Report No.: TRE1309008905 Page 111 of 139 Issued:2013-11-12

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.9~\Omega + 6.8~\mathrm{j}\Omega$	
Return Loss	- 22.9 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.5 Ω + 7.4 jΩ	
Return Loss	- 22.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction) 1.195 ns	Electrical Delay (one direction)	1.195 ns
---	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

Date: 28.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d150

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ mho/m}$; $\varepsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

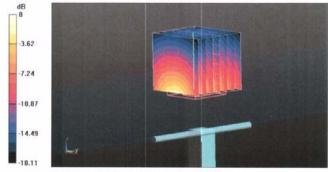
Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2012

Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.07.2012

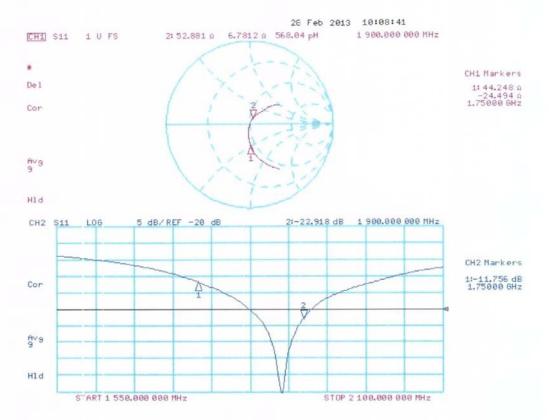
Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (8x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.182 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 17.6990


SAR(1 g) = 9.94 mW/g; SAR(10 g) = 5.24 mW/g

Maximum value of SAR (measured) = 12.584 mW/g

0 dB = 12.580 mW/g = 21.99 dB mW/g

Impedance Measurement Plot for Head TSL

Report No.: TRE1309008905 Page 114 of 139 Issued:2013-11-12

DASY5 Validation Report for Body TSL

Date: 28.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d150

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.56 \text{ mho/m}$; $\varepsilon_r = 53$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2012

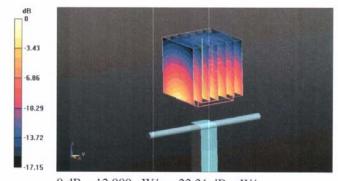
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52 8.0(692); SEMCAD X 14.6.4(4989)

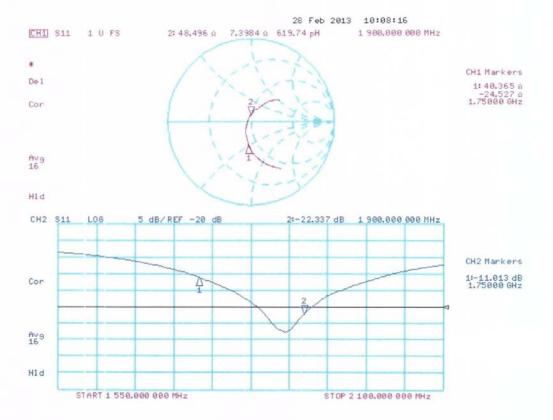
Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.968 V/m; Power Drift = 0.0033 dB

Peak SAR (extrapolated) = 18.0350

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.32 mW/g

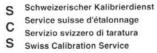

Maximum value of SAR (measured) = 12.901 mW/g

0 dB = 12.900 mW/g = 22.21 dB mW/g

Page 115 of 139 Issued:2013-11-12

Impedance Measurement Plot for Body TSL

Report No.: TRE1309008905 Page 116 of 139 Issued:2013-11-12


6.4. D2450V2 Dipole Calibration Ceriticate

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

CIQ SZ (Auden)

