FCC REPORT

Applicant:	Verykool USA Inc					
Address of Applicant:	3636 Nobel Drive, Suite 325, San Diego, CA 92122					
Equipment Under Test (E	EUT)					
Product Name:	Mobile Phone					
Model No.:	i316					
FCC ID:	WA6I316					
Applicable standards:	FCC CFR Title 47 Part 15 Subpart B: 2011					
Date of sample receipt:	10 May 2013					
Date of Test:	11 May to 26 2013					
Date of report issued:	28 May 2013					
Test Result :	Pass *					

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	28 May 2013	Original

Prepared by:

Date:

28 May 2013

Report Clerk

Reviewed by:

Riger Feng

Date:

28 May 2013

Project Engineer

Shenzhen Zhongjian Nanfang Testing Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	CO	NTENTS	
4	TES	ST SUMMARY	4
5	GEI	NERAL INFORMATION	5
	5.1 5.2 5.3 5.4 5.5 5.6 5.7	CLIENT INFORMATION GENERAL DESCRIPTION OF E.U.T. OPERATING MODES DESCRIPTION OF SUPPORT UNITS LABORATORY FACILITY LABORATORY LOCATION TEST INSTRUMENTS LIST	5
6	-		
	6.1 6.2	CONDUCTED EMISSION RADIATED EMISSION	
7	TES	ST SETUP PHOTO	
8	EUT	CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Item	Section in CFR 47	Result		
Conducted Emission	Part15.107	Pass		
Radiated Emission	Part15.109	Pass		

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Verykool USA Inc
Address of Applicant:	3636 Nobel Drive, Suite 325, San Diego, CA 92122
Manufacturer:	Verykool Wireless Technology Ltd.
Address of Manufacturer:	Room 1701(5 th floor),Reward Building c,No.2032 nd Section of Wang Jing, Li Ze Zhong Yuan ,Chaoyang District.Beijing, P.R. of China 100102

5.2 General Description of E.U.T.

Product Name:	Mobile Phone				
Model No.:	i316				
AC adapter:	Input:100-300V AC,50/60Hz 0.2A				
	Output:5.0V DC MAX500mA				
Power supply:	Rechargeable Li-ion Battery DC3.7V/800mAh				

5.3 Operating Modes

Operating mode	Detail description
Downloading mode	Keep the EUT in Downloading mode(Worst case)
Playing mode	Keep the EUT in Playing mode
Recording mode	Keep the EUT in Recording mode
FM mode	Keep the EUT in FM receiever mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

DoC

05257893

FCC ID/DoC Serial Number Manufacturer Description Model DELL PC **OPTIPLEX745** N/A DoC DELL MONITOR E178FPC N/A DoC DELL **KEYBOARD** SK-8115 N/A DoC DELL MOUSE MOC5UO N/A DoC

5.4 Description of Support Units

5.5 Laboratory Facility

ΗP

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 817957

Printer

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

CB495A

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

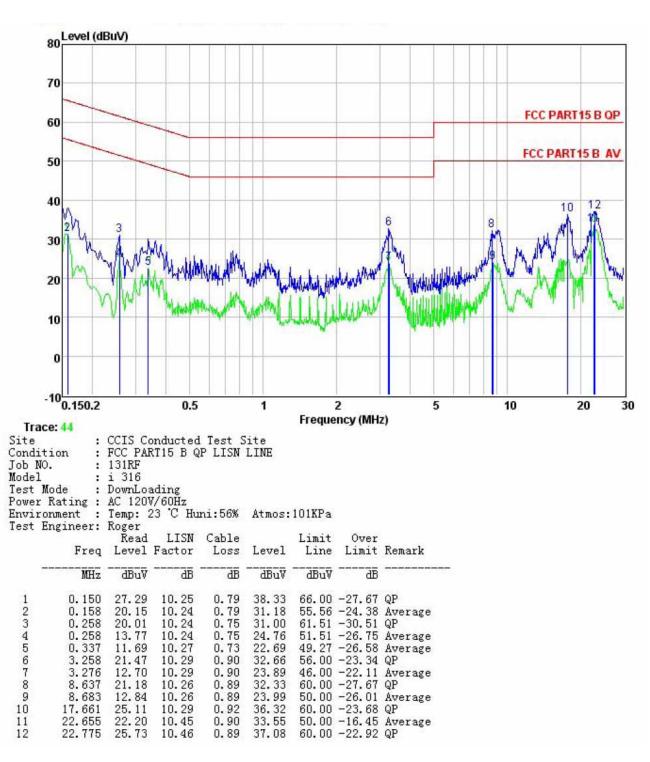
Shenzhen Zhongjian Nanfang Testing Co., Ltd. Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District,Shenzhen, Guangdong,China Tel: 0755-23118282 Fax: 0755-23116366

