

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

Report No. : SRMC2008-H024-E0060 Product Name: GSM/GPRS Digital Mobile Phone with Bluetooth Product Model: i410 Applicant: verykool USA, Inc. Manufacture: Longcheer Technology Co.Itd Specification: FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01) FCC ID: WA6I410

The State Radio Monitoring Center, Equipment Testing Division The State Radio Spectrum Monitoring and Testing Center No.80 Beilishi Road Xicheng District Beijing, China Tel: 86-10-68009202 Fax: 86-10-68009205

Executive Summary

The i410 is a GSM /GPRS Digital mobile Phone operating in the 850MHz/1900MHz frequency range with Bluetooth. The device has an internal integrated antenna. The system concepts used are the GSM850, GPRS850 (Class 12), GSM1900, GPRS1900 (Class 12) standards. Outside of North America, transmitter of tested device is capable of operating also in GSM900 and GSM1800 modes, which are not part of this filing.

The objective of the measurements done by SRMC (State radio monitoring center) was the dosimetric assessment of one device in the GSM850, GSM1900 standards. The examinations have been carried out with the dosimetric assessment system, "DASY4".

The measurements were made according to FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01) Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields .All measurements have been performed in accordance to the recommendations given by SPEAG.

Mode Flip answer	CH/ <i>f</i> (MHz)	Power	Limit (mW/g)/1g	Measured (mW/g)	Result
Left/Cheek	661/1880.0MHz	28.8dBm	1.6	0.259	PASS

The maximum SAR of the i410 mobile phone is

Checked By: **Tested By:**

This Test Report Is Issued By:

Issued date: 12th Sep. 2008

Tables of Contents

1. General information	5
1.1 Notes of the test report	5
1.2 Information about the testing laboratory	5
1.3 Applicant's details	5
1.4 Manufacturer's details	5
1.5 Application details	6
1.6 Information of Test Sample	6
1.7 Auxiliary Equipment (AE)	6
1.8 Reference Specification	7
2. Subject of Investigation	8
2.1 The IEEE Standard C95.1 and the FCC Exposure Criteria	8
2.2 Distinction Between Exposed Population, Duration of Exposure and Frequencie	s 9
2.3 Distinction between Maximum Permissible Exposure and SAR Limits	9
2.4 SAR Limit	10
3 The FCC Measurement Procedure	10
3.1 General Requirements	10
3.2 Phantom specifications (shell and liquid)	11
3.3 Specifications of the SAR measurement equipment	11
3.4 Scanning system specifications	12
3.5 Mobile phone holder specifications	12
4. Measurement preparation	12
4.1 General preparation	12
4.2Simplified performance checking	12
4.3 Preparation of the mobile phone under test	13
4.4 Position of the mobile phone in relation to the phantom	13
4.5Tests to be performed	14
5. The Measurement system	14
5.1 DASY4 Information	14
5.2Test Equipments:	16
5.3 Uncertainty Assessment	17
6. Test Results	18
6.1Test Environment:	18
6.2Test Method and Procedure	18
6.3Test Configuration	19
6.4Test Results	19
7. Appendix	25
7.1 Administrative Data	
7.2 Device under Test and Test Conditions	25
7.3 Tissue Recipes	27
7.4 Material Parameters	28

The State Radio Monitoring Center, Equipment Testing DivisionThe State Radio Spectrum Monitoring and Testing CenterTel: 86-10-6800920268009203fax:86-10-6800919568009205 Num: SRMC2008-H024-E0060

Page 4 of 71

7.5Setup for System Performance Check	
7.6 Test Results	31
7.7 Pictures of the device under test	53
7.8 Test Positions for the Device under test	54
7.9 Picture to demonstrate the required liquid depth	55
7.10 Simplified Performance Checking	56
7.11 Certificate of conformity	71

1. General information

1.1 Notes of the test report

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written permission of The State Radio Monitoring Center.

The test results relate only to individual items of the samples which have been tested.

1.2 Information about the testing laboratory

Company:	The State Radio Monitoring Center, Equipment Testing Division The State Radio Spectrum Monitoring and Testing Center
Address:	No.80 Beilishi Road, Xicheng District, Beijing China
City:	Beijing
Country or Region	: China
Contacted person:	Wang Junfeng
Tel	+86 10 68009181
Fax:	+86 10 68009195
Email:	Wangjf@srrc.org.cn

1.3 Applicant's details

Company: verykool USA, Inc. Address: 4350 Executive Drive. Suite 100, San Diego, CA 92121, USA City: san Diego Country or Region: USA Contacted person: Sunny Choi Tel: +1-858-2489036 Email: sunny.choi@infosonics.com

1.4 Manufacturer's details

Company: Longcheer Technology Co.ltd Address: Building NO.401 Caobao RD ,Xuhui District Shanghai City: Shanghai Country or Region: China Contacted person: wanglei Tel: 021-64088898-4116 Email: wangleilc@longcheer.net

1.5 Application details

Date of receipt of application: 2008-8-18 Date of receipt of test samples: 2008-8-18 Date of test: 2008-9-10

1.6 Information of Test Sample

□Name EUT	GSM/GPRS Digital Mobile Phone with Bluetooth
□type	i410
□Frequency range	GSM/GPRS: 824-849MHz 1850-1910MHz Bluetooth:2402-2480 MHz
□Power Level	GSM/GPRS 850:5 (33dBm) GSM/GPRS 1900:0(30dBm)
□GPRS Multi-slot Class	12
Duty Cycle	GSM: 1:8 GPRS: 1:2
□Channel spacing	GSM: 200kHz BT: 1MHz
□Modulation	GSM: GMSK BT: GFSK
□Power supply	Normal Voltage:3.8V Max Voltage:4.2V Mix Voltage:3.4V
□Test condition of declaration	Normal
□IMEI Number	135790246811220

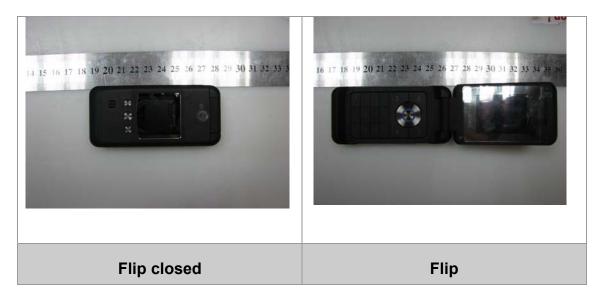
1.7 Auxiliary Equipment (AE)

AE No.	Name	Name Model Manufacturer	
AE 1	Adapter	ASUC1-050050	Verykool USA, Inc.
AE 2	Battery	453X	Verykool USA, Inc.

1.8 Reference Specification

FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01) Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields.

IEC 62209-1-2005: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1:Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)


ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

[DAY4]

Schmid & partner Engineering AG: DAY4 Manual. Nov.2003

2. Subject of Investigation

The i410 is a GSM Mobile Phone (Portable Device), operating in the 850MHz and 1900MHz frequency range. The system concepts used are the GSM850, GPRS850 (Class 12), GSM1900, GPRS1900 (Class 12) standards.

Fig 1: picture of the device under test

The objective of the measurements done by SRMC was the domestic assessment of one device in the GSM850, GSM 1900 standards. The examinations have been carried out with the domestic assessment system "DASY4" described below.

2.1 The IEEE Standard C95.1 and the FCC Exposure Criteria

In the USA the FCC exposure criteria [OET 65] are based on the withdrawn IEEE Standard C95.1-1999 [IEEE C95.1-1999]. This version was replaced by the IEEE Standard C95.1-2005 [IEEE C95.1-2005] in October, 2005.

Both IEEE standards sets limits for human exposure to radio frequency electromagnetic fields in the frequency range 3 kHz to 300 GHz. One of the major differences in the newly revised C95.1-2005 is the change in the basic restrictions for localized exposure, from 1.6 W/kg averaged over 1 g tissue to 2.0 W/kg averaged over 10 g tissue, which is now identical to the ICNIRP guidelines [ICNIRP 1998].

2.2 Distinction Between Exposed Population, Duration of Exposure and Frequencies

The American Standard [IEEE C95.1-1999] distinguishes between controlled and uncontrolled environment. Controlled environments are locations where there is exposure that may be incurred by persons who are aware of the potential for exposure as a concomitant of employment or by other cognizant persons. Uncontrolled environments are locations where there is the exposure of individuals who have no knowledge or control of their exposure. The exposures may occur in living quarters or workplaces. For exposure in controlled environments higher field strengths are admissible. In addition the duration of exposure is considered.

Due to the influence of frequency on important parameters, as the penetration depth of the electromagnetic fields into the human body and the absorption capability of different tissues, the limits in general vary with frequency.

2.3 Distinction between Maximum Permissible Exposure and SAR Limits

The biological relevant parameter describing the effects of electromagnetic fields in the frequency range of interest is the specific absorption rate SAR (dimension: power/mass). It is a measure of the power absorbed per unit mass. The SAR may be spatially averaged over the total mass of an exposed body or its pads-The SAR is calculated from the r.m.s. electric field strength E inside the human body, the conductivity σ and the mass density p of the biological tissue:

$$SAR = \frac{\sigma E_{i}^{2}}{\rho}$$
$$SAR = c_{i} \frac{dT}{dt} \Big|_{t = 0}$$

The specific absorption rate describes the initial rate of temperature rise dT/dt as a function of the specific heat capacity c of the tissue. A limitation of the specific absorption rate prevents an excessive heating of the human body by electromagnetic energy.

As it is sometimes difficult to determine the SAR directly by measurement (e.g. whole body averaged SAR), the standard specifies more readily measurable maximum permissible exposures in terms of external electric E and magnetic field strength H and power density S, derived from the SAR limits .The limits for E, H and the SAR limits. The limits for E, H and S have

been fixed so that even under worst case conditions, the limits for the specific absorption rate SAR are not exceeded.

For the relevant frequency range the maximum permissible exposure may be exceeded if the exposure can be shown by appropriate techniques to produce SAR values below the corresponding limits.

2.4 SAR Limit

In this report the comparison between the American exposure limits and the measured data is made using the spatial peak SAR; the power level of the device under test guarantees that the whole body averaged SAR is not exceeded. Having in mind a worst case consideration, the SAR limit is valid for uncontrolled environment and mobile respectively portable transmitters. According to Table 1 the SAR values have to be averaged over a mass of 1 g (SAR1g) with the shape of a cube.

Standards	Status	SAR limit [w/kg]
IEEE C95.1-1999	Replaced	1.6

Table 1: Relevant spatial peak SAR limit averaged over a mass of 1 g.

3 The FCC Measurement Procedure

The Federal Communications Commission (FCC) has published a report and order on the 1st of August 1996 [FCC 96-326], which requires routine dosimetric assessment of mobile telecommunications devices, either by laboratory measurement techniques or by computational modeling, prior to equipment authorization or use. In 2001 the Commission's Office of Engineering and Technology has released Edition 01-01 of Supplement C to OET Bulletin 65. This revised edition, which replaces Edition 97-01, provides additional guidance and information for evaluating compliance of mobile and Portable devices with FCC limits for human exposure to radiofrequency emissions [OET 65].

3.1 General Requirements

The test shall be performed using a miniature probe that is automatically positioned to measure the internal E-field distribution in a phantom model representing the human head exposed to the EM fields produced by mobile phones. From the measured E-field values, the SAR distribution and the maximum mass averaged SAR value shall be calculated.

The test shall be performed in a laboratory conforming to the following environmental conditions:

- the ambient temperature shall be in the range of 15 °C to 30°C and the variation shall not exceed 2 °C during the test;
- the mobile phone shall not interact with the local mobile networks;
- care shall be taken to avoid significant influence on SAR measurements by ambient EM sources;
- care shall be taken to avoid significant influence on SAR measurements by any

reflection from the environment (such as floor, positioner, etc.).

 Validation of the system shall be done at least once a year according to the protocol defined in annex D of IEC 62209-1-2005 Standard.

3.2 Phantom specifications (shell and liquid)

Phantom requirements

The physical characteristics of the phantom model (size and shape) shall resemble the head and neck of a user since the shape is a dominant parameter for exposure. The phantom shall be made from material with dielectric properties similar to those of head tissues. To enable field scanning within it, the material shall be liquid contained in a head and neck shaped shell model. The shell model acts as a shaped container and shall be as unobtrusive as possible. The hand shall not be modeled.

The shell of the phantom shall be made of low loss and low permittivity material: *tan* (δ) \leq 0,05 and $\epsilon \leq$ 5. The thickness of the phantom is defined in the CAD files and the tolerance shall be ± 0, 2 mm in the area defined in the CAD files (where the phone touches the head).

Reference points on the phantom:

The probe positioning shall be defined in relation to three well defined points on the phantom. These points R1, R2 and R3 shall be used to calibrate the positioning system. Three other points, M for mouth, LE for left ear and/or RE for right ear (maximum acoustic coupling), shall be defined on the phantom(s) (see Figure 2). These points shall be used to allow reproducible positioning of the mobile phone in relation to the phantom.

3.3 Specifications of the SAR measurement equipment

The measurement equipment shall be calibrated as a complete system. The probe shall be calibrated together with the amplifier, measurement device and data acquisition system.

The measurement equipment shall be calibrated in each tissue equivalent liquid at the appropriate operating frequency and temperature according to the methodology defined in IEC 62209-1-2005 .The minimum detection limit shall be lower than 0,02 W/kg and the maximum detection limit shall be higher than 100 W/kg. The linearity shall be within 0,5 dB over the SAR range from

0,02 to 100 W/kg. The isotropy shall be within 1 dB. Sensitivity, linearity and isotropy shall be determined in the tissue equivalent liquid. The response time shall be specified.