Certificate No: D2450V2-884_Feb13

Accreditation No.: SCS 108

Object	D2450V2 - SN: 8	84	
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	February 29, 201	3	
		onal standards, which realize the physical un robability are given on the following pages an	
		ry facility: environment temperature (22 ± 3)°0	C and humidity < 70%.
Calibration Equipment used (M&			C and humidity < 70%. Scheduled Calibration
Calibration Equipment used (M&	TE critical for calibration)	cal Date (Certificate No.) 05-Oct-12 (No. 217-01451)	
rimary Standards ower meter EPM-442A	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
rimary Standards ower meter EPM-442A ower sensor HP 8481A	TE critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 05-Oct-12 (No. 217-01451)	Scheduled Calibration Oct-13
alibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator	TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 05-Oct-12 (No. 217-01451) 05-Oct-12 (No. 217-01451)	Scheduled Calibration Oct-13 Oct-13
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Certificate No.) 05-Oct-12 (No. 217-01451) 05-Oct-12 (No. 217-01451) 29-Mar-12 (No. 217-01368)	Scheduled Calibration Oct-13 Oct-13 Apr-13
calibration Equipment used (M& crimary Standards cower meter EPM-442A cower sensor HP 8481A deference 20 dB Attenuator type-N mismatch combination deference Probe ES3DV3	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	Cal Date (Certificate No.) 05-Oct-12 (No. 217-01451) 05-Oct-12 (No. 217-01451) 29-Mar-12 (No. 217-01368) 29-Mar-12 (No. 217-01371)	Scheduled Calibration Oct-13 Oct-13 Apr-13 Apr-13
rimary Standards ower meter EPM-442A ower sensor HP 8481A deference 20 dB Attenualor ype-N mismatch combination deference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 05-Oct-12 (No. 217-01451) 05-Oct-12 (No. 217-01451) 29-Mar-12 (No. 217-01368) 29-Mar-12 (No. 217-01371) 30-Dec-12 (No. ES3-3205_Dec12) 04-Jul-12 (No. DAE4-601_Jul12)	Scheduled Calibration Oct-13 Oct-13 Apr-13 Apr-13 Dec-13 Jul-13
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenualor Type-N mismatch combination Reference Probe ES3DV3 PAE4	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (209) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 05-Oct-12 (No. 217-01451) 05-Oct-12 (No. 217-01451) 29-Mar-12 (No. 217-01368) 29-Mar-12 (No. 217-01371) 30-Dec-12 (No. ES3-3205_Dec12)	Scheduled Calibration Oct-13 Oct-13 Apr-13 Apr-13 Dec-13
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 05-Oct-12 (No. 217-01451) 05-Oct-12 (No. 217-01451) 29-Mar-12 (No. 217-01368) 29-Mar-12 (No. 217-01371) 30-Dec-12 (No. ES3-3205_Dec12) 04-Jul-12 (No. DAE4-601_Jul12) Check Date (in house)	Scheduled Calibration Oct-13 Oct-13 Apr-13 Apr-13 Dec-13 Jul-13 Scheduled Check
	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 05-Oct-12 (No. 217-01451) 05-Oct-12 (No. 217-01451) 29-Mar-12 (No. 217-01368) 29-Mar-12 (No. 217-01371) 30-Dec-12 (No. ES3-3205_Dec12) 04-Jul-12 (No. DAE4-601_Jul12) Check Date (in house) 18-Oct-02 (in house check Oct-12)	Scheduled Calibration Oct-13 Oct-13 Apr-13 Apr-13 Dec-13 Jul-13 Scheduled Check In house check: Oct-13
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Recondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 05-Oct-12 (No. 217-01451) 05-Oct-12 (No. 217-01451) 29-Mar-12 (No. 217-01368) 29-Mar-12 (No. 217-01371) 30-Dec-12 (No. ES3-3205_Dec12) 04-Jul-12 (No. DAE4-601_Jul12) Check Date (in house) 18-Oct-02 (in house check Oct-12) 04-Aug-99 (in house check Oct-12) 18-Oct-01 (in house check Oct-12)	Scheduled Calibration Oct-13 Oct-13 Apr-13 Apr-13 Dec-13 Jul-13 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Recondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 05-Oct-12 (No. 217-01451) 05-Oct-12 (No. 217-01451) 29-Mar-12 (No. 217-01368) 29-Mar-12 (No. 217-01371) 30-Dec-12 (No. ES3-3205_Dec12) 04-Jul-12 (No. DAE4-601_Jul12) Check Date (in house) 18-Oct-02 (in house check Oct-12) 04-Aug-99 (in house check Oct-12)	Scheduled Calibration Oct-13 Oct-13 Apr-13 Apr-13 Dec-13 Jul-13 Scheduled Check In house check: Oct-13 In house check: Oct-13