5.7 Test Instruments list

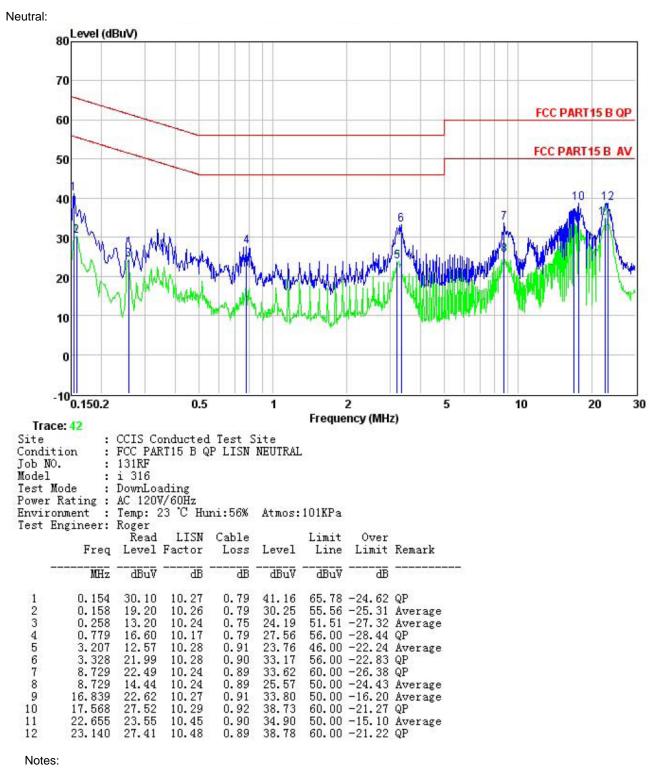
Radiated Emission:								
ltem	Test Equipment Manufacturer		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	June 09 2012	June 08 2013		
2	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr.01 2013	Mar. 31 2014		
3	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	June 04 2012	June 03 2013		
4	Double -ridged SCHWARZBECK waveguide horn MESS-ELEKTRONIK		BBHA9120D	CCIS0006	May 30 2012	May. 29 2013		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
6	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2013	Mar. 31 2014		
7	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2013	Mar. 31 2014		
8	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2013	Mar. 31 2014		
9	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2013	Mar. 31 2014		
10	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2013	Mar. 31 2014		
11	Amplifier(10KHz-1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2013	Mar. 31 2014		
12	Amplifier(1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2012	June 08 2013		
13	Spectrum analyzer	Rohde & Schwarz	FSP	CCIS0023	May 29 2013	May 28 2014		
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		

Cond	Conducted Emission:									
ltem	Test Equipment	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)							
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	June 09 2012	June 08 2013				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	May 25 2013	May. 24 2014				
3	LISN	CHASE	MN2050D	CCIS0074	Apr. 01 2013	Mar. 31 2014				
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2013	Mar. 31 2014				

6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part15 B Section 15.107						
Test Method:	ANSI C63.4:2003						
Test Frequency Range:	150kHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:		Limit (c					
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
 	0.5-30	60	50				
Test setup:	Reference Plane		_				
Test procedure	LISN 40cm 80cm Filter AC power Equipment E.U.T Filter AC power Test table/Insulation plane EMI Receiver Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line						
	 impedance stabilization netwo impedance for the measuring e 2. The peripheral devices are als that provides a 50ohm/50uH c (Please refers to the block diag 3. Both sides of A.C. line are che order to find the maximum emi of the interface cables must be conducted measurement. 	equipment. o connected to the main oupling impedance with 5 gram of the test setup an ecked for maximum cond ission, the relative positio	power through a LISN 50ohm termination. d photographs). lucted interference. In ons of equipment and all				
Test environment:	Temp.: 23 °C Humic	d.: 56% Pres	ss.: 1 01kPa				
Measurement Record:			Uncertainty: 3.28dB				
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Pre-scan all test mode in the se worse case mode.	ction 5.3, and found the	bleow mode which it is				
Test results:	Pass						