3.4 Scanning system specifications

The scanning system holding the probe shall be able to scan the whole exposed volume of the phantom in order to evaluate the three-dimensional SAR distribution. The mechanical structure of the scanning system shall not interfere with the SAR measurements.

The accuracy of the probe tip positioning over the measurement area shall be less than 0,2 mm. The sampling resolution shall be 1 mm or less.

3.5 Mobile phone holder specifications

The mobile phone holder shall permit the phone to be positioned according to a tolerance of 1° in the tilt angle. It shall be made of low loss and low permittivity material(s): *tan* (δ) ≤ 0, 05 and ϵ ≤ 5.

4. Measurement preparation

4.1 General preparation

The dielectric properties of the tissue equivalent materials shall be measured prior to the SAR measurements and at the same temperature with a tolerance of 2° C. The measured values shall comply with the values defined at the specific frequencies in IEC 62209-1-2005 6.1.1. with a tolerance of 5 % for relative permittivity and conductivity.

The phantom shell shall be filled with the tissue equivalent liquid. The depth of the tissue equivalent liquid inside the phantom and at the vertical position of the ear canal shall be at least 15 cm. The liquid shall be carefully stirred before the measurement and it shall be free of air bubbles. The coordinate system of the scanning system shall be aligned to the coordinate system of the phantom with a tolerance of 0, 2 mm.

4.2Simplified performance checking

The purpose of the simplified performance check is to verify that the system operates within its specifications, check is a simple test of repeatability to make sure that the system works correctly during the compliance test. The check shall be performed in order to detect possible drift over short time periods and other errors in the system,

The simplified performance check shall be carried out according to annex D of IEC 62209-1-2005. The simplified performance check shall be performed prior to compliance tests and the result shall be within \pm 10 % of the target value. After the system validation check. The simplified performance check

shall be performed at a central frequency of each transmitting band of the mobile phone.

4.3 Preparation of the mobile phone under test

The tested mobile phone shall use its internal transmitter. The battery shall be fully charged before each measurement .The output power and frequency (channel) shall be controlled by 8960(base station simulator). I410 transmit its highest output peak power level allowed by the system. , The BTS antenna shall be placed at least 50 cm from the phone. The signal emitted by the emulator at antenna feed point shall be lower than the output level of the phone by at least 30 dB.

4.4 Position of the mobile phone in relation to the phantom

The mobile phone shall be tested in the cheek and tilted positions on left and right sides of the phantom.

Definition of the cheek position:

a) Position the device with the vertical centre line of the body of the device and the horizontal line crossing the centre of the ear piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical centre line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the centre of the ear piece with the line RE-LE;

b) Translate the mobile phone box towards the phantom with the ear piece aligned with the line LE-RE until the phone touches the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

Definition of the tilted position:

a) Position the device in the Tilt position described above;

b) While maintaining the device in the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost. (see Figure 2)

Page 14 of 71

Fig 2 - Definition of the reference lines and points, on the phone and on the phantom and initial position

4.5Tests to be performed

Tests shall be performed with both phone positions described in 4.4, on the left and right sides of the head and using the centre frequency of each operating band. The configuration giving rise to the maximum mass-averaged SAR shall be used to test the low-end and the high-end frequencies of the transmitting band. If the mobile phone has a retractable antenna, all of the tests described above shall be performed both with

The antenna extended and with it retracted. When considering multi- mode and multi-band mobile phones, all of the above tests shall be performed in each transmitting mode/band with the corresponding maximum peak power level.

The Measurement system 5.

5.1 DASY4 Information

DASY4 is an abbreviation of "Dosimetric Assessment System" and describes a system that is able to determine the SAR distribution inside a phantom of a human being according to different standards. The DASY4 system consists of the following items as shown in Fig3. Fig4 shows the installation in the SRMC laboratory [DASY2004].

- High precision robot with controller
- Measurement server(for surveillance of the robot operation and signal filtering)
- Data acquisition electronics DAE (for signal amplification and altering)
- Field probes calibrated for use in liquids
- Electro-optical converter EOC (conversion from the optical into a digital signal)
- Light beam (improving of the absolute probe positioning accuracy)
- Two SAM phantoms filled with tissue simulating liquid
- DASY4 software
- SEMCAD

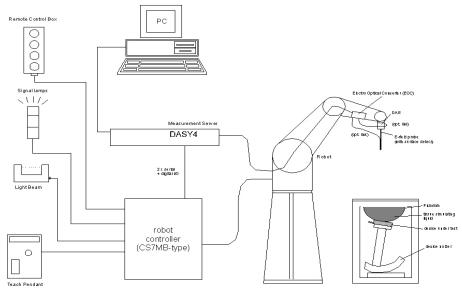


Fig3. The DASY4 measurement system

Fig 4. The measurement set-up with two SAM phantoms containing tissue simulating liquid

5.2Test Equipments:

Name		Serial Number	Cal. Data
DASY4 SYSTEM			
Software Version	V4.2	N/A	N/A
Dosimetric E-Field probe	ES3DV3	3127	2008.6
Data Acquisition Electronics	DAE4	720	2008.6
Phantom	SAM	1267	N/A
Phantom	SAM	1315	N/A
Performance checking			
System Validation Dipole	D835V2	473	2008.6
System Validation Dipole	D1900V2	5d024	2008.6
RF source	ESG-D2000A	US36260147	2008.3
RF Amplifier	5S1G4	301305	N/A
Power Meter	NRVS	8363331050	2008.8
Power Meter probe	NRV-Z55	834558/008	2008.8
Power Meter probe	N1922A	US44510189	2008.8
Power Meter	N1911A	GB45100295	2008.8
Attenuator	2	BM0059	2008.8
Attenuator	2	BM6452	2008.8
Attenuator	2	BM8993	2008.8
Directional Coupler	778D-012	13733	2008.8
Material Measurement			
Network Analyzer	8714ET	US40372083	2008.8
Dielectric Probe Kit	85070D	US33030365	N/A
General			
Radio Tester	8960	GB43194054	2008.8
Call Tester	CMU200	100313	2008.8

Note: the Dipole Calibration interval is 24 months

Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm)

Table 2. Test Equipments lists

5.3 Uncertainty Assessment

	DASY4				•			
Error description	Uncertainty value	Prob	Div.	$\left (c_i) \right $	(c_i)	Std.Unc (1g).	Std.Unc. (10g)	(<i>v_i</i>)
		Dist.		1g	10g	(.3)	(199)	$V_{e\!f\!f}$
Measurement system								
Probe calibration	±5.9%	Ν	1	1	1	±5.9%	±5.9%	∞
Axial isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	∞
Boundary effects	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
System detection limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Readout electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF ambient noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF ambient reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	∞
Probe positioning	±2.9%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Max.SAR Eval.	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Test Sample Related								
Device Positioning	±2.9%	Ν	1	1	1	±2.9%	±2.9%	145
Device holder	±3.6%	Ν	1	1	1	±3.6%	±3.6%	5
Power drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	x
Phantom and Setup								
Phantom uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Liquid conductivity(target)	±5.0%	R	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	x
Liquid conductivity(meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	x
Liquid conductivity(target)	±5.0%	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	∞
Liquid onductivity(means.)	±2.5%	Ν	1	0.6	0.49	±1.5%	±1.2%	∞
Combined std. Uncertainty	<u> </u>					±10.9%	±10.7%	387
Expanded STD Uncertainty						±21.9%	±21.4%	

Table 3. Uncertainty	assessment
----------------------	------------

6. Test Results

6.1Test Environment:

The Ambient Condition	ons during SAR Test	Temp.: 23° C~24° C
Relative Humidity:	34.5%	Atmosphere: 101.0kPa

6.2Test Method and Procedure

a) Measure the local SAR at a test point within 10 mm of the inner surface of the phantom. The test point shall also be close to the ear;

b) verify that the measured SAR at the point used in item 1 is stable after 3 minutes within \pm 5 % in order to ensure that there is no drift due to the mobile phone electronics;

c) Measure the SAR distribution within the phantom. The spatial grid step shall be less than 20 mm. If surface scanning is used, then the distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be constant within \pm 0,5 mm and less than 8 mm. If volume scanning is performed, then the scanning volume shall be as close as possible to the inner surface of the phantom (less than 8 mm), the grid step shall be 5 mm or less, the grid shall extend to a depth of 25 mm and then go directly to item 6;

d) From the scanned SAR distribution, identify the position of the maximum SAR value, as well as the positions of any local maxima with SAR values of more than 50 % of the maximum value;

e) Measure SAR with a grid step less than 5 mm in a volume with a minimum size of 30 mm by 30 mm and 25 mm in depth. Separate grids shall be centred on each of the local SAR maxima;

f) Use interpolation and extrapolation procedures defined in annex C of IEC 62209-1-2005 to determine the local SAR values at the spatial resolution needed for mass averaging;

g) Repeat the SAR measurement at the initial test point used in item 1. If the two results differ by more than ± 5 % from the final value obtained in item 2, the measurements shall be repeated with a fully charged battery or the actual drift shall be included in the uncertainty evaluation.

Tests shall be performed with both phone positions of cheek and tilted, on the left and right sides of the head and using the centre frequency of each operating band. Then the configuration giving rise to the maximum mass-averaged SAR shall be used to test the low-end and the high-end frequencies of the transmitting band. If the mobile phone has a retractable antenna, all of the tests described above shall be performed both with the antenna extended and with it retracted. When considering multi- mode and multi-band mobile phones, all of the above tests shall be performed in each transmitting mode/band with the corresponding maximum peak power level.

6.3Test Configuration

The test shall be performed in the shield room.

Please refer to chapter 7.8; 7.9 of this test report for photo of this test setup.

6.4Test Results

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU-200) to ensure the maximum power transmission and proper modulation. This result contains conducted output power and ERP for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Mode: GSM850

 $f_L(MHz)=824.2MHz$ $f_M(MHz)=836.4MHz$ $f_H(MHz)=848.8MHz$

SAR Values (Head, 850MHz Band with Bluetooth)

Limit of SAR (W/kg)	1 g Average 1.6
Test Case	Measurement Result (mW/g) 1 g Average
Left hand, Touch cheek , f _H	
Left hand, Touch cheek, f _M	0.014
Left hand, Touch cheek , f _L	
Left hand, Tilt 15 Degree, f _M	0.027
Right hand, Touch cheek, f _L	0.011
Right hand, Touch cheek, f _M	0.041
Right hand, Touch cheek , f _H	0.018
Right hand, Tilt 15 Degree, f _M	0.006

So, the maximum SAR is

Phantom	Device Test	SAR(mW/g)		
Configuration	Position	f _∟ (MHz)	f _M (MHz)	f _H (MHz)
Right Side	cheek		0.041	

Mode: GSM1900

f_M(MHz)=1880.0MHz f_L(MHz)=1850.2MHz

f_H(MHz)=1909.8MHz

SAR Values (Head, 1900MHz Band with Bluetooth)

	1 g Average
Limit of SAR (W/kg)	1.6
Test Case	Measurement Result (mW/g)
	1 g Average
Left hand, Touch cheek , f _H	0.189
Left hand, Touch cheek, f _M	0.259
Left hand, Touch cheek , f _L	0.176
Left hand, Tilt 15 Degree, f _M	0.041
Right hand, Touch cheek , f _H	
Right hand, Touch cheek, f_M	0.230
Right hand, Touch cheek , f _L	
Right hand, Tilt 15 Degree, f _M	0.057

So, the maximum SAR is

Phantom	Device Test	SAR(mW/g)		
Configuration	Position	f _∟ (MHz)	f _M (MHz)	f _H (MHz)
Left Side	cheek		0.259	

Note1: Please refer to 7.7 of this test report for graphical results.