Report No.: TRE1309008905 Page 117 of 139 Issued:2013-11-12

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Report No.: TRE1309008905 Page 118 of 139 Issued:2013-11-12

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.9 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.36 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.2 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.3 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.98 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.7 mW / g ± 16.5 % (k=2)

Report No.: TRE1309008905 Page 119 of 139 Issued:2013-11-12

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.7 Ω + 2.1 j Ω	
Return Loss	- 27.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.7 \Omega + 3.7 j\Omega$
Return Loss	- 28.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.159 ns
Electrical Delay (one direction)	1.103 115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 06, 2011

Report No.: TRE1309008905 Page 120 of 139 Issued:2013-11-12

DASY5 Validation Report for Head TSL

Date: 29.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 884

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ mho/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2012

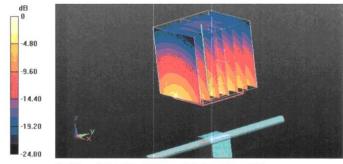
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2012

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

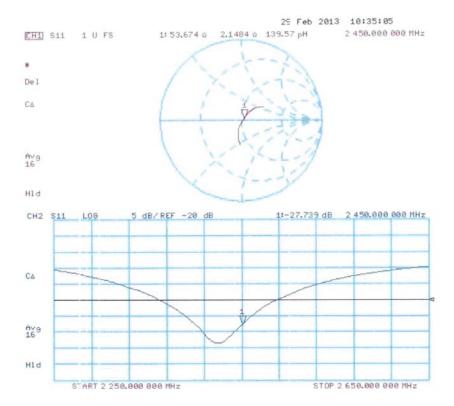
DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.8 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 28.4450


SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.36 mW/g

Maximum value of SAR (measured) = 17.648 mW/g

0 dB = 17.650 mW/g = 24.93 dB mW/g

Impedance Measurement Plot for Head TSL

Report No.: TRE1309008905 Page 122 of 139 Issued:2013-11-12

DASY5 Validation Report for Body TSL

Date: 29.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 884

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ mho/m}$; $\varepsilon_r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2012

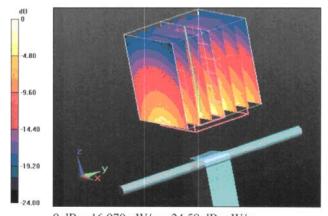
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.07.2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

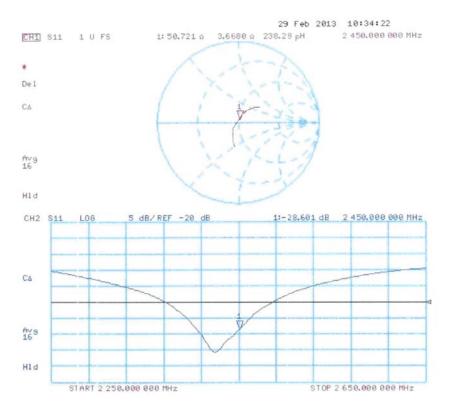
• DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.956 V/m; Power Drift = 0.0027 dB

