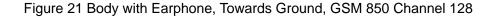
SAR(1 g) = 0.068 mW/g; SAR(10 g) = 0.050 mW/g

Page 48 of 99

GSM 850 with Earphone Towards Ground Low

Date/Time: 8/2/2010 7:15:51 PM Communication System: GSM 850; Frequency: 824.2 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Towards Ground Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.221 mW/g


Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.5 V/m; Power Drift = 0.032 dB Peak SAR (extrapolated) = 0.282 W/kg

SAR(1 g) = 0.187 mW/g; SAR(10 g) = 0.129 mW/g

Maximum value of SAR (measured) = 0.201 mW/g

Report No. RZA2010-1169


GSM 1900 Left Cheek Middle

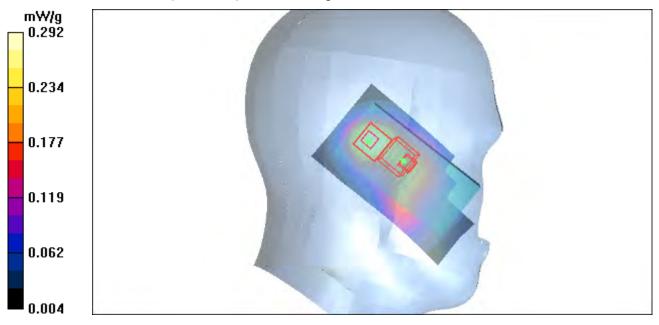
Date/Time: 8/3/2010 10:12:32 AM Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ϵ_r = 40.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Left Section DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.252 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.9 V/m; Power Drift = -0.139 dB Peak SAR (extrapolated) = 0.396 W/kg SAR(1 g) = 0.234 mW/g; SAR(10 g) = 0.134 mW/g Maximum value of SAR (measured) = 0.257 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.9 V/m; Power Drift = -0.139 dB Peak SAR (extrapolated) = 0.303 W/kg SAR(1 g) = 0.219 mW/g; SAR(10 g) = 0.139 mW/g Maximum value of SAR (measured) = 0.236 mW/g

Report No. RZA2010-1169


GSM 1900 Left Tilt Middle

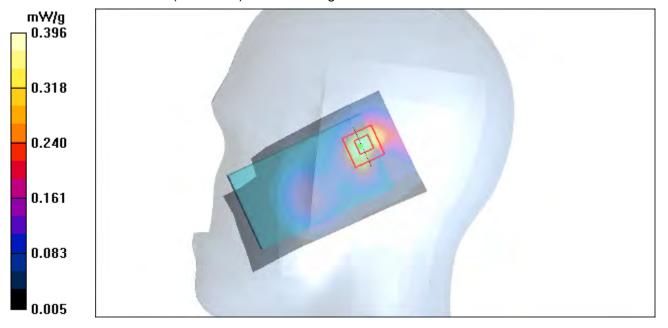
Date/Time: 8/3/2010 10:34:37 AM Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε_r = 40.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Left Section DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.475 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.9 V/m; Power Drift = -0.072 dB Peak SAR (extrapolated) = 0.468 W/kg SAR(1 g) = 0.267 mW/g; SAR(10 g) = 0.149 mW/g Maximum value of SAR (measured) = 0.292 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.9 V/m; Power Drift = -0.072 dB Peak SAR (extrapolated) = 0.429 W/kg SAR(1 g) = 0.241 mW/g; SAR(10 g) = 0.133 mW/g Maximum value of SAR (measured) = 0.272 mW/g

Page 51 of 99

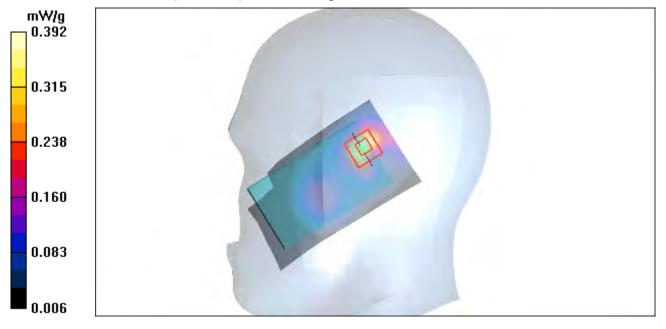

GSM 1900 Right Cheek High

Date/Time: 8/3/2010 11:36:09 AM Communication System: PCS 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1910 MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 40.1$; $\rho = 1000$ kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Right Section DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.393 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.6 V/m; Power Drift = -0.084 dB Peak SAR (extrapolated) = 0.648 W/kg SAR(1 g) = 0.361 mW/g; SAR(10 g) = 0.189 mW/g

Maximum value of SAR (measured) = 0.396 mW/g


GSM 1900 Right Cheek Middle

Date/Time: 8/3/2010 10:53:05 AM Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε_r = 40.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Right Section DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

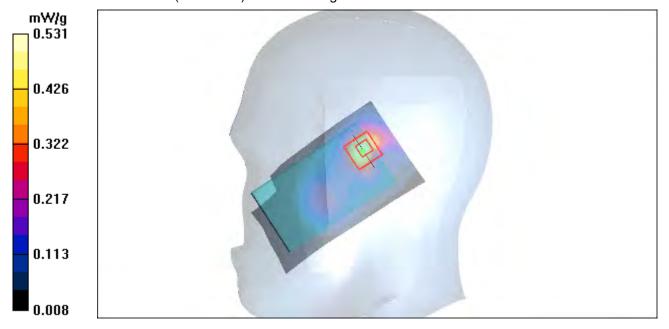
Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.368 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.3 V/m; Power Drift = -0.159 dB Peak SAR (extrapolated) = 0.631 W/kg SAR(1 g) = 0.352 mW/g; SAR(10 g) = 0.184 mW/g

Maximum value of SAR (measured) = 0.392 mW/g

TA Technology (Shanghai) Co., Ltd. Test Report

Page 53 of 99


GSM 1900 Right Cheek Low

Date/Time: 8/3/2010 11:54:35 AM Communication System: PCS 1900; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.37 mho/m; ϵ_r = 40.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Right Section DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