Table 5. SAR Results

Mode:GSM850

f_M(MHz)=836.4 MHz f_L(MHz)=824.2MHz

f_H(MHz)= 848.8MHz

SAR Values (Body, 850MHz Band with Bluetooth)

Limit of SAR (W/kg)	1g Average 1.6	
Test Case	Measurement Result (mW/g) 1g Average	
Towards phatom with a headset	f _H	
Towards phatom with a headset	f _M	0.162
Towards phatom with a headset	f_L	
Towards ground with a headset	f _H	0.174
Towards ground with a headset	f _M	0.191
Towards ground with a headset	f_L	0.199

So, the maximum SAR is

Phantom Configuration	SAR(mW/g)			
· · ··································	f _L (MHz)	f _M (MHz)	f _H (MHz)	
Towards ground with a	0.199			
headset	0.155			

Table 6. SAR Results

Mode:GPRS 850

f_M(MHz)=836.4 MHz $f_L(MHz)=824.2MHz$

f_H(MHz)= 848.8MHz

SAR Values (Body, 850MHz Band with Bluetooth)

Limit of SAR (W/kg)	1g Average 1.6
Test Case	Measurement Result (mW/g) 1g Average
Towards ground with a headset f _M	0.162

So, the maximum SAR is

Phantom Configuration	SAR(mW/g)			
	f _∟ (MHz)	f _M (MHz)	f _H (MHz)	
Towards ground		0.162		

Tahle	7	SAR	Results
lane	1.	JAN	nesuiis

Mode: GSM1900

 $f_L(MHz)=1850.2MHz$ $f_M(MHz)=1880.0MHz$ $f_H(I)$

f_H(MHz)=1909.8MHz

SAR Values (Body, 1900MHz Band with Bluetooth)

Limit of SAR (W/kg)	1g Average 1.6	
Test Case	Measurement Result (mW/g) 1g Average	
Towards ground with a headset	f _H	0.181
Towards ground with a headset	f _M	0.210
Towards ground with a headset	f_L	0.157
Towards phatom with a headset	f _H	
Towards phatom with a headset	f _M	0.202
Towards phatom with a headset	f_L	

So, the maximum SAR is

Phantom		SAR(mW/g))
Configuration	f _L (MHz)	f _M (MHz)	f _H (MHz)
Towards ground		0.210	
with a headset		0.210	

Table 8. SAR Results

Mode:GPRS 1900

 $f_{L}(MHz)=824.2MHz$ $f_{M}(MHz)=836.4$ MHz $f_{H}(MHz)=836.4$ MHz $f_{H}(Mz)=836.4$ MHz $f_{H}(Mz)=836.4$ MHz

f_H(MHz)= 848.8MHz

SAR Values (Body, 19000MHz Band with with Bluetooth)

Limit of SAR (W/kg)	1g Average 1.6
Test Case	Measurement Result (mW/g) 1g Average
Towards ground with a headset f _M	0.193

So, the maximum SAR is

Phantom Configuration	SAR(mW/g)			
	f _∟ (MHz)	f _M (MHz)	f _H (MHz)	
Towards ground		0.193		

Table 9. SAR Results

7. Appendix

7.1 Administrative Data

Date of measurement:	10 th Sep. 2008
Data stored:	SRMC2008-H024-E0060

7.2 Device under Test and Test Conditions

TYPE	i410				
IMEI	135790246811220				
Equipment class	Portable device				
EUT status	Production unit				
Power Class	GSM/GPRS 850 tested with power level 5 (33dBm GSM/GPRS 1900 tested with power level 0 (30dB				
RF exposure environment	General Population Internal Battery (Other batteries not available)				
Power supply					
Measurement Standards	GSM850, GSM1900				
Method to establish a call	Base station simulator, using	the air interface			
Modulation	GMSK				
TX range	GSM1900:1850~1910MHz	GSM850:824-849MHz			
RX range	GSM1900:1930~1990MHz	GSM850:869-894MHz			
Lload TV Channeley					

Used TX Channels:

850MHz: L: ch 128; M: ch 189;H: ch 251

1900MHz: L: ch512; M: ch661; H: ch810 (refer to the table 10)

Mode	GSM1900 Duty cycle: 1:8(12.5%)			GSM850 Duty cycle: 1:8(12.5%)		
Channel	512	661	810	128	189	251
Frequency(MHz)	1850.2	1880.0	1909.8	824.2	836.4	848.8
Measured Power(dBm)	28.4	28.8	28.6	33.2	33.2	33.0

Mode	GPRS1900 Duty cycle: 1:2(50%)			GPRS850 Duty cycle: 1:2(50%)		
Channel	512	661	810	128	189	251
Frequency(MHz)	1850.2	1880.0	1909.8	824.2	836.4	848.8
Measured Power(dBm)	27.9	27.9	27.8	32.1	32.3	32.2

Table10. Frequency and Measured power of EUT's Tx channelsUsed Phantom: SAM Twin Phantom V4.0, as defined by IEC 62209-1-2005and delivered by Schmid&Parb1er Engineering AG

7.3 Tissue Recipes

Head Tissue Simulant

The following recipes are provided in percentage by weight.

850MHz:	57.90%	Sugar;
	40.29%	de-ionised water
	1.38%	Salt
	0.24%	Cellulose
	0.18%	Preventol

1900 MHz:

44,45 %	2-(2-butoxyethoxy) ethanol
55.24 %	de-ionised water
0.31 %	NaCl salt

Body Tissue Simulant

The following recipes are provided in percentage by weight.

850MHz:

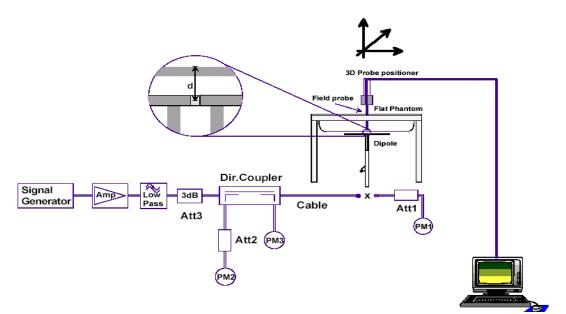
50.75%	de-ionised water
48.21%	sugar
0.94%	salt
0.1	Preventol

1900MHz:

70.17%	de-ionised water
29.44%	DGBE
0.39 %	Salt

7.4 Material Parameters

For the measurement of the following parameters the HP 85070D dielectric probe kit is used, representing the open-ended coaxial probe measurement procedure. Liquid temperature during the test: 22.3°C, Test date 2008.9.10


Head				Temperature		
		εr	σ[S/m]	Ambient [℃]	Liquid [℃]	
950MH-	Recommended Value	41.5±2.1	0.97±0.05	15-30	-	
850MHz Measured Value		41.5	0.98	24.0	22.3	
10001411-	Recommended Value	40±1.9	1.40±0.07	15-30	-	
1900MHz	Measured Value	39.7	1.35	24.0	22.3	

Body				Temperature	
		εr	σ[S/m]	Ambient [°C]	Liquid [℃]
950MIL-	Recommended Value	55.0±2.8	1.05±0.05	15-30	-
850MHz Measured Value		54.6	1.00	24.0	22.3
1000MH-	Recommended Value	53.3±2.7	1.52±0.08	15-30	-
1900MHz	Measured Value	54.6	1.49	24.0	22.3

Table11: Parameters of the head tissue simulating liquids

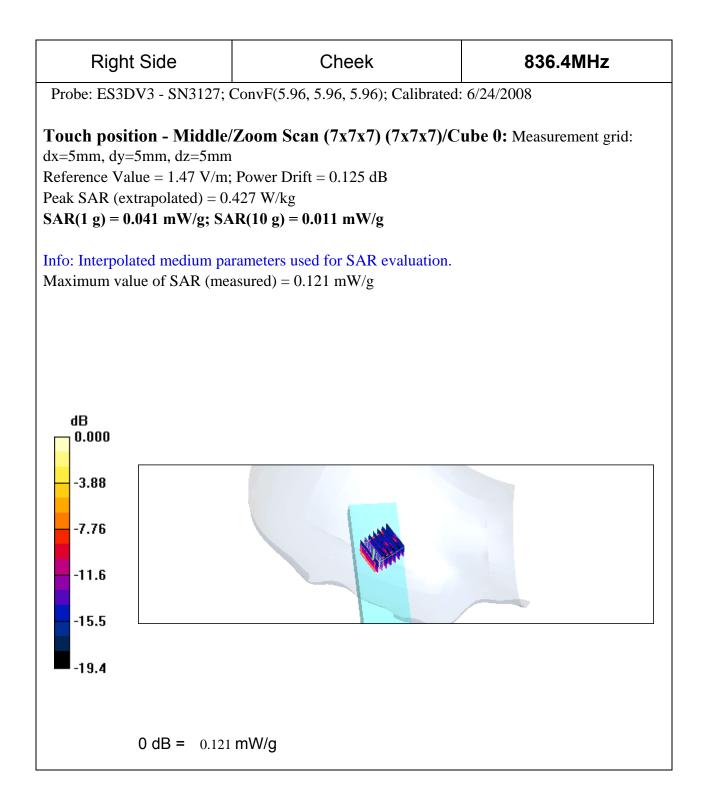
7.5Setup for System Performance Check

(see also Chapter 15 System Performance Check of DAY 4 System handbook)

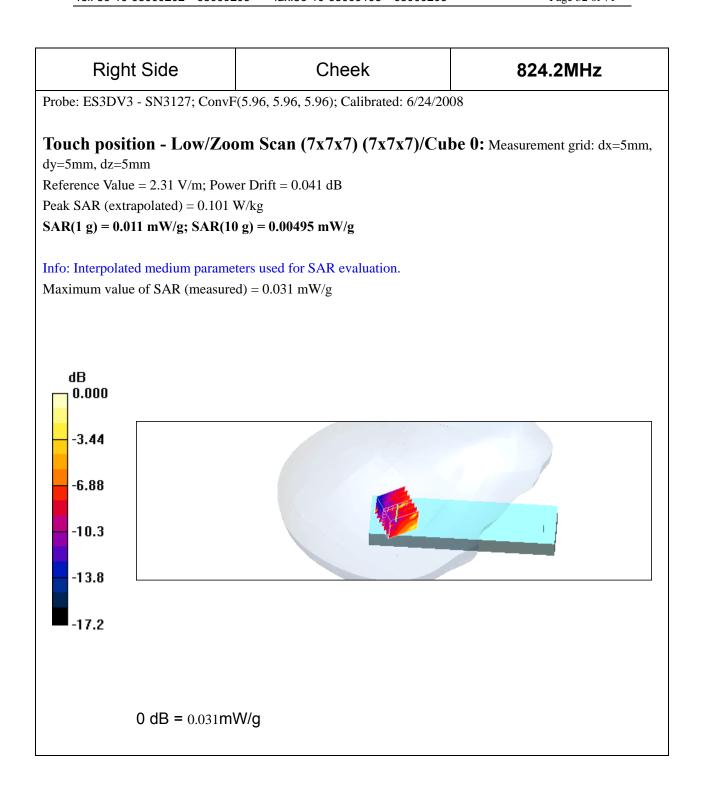
Fig5.Setup for system performance Check

First the power meter PM1 is connected to the cable and it measures the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the (Att1) value) and the power meter PM2 is read at that level. Then after connecting the cable to the dipole, the signal generator is readjusted for the same reading at the power meter PM2. If the signal generator does not allow a setting in 0,01 dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole and ensures that the value is not changed from the previous value. The reflected power should be 20 dB below the forwarded power.

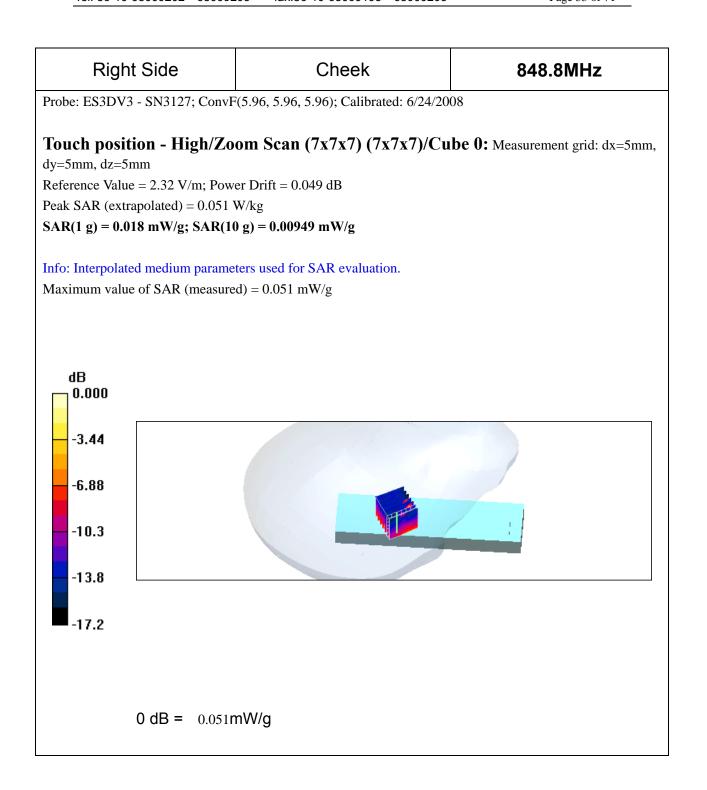
The State Radio Monitoring Center, Equipment Testing DivisionThe State Radio Spectrum Monitoring and Testing CenterTel: 86-10-6800920268009203fax:86-10-6800919568009205 Num: SRMC2008-H024-E0060


Page 30 of 71

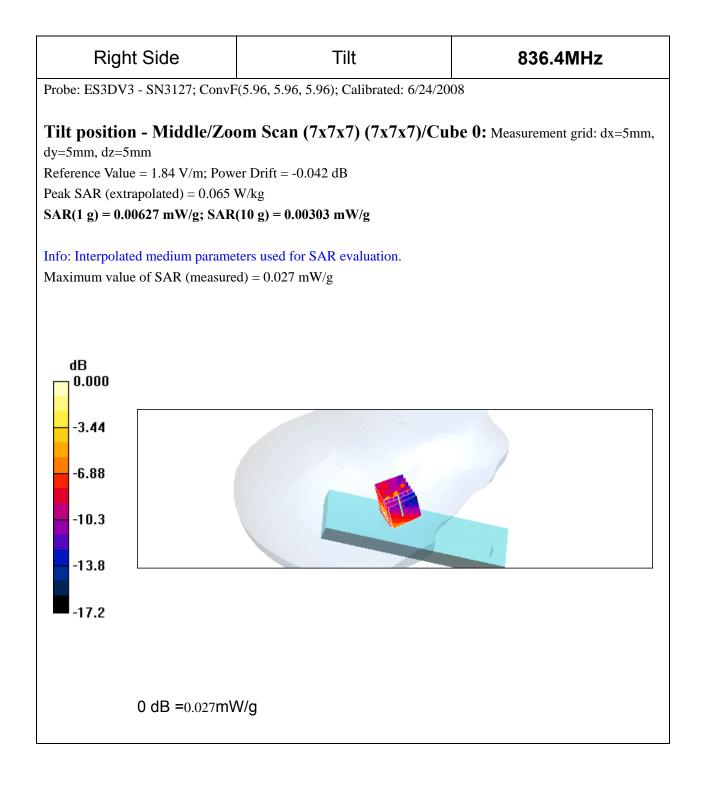
Error description	ToL.	Prob. Dist.	Div.	(<i>c_i</i>) 1g	(<i>c_i</i>) 10g	Std.Unc (1g).	Std.Unc (10g)	(<i>v_i</i>)
				.9	109		(109)	$V_{e\!f\!f}$
Measurement system								
Probe calibration	±5.9%	Ν	1	1	1	±5.9%	±5.9%	8
Axial isotropy	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
Hemispherical isotropy	±9.6%	R	$\sqrt{3}$	0	0	0	0	8
Boundary effects	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	8
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	8
System detection limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Readout electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response time	0	R	$\sqrt{3}$	1	1	0	0	8
Integration time	0	R	$\sqrt{3}$	1	1	0	0	∞
RF ambient noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF ambient reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	∞
Probe positioning	±2.9%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Algorithms for Max.SAR Eval.	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	8
Dipole								
Dipole Axis to Liquid Distance	±2.0%	R	$\sqrt{3}$	1	1	±1.2%	±1.2%	8
Input power and SAR drift meas.	±4.7%	N	1	1	1	±2.7%	±2.7%	8
Phantom and Tissue Param							I	
Phantom uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Liquid conductivity(target)	±5.0%	R	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	∞
Liquid conductivity(meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
Liquid conductivity(target)	±5.0%	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	∞
Liquid conductivity (means.)	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
Combined std. Uncertainty						±9.2%	±8.9%	∞
Coverage Factor for 95%	Coverage Factor for 95%							
Expanded STD Uncertainty					±18.4%	±17.8%		


