

## **12. OCCUPIED BANDWIDTH**

#### **12.1 Operating environment**

| Temperature       | : | 24 °C     |
|-------------------|---|-----------|
| Relative humidity | : | 48 % R.H. |

#### 12.2 Test set-up

The emission bandwidth (×dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated × dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least  $3\times$  the resolution bandwidth. When the occupied bandwidth limit is not stated in the applicable RSS or reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.
- The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3×RBW.



#### 12.3 Test equipment used

|          | Model Number | Manufacturer         | Description                  | Serial Number | Last Cal.          |
|----------|--------------|----------------------|------------------------------|---------------|--------------------|
| -        | FSV30        | Rohde & Schwarz      | Signal Analyzer              | 101372        | Jul. 24, 2019 (1Y) |
| ■ -      | AAMCS-UDC    | AA-MCS               | Directional Coupler          | 400           | Jul. 25, 2019 (1Y) |
| -        | MT8821C      | ANRITSU              | Radio Communication Analyzer | 6261849029    | Jul. 26, 2019 (1Y) |
| <b>-</b> | GP-4303D     | LG Precision Co.,Ltd | DC Power Supply              | 5071069       | Jan. 10, 2019 (1Y) |

All test equipment used is calibrated on a regular basis.

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)



## 12.4 Test data

## 12.4.1 Test data for LTE Band 4

-. Test Date : August 05, 2019 ~ August 23, 2019

| Test Result | : Pass  |                                                  |       |        |
|-------------|---------|--------------------------------------------------|-------|--------|
| Test Mode   | Channel | 26 dB Bandwidth99 % Occupied Bandwidth(MHz)(MHz) |       | Result |
| QPSK        | Low     | 1.598                                            | 1.159 | PASS   |
|             | Middle  | 1.578                                            | 1.139 | PASS   |
|             | High    | 1.618                                            | 1.139 | PASS   |

| Test Mode | Channel | 26 dB Bandwidth<br>(MHz) | 99 % Occupied Bandwidth<br>(MHz) | Result |
|-----------|---------|--------------------------|----------------------------------|--------|
|           | Low     | 1.698                    | 1.159                            | PASS   |
| 16QAM     | Middle  | 1.658                    | 1.139                            | PASS   |
|           | High    | 1.678                    | 1.179                            | PASS   |

Tested by: Ju Yun Park / Assistant Manager











Page 46 of 81

## 12.4.2 Test data for LTE Band 12

-. Test Date : August 05, 2019 ~ August 23, 2019

| Test Result | : Pass  |                          |                                  |        |
|-------------|---------|--------------------------|----------------------------------|--------|
| Test Mode   | Channel | 26 dB Bandwidth<br>(MHz) | 99 % Occupied Bandwidth<br>(MHz) | Result |
| QPSK        | Low     | 1.598                    | 1.139                            | PASS   |
|             | Middle  | 1.638                    | 1.159                            | PASS   |
|             | High    | 1.598                    | 1.139                            | PASS   |

| Test Mode | Channel | 26 dB Bandwidth<br>(MHz) | 99 % Occupied Bandwidth<br>(MHz) | Result |
|-----------|---------|--------------------------|----------------------------------|--------|
|           | Low     | 1.638                    | 1.179                            | PASS   |
| 16QAM     | Middle  | 1.638                    | 1.179                            | PASS   |
|           | High    | 1.679                    | 1.179                            | PASS   |

Tested by: Ju Yun Park / Assistant Manager

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)











Page 49 of 81

## 12.4.3 Test data for LTE Band 13

-. Test Date : August 05, 2019 ~ August 23, 2019

-. Test Result

• Pass

| . Test Result | • I <b>u</b> bb |                          |                                  |        |
|---------------|-----------------|--------------------------|----------------------------------|--------|
| Test Mode     | Channel         | 26 dB Bandwidth<br>(MHz) | 99 % Occupied Bandwidth<br>(MHz) | Result |
| QPSK          | Low             | 1.618                    | 1.159                            | PASS   |

| Test Mode | Channel | 26 dB Bandwidth<br>(MHz) | 99 % Occupied Bandwidth<br>(MHz) | Result |
|-----------|---------|--------------------------|----------------------------------|--------|
| 16QAM     | Low     | 1.618                    | 1.159                            | PASS   |

0

Tested by: Ju Yun Park / Assistant Manager







# 13. Conducted Band Edge

| Temperature       | : | 24 °C     |
|-------------------|---|-----------|
| Relative humidity | : | 48 % R.H. |

## 13.2 Test set-up



(Configuration of conducted Emission measurement)

Conducted Spurious Emissions is tested in accordance with KDB971168 D01 Power Meas License Digital Systems v04, April 9, 2018, Section 6.

The EUT makes a call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All

measurements were done at 3 channels(low, middle and high operational range.)

The Conducted Spurious Emissions used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency.