Measurement data:

Line:

Shenzhen Zhongjian Nanfang Testing Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

1. The following Quasi-Peak and Average measurements were performed on the EUT

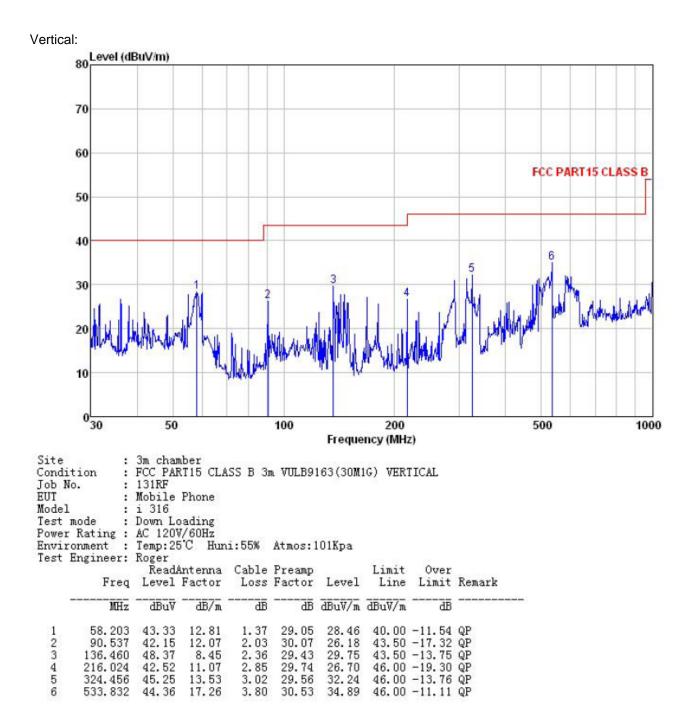
2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Test Requirement: FCC Part15 B Section 15.109 Test Method: ANSI C63.4:2003 30MHz to 6000MHz **Test Frequency Range:** Test site: Measurement Distance: 3m (Semi-Anechoic Chamber) RBW VBW Receiver setup: Detector Remark Frequency 30MHz-1GHz Quasi-peak 100KHz 300KHz Quasi-peak Value Peak 1MHz 3MHz Peak Value Above 1GHz Peak 1MHz 10Hz Average Value Limit: Limit (dBuV/m @3m) Frequency Remark 30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value 54.0 Average Value Above 1GHz 74.0 Peak Value Test setup: Below 1GHz Antenna Tower Search 3m Antenna EUT 4m RF Test Receiver Д **v** 1m Turn 0.8m Table]68 Ground Plane Above 1GHz Antenna Tower Horn Antenna EUT 4m Spectrum Analyzer ¥ 1m ŵ Turn 0.8m Table ÷ Amplifier