Table 12:Uncertainty Budget for the system performance check

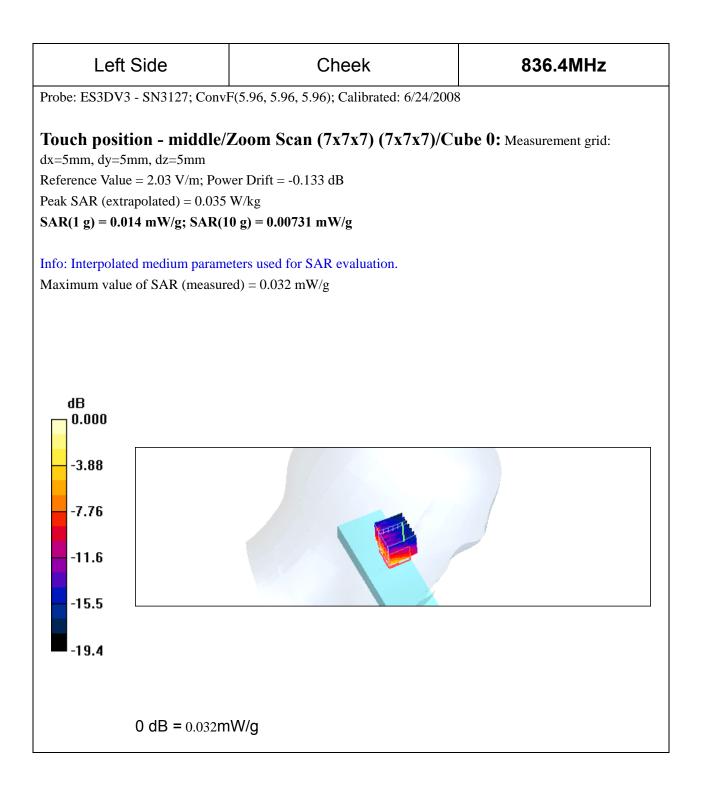
7.6 Test Results


850MHz/Head

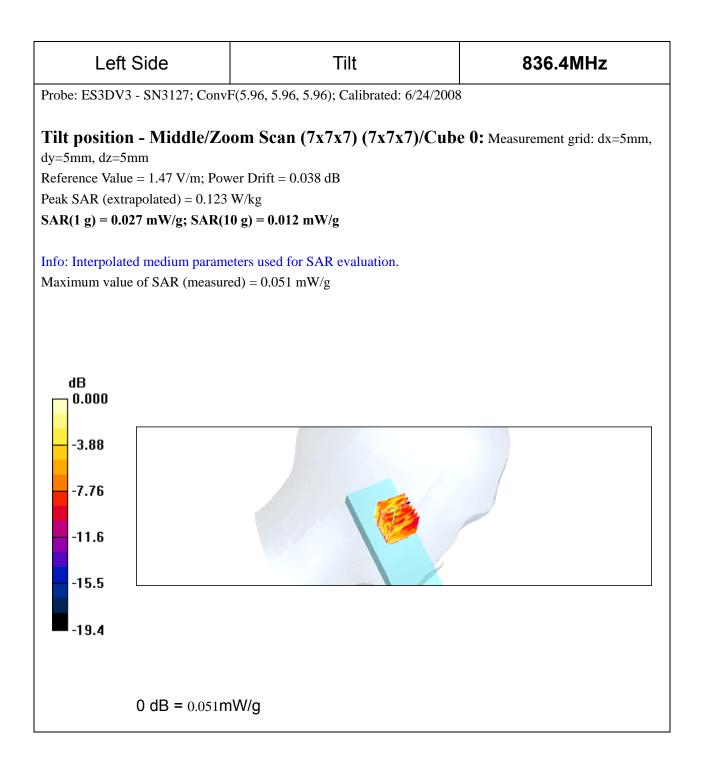
The State Radio Monitoring Center, Equipment Testing DivisionNum: SRMC2008-H024-E0060The State Radio Spectrum Monitoring and Testing CenterTel: 86-10-6800920268009203fax:86-10-6800919568009205Page 32 of 71

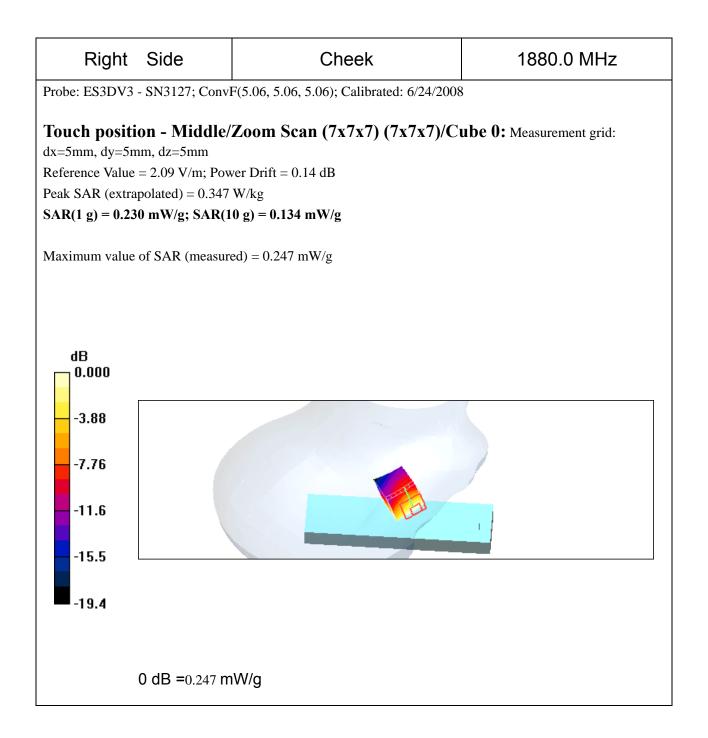


The State Radio Monitoring Center, Equipment Testing DivisionNum: SRMC2008-H024-E0060The State Radio Spectrum Monitoring and Testing CenterTel: 86-10-6800920268009203fax:86-10-6800919568009205Page 33 of 71

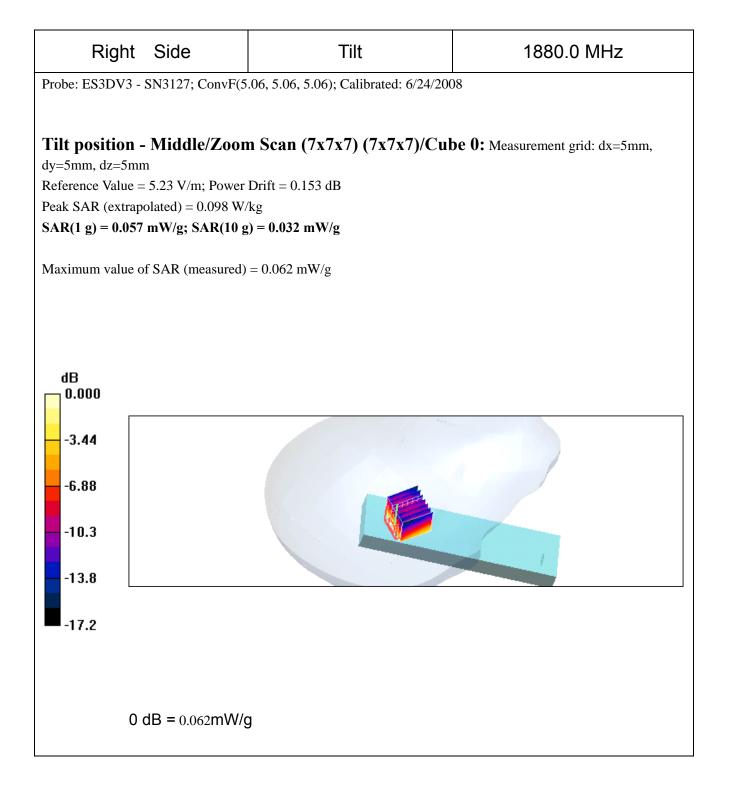


The State Radio Monitoring Center, Equipment Testing Division Num: SRMC2008-H024-E0060 The State Radio Spectrum Monitoring and Testing Center fax:86-10-68009195 68009205 Tel: 86-10-68009202 68009203

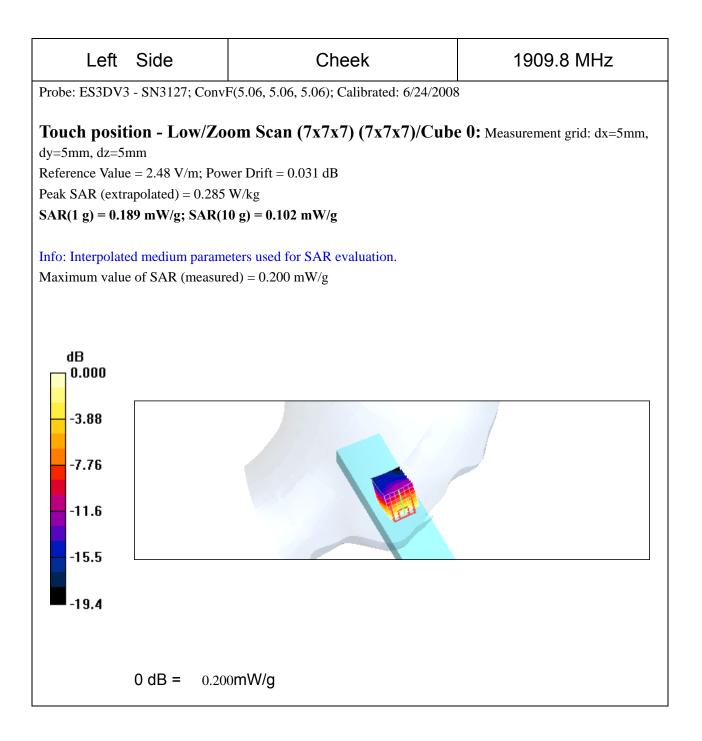

Page 34 of 71


The State Radio Monitoring Center, Equipment Testing DivisionNum: SRMC2008-H024-E0060The State Radio Spectrum Monitoring and Testing CenterTel: 86-10-6800920268009203fax:86-10-6800919568009205Page 35 of 71

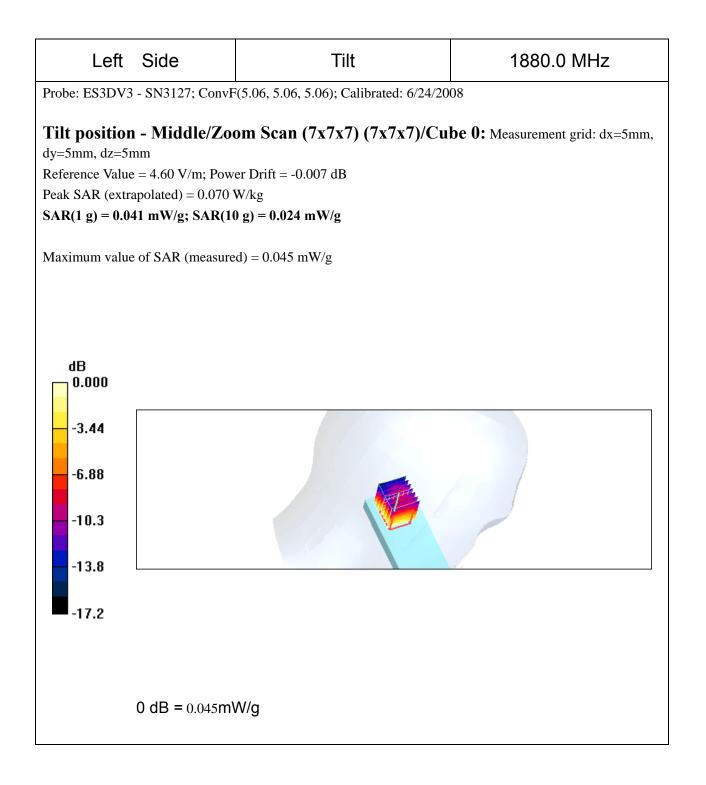
The State Radio Monitoring Center, Equipment Testing DivisionNum: SRMC2008-H024-E0060The State Radio Spectrum Monitoring and Testing CenterTel: 86-10-6800920268009203fax:86-10-6800919568009205Page 36 of 71


1900MHz/Head

The State Radio Monitoring Center, Equipment Testing Division Num: SRMC2008-H024-E0060 The State Radio Spectrum Monitoring and Testing Center