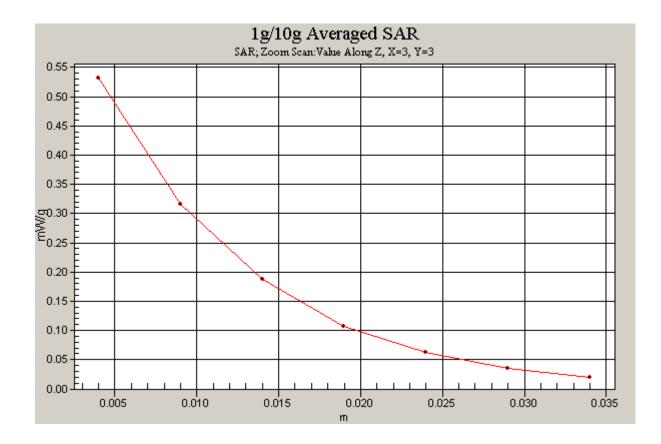
Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.501 mW/g

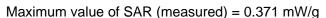
Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.2 V/m; Power Drift = -0.046 dB Peak SAR (extrapolated) = 0.865 W/kg SAR(1 g) = 0.479 mW/g; SAR(10 g) = 0.249 mW/g

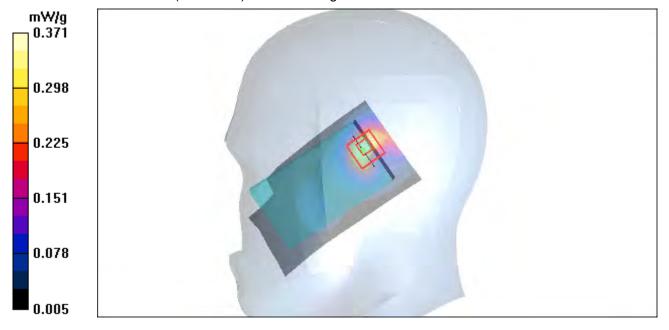
Maximum value of SAR (measured) = 0.531 mW/g

Report No. RZA2010-1169

Page 54 of 99




Figure 26 Right Hand Touch Cheek GSM 1900 Channel 512


GSM 1900 Right Tilt Middle

Date/Time: 8/3/2010 11:16:28 AM Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ϵ_r = 40.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Right Section DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.348 mW/g

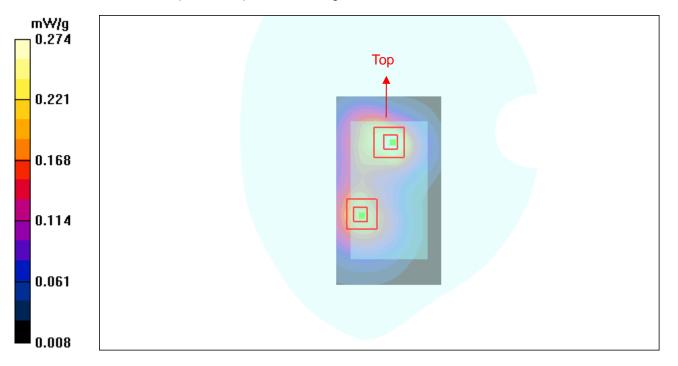
Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.4 V/m; Power Drift = 0.072 dB Peak SAR (extrapolated) = 0.616 W/kg SAR(1 g) = 0.333 mW/g; SAR(10 g) = 0.174 mW/g

TA Technology (Shanghai) Co., Ltd. Test Report

Page 56 of 99

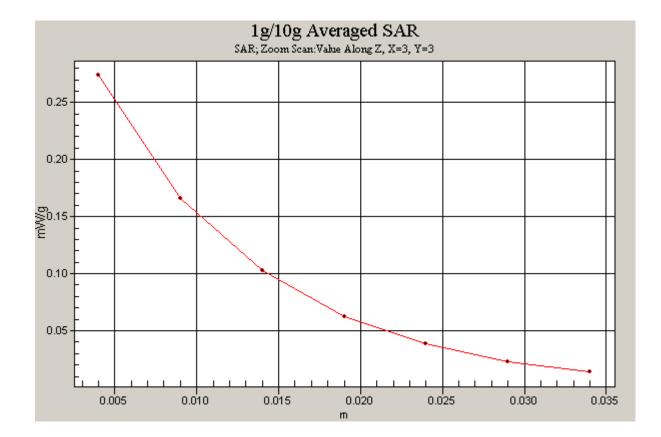
GSM 1900 Towards Ground High

Date/Time: 8/3/2010 2:22:39 PM Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1910 MHz; σ = 1.58 mho/m; ϵ_r = 53; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5℃ Phantom section: Flat Section **DASY4** Configuration: Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 Towards Ground High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.277 mW/g Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.4 V/m; Power Drift = -0.007 dB Peak SAR (extrapolated) = 0.426 W/kg SAR(1 g) = 0.249 mW/g; SAR(10 g) = 0.144 mW/g Maximum value of SAR (measured) = 0.274 mW/g


Towards Ground High/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.4 V/m; Power Drift = -0.007 dB