6.2 Radiated Emission

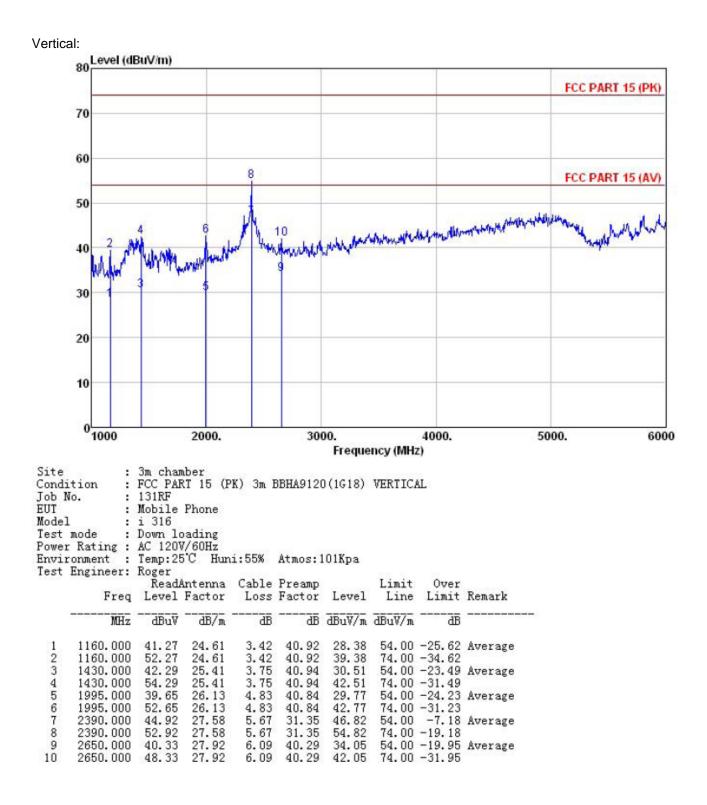
1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.						
2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.						
3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.						
4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.						
5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.						
6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.						
Temp.: 24 °C Humid.: 65% Press.: 1 01kPa						
Uncertainty: 4.88dB						
Refer to section 5.7 for details						
Pre-scan all test mode in the section 5.3, and found the bleow mode which it is worse case mode.						
Passed						

Remark:


1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

		ita									
Below '	1GHz										
Horizor	ntal: 80 Level (d	Pu\/m)									
	80 Lever (u	buvinij									
	70		-							_	
	60				_		-			-	
										FCC PA	RT15 CLASS B
	50		_		_						
	40								34	1	
							10.5		NI S	6	
	30		_		_		2	/	W I	I be	
			1					Y		M	In MARILIAN
	20		A			-	Jul 1		"	Las In	Mr. IL others .
	a little	Musel 4			11	100	M	ANN AND			
	10		1	Valor	handmined	est off by the	Al Mari	<u></u>			
				a ul Anex		2014.24					
	0										
	⁰ 30	50			100	Freque	200 ency (MH	7)		500	1000
Site		3m cham	ber					_,			
Condi Job N	tion :	FCC PAR 131RF		ISS B 3	m VULB9	163 (30M	IG) HOR	IZONTAL			
EUT	:	Mobile	Phone								
Model Test	mode :	i 316 Down Lo	ading								
	Rating : onment :	AC 120V Temp:25	7/60Hz C Hun	i:55%	Atmos:	101Kpa					
Test	Engineer:	Roger	intenna				Limit	Over			
	Freq	Level						Limit	Remark		
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB			
1	57.796	38.16	12.85	1.37	29.01	23.37	40.00	-16.63	QP		
2 3	167.824 291.036	47.88 52.45	8.90 12.89	2.64	29.01	30.41 38.80	43.50	-13.09	QP		
4 5 6	313.276	52.47	13.24	2.98	29.50	39.19	46.00	-6.81	QP		
6	420.580 492.469	47.62 45.79	15.47 16.39	3.13 3.55	30.17 30.52	36.05 35.21		-9.95 -10.79			