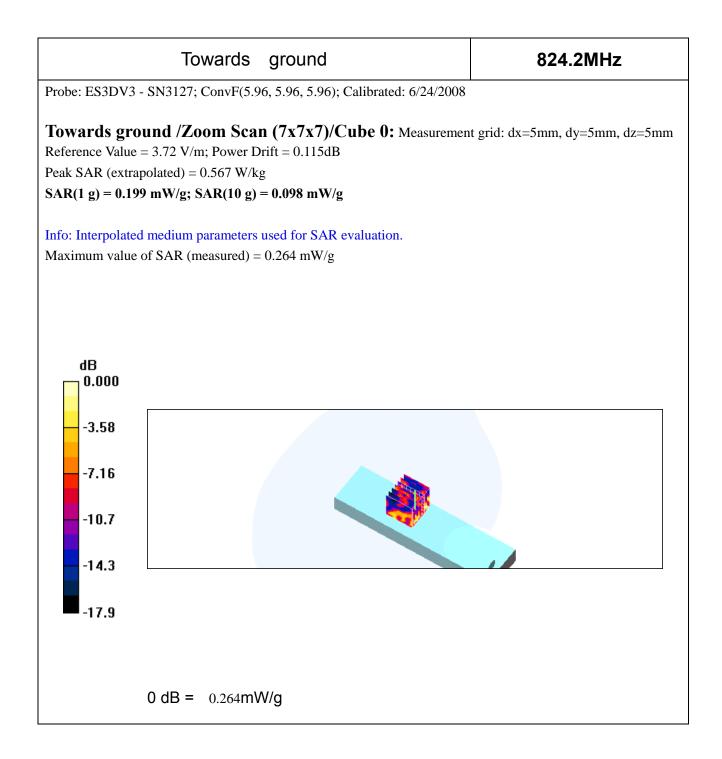

Tel: 86-10-68009202 68009203 fax:86-10-68009195 68009205

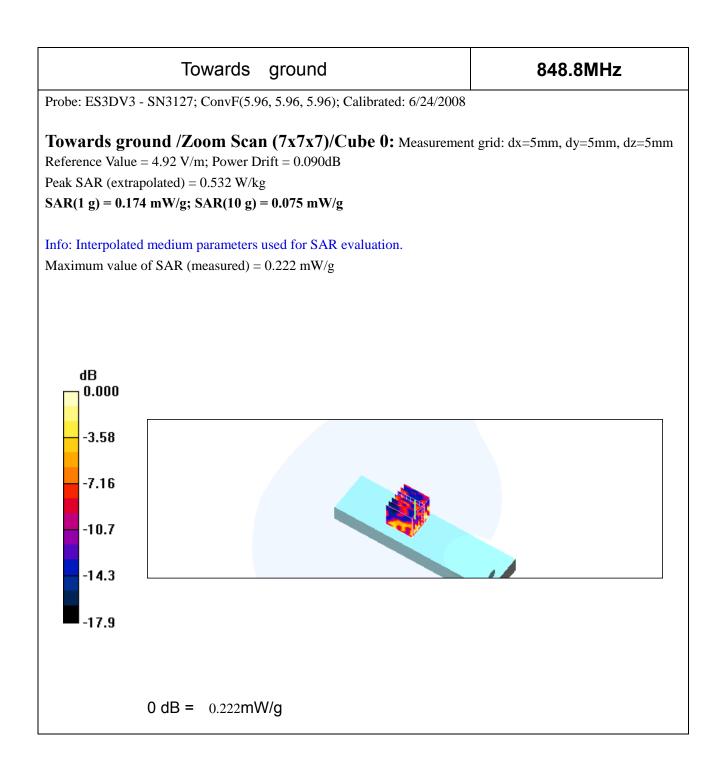
Page 38 of 71


Left	Side	Cheek	1880.0 MHz
Probe: ES3DV3	- SN3127; Convl	F(5.06, 5.06, 5.06); Calibrated: 6/24/2008	
dx=5mm, dy=5m Reference Value Peak SAR (extra	nm, dz=5mm = 2.54 V/m; Pow apolated) = 0.392	Zoom Scan (7x7x7) (7x7x7)/Cu ver Drift = -0.03 dB W/kg 0 g) = 0.159 mW/g	ube 0: Measurement grid:
Maximum value	of SAR (measure	ed) = 0.278 mW/g	
dB 0.000 -3.88 -7.76 -11.6 -15.5 -19.4			
	0 dB = 0.278	mW/g	

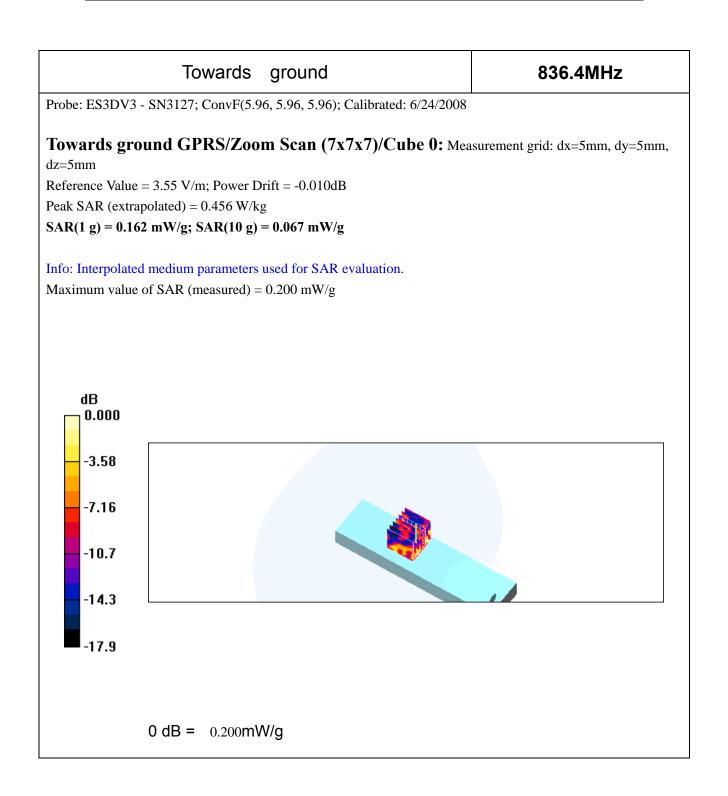
Left S	ide	Cheek	1850.2 MHz
Probe: ES3DV3 - S	N3127; ConvI	F(5.06, 5.06, 5.06); Calibrated: 6/24/2008	;
Touch position dy=5mm, dz=5mm Reference Value = 2 Peak SAR (extrapo SAR(1 g) = 0.176 r	2.55 V/m; Pow lated) = 0.283	W/kg	e 0: Measurement grid: dx=5mm,
Info: Interpolated n Maximum value of	-	eters used for SAR evaluation. ed) = 0.198 mW/g	
dB 0.000			
-3.88			
-11.6		Last	
-19.4			
0	dB = 0.198	mW/g	

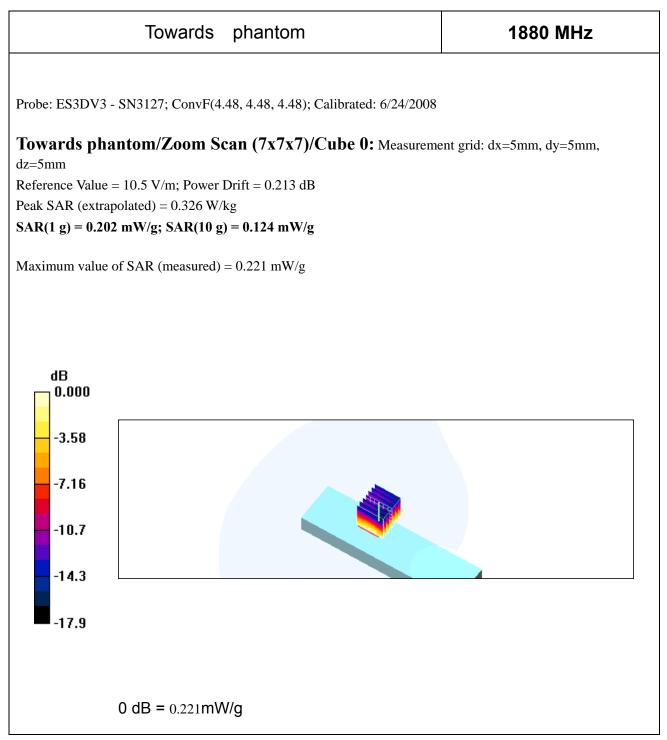

The State Radio Monitoring Center, Equipment Testing Division Num: SRMC2008-H024-E0060 The State Radio Spectrum Monitoring and Testing Center Tel: 86-10-68009202 68009203 fax:86-10-68009195 68009205

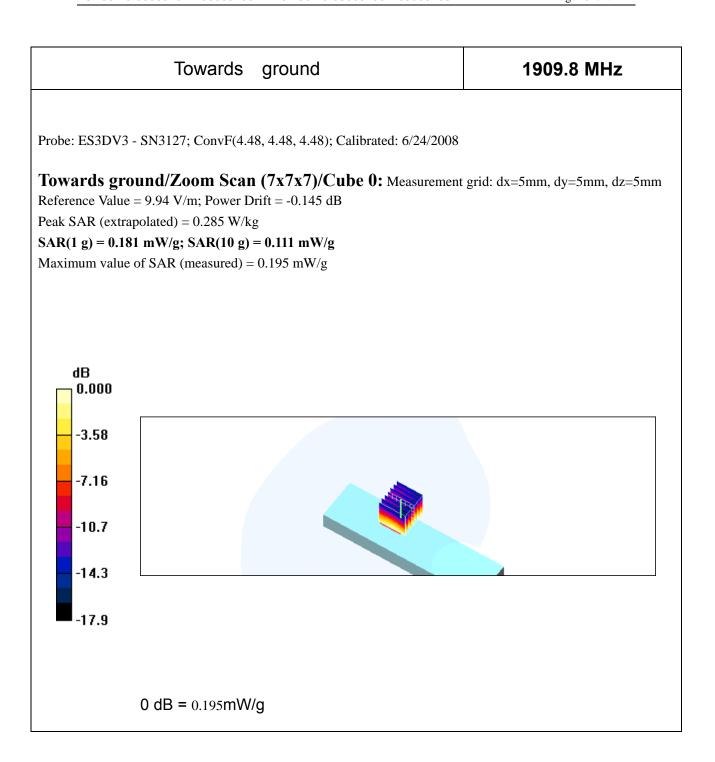

Page 42 of 71

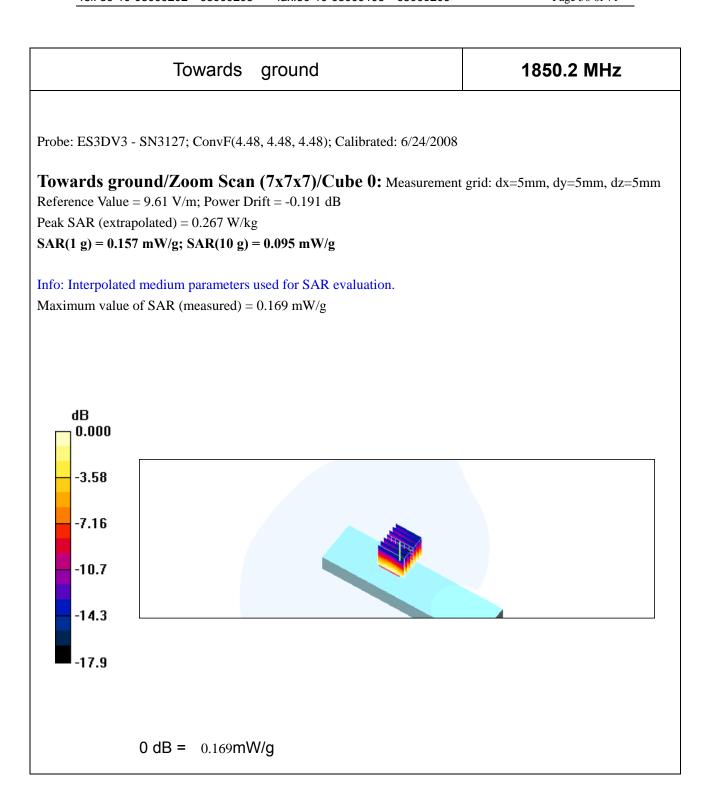

850MHz/ Body

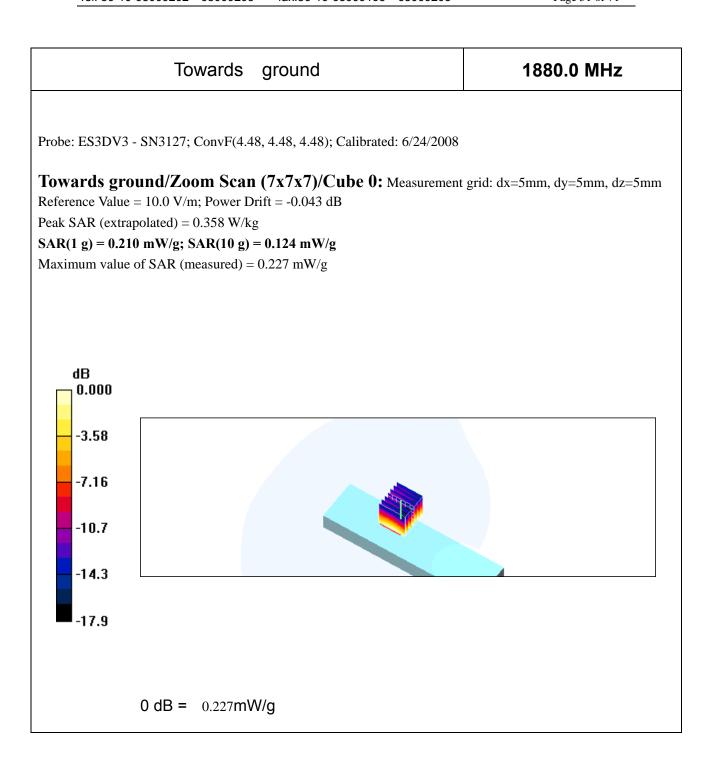
Towards phantom	836.4MHz
Probe: ES3DV3 - SN3127; ConvF(5.96, 5.96, 5.96); Calibrated: 6/24/2008	
Towards Phantom/Zoom Scan (7x7x7)/Cube 0: Measuremedz=5mm Reference Value = 3.92 V/m; Power Drift = -0.214 dB Peak SAR (extrapolated) = 0.521 W/kg SAR(1 g) = 0.162 mW/g; SAR(10 g) = 0.077 mW/g	ent grid: dx=5mm, dy=5mm,
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.246 mW/g	
dB 0.000 -3.58 -7.16 -10.7 -14.3 -17.9	
0 dB = 0.246 mW/g	