#### **13.3 Methods of Measurement**

- 1. All measurements were done at low and high operational frequency range.
- 2. Set spectrum analyzer with RMS detector.
- 3. The center frequency of spectrum is the band edge frequency and set RBW of the spectrum is 20 kHz

and VBW of the spectrum is 50 kHz  $\,$ 



## 13.4 Limits

LTE -4 Rule Part 27.53(h) specifies that "for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB."

LTE -12 Rule Part 27.53 (g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 +10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

LTE -13 Rule Part 27.53(f)For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

| TE Band 4 / 12 Limit                |         |  |  |  |
|-------------------------------------|---------|--|--|--|
| Limit                               | -13 dBm |  |  |  |
| LTE Band 13 Limit                   |         |  |  |  |
| Limit out of the band 1559-1610 MHz | -13 dBm |  |  |  |
| Limit in the band 1559-1610 MHz     | -40 dBm |  |  |  |

#### 13.5 Test equipment used

|     | Model Number | Manufacturer         | Description                  | Serial Number | Last Cal.          |
|-----|--------------|----------------------|------------------------------|---------------|--------------------|
| ■ - | FSV30        | Rohde & Schwarz      | Signal Analyzer              | 101372        | Jul. 24, 2019 (1Y) |
| ■ - | AAMCS-UDC    | AA-MCS               | Directional Coupler          | 400           | Jul. 25, 2019 (1Y) |
| ■ - | MT8821C      | ANRITSU              | Radio Communication Analyzer | 6261849029    | Jul. 26, 2019 (1Y) |
| ■ - | GP-4303D     | LG Precision Co.,Ltd | DC Power Supply              | 5071069       | Jan. 10, 2019 (1Y) |

All test equipment used is calibrated on a regular basis.



## 13.6 Test data

## 13.6.1 Test data for LTE Band 4

-. Test Date

: Pass

: August 05, 2019 ~ August 23, 2019

-. Test Result

LTE Band 4 QPSK

| Test Mode | Channel | Edge Frequency<br>(MHz) | MEASURED VLAUE<br>(dBm) | Limit<br>(dBm) | Result |
|-----------|---------|-------------------------|-------------------------|----------------|--------|
|           | Low     | 1 710.000 0             | -40.93                  | -13.00         | PASS   |
| 1 RB      | High    | 1 755.000 0             | -41.44                  | -13.00         | PASS   |
|           | Low     | 1 710.000 0             | -37.22                  | -13.00         | PASS   |
| 6 RB      | High    | 1 755.000 0             | -37.12                  | -13.00         | PASS   |

#### LTE Band 4 16QAM

| Test Mode | Channel | Edge Frequency<br>(MHz) | MEASURED VLAUE<br>(dBm) | Limit<br>(dBm) | Result |
|-----------|---------|-------------------------|-------------------------|----------------|--------|
|           | Low     | 1 710.000 0             | -40.03                  | -13.00         | PASS   |
| 1 RB      | High    | 1 755.000 0             | -42.04                  | -13.00         | PASS   |
|           | Low     | 1 710.000 0             | -35.17                  | -13.00         | PASS   |
| 6 RB      | High    | 1 755.000 0             | -35.56                  | -13.00         | PASS   |

Tested by: Ju Yun Park / Assistant Manager



## 13.6.2 Test data for LTE Band 4 QPSK





## 13.6.3 Test data for LTE Band 4 16QAM





Page 56 of 81

## 13.6.4 Test data for LTE Band 12

-. Test Date : August 05, 2019 ~ August 23, 2019

-. Test Result

: Pass

LTE Band 12 QPSK

| Test Mode | Channel | Edge Frequency | MEASURED VLAUE | Limit<br>(dBm) | Result |
|-----------|---------|----------------|----------------|----------------|--------|
|           |         | (11112)        | (ubiii)        | (uDiii)        |        |
|           | Low     | 699.000 0      | -43.21         | -13.00         | PASS   |
| 1 RB      | High    | 716.000 0      | -42.23         | -13.00         | PASS   |
|           | Low     | 699.000 0      | -38.29         | -13.00         | PASS   |
| 6 RB      | High    | 716.000 0      | -36.15         | -13.00         | PASS   |

LTE Band 12 16QAM

| Test Mode | Channel | Edge Frequency | MEASURED VLAUE | Limit  | Result |
|-----------|---------|----------------|----------------|--------|--------|
| rest mode | Chaimer | (MHz)          | (dBm)          | (dBm)  | Robuit |
|           | Low     | 699.000 0      | -42.39         | -13.00 | PASS   |
| 1 RB      | High    | 716.000 0      | -45.87         | -13.00 | PASS   |
|           | Low     | 699.000 0      | -35.53         | -13.00 | PASS   |
| 6 RB      | High    | 716.000 0      | -33.24         | -13.00 | PASS   |