Peak SAR (extrapolated) = 0.296 W/kg


SAR(1 g) = 0.190 mW/g; SAR(10 g) = 0.121 mW/g

Maximum value of SAR (measured) = 0.204 mW/g

Report No. RZA2010-1169

Page 57 of 99

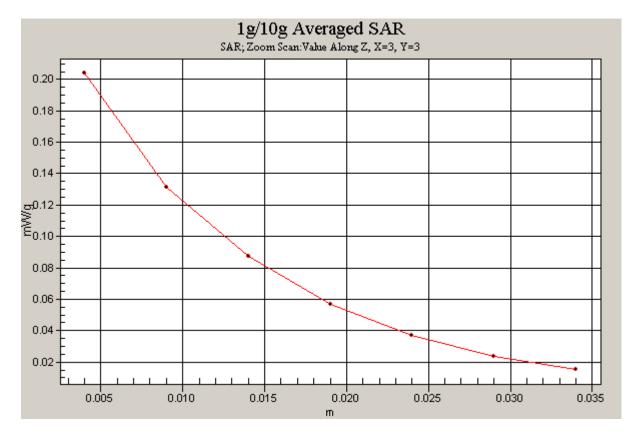


Figure 28 Body, Towards Ground, GSM 1900 Channel 810

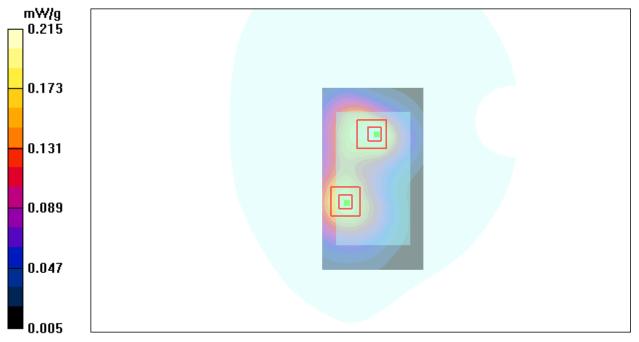
Page 58 of 99

GSM 1900 Towards Ground Middle

Date/Time: 8/3/2010 1:52:06 PM Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.54 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5℃ Phantom section: Flat Section **DASY4** Configuration: Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 Towards Ground Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.221 mW/g Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.0 V/m; Power Drift = -0.036 dB Peak SAR (extrapolated) = 0.334 W/kg

SAR(1 g) = 0.199 mW/g; SAR(10 g) = 0.118 mW/g

Maximum value of SAR (measured) = 0.215 mW/g


Towards Ground Middle/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.0 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 0.266 W/kg

SAR(1 g) = 0.174 mW/g; SAR(10 g) = 0.111 mW/g

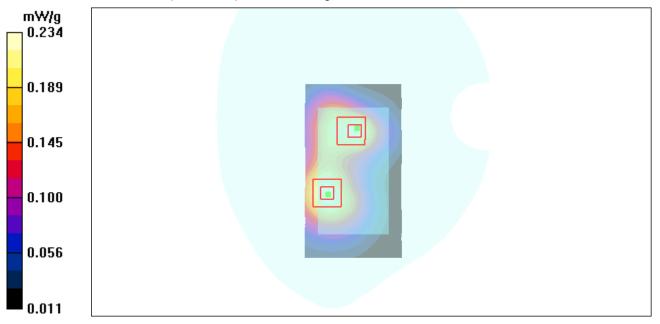
Maximum value of SAR (measured) = 0.187 mW/g

TA Technology (Shanghai) Co., Ltd. Test Report

Page 59 of 99

GSM 1900 Towards Ground Low

Date/Time: 8/2/2010 2:59:02 PM Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.51 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5℃ Phantom section: Flat Section **DASY4** Configuration: Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 Towards Ground Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.239 mW/g Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.2 V/m; Power Drift = -0.003 dB Peak SAR (extrapolated) = 0.362 W/kg SAR(1 g) = 0.215 mW/g; SAR(10 g) = 0.129 mW/g Maximum value of SAR (measured) = 0.233 mW/g Towards Ground Low/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 11.2 V/m; Power Drift = -0.003 dB

Peak SAR (extrapolated) = 0.336 W/kg

SAR(1 g) = 0.217 mW/g; SAR(10 g) = 0.139 mW/g

Maximum value of SAR (measured) = 0.234 mW/g

TA Technology (Shanghai) Co., Ltd. Test Report

Page 60 of 99

GSM 1900 Towards Phantom Middle

Date/Time: 8/3/2010 1:30:35 PM Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 53.1$; $\rho = 1000$ kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.090 mW/g

Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.27 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 0.131 W/kg SAR(1 g) = 0.080 mW/g; SAR(10 g) = 0.047 mW/g Maximum value of SAR (measured) = 0.087 mW/g

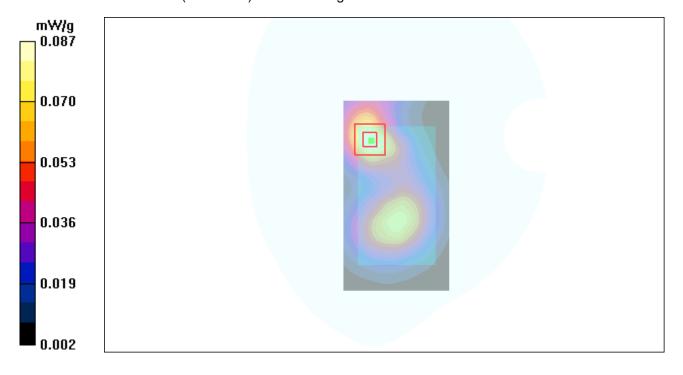
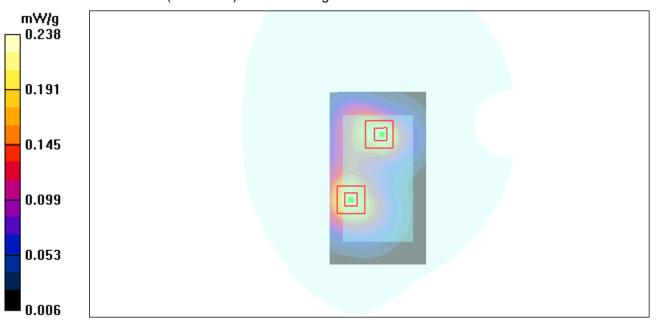



Figure 31 Body, Towards Phantom, GSM 1900 Channel 661

Report	No.	RZA2010-1169

Page 61 of 99

GSM 1900 with Earphone Towards Ground High Date/Time: 8/2/2010 3:31:11 PM Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1910 MHz; σ = 1.58 mho/m; ϵ_r = 53; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5℃ Phantom section: Flat Section **DASY4** Configuration: Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 9/23/2009 Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 Towards Ground High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.238 mW/g Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.5 V/m; Power Drift = -0.082 dB Peak SAR (extrapolated) = 0.372 W/kg SAR(1 g) = 0.216 mW/g; SAR(10 g) = 0.123 mW/g Maximum value of SAR (measured) = 0.238 mW/g Towards Ground High/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.5 V/m; Power Drift = -0.082 dB Peak SAR (extrapolated) = 0.298 W/kg SAR(1 g) = 0.192 mW/g; SAR(10 g) = 0.122 mW/gMaximum value of SAR (measured) = 0.208 mW/g