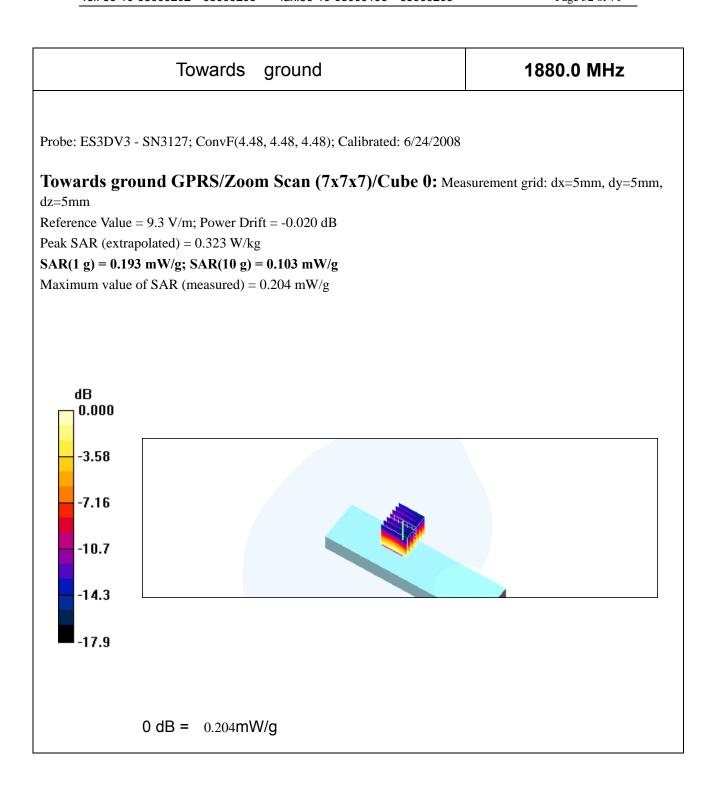






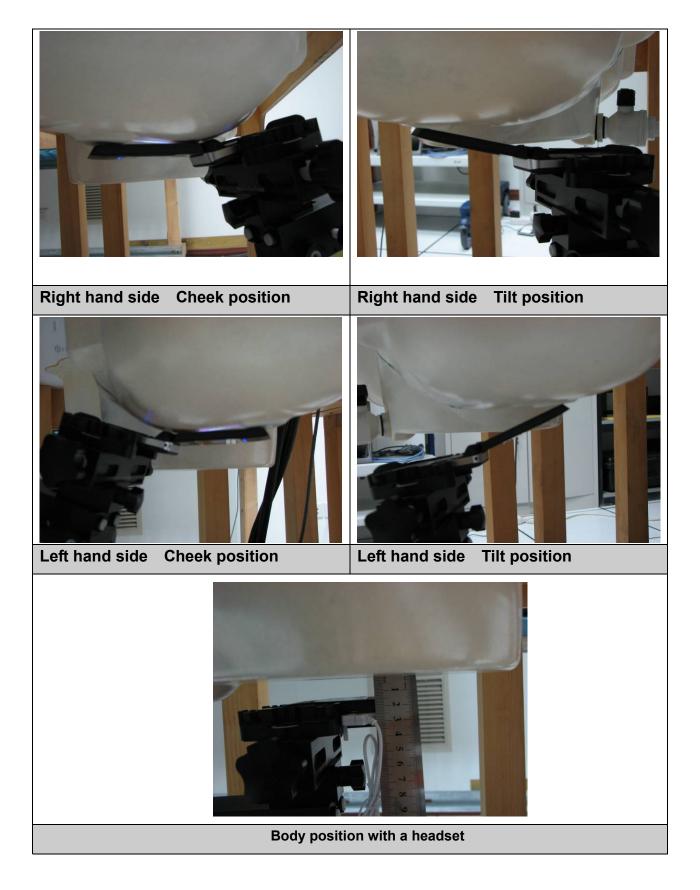

1900MHz/ Body


The State Radio Monitoring Center, Equipment Testing DivisionNum:SRMC2008-H024-E0060The State Radio Spectrum Monitoring and Testing CenterTel:86-10-6800920268009203fax:86-10-6800919568009205Page 49 of 71


The State Radio Monitoring Center, Equipment Testing DivisionNum:SRMC2008-H024-E0060The State Radio Spectrum Monitoring and Testing CenterTel:86-10-6800920268009203fax:86-10-6800919568009205Page 50 of 71

The State Radio Monitoring Center, Equipment Testing DivisionNum:SRMC2008-H024-E0060The State Radio Spectrum Monitoring and Testing CenterTel:86-10-6800920268009203fax:86-10-6800919568009205Page 51 of 71

The State Radio Monitoring Center, Equipment Testing DivisionNum:SRMC2008-H024-E0060The State Radio Spectrum Monitoring and Testing CenterTel:86-10-6800920268009203fax:86-10-6800919568009205Page 52 of 71


7.7 Pictures of the device under test

show the device under test

7.8 Test Positions for the Device under test

7.9 Picture to demonstrate the required liquid depth

the liquid depth in the used SAM phantoms

Liquid depth for SAR Measurement

7.10 Simplified Performance Checking

The simplified performance check was realized using the dipole validation kits. The input power of the dipole antennas were 250mW (cw signal) and they were placed under the flat part of the SAM phantom. The results are listed in the Table 13 and Table 14 .The target values were adopted from the IEEE1528. Table 12 includes the uncertainty assessment for the system performance checking which was suggested by the IEC 62209-1-2005 and determined by Schmid & Partner Engineering AG. The expanded uncertainty is assessed to be \pm 21.9%. Measurement is made at temperature 24 °C, relative humidity 34.5%, Liquid temperature during the test: 22.3°C. System validation date: 2008.09.10

		SAR _{1g}	SAR _{1g} [w/kg] ε _r σ	σ[S/m]	Temperature	
		[w/kg]			Ambient[℃]	Liquid[℃]
850MHz	Target Value	9.5	41.5±2.1	0.97±0.05	15-30	-
	Measured Value	9.8	41.5	0.98	24.0	22.3

All SAR values are normalized to 1W forward power

Table13:	Validation	results,	850 MHz
----------	------------	----------	---------

		SAR _{1g}	c	r σ[S/m]	Tempe	erature	
		[w/kg]	ε _r		Ambient[℃]	Liquid[℃]	
1900MHz	Target Value	39.7	40±1.9	1.40±0.07	15-30		
190010172	Measured Value	39.8	39.7	1.35	24.0	22.3	

All SAR values are normalized to 1W forward power

Table14: Validation results, 1900 MHz

The State Radio Monitoring Center, Equipment Testing DivisionThe State Radio Spectrum Monitoring and Testing CenterTel: 86-10-6800920268009203fax:86-10-6800919568009205 Num: SRMC2008-H024-E0060

Page 57 of 71

Calibration Laboratory Schmid & Partner Engineering AG eughausstrasse 43, 8004 Zurich, 9		BAC MBA	S Schweizerlscher Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service
Accredited by the Swiss Accreditation The Swiss Accreditation Service is fultilateral Agreement for the reco	one of the signatories	to the EA	creditation No.: SCS 108
Client SRMC (MTT)			rtificate No: DAE4-720_Jun08
CALIBRATION CE	ERTIFICATE		
Object	DAE4 - SD 000 D0	04 BC - SN: 720	
Calibration procedure(s)	QA CAL-06.v12 Calibration proced	ure for the data acquis	tion electronics (DAE)
Calibration date:	June 26, 2008		
Condition of the calibrated item	In Tolerance		
All calibrations have been conducte Calibration Equipment used (M&TE			
Primary Standards	ID#	Cal Date (Certificate No.) 04-Oct-07 (No: 6467)	Scheduled Calibration Oct-08
Fluke Process Calibrator Type 702 Keithley Multimeter Type 2001	SN: 6295803 SN: 0810278	03-Oct-07 (No: 6465)	Oct-08
		 a second of a 	Scheduled Check
Secondary Standards Calibrator Box V1.1	ID # SE UMS 006 AB 1004	Check Date (in house) 06-Jun-08 (in house check)	In house check: Jun-09
Calibrated by:	Name Dominique Steffen	Function Technician	Signature
Approved by:	Fin Bomholt	R&D Director	i.v. Bf Luma
			Issued: June 26, 2008
This calibration certificate shall not			

Certificate No: DAE4-720_Jun08

Page 1 of 5

The State Radio Monitoring Center, Equipment Testing Division Num: SRMC2008-H024-E0060 The State Radio Spectrum Monitoring and Testing Center

Tel: 86-10-68009202 68009203 fax:86-10-68009195 68009205 Page 58 of 71

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

S

C

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle . mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a . result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of . the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an . input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter . corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-720_Jun08

Page 2 of 5

DC Voltage Measurement

1LSB =	6.1µV,		-100+300 mV
1LSB =	61nV ,		-1+3mV
	1LSB =	1LSB = 61nV ,	TEOD ON PATTO

Calibration Factors	X	Y	Z
High Range	403.529 ± 0.1% (k=2)	404.986 ± 0.1% (k=2)	403.365 ± 0.1% (k=2)
Low Range	3.95905 ± 0.7% (k=2)	3.95889 ± 0.7% (k=2)	3.95739 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	174 ° ± 1 °
· · · · · · · · · · · · · · · · · · ·	

Certificate No: DAE4-720_Jun08

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	200000	199999.4	0.00
Channel X + Input	20000	20005.05	0.03
Channel X - Input	20000	-20002.56	0.01
Channel Y + Input	200000	199999.8	0.00
Channel Y + Input	20000	20004.49	0.02
Channel Y - Input	20000	-20000.04	0.00
Channel Z + Input	200000	199999.8	0.00
Channel Z + Input	20000	20002.76	0.01
Channel Z - Input	20000	-20007.45	0.04

Low Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	2000	1999.9	0.00
Channel X + Input	200	200.23	0.12
Channel X - Input	200	-200.24	0.12
Channel Y + Input	2000	2000	0.00
Channel Y + Input	200	199.21	-0.39
Channel Y - Input	200	-200.77	0.39
Channel Z + Input	2000	1999.9	0.00
Channel Z + Input	200	199.32	-0.34
Channel Z - Input	200	-201.52	0.76

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	1.48	-5.41
	- 200	2.81	3.22
Channel Y	200	15.58	15.30
	- 200	-15.28	-16.89
Channel Z	200	-16.21	-16.41
	- 200	14.75	14.79

3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	2.03	0.10
Channel Y	200	1.31	12	4.31
Channel Z	200	-2.77	0.56	-

Certificate No: DAE4-720_Jun08

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16147	15016
Channel V	16186	17233

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ Std. Deviation

	Average (μV)	min. Offset (µV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.70	-2.21	0.41	0.54
Channel Y	-0.76	-1.66	0.35	0.37
Channel Z	-1.01	-2.49	0.43	0.59

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.1999	199.7
Channel Y	0.1999	199.9
Channel Z	0.1999	200.2

8. Low Battery Alarm Voltage (verified during pre test)

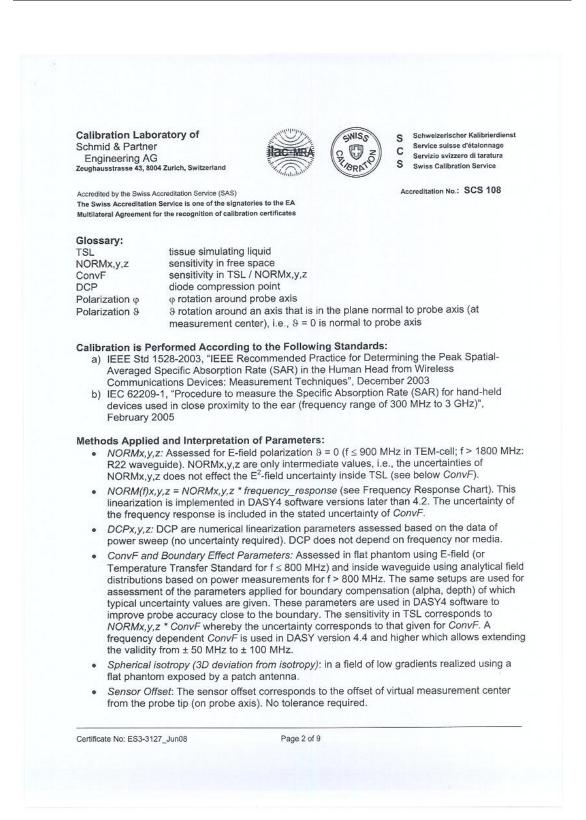
Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-720_Jun08