Measurement Data



Above	1GHz										
Horizor											
	80 Level (dl	BuV/m)								1000 AMA 1000	
								_		FCC PART 15	(PK)
	70							_			
	60			8						FCC PART 15	(AV)
	50										
			6	A	10		12		bourders, the other	monthly with	hur
	40	2 4	1 west	d the	haven the	at in the spectrum of	Wanner	When a.		And a b	
	an international	Mulmonderstand	and the state of t		9		11				
	30	3	5								
	20										
	10										
	0 1000		2000.		20	00.		4000.		5000.	6000
	1000		2000.		50		ncy (MH)			5000.	0000
Site		3m cham FCC PAR		K) 3m 1	BBHA912	n(1618)	HORTZON	NTAL.			
Job I EUT	No. :	131RF Mobile									
Mode:	1 :	i 316 Down lo									
Power	r Rating : ronment :	AC 120V	/60Hz	i:55%	Atmos:1	01Kna					
	Engineer:	Roger									
		Read&	ntenna	Cable	Preamp		Limit	Over			
	Freq	ReadA Level	ntenna Factor				Limit Line	Over Limit	Remark		
	Freq MHz				Factor		Line	Limit	Remark 		
1	MHz 1375.000	Level dBuV 39.74	Factor 	Loss dB 3.68	Factor dB 40.93	Level dBuV/m 28.10	Line dBuV/m 54.00	Limit dB -25.90	Remark Average		
2 3	MHz 1375.000 1375.000 1710.000	Level dBuV 39.74 51.74 38.80	Tactor dB/m 25.61 25.61 24.98	Loss dB 3.68 3.68 4.42	Factor dB 40.93 40.93 40.98	Level dBuV/m 28.10 40.10 27.22	Line dBuV/m 54.00 74.00 54.00	Limit -25.90 -33.90 -26.78			
2 3 4 5	MHz 1375.000 1375.000 1710.000 1710.000 1995.000	Level dBuV 39.74 51.74 38.80 50.80 37.22	Exactor dB/m 25.61 25.61 24.98 24.98 26.13	Loss dB 3.68 3.68 4.42 4.42 4.42 4.83	Factor dB 40.93 40.93 40.98 40.98 40.98	Level dBuV/m 28.10 40.10 27.22 39.22 27.34	Line dBuV/m 54.00 74.00 54.00 74.00 54.00 54.00	Limit -25.90 -33.90 -26.78 -34.78 -26.66	Average		
2 3 4 5 6 7	MHz 1375.000 1375.000 1710.000 1710.000 1995.000 1995.000 2390.000	Level dBuV 39.74 51.74 38.80 50.80 37.22 52.22 36.60	Factor dB/m 25.61 25.61 24.98 24.98 24.98 26.13 26.13 27.58	Loss dB 3.68 3.68 4.42 4.42 4.83 4.83 5.67	Factor dB 40.93 40.93 40.98 40.98 40.84 40.84 31.35	Level dBuV/m 28.10 40.10 27.22 39.22 27.34 42.34 38.50	Line dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00 54.00 54.00 54.00	Limit -25.90 -33.90 -26.78 -34.78 -26.66 -31.66 -15.50	Average Average		
234 567 89	MHz 1375.000 1375.000 1710.000 1710.000 1995.000 1995.000 2390.000 2390.000 2860.000	Level dBuV 39.74 51.74 38.80 50.80 37.22 52.22 36.60 51.60 38.88	Factor dB/m 25.61 24.98 24.98 26.13 26.13 27.58 27.58 28.38	Loss dB 3.68 3.68 4.42 4.42 4.43 4.83 5.67 5.67 6.01	Factor dB 40.93 40.93 40.98 40.98 40.84 40.84 31.35 31.35 40.61	Level dBuV/m 28.10 40.10 27.22 39.22 27.34 42.34 38.50 53.50 32.66	Line dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 54.00	Limit -25.90 -33.90 -26.78 -34.78 -26.66 -31.66 -15.50 -20.50 -21.34	Average Average Average		
2 3 4 5 6 7 8	MHz 1375.000 1375.000 1710.000 1710.000 1995.000 1995.000 2390.000 2390.000	Level dBuV 39.74 51.74 38.80 50.80 37.22 52.22 36.60 51.60	Factor dB/m 25.61 24.98 24.98 26.13 26.13 27.58 27.58	Loss dB 3.68 3.68 4.42 4.42 4.42 4.83 4.83 5.67 5.67	Factor dB 40.93 40.93 40.98 40.98 40.84 40.84 31.35 31.35 40.61 40.61 40.54	Level dBuV/m 28.10 40.10 27.22 39.22 27.34 42.34 38.50 53.50 32.66 41.66 34.15	Line dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	Limit -25.90 -33.90 -26.78 -34.78 -26.66 -31.66 -31.65 -20.50 -21.34 -32.34 -19.85	Average Average Average Average Average		

Shenzhen Zhongjian Nanfang Testing Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Shenzhen Zhongjian Nanfang Testing Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102