ANNEX D: Probe Calibration Certificate

Calibration Laborator Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zuric	-	Hac max	SWISS C. D. Z. PRIORATIO	 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service 	
Accredited by the Swiss Accredita The Swiss Accreditation Service Multilateral Agreement for the re	e is one of the signatori		Accredit	ation No.: SCS 108	
Client TA (Auden)			Certificat	te No: EX3-3677_Sep09	
CALIBRATION	ERTIFICAT	E. R			
Object	EX3DV4 - SN 3	677			
Calibration procedure(s)	QA CAL-01.v6, Calibration proc			and QA CAL-25.v2 -	
Calibration date:	September 23, :	2009			
Condition of the calibrated item	In Tolerance	g 71091.			
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&	ted in the closed laborat				
Primary Standards		Cal Date (Certific	ate No.)	Scheduled Calibration	
Power meter E4419B	GB41293874	1-Apr-09 (No. 21		Apr-10	
Power sensor E4412A	MY41495277	1-Apr-09 (No. 21	•	Apr-10	
Power sensor E4412A	MY41498087	1-Apr-09 (No. 21	7-01030)	Apr-10	
Reference 3 dB Attenuator	SN: \$5054 (3c)	31-Mar-09 (No. 2	(17-01026)	Mar-10	
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 2	17-01028)	Mar-10	
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 2	-	Mar-10	
Reference Probe ES3DV2	SN: 3013	2-Jan-09 (No. E		Jan-10	
DAE4	SN: 660	9-Sep-08 (No. D	AE4-660_Sep08)	Sep-09	i
Secondary Standards	ID#	Check Date (in h	ouse)	Scheduled Check	
RF generator HP 8648C	US3642U01700	· · ·	se check Oct-07)	In house check: Oct-09	
Network Analyzer HP 8753E	US37390585		use check Oct-08)	In house check: Oct-09	
Calibrated by:	Name Claudio Leubler	Fun. Lab	tion ratory Technician	Signature Additional and a second	
Approved by:	Katja Pokovic		inical Manager	det. hy	
This calibration certificate shall needed	ot be reproduced except i	in full without written	approval of the labora	Issued: September 23, 2009 atory.	

Certificate No: EX3-3677_Sep09

Page 1 of 9

TA Technology (Shanghai) Co., Ltd. Test Report

Page 63 of 99

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

s

- S Schweizerischer Kalibrierdienst
- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at
	measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- *NORM(f)x,y,z* = *NORMx,y,z* * *frequency_response* (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3677_Sep09

Page 2 of 9

Page 64 of 99

EX3DV4 SN:3677

September 23, 2009

Probe EX3DV4

SN:3677

Manufactured: Last calibrated: Recalibrated:

September 9, 2008 November 7, 2008 September 23, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3677_Sep09

Page 3 of 9

September 23, 2009

DASY - Parameters of Probe: EX3DV4 SN:3677

Sensitivity in Free Space^A

Diode Compression^B

NormX	0.42 ± 10.1%	μ V/(V/m) ²	DCP X	91 mV
NormY	0.47 ± 10.1%	μV/(V/m) ²	DCP Y	92 mV
NormZ	0.40 ± 10.1%	μV/(V/m) ²	DCP Z	93 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance		2.0 mm	3.0 mm	
SAR _{be} [%]	Without Correction Algorithm	8.2	4.4	
SAR _{be} [%]	With Correction Algorithm	0.8	0.5	

TSL 1750 MHz Typical SAR gradient: 10 % per mm

Sensor Center	to Phantom Surface Distance	2.0 mm 3.0 m	m
SAR _{be} [%]	Without Correction Algorithm	7.5 3.9	
SAR _{be} [%]	With Correction Algorithm	0.8 0.4	

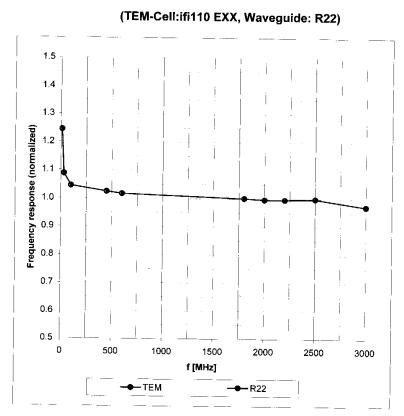
Sensor Offset

Probe Tip to Sensor Center

1.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

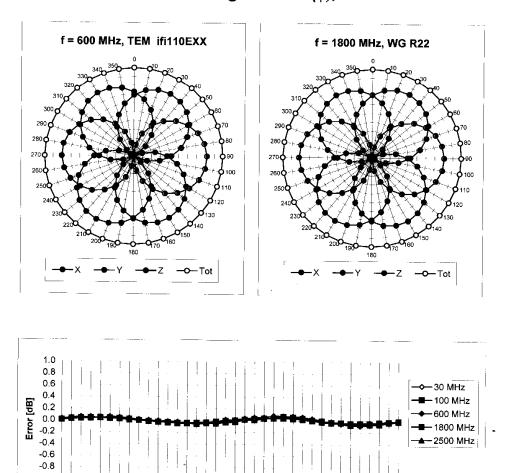
^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).


^B Numerical linearization parameter: uncertainty not required.

Certificate No: EX3-3677_Sep09

Page 4 of 9

September 23, 2009


Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Page 5 of 9

September 23, 2009

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

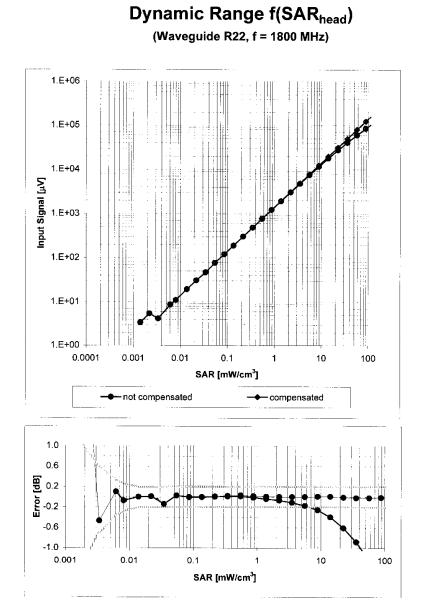
120

180

¢ [°]