Tested by: Ju Yun Park / Assistant Manager



## 13.6.5 Test data for LTE Band 12 QPSK





## 13.6.6 Test data for LTE Band 12 16QAM





Page 59 of 81

## 13.6.7 Test data for LTE Band 13

-. Test Date : August 05, 2019 ~ August 23, 2019

-. Test Result

: Pass

LTE Band 13 QPSK

| Test Mode | Channel | Edge Frequency<br>(MHz) | MEASURED VLAUE | Limit<br>(dBm) | Result |
|-----------|---------|-------------------------|----------------|----------------|--------|
|           |         | ()                      | (0)            | ()             |        |
|           | Low     | 777.000 0               | -43.63         | -13.00         | PASS   |
| 1 RB      | High    | 787.000 0               | -41.53         | -13.00         | PASS   |
|           | Low     | 777.000 0               | -39.53         | -13.00         | PASS   |
| 6 RB      | High    | 787.000 0               | -36.94         | -13.00         | PASS   |

## LTE Band 13 16QAM

| Test Mode | Channel  | Edge Frequency | MEASURED VLAUE | Limit  | Result  |
|-----------|----------|----------------|----------------|--------|---------|
| 10000     | Chieffer | (MHz)          | (dBm)          | (dBm)  | Tresure |
|           | Low      | 777.000 0      | -41.91         | -13.00 | PASS    |
| 1 RB      | High     | 787.000 0      | -45.86         | -13.00 | PASS    |
|           | Low      | 777.000 0      | -36.47         | -13.00 | PASS    |
| 6 RB      | High     | 787.000 0      | -34.42         | -13.00 | PASS    |

Tested by: Ju Yun Park / Assistant Manager



## 13.6.8 Test data for LTE Band 13 QPSK





## 13.6.9 Test data for LTE Band 13 16QAM





## 14. Conducted Spurious and Harmonic Emissions at Antenna Termianl

## 14.1 Operating environment

| Temperature       | : | 24 °C     |  |
|-------------------|---|-----------|--|
| Relative humidity | : | 48 % R.H. |  |

## 14.2 Test set-up



(Configuration of conducted Emission measurement)

Conducted Spurious Emissions is tested in accordance with KDB971168 D01 Power Meas License Digital Systems v04, April 9, 2018, Section 6.

The EUT makes a call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All

measurements were done at 3 channels(low, middle and high operational range.)

The Conducted Spurious Emissions used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency.

#### **Conducded spurious emissions**

The EUT was setup to maximum output power. The 100 kHz RBW and 300 kHz VBW was used to scan from 30 MHz to 1 GHz. Also, the 1 MHz RBW and 3 MHz VBW was used to scan from 1 GHz to 20 GHz. The high, low and a middle channel were tested for out of band measurements.



### 14.3 Limits

LTE -4 Rule Part 27.53(h) specifies that "for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB."

LTE -12 Rule Part 27.53 (g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 +10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

LTE -13 Rule Part 27.53(f)For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

| LTE Band 4 / 12 Limit               |         |
|-------------------------------------|---------|
| Limit                               | -13 dBm |
| LTE Band 13 Limit                   |         |
| Limit out of the band 1559-1610 MHz | -13 dBm |
| Limit in the band 1559-1610 MHz     | -40 dBm |

#### 14.4 Test equipment used

|     | Model Number | Manufacturer         | Description                  | Serial Number | Last Cal.          |
|-----|--------------|----------------------|------------------------------|---------------|--------------------|
| ■ - | FSV30        | Rohde & Schwarz      | Signal Analyzer              | 101372        | Jul. 24, 2019 (1Y) |
| ■ - | AAMCS-UDC    | AA-MCS               | Directional Coupler          | 400           | Jul. 25, 2019 (1Y) |
| ■ - | MT8821C      | ANRITSU              | Radio Communication Analyzer | 6261849029    | Jul. 26, 2019 (1Y) |
| ■ - | GP-4303D     | LG Precision Co.,Ltd | DC Power Supply              | 5071069       | Jan. 10, 2019 (1Y) |

All test equipment used is calibrated on a regular basis.



#### 14.5 Test data

## 14.5.1 Test data for LTE Band 4 QPSK













## 14.5.2 Test data for LTE Band 4 16OAM

|                                                                                                                                                   | - n l                                                                                                    |               |                       |                                 |                                            |              |     |                                                                                                                  |                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------|-----------------------|---------------------------------|--------------------------------------------|--------------|-----|------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Doftow                                                                                                                                            | m                                                                                                        | Offcot        | 10 F6 d0 🔿            | <b>DDW</b> 100 k                |                                            |              |     |                                                                                                                  |                                  |
| Att                                                                                                                                               | el 20.00 dBm<br>30 dB                                                                                    | SWT           | 30.1 ms 👄             | <b>VBW</b> 300 k                | HZ<