Page 5 of 5


The State Radio Monitoring Center, Equipment Testing DivisionNum:SRMC2008-H024-E0060The State Radio Spectrum Monitoring and Testing CenterTel:86-10-6800920268009203fax:86-10-6800919568009205Page 62 of 71

Calibration Laborator Schmid & Partner	ry of	SWISS S	Schweizerischer Kalibrierdienst Service suisse d'étalonnage
Engineering AG Leughausstrasse 43, 8004 Zuric	ch, Switzerland	CONTRACTOR CONTRACTOR S	Servizio svizzero di taratura
Accredited by the Swiss Accredita The Swiss Accreditation Servic Multilateral Agreement for the r	e is one of the signatori	es to the EA	No.: SCS 108
Client SRMC (MTT)		Certificate No	o: ES3-3127_Jun08
CALIBRATION	CERTIFICAT	E	
Object	ES3DV3 - SN3	127	
Calibration procedure(s)	QA CAL-01.v6 a Calibration proc	and QA CAL-23 v3 edure for dosimetric E-field probe	S.
	621259686352527629965599668		
Calibration date:	June 24, 2008		
Condition of the calibrated item This calibration certificate docun The measurements and the unc	In Tolerance	tional standards, which realize the physical un probability are given on the following pages an	id are part of the certificate.
Condition of the calibrated item This calibration certificate docun The measurements and the unc	In Tolerance	tional standards, which realize the physical un probability are given on the following pages an pry facility: environment temperature (22 ± 3)°(id are part of the certificate.
Condition of the calibrated item This calibration certificate docum The measurements and the unc All calibrations have been condu Calibration Equipment used (M8	In Tolerance	probability are given on the following pages an ory facility: environment temperature $(22\pm3)^{\circ}($	id are part of the certificate.
Condition of the calibrated item This calibration certificate docun The measurements and the unc All calibrations have been condu	In Tolerance	probability are given on the following pages an	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09
Condition of the calibrated item This calibration certificate docum The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards	In Tolerance	probability are given on the following pages an ony facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788)	Id are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09 Apr-09
Condition of the calibrated item This calibration certificate docum The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A	In Tolerance	probability are given on the following pages an ory facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788)	Id are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09 Apr-09 Apr-09
Condition of the calibrated item This calibration certificate docum The measurements and the uno All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power sensor E4412A Power sensor E4412A Reference 3 dB Attonuator	In Tolerance	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 8-Aug-07 (No. 217-00789) 8-Aug-07 (No. 217-00719)	Id are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09 Apr-09 Aug-09 Aug-08
Condition of the calibrated item This calibration certificate docum The measurements and the unco All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power sensor E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	In Tolerance	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00789) 1-Apr-08 (No. 217-00789) 31-Mar-08 (No. 217-00787)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09 Apr-09 Aug-08 Apr-09 Aug-08 Apr-09
Condition of the calibrated item This calibration certificate docum The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator	In Tolerance	probability are given on the following pages an ony facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 1-Арг-08 (No. 217-00788) 1-Арг-08 (No. 217-00788) 1-Арг-08 (No. 217-00788) 8-Аид-07 (No. 217-00787) 8-Аид-07 (No. 217-00787) 8-Аид-07 (No. 217-00780)	Id are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09 Apr-09 Aug-09 Aug-08
Condition of the calibrated item This calibration certificate docum The measurements and the unco All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power sensor E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	In Tolerance	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00789) 1-Apr-08 (No. 217-00789) 31-Mar-08 (No. 217-00787)	Id are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09 Apr-09 Apr-09 Aug-08 Apr-09 Aug-08 Aug-08
Condition of the calibrated item This calibration certificate docum The measurements and the unco All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	In Tolerance	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00789) 3-Apr-08 (No. 217-00787) 8-Aug-07 (No. 217-00720) 2-Jan-08 (No. ES3-3013_Jan08) 3-Sep-07 (No. DAE4-660_Sep07)	Id are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09 Apr-09 Ayr-09 Aug-08 Aug-08 Jan-09 Sep-08
Condition of the calibrated item This calibration certificate docum The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	In Tolerance	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00787) 8-Aug-07 (No. 217-00780) 2-Jan-08 (No. 27-00720) 2-Jan-08 (No. ES3-3013_Jan08) 3-Sep-07 (No. DAE4-660_Sep07) Check Date (in house)	Id are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09 Apr-09 Apr-09 Aug-08 Apr-09 Aug-08 Jan-09 Sep-08 Scheduled Chack
Condition of the calibrated item This calibration certificate docum The measurements and the unco All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	In Tolerance	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00789) 3-Apr-08 (No. 217-00787) 8-Aug-07 (No. 217-00720) 2-Jan-08 (No. ES3-3013_Jan08) 3-Sep-07 (No. DAE4-660_Sep07)	Id are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09 Apr-09 Ayr-09 Aug-08 Aug-08 Jan-09 Sep-08
Condition of the calibrated item This calibration certificate docum The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator	In Tolerance	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 8-Aug-07 (No. 217-00789) 31-Mar-08 (No. 217-00787) 8-Aug-07 (No. 217-00787) 8-Aug-07 (No. 217-00720) 2-Jan-08 (No. 253-3013_Jan08) 3-Sep-07 (No. DAE4-660_Sep07) Check Date (in house) 4-Aug-99 (in house check Oct-07)	Id are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09 Apr-09 Aug-08 Apr-09 Aug-08 Jan-09 Sep-08 Scheduled Check In house check: Oct-09
Condition of the calibrated item This calibration certificate docum The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator	In Tolerance nents the traceability to na ertainties with confidence ucted in the closed laboration ID # GB41293874 MY41495277 MY41495277 MY41495087 SN: S5064 (20) SN: S5064 (20) SN: S5064 (20) SN: S5064 (20) SN: 35086 (20b) SN: 35086 (20b) SN: 3600 ID # US3642U01700 US37390585	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00789) 1-Apr-08 (No. 217-00789) 1-Apr-08 (No. 217-00787) 8-Aug-07 (No. 217-00787) 8-Aug-09 (No. DAE4-660_Sep07) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-07)	Id are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09 Apr-09 Aug-08 Aug-08 Aug-08 Jan-09 Sep-08 Scheduled Check In house check: Oct-09 In house check: Oct-08
Condition of the calibrated item This calibration certificate docum The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 30 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8848C Network Analyzer HP 8753E	In Tolerance nents the traceability to na ertainties with confidence ucted in the closed laborat ATE critical for calibration) ID # GB41293874 MY41495277 MY41495087 SN: 55086 (20b) SN: 55129 (30b) SN: 55086 (20b) SN: 55129 (30b) SN: 5508 (20b) SN: 55129 (30b) SN: 5508 (20b) SN: 5508 (20b) SN: 5508 (20b) SN: 5508 (20b) SN: 5508 (20b) SN: 5508 (20b) SN: 6508 ID # US3642U01700 US37390585 Name	Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00787) 8-Aug-07 (No. 217-00780) 2-Jan-08 (No. ES3-3013_Jan08) 3-Sep-07 (No. DAE4-660_Sep07) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-07) Function	Id are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09 Apr-09 Aug-08 Aug-08 Aug-08 Jan-09 Sep-08 Scheduled Check In house check: Oct-09 In house check: Oct-08

The State Radio Monitoring Center, Equipment Testing Division Num: SRMC2008-H024-E0060 The State Radio Spectrum Monitoring and Testing Center

Tel: 86-10-68009202 68009203 fax:86-10-68009195 68009205

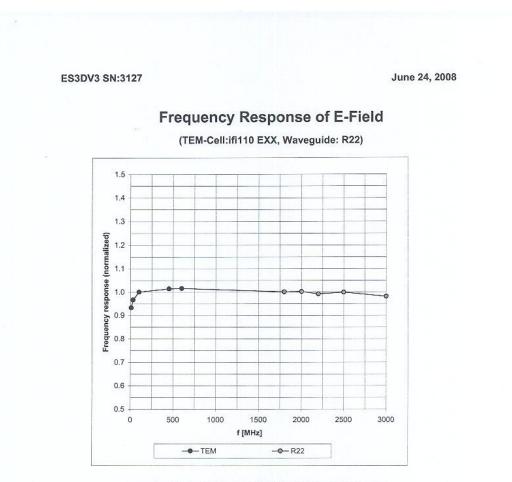
Page 63 of 71

ES3DV3 SN:3127

June 24, 2008

Probe ES3DV3

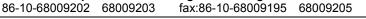
SN:3127

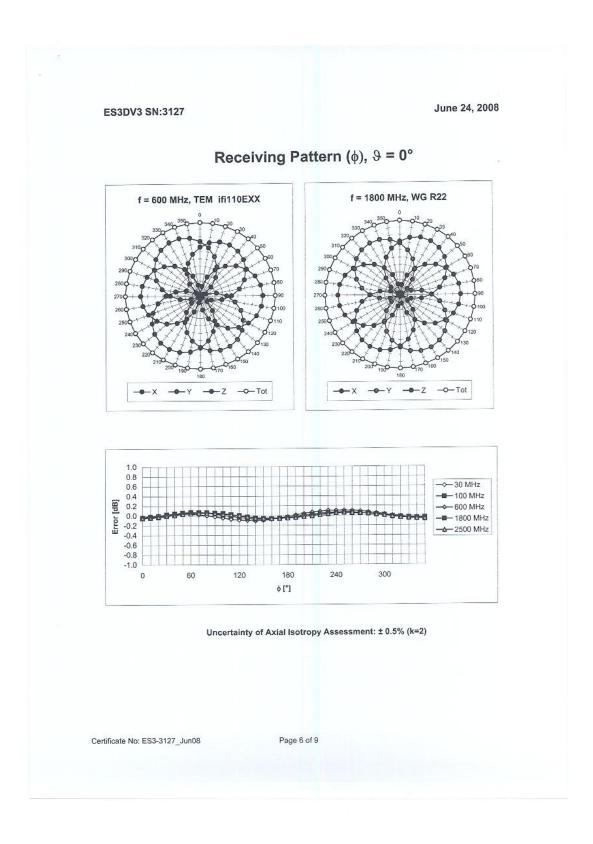

Manufactured: Last calibrated: Recalibrated: July 11, 2006 August 28, 2007 June 24, 2008

Calibrated for DASY Systems (Note: non-compatible with DASY2 system!)