Peak SAR (extrapolated) = 26.2360


SAR(1 g) = 12.8 mW/g; SAR(10 g) = 5.98 mW/g

Maximum value of SAR (measured) = 16.972 mW/g

0 dB = 16.970 mW/g = 24.59 dB mW/g

Impedance Measurement Plot for Body TSL

Report No.: TRE1309008905 Page 124 of 139 Issued:2013-11-12

6.5. DAE4 Calibration Ceriticate

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

ent CIQ SZ (Auden)		Certi	Certificate No: DAE4-1315_Feb13	
CALIBRATION C	ERTIFICATE			
Dbject	DAE4 - SD 000 D	04 BJ - SN: 1315		
Calibration procedure(s)	QA CAL-06.v24 Calibration proced	dure for the data acquisition	on electronics (DAE)	
Calibration date:	February 27, 2013	3	14-17 (Eq. 2 (10)) X (140) X (1	
The measurements and the unce	ertainties with confidence pro		nysical units of measurements (SI). pages and are part of the certificate. $(22\pm3)^{\circ}\text{C and humidity} < 70\%.$	
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration	
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-12 (No:11450)	Sep-13	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check	
Calibrator Box V2.1	SE UWS 053 AA 1001	05-Jan-12 (in house check)	In house check: Jan-13	
	Name	Function	Signature	
Calibrated by:	Andrea Guntli	Technician	- two	
Approved by:	Fin Bomholt	R&D Director	iv. Blitten	
This calibration certificate shall a	of he reproduced except in	full without written approval of the la	Issued: February 27, 2013	

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv

DAE data acquisition electronics

information used in DASY system to align probe sensor X to the robot Connector angle

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Report No.: TRE1309008905 Page 126 of 139 Issued:2013-11-12

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1.....+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	405.194 ± 0.1% (k=2)	405.031 ± 0.1% (k=2)	405.006 ± 0.1% (k=2)
Low Range	4.00179 ± 0.7% (k=2)	3.99504 ± 0.7% (k=2)	4.00535 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	20.0 ° ± 1 °

Appendix

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X - Input	199993.07	-0.46	-0.00
Channel X + Input	19998.21	0.29	0.00
Channel X - Input	-19997.04	5.94	-0.03
Channel Y + Input	199992.78	-1.05	-0.00
Channel Y + Input	19995.99	-1.88	-0.01
Channel Y - Input	-20001.41	1.50	-0.01
Channel Z + Input	199996.23	3.02	0.00
Channel Z + Input	19996.75	-0.72	-0.00
Channel Z - Input	-20003.50	-0.24	0.00

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	1999.32	-1.73	-0.09
Channel X + Input	200.22	-1.03	-0.51
Channel X - Input	-198.55	0.32	-0.16
Channel Y + Input	1997.53	-3.28	-0.16
Channel Y + Input	199.64	-1.21	-0.60
Channel Y - Input	-199.77	-0.78	0.39
Channel Z + Input	1997.90	-2.04	-0.10
Channel Z + Input	199.23	-1.21	-0.61
Channel Z - Input	-200.63	-1.12	0.56

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-1.10	-3.09
	- 200	4.35	3.23
Channel Y	200	-22.09	-22.46
	- 200	21.74	22.31
Channel Z	200	-4.46	-4.92
	- 200	3.65	2.86

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200		-2.62	-3.29
Channel Y	200	6.73	-	-2.17
Channel Z	200	8.11	5.38	-

Report No.: TRE1309008905 Page 128 of 139 Issued:2013-11-12

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16132	15682
Channel Y	16251	15151
Channel Z	15551	15659

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10 \mathrm{M}\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	1.32	0.22	2.38	0.46
Channel Y	-1.23	-2.04	-0.58	0.36
Channel Z	-1.89	-3.56	-1.12	0.39

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

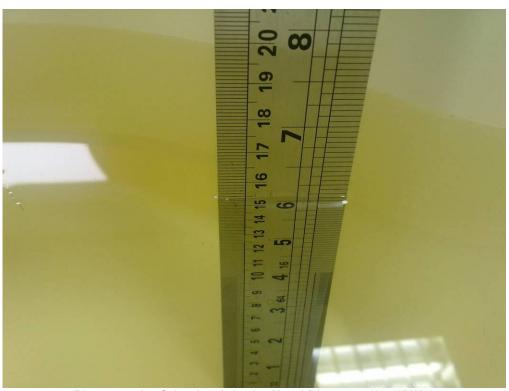
9. Power Consumption (Typical values for information)


Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

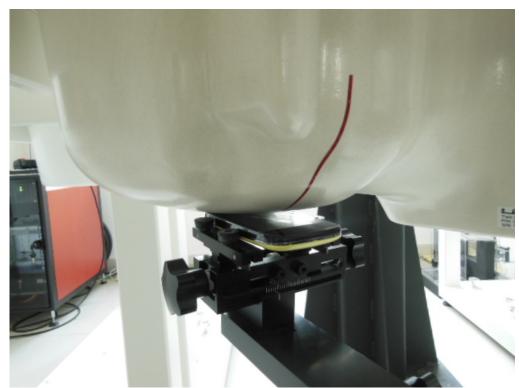
Certificate No: DAE4-1315_Feb13 Page 5 of 5

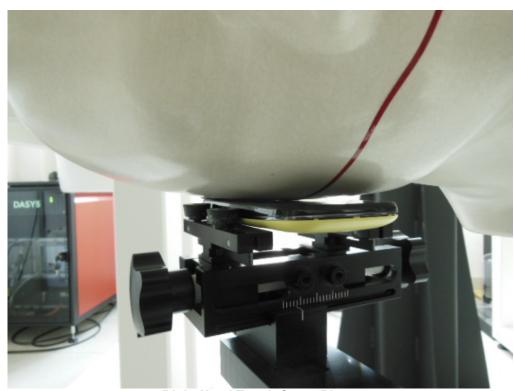

7. Test Setup Photos

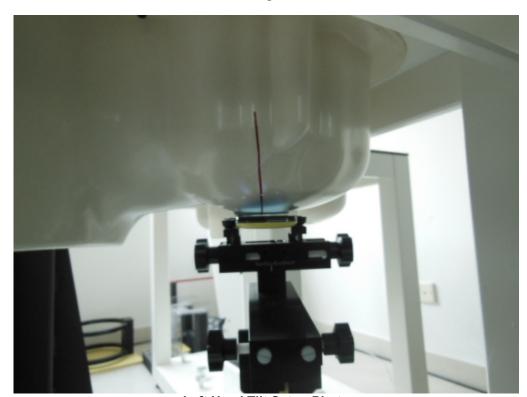
Photograph of the depth in the Head Phantom (835MHz)

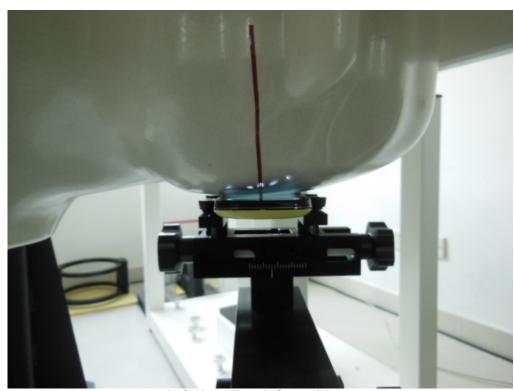

Photograph of the depth in the Body Phantom (835MHz)

Photograph of the depth in the Head Phantom (1900MHz)


Photograph of the depth in the Body Phantom (1900MHz)


Photograph of the depth in the Head Phantom (2450MHz)


Photograph of the depth in the Body Phantom (2450MHz)


Right Head Tilt Setup Photo

Right Head Touch Setup Photo

Left Head Tilt Setup Photo

Left Head Touch Setup Photo

10mm Body-worn Rear Side Setup Photo

10mm Body-worn Left SideSetup Photo

10mm Body-worn Right Side Setup Photo

10mm Body-worn Bottom Side Setup Photo

10mm Body-worn Rear Side (With Headset)Setup Photo

10mm Body-worn Front Side Setup Photo

Report No.: TRE1309008905 Page 137 of 139 Issued:2013-11-12

8. External Photos of the EUT

External Photos

.....End of Report.....