240

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

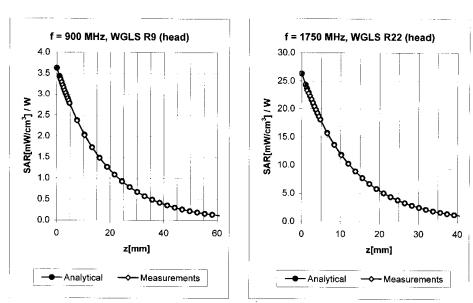

300

Certificate No: EX3-3677_Sep09 Page 6 of 9

60

-1.0 [|] 0

September 23, 2009



Certificate No: EX3-3677 Sep09

Page 7 of 9

~

September 23, 2009

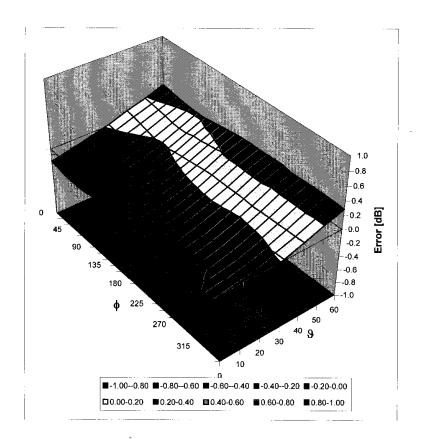
Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.68	0.64	9.20 ± 11.0% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.71	0.62	8.91 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.68	0.62	8.04 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.70	0.60	7.53 ± 11.0% (k=2)
							•
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.32	0.49	10.43 ± 13.3% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.54	0.73	9.11 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.63	0.71	8.89 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.55	0.74	7.70 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.30	1.01	7.62 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.56	0.68	7.28 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3677_Sep09

Page 8 of 9


Page 70 of 99

EX3DV4 SN:3677

September 23, 2009

Deviation from Isotropy in HSL

Error (¢, ୬), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3677_Sep09 Page 9 of 9

ANNEX E: D835V2 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS S Sch C Sen PUBRITO S Swi

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Auden

Certificate No: D835V2-4d092_Jan10

Object	D835V2 - SN: 4d	1092	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	January 14, 2010)	
		ional standards, which realize the physical un robability are given on the following pages a	
All calibrations have been conc Calibration Equipment used (M		ry faolity; environmeni temperature $(22 \pm 3)^{\circ}$	C and humidity < 70%
Calibration Equipment used (M		ry facility; environment temperature (22 ± 3)* Cal Date (Certificate No.)	C and humidity < 70%. Scheduled Calibration
Calibration Equipment used (M Primary Standards	&TE critical for calibration)		
Calibration Equipment used (M Primary Standards Power meter EPM-442A	&TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A	&TE critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 06-Oci-09 (No. 217-01086)	Scheduled Calibration
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	&TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086)	Scheduled Calibration Oct-10 Oct-10
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	&TE critical for calibration) 1D # GB37490704 US37292783 SN: 5086 (20g)	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025)	Scheduled Calibration Oct-10 Oct-10 Mar-10
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	&TE critical for calibration) 1D # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Scheduled Calibration Ocl-10 Ocl-10 Mar-10 Mar-10
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	&TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. E53-3205 Jun09)	Scheduled Calibration Ocl-10 Ocl-10 Mar-10 Mar-10 Jun-10
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ATE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-801_Mar09)	Scheduled Calibration Ocl-10 Ocl-10 Mar-10 Mar-10 Jun-10 Mar-10
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ATE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	Cal Date (Certificate No.) 08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01088) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-801_Mar09) Check Date (in house)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Jun-10 Mar-10 Scheduled Check
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ATE critical for calibration) ID # GB37490704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # ID # MY41092317	Cal Date (Certificate No.) 08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01088) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. E53-3205 Jun09) 07-Mar-09 (No. DAE4-801_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ATE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4205	Cal Date (Gertificate No.) 06-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. E53-3205_Jun09) 07-Mar-09 (No. DAE4-801_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-10
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ATE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # NY41092317 100005 US37390585 S4206 Name	Cal Date (Gertificate No.) 06-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. E53-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ATE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4205	Cal Date (Gertificate No.) 06-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. E53-3205_Jun09) 07-Mar-09 (No. DAE4-801_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-10

Certificate No: D835V2-4d092_Jan10

Page 1 of 9

Report No. RZA2010-1169

Page 72 of 99

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

s

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result,

Certificate No: D835V2-4d092_Jan10

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.2 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) *C	41.4 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 mW / g
SAR normalized	normalized to 1W	9.56 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.63 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.56 mW / g
SAR normalized	normalized to 1W	6.24 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.27 mW /g ± 16.5 % (k=2)

Page 3 of 9

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) *C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.49 mW / g
SAR normalized	normalized to 1W	10.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.86 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
	condition 250 mW input power	1.63 mW / g
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured SAR normalized		1.63 mW /g 6.52 mW /g

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.2 Ω - 2.8 jΩ	
Return Loss	- 30.3 dB	

Antenna Parameters with Body TSL

47.6 Ω - 4.5 jΩ	
- 25.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.392 ns
minantant manny faun Ananana)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

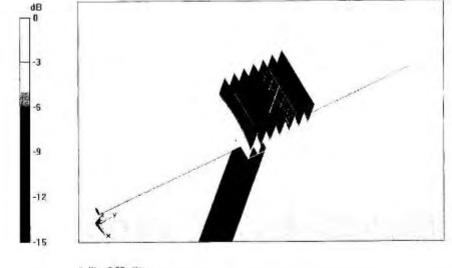
Manufactured by	SPEAG	
Manufactured on	September 15, 2009	

DASY5 Validation Report for Head TSL

Date/Time: 11.01.2010 12:00:00

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d092

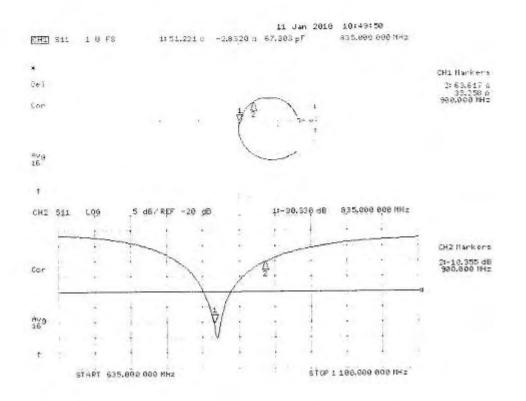

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL900 Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157: SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.5 V/m; Power Drift = -0.00176 dB Peak SAR (extrapolated) = 3.58 W/kg SAP(1 e) = 2.39 mV/e; SAP(10 e) = 1.56 mW/e

SAR(1 g) = 2.39 mW/g; SAR(10 g) = 1.56 mW/g Maximum value of SAR (measured) = 2.77 mW/g



0 dB = 2.77 mW/g

Certificate No: D835V2-4d092_Jan10

Page 6 of 9

Impedance Measurement Plot for Head TSL

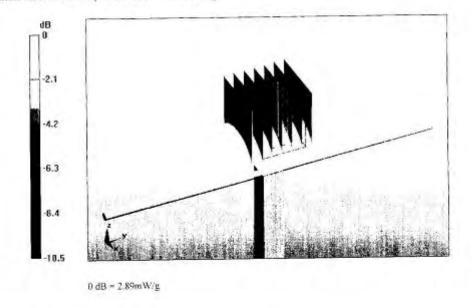
Page 7 of 9

DASY5 Validation Report for Body

Date/Time: 14.01.2010 15:40:17

Test Laboratory: SPEAG. Zurich, Switzerland

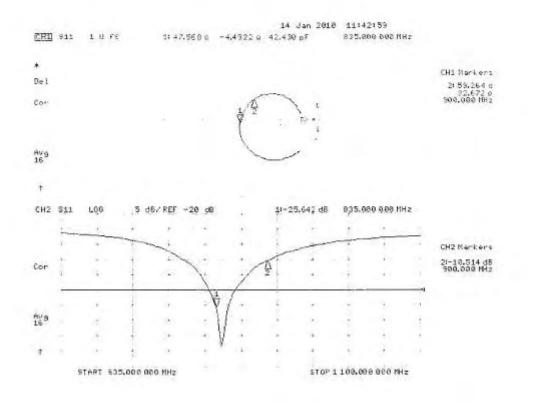
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d092


Communication System; CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL900 Medium parameters used: f = 835 MHz; $\sigma = 0.98$ mho/m; $\varepsilon_r = 54.6$; p = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.97, 5.97, 5.97); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.9 V/m; Power Drift = 0.013 dB Peak SAR (extrapolated) = 3.67 W/kg SAR(1 g) = 2.49 mW/g; SAR(10 g) = 1.63 mW/g Maximum value of SAR (measured) = 2.89 mW/g

Certificate No: D835V2-4d092_Jan10

Page 8 of 9

Impedance Measurement Plot for Body TSL

Page 9 of 9

Report No. RZA2010-1169

ANNEX F: D1900V2 Dipole Calibration Certificate

	h, Switzerland	Rac MRA CO Z C	Servizio svizzero di taratura
ccredited by the Swiss Accreditat he Swiss Accreditation Service lultilateral Agreement for the re	is one of the signatorie	s to the EA	n No.: SCS 108
lient Auxdon		Certificate N	: D1900V2-5d018_Jun10
CALIBRATION C	ERTIFICATE		
Object	D1900V2 - SN: 5	d018	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	June 15, 2010		
All calibrations have been conduc	ted in the closed laborator	robability are given on the following pages a y facility: environment temperature (22 ± 3)	
All calibrations have been conduc Calibration Equipment used (M&T	tted in the closed laborator E critical for calibration)	y facility: environment temperature (22 ± 3)	*C and humidity < 70%.
All calibrations have been conduc Calibration Equipment used (M&T Primary Standards	ted in the closed laborator		
All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A	tted in the closed laborator (E critical for calibration)	y facility: environment temperature (22 ± 3) Cal Date (Certificate No.)	°C and humidity < 70%. Scheduled Calibration
All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A	tted in the closed laborator (E critical for calibration) ID # GB37480704	y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 05-Oct-09 (No. 217-01096)	*C and humidity < 70%. Scheduled Calibration Oct-10
All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	tted in the closed laborator (E critical for calibration) ID # GB37480704 US37292783	y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 05-Oct-09 (No. 217-01096) 06-Oct-09 (No. 217-01086)	*C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10
All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ted in the closed laborator (E critical for calibration) ID # GB37480704 US37292783 SN: 5096 (20g) SN: 5047.2 / 06327 SN: 3206	y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 05-Oct-09 (No. 217-01096) 06-Oct-09 (No. 217-01096) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10)	*C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11
All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ted in the closed laborator E critical for calibration) ID # GB37480704 US37292783 SN: 5096 (20g) SN: 5047.2 / 06327	y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 05-Oct-09 (No. 217-01096) 06-Oct-09 (No. 217-01096) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162)	*C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11
All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ted in the closed laborator (E critical for calibration) ID # GB37480704 U\$37292783 SN: 5096 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 05-Oct-09 (No. 217-01096) 06-Oct-09 (No. 217-01096) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10)	*C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11
All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ted in the closed laborator (E critical for calibration) ID # GB37480704 US37292783 SN: 5096 (20g) SN: 5047.2 / 06327 SN: 3206	y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 05-Oct-09 (No. 217-01086) 05-Oct-09 (No. 217-01066) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house)	*C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11
All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power sensor HP 8481A Reference 20 dB Attornustor Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ted in the closed laborator TE critical for calibration) ID # GB37480704 U\$37292783 SN: 5096 (20g) SN: 5047.2 / 06327 SN: 3206 SN: 601 ID #	y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 05-Oct-09 (No. 217-01096) 06-Oct-09 (No. 217-01096) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10)	*C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Jun-11 Jun-11 Scheduled Check
	ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5096 (20g) SN: 5047.2 / 06327 SN: 501 ID # MY41092317	y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 05-Oct-09 (No. 217-01086) 05-Oct-09 (No. 217-01086) 03-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	*C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11
All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292763 SN: 5086 (20g) SN: 5047.2 / 08327 SN: 3206 SN: 601 ID # MY41092317 100005 US37390585 S4206	y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 05-Oct-09 (No. 217-01096) 06-Oct-09 (No. 217-01096) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01152) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	*C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10
All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5096 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 05-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01168) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	*C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292763 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3206 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 05-Oct-09 (No. 217-01096) 06-Oct-09 (No. 217-01096) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01152) 30-Apr-10 (No. 217-010) 30-Apr-10 (No. 217-010) 30	*C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10

Certificate No: D1900V2-5d018_Jun10

Page 1 of 9

Report No. RZA2010-1169

Calibration Laboratory of Schmid & Partner Engineering AG Zeugheusstrasse 43, 8004 Zurich, Switzerland

SHISS CRUB Z

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: TSL

TSL	tissue simulating liquid	
ConvF	sensitivity in TSL / NORM x,y,z	
N/A	not applicable or not measured	

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d018_Jun10

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.2	
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom V5.0		
Distance Dipole Center - TSL	10 mm	with Spacer	
Zoom Scan Resolution	dx, dy, dz = 5 mm		
Frequency	1900 MHz ± 1 MHz		

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.6 ± 6 %	1.44 mho/m ± 6 %
Head TSL temperature during test	(22.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 mW / g
SAR normalized	normalized to 1W	40.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.2 mW /g ± 17.0 % (k=2)
SAD supraged over 10 cm ³ (10 c) of Head TSI	condition	
Contraction of the second s	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.22 mW / g
Contract and an end of the second		5.22 mW / g 20.9 mW / g

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.4 ± 6 %	1.54 mho/m ± 6 %
Body TSL temperature during test	(21.7 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR normalized	normalized to 1W	41.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.9 mW / g ± 17.0 % (k=2)
010	a secolar second	
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
the second s	condition 250 mW input power	5.52 mW / g
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured SAR normalized		5.52 mW / g 22,1 mW / g

Certificate No: D1900V2-5d018_Jun10

Page 4 of 9

Report No. RZA2010-1169

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω + 2.6 jΩ
Return Loss	- 29.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.4 Ω + 3.2 jΩ	
Return Loss	- 27.6 dB	

General Antenna Parameters and Design

ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 04, 2002

DASY5 Validation Report for Head TSL

Date/Time: 15.06.2010 10:40:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d018

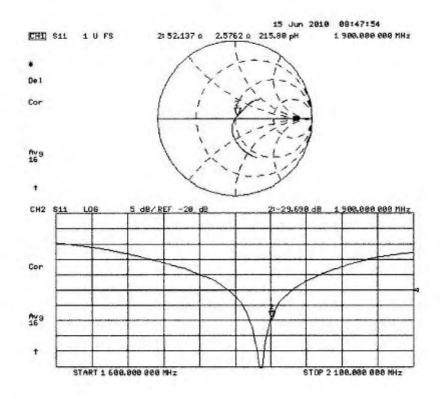

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U11 BB Medium parameters used: f = 1900 MHz; σ = 1.44 mho/m; ε_r = 39.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.7 V/m; Power Drift = 0.022 dB Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 10 mW/g; SAR(10 g) = 5.22 mW/g Maximum value of SAR (measured) = 12.6 mW/g



Certificate No: D1900V2-5d018_Jun10

Page 6 of 9

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 15.06.2010 14:14:27

Test Laboratory: SPEAG, Zurich, Switzerland

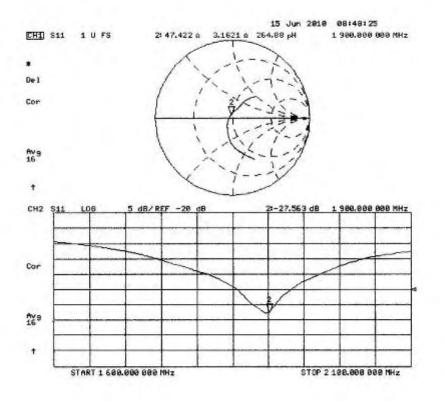
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d018

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U11 BB Medium parameters used: f = 1900 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 53.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANS1 C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.1 V/m; Power Drift = 0.055 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.52 mW/g Maximum value of SAR (measured) = 12.8 mW/g

 $0 \, dB = 12.8 \, mW/g$

Page 88 of 99

Impedance Measurement Plot for Body TSL

Report No. RZA2010-1169

ANNEX G: DAE4 Calibration Certificate

Client TA - SH (Aude	e is one of the signatories ecognition of calibration c	to the EA ertificates	tion No.: SCS 108
	n)	Cartificate	
		Ceruncau	No: DAE4-871_Nov09
CALIBRATION O	CERTIFICATE		
	DA54 00 000 D	A D L ON 074	
Object	DAE4 - SD 000 D	04 BJ - SN: 871	
Calibration procedure(s)	QA CAL-06.v12		
		ure for the data acquisition e	lectronics (DAE)
Calibration date:	November 11, 200	19	
This calibration cortificate docum			
		nal standards, which realize the physica	
		nal standards, which realize the physica bability are given on the following page:	
The measurements and the unce	ertainties with confidence pro		s and are part of the certificate.
The measurements and the unce All calibrations have been condu	ertainties with confidence pro	bability are given on the following page	s and are part of the certificate.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M&	ertainties with confidence pro	bability are given on the following page facility: environment temperature (22 ±	s and are part of the certificate.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M&	ertainties with confidence pro	bability are given on the following page	s and are part of the certificate. 3)°C and humidity < 70%.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards	ertainties with confidence pro cted in the closed laboratory TE critical for calibration)	bability are given on the following page facility: environment temperature (22 ± Cal Date (Certificate No.)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001	ertainties with confidence pro cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	bability are given on the following pages facility: environment temperature (22 ± Cal Date (Certificate No.) 1-Oct-09 (No: 9055)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-10
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ertainties with confidence pro cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	bability are given on the following pages facility: environment temperature (22 ± Cal Date (Certificate No.) 1-Oct-09 (No: 9055) Check Date (in house)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-10 Scheduled Check
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ertainties with confidence pro cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	bability are given on the following pages facility: environment temperature (22 ± Cal Date (Certificate No.) 1-Oct-09 (No: 9055) Check Date (in house)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-10 Scheduled Check
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ertainties with confidence pro cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	bability are given on the following pages facility: environment temperature (22 ± Cal Date (Certificate No.) 1-Oct-09 (No: 9055) Check Date (in house)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-10 Scheduled Check
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ertainties with confidence pro cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	bability are given on the following pages facility: environment temperature (22 ± Cal Date (Certificate No.) 1-Oct-09 (No: 9055) Check Date (in house)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-10 Scheduled Check
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ertainties with confidence pro cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	bability are given on the following pages facility: environment temperature (22 ± Cal Date (Certificate No.) 1-Oct-09 (No: 9055) Check Date (in house)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-10 Scheduled Check In house check: Jun-10
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UMS 006 AB 1004	Abability are given on the following pages facility: environment temperature (22 ± Cal Date (Certificate No.) 1-Oct-09 (No: 9055) Check Date (in house) 05-Jun-09 (in house check)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-10 Scheduled Check In house check: Jun-10
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UMS 006 AB 1004	Example the following pages facility: environment temperature (22 ± Cal Date (Certificate No.) 1-Oct-09 (No: 9055) Check Date (in house) 05-Jun-09 (in house check) Function	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-10 Scheduled Check In house check: Jun-10
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UMS 006 AB 1004	Example the following pages facility: environment temperature (22 ± Cal Date (Certificate No.) 1-Oct-09 (No: 9055) Check Date (in house) 05-Jun-09 (in house check) Function	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-10 Scheduled Check In house check: Jun-10
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	Andrea Guntli	Example a second	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-10 Scheduled Check

Certificate No: DAE4-871_Nov09

Page 1 of 5

Report No. RZA2010-1169

Page 90 of 99

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS BRP

S

s

- Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura
 - Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Report No. RZA2010-1169

DC Voltage Measurement A/D - Converter Resolution non

A/D - Converter Reso	plution nominal				
High Range:	1LSB =	6.1µV,	full range =	-100+300 mV	
Low Range:	1LSB =	61nV,	full range =	-1+3mV	
DASY measurement	parameters: Auto	Zero Time: 3	sec; Measuring	time: 3 sec	

Calibration Factors	x	Y	z
High Range	404.813 ± 0.1% (k=2)	404.794 ± 0.1% (k=2)	405.237 ± 0.1% (k=2)
Low Range	3.98191 ± 0.7% (k=2)	3.98417 ± 0.7% (k=2)	3.98912 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	90.0 ° ± 1 °
---	--------------

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199994.0	1.84	0.00
Channel X + Input	19999.85	0.05	0.00
Channel X - Input	-19997.97	1.83	-0.01
Channel Y + Input	200010.3	-3.71	-0.00
Channel Y + Input	19999.12	-0.48	-0.00
Channel Y - Input	-20000.18	-0.78	0.00
Channel Z + Input	200010.2	-2.80	-0.00
Channel Z + Input	19998.54	-0.86	-0.00
Channel Z - Input	-19999.82	0.00	0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.3	0.22	0.01
Channel X + Input	200.20	0.30	0.15
Channel X - Input	-199.89	0.21	-0.10
Channel Y + Input	1999.8	-0.13	-0.01
Channel Y + Input	200.06	-0.04	-0.02
Channel Y - Input	-200.43	-0.73	0.36
Channel Z + Input	1999.5	-0.57	-0.03
Channel Z + Input	199.58	-0.72	-0.36
Channel Z - Input	-201.11	-1.01	0.51

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode	High Range	Low Range
	Input Voltage (mV)	Average Reading (µV)	Average Reading (µV)
Channel X	200	13.79	12.75
	- 200	-12.26	-13.72
Channel Y	200	-11.82	-11.47
	- 200	10.67	10.68
Channel Z	200	-1.08	-1.35
	- 200	0.32	0.12

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	3.36	1.06
Channel Y	200	1.52	-	3.59
Channel Z	200	2.55	1.41	

Certificate No: DAE4-871_Nov09

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15928	16288
Channel Y	16188	15745
Channel Z	15790	16219

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	0.06	-3.43	1.18	0.52
Channel Y	-0.71	-2.66	0.96	0.57
Channel Z	-0.95	-1.94	0.04	0.41

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.1999	204.4
Channel Y	0.1999	203.6
Channel Z	0.1999	203.8

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)		
Supply (+ Vcc)	+7.9		
Supply (- Vcc)	-7.6		

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

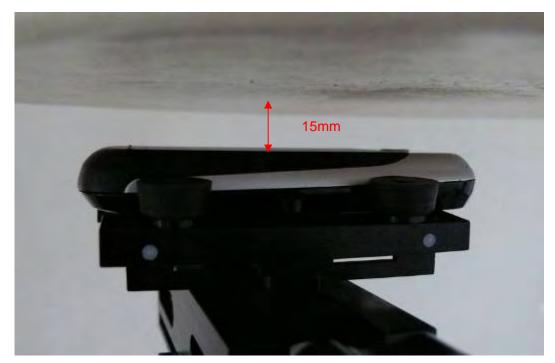
ANNEX H: The EUT Appearances and Test Configuration

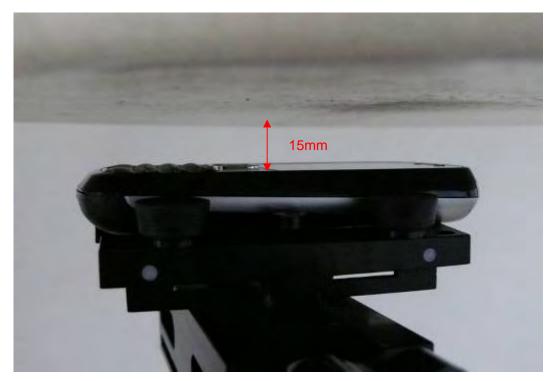
a: EUT

b: Battery

c: Adapter Picture 6: Constituents of EUT

Picture 7: Left Hand Touch Cheek Position


Picture 8: Left Hand Tilt 15 Degree Position


Picture 9: Right Hand Touch Cheek Position

Picture 10: Right Hand Tilt 15 Degree Position

Picture 11: Body, The EUT display towards ground, the distance from handset to the bottom of the Phantom is 15mm

Picture 12: Body, The EUT display towards phantom, the distance from handset to the bottom of the Phantom is 15mm

Picture 13: Body with earphone, The EUT display towards ground, the distance from handset to the bottom of the Phantom is 15mm

Report No. RZA2010-1169

ANNEX I: The Diagram of Antenna