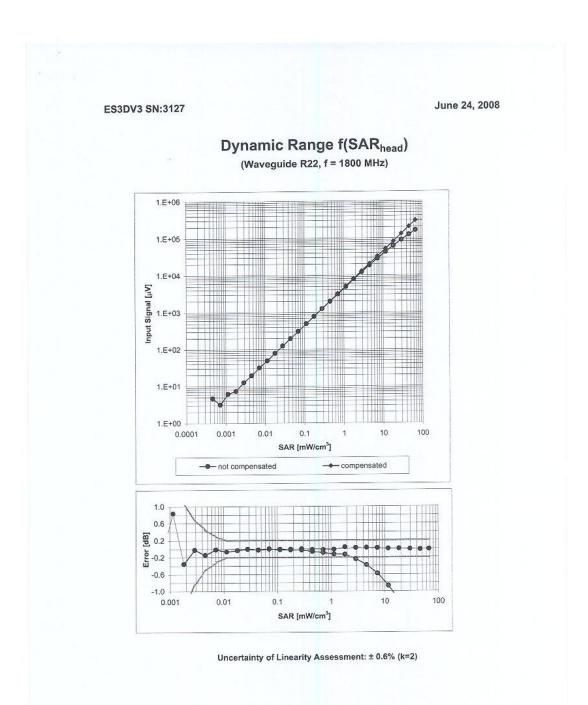
Certificate No: ES3-3127_Jun08

Page 3 of 9

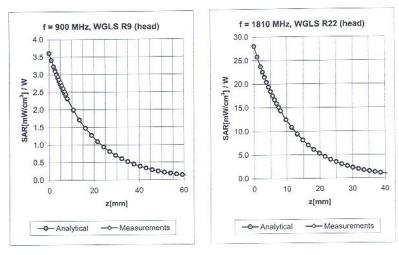

NormY1.28 \pm 10.1% μ V/(V/m)2DCP Y96 mVNormZ1.21 \pm 10.1% μ V/(V/m)2DCP Z94 mVivity in Tissue Simulating Liquid (Conversion Factors)ee Page 8.ary Effect900 MHzTypical SAR gradient: 5 % per mmSensor Center to Phantom Surface Distance3.0 mm4.0 mmSAR _{be} [%]Without Correction Algorithm11.06.7SAR _{be} [%]With Correction Algorithm0.90.51810 MHzTypical SAR gradient: 10 % per mmSensor Center to Phantom Surface Distance3.0 mm4.0 mmSAR _{be} [%]With Correction Algorithm10.35.1SAR _{be} [%]Without Correction Algorithm10.35.1SAR _{be} [%]With Correction Algorithm0.80.5	ES3DV3 SN:3127				June 24, 2008
with in Free Space ADiode Compression BNormX1.26 \pm 10.1% μ V/(V/m)2DCP X91 mVNormY1.28 \pm 10.1% μ V/(V/m)2DCP Z94 mVNormZ1.21 \pm 10.1% μ V/(V/m)2DCP Z94 mVwith in Tissue Simulating Liquid (Conversion Factors)ee Page 8.ary Effect900 MHzTypical SAR gradient: 5% per mmSensor Center to Phantom Surface Distance3.0 mm4.0 mmSAR _{be} [%]Without Correction Algorithm11.06.7SAR _{be} [%]Without Correction Algorithm10.35.1Sensor Center to Phantom Surface Distance3.0 mm4.0 mmSAR _{be} [%]Without Correction Algorithm0.80.5Toffset3.0 mm0.80.5r Offset2.0 mm0.5Probe Tip to Sensor Center2.0 mm	DASY - Para	ameters of P	robe: ES3I	DV3 SN:3	127
NormX1.26 ± 10.1% $\mu V/(V/m)^2$ DCP X91 mVNormY1.28 ± 10.1% $\mu V/(V/m)^2$ DCP Y96 mVNormZ1.21 ± 10.1% $\mu V/(V/m)^2$ DCP Z94 mVivity in Tissue Simulating Liquid (Conversion Factors)ee Page 8.ary Effect900 MHzTypical SAR gradient: 5 % per mmSensor Center to Phantom Surface Distance3.0 mm4.0 mmSAR _{bo} [%]Without Correction Algorithm11.06.7SAR _{bo} [%]With Correction Algorithm0.90.51810 MHzTypical SAR gradient: 10 % per mmSensor Center to Phantom Surface Distance3.0 mm4.0 mmSAR _{bo} [%]Without Correction Algorithm10.35.1SAR _{bo} [%]Without Correction Algorithm0.80.5r Offset2.0 mm0.5Probe Tip to Sensor Center2.0 mm					
NormY 1.28 ± 10.1% $\mu V/(V/m)^2$ DCP Y 96 mV NormZ 1.21 ± 10.1% $\mu V/(V/m)^2$ DCP Z 94 mV ivity in Tissue Simulating Liquid (Conversion Factors) ee Page 8. ary Effect 900 MHz Typical SAR gradient: 5 % per mm Sensor Center to Phantom Surface Distance 3.0 mm 4.0 mm SAR _{bo} [%] Without Correction Algorithm 11.0 6.7 SAR _{bo} [%] With Correction Algorithm 0.9 0.5 1810 MHz Typical SAR gradient: 10 % per mm Sensor Center to Phantom Surface Distance 3.0 mm 4.0 mm SAR _{bo} [%] With Correction Algorithm 0.3 5.1 State Typical SAR gradient: 10 % per mm Sansor Center to Phantom Surface Distance 3.0 mm 4.0 mm SAR _{bo} [%] Without Correction Algorithm 10.3 5.1 SAR _{bo} [%] With Correction Algorithm 0.8 0.5 r Offset Probe Tip to Sensor Center 2.0 mm ported uncertainty of measurement is stated as the standard uncertainty of rement multiplied by the coverage factor k=2, which for a normal distribution	Sensitivity in Fre	ee Space ^A		Diode C	Compression ^B
NormZ 1.21 ± 10.1% µV/(V/m) ² DCP Z 94 mV ivity in Tissue Simulating Liquid (Conversion Factors) ee Page 8. ary Effect 900 MHz Typical SAR gradient: 5 % per mm Sensor Center to Phantom Surface Distance 3.0 mm 4.0 mm SAR _{be} [%] Without Correction Algorithm 11.0 6.7 SAR _{be} [%] With Correction Algorithm 0.9 0.5 1810 MHz Typical SAR gradient: 10 % per mm Sensor Center to Phantom Surface Distance 3.0 mm 4.0 mm SAR _{be} [%] Without Correction Algorithm 10.3 5.1 State Typical SAR gradient: 10 % per mm SAR _{be} [%] 0.8 0.5 r Offset 2.0 mm 0.5 10.3 5.1 probe Tip to Sensor Center 2.0 mm 2.0 mm	NormX	1.26 ± 10.1%		DCP X	91 mV
ivity in Tissue Simulating Liquid (Conversion Factors) ee Page 8. ary Effect 900 MHz Typical SAR gradient: 5 % per mm Sensor Center to Phantom Surface Distance 3.0 mm 4.0 mm SAR _{be} [%] Without Correction Algorithm 11.0 6.7 SAR _{be} [%] With Correction Algorithm 0.9 0.5 1810 MHz Typical SAR gradient: 10 % per mm Sensor Center to Phantom Surface Distance 3.0 mm 4.0 mm SAR _{be} [%] Without Correction Algorithm 0.8 0.5 r Offset Probe Tip to Sensor Center 2.0 mm	NormY	1.28 ± 10.1%		DCP Y	96 mV
ee Page 8. ary Effect 900 MHz Typical SAR gradient: 5 % per mm Sensor Center to Phantom Surface Distance 3.0 mm 4.0 mm SAR _{be} [%] Without Correction Algorithm 11.0 6.7 SAR _{be} [%] With Correction Algorithm 0.9 0.5 1810 MHz Typical SAR gradient: 10 % per mm Sensor Center to Phantom Surface Distance 3.0 mm 4.0 mm SAR _{be} [%] Without Correction Algorithm 10.3 5.1 SAR _{be} [%] Without Correction Algorithm 0.8 0.5 r Offset Probe Tip to Sensor Center 2.0 mm	NormZ	1.21 ± 10.1%	μV/(V/m) ²	DCP Z	94 mV
ary Effect 900 MHz Typical SAR gradient: 5 % per mm Sensor Center to Phantom Surface Distance 3.0 mm 4.0 mm SAR _{bo} [%] Without Correction Algorithm 11.0 6.7 SAR _{bo} [%] With Correction Algorithm 0.9 0.5 1810 MHz Typical SAR gradient: 10 % per mm Sensor Center to Phantom Surface Distance 3.0 mm 4.0 mm SAR _{bo} [%] Without Correction Algorithm 10.3 5.1 SAR _{bo} [%] With Correction Algorithm 0.8 0.5 r Offset Probe Tip to Sensor Center 2.0 mm	Sensitivity in Tis	sue Simulating L	iquid (Convers	sion Factors)	
900 MHz Typical SAR gradient: 5 % per mm Sensor Center to Phantom Surface Distance 3.0 mm 4.0 mm SAR _{bo} [%] Without Correction Algorithm 11.0 6.7 SAR _{bo} [%] With Correction Algorithm 0.9 0.5 1810 MHz Typical SAR gradient: 10 % per mm Sensor Center to Phantom Surface Distance 3.0 mm 4.0 mm SAR _{bo} [%] Without Correction Algorithm 10.3 5.1 SAR _{bo} [%] With Correction Algorithm 0.8 0.5 r Offset 2.0 mm 2.0 mm Probe Tip to Sensor Center 2.0 mm 2.0 mm	Please see Page 8.				
Sensor Center to Phantom Surface Distance 3.0 mm 4.0 mm SAR _{be} [%] Without Correction Algorithm 11.0 6.7 SAR _{be} [%] With Correction Algorithm 0.9 0.5 1810 MHz Typical SAR gradient: 10 % per mm Sensor Center to Phantom Surface Distance 3.0 mm 4.0 mm SAR _{be} [%] Without Correction Algorithm 10.3 5.1 SAR _{be} [%] Without Correction Algorithm 0.8 0.5 r Offset Probe Tip to Sensor Center 2.0 mm	Boundary Effect	t			
SAR _{be} [%] Without Correction Algorithm 11.0 6.7 SAR _{be} [%] With Correction Algorithm 0.9 0.5 1810 MHz Typical SAR gradient: 10 % per mm Sensor Center to Phantom Surface Distance 3.0 mm 4.0 mm SAR _{be} [%] Without Correction Algorithm 10.3 5.1 SAR _{be} [%] Without Correction Algorithm 0.8 0.5 r Offset Probe Tip to Sensor Center 2.0 mm Probe Tip to Sensor Center 2.0 mm	TSL 9	900 MHz Typical S	AR gradient: 5 % p	er mm	
SAR _{be} [%] With Correction Algorithm 0.9 0.5 1810 MHz Typical SAR gradient: 10 % per mm Sensor Center to Phantom Surface Distance 3.0 mm 4.0 mm SAR _{be} [%] Without Correction Algorithm 10.3 5.1 SAR _{be} [%] With Correction Algorithm 0.8 0.5 r Offset Probe Tip to Sensor Center 2.0 mm	Sensor Cente	er to Phantom Surface D	listance	3.0 mm 4	.0 mm
1810 MHz Typical SAR gradient: 10 % per mm Sensor Center to Phantom Surface Distance 3.0 mm 4.0 mm SAR _{be} [%] Without Correction Algorithm 10.3 5.1 SAR _{be} [%] With Correction Algorithm 0.8 0.5 r Offset 2.0 mm Probe Tip to Sensor Center 2.0 mm	SAR _{be} [%]	Without Correction /	Algorithm	11.0	6.7
Sensor Center to Phantom Surface Distance 3.0 mm 4.0 mm SAR _{be} [%] Without Correction Algorithm 10.3 5.1 SAR _{be} [%] With Correction Algorithm 0.8 0.5 r Offset Probe Tip to Sensor Center 2.0 mm corted uncertainty of measurement is stated as the standard uncertainty of rement multiplied by the coverage factor k=2, which for a normal distribution	SAR _{be} [%]	With Correction Algo	orithm	0.9	0.5
SAR _{be} [%] Without Correction Algorithm 10.3 5.1 SAR _{be} [%] With Correction Algorithm 0.8 0.5 r Offset Probe Tip to Sensor Center 2.0 mm corted uncertainty of measurement is stated as the standard uncertainty of rement multiplied by the coverage factor k=2, which for a normal distribution	TSL 18	310 MHz Typical S.	AR gradient: 10 %	per mm	
SAR _{be} [%] With Correction Algorithm 0.8 0.5 r Offset Probe Tip to Sensor Center 2.0 mm corted uncertainty of measurement is stated as the standard uncertainty of rement multiplied by the coverage factor k=2, which for a normal distribution	Sensor Cente	er to Phantom Surface D	listance	3.0 mm 4	.0 mm
r Offset Probe Tip to Sensor Center 2.0 mm ported uncertainty of measurement is stated as the standard uncertainty of rement multiplied by the coverage factor k=2, which for a normal distribution	SAR _{be} [%]	Without Correction	Algorithm	10.3	5.1
Probe Tip to Sensor Center 2.0 mm	SAR _{be} [%]	With Correction Alg	orithm	0.8	0.5
ported uncertainty of measurement is stated as the standard uncertainty of rement multiplied by the coverage factor k=2, which for a normal distribution	Sensor Offset				
rement multiplied by the coverage factor k=2, which for a normal distribution	Probe Tip to	Sensor Center		2.0 mm	
rement multiplied by the coverage factor k=2, which for a normal distribution					
trainties of NormX,Y,Z do not affect the $E^2\text{-field}$ uncertainty inside TSL (see Page 8).				see Page 8).	
al linearization parameter: uncertainty not required.	^o Numerical linearization pa	arameter: uncertainty not requi	red.		



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: ES3-3127_Jun08

Page 5 of 9


Certificate No: ES3-3127_Jun08

Page 7 of 9

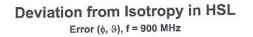
Page 69 of 71

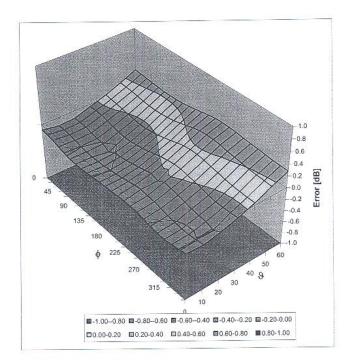
ES3DV3 SN:3127

June 24, 2008

Conversion Factor Assessment

ConvF Uncertainty f [MHz] Validity [MHz]^C TSL Permittivity Conductivity Alpha Depth Head 41.5 ± 5% 0.90 ± 5% 0.50 1.30 5.96 ± 11.0% (k=2) 835 ± 50 / ± 100 0.80 1.30 5.75 ± 11.0% (k=2) Head 41.5 ± 5% 0.97 ± 5% 900 ± 50 / ± 100 0.50 1.49 5.04 ± 11.0% (k=2) Head 40.0 ± 5% 1.40 ± 5% ± 50 / ± 100 1810 Head 40.0 ± 5% 1.40 ± 5% 0.66 1.30 5.06 ± 11.0% (k=2) 1900 ± 50 / ± 100 Body 55.2 ± 5% 0.97 ± 5% 0.59 1.34 5.96 ± 11.0% (k=2) 835 ± 50 / ± 100 Body 55.0 ± 5% 1.05 ± 5% 0.60 1.30 5.82 ± 11.0% (k=2) 900 ± 50 / ± 100 Body $53.3 \pm 5\%$ $1.52 \pm 5\%$ 0.42 1.74 $4.76 \pm 11.0\%$ (k=2) 1810 ± 50 / ± 100 Body 53.3 ± 5% 1.52 ± 5% 0.46 1.73 4.48 ± 11.0% (k=2) 1900 ± 50 / ± 100


^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


Certificate No: ES3-3127_Jun08

Page 8 of 9

ES3DV3 SN:3127

June 24, 2008

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3127_Jun08

Page 9 of 9

7.11 Certificate of conformity

Schmid & Partner Engineering AG	S	р	е	а	g	-
Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com						

Certificate of conformity / First Article Inspection

ltem	SAM Twin Phantom V4.0
Type No	QD 000 P40 C
Series No	TP-1150 and higher
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland

Tests

The series production process used allows the limitation to test of first articles.

Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas; 6mm +/- 0.2mm at ERP	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards if handled and cleaned according to the instructions	DEGMBE based simulating liquids	Pre-series, First article, Samples

Standards

[1] CENELEC EN 50361

[2] IEEE Std 1528-200x Draft CD 1.1 (Dec 02)
 [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

7.8.2003

Signature / Stamp

hai lats Schmid & Partner Fin Brudelt Engineering AG Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fax +41 1 245 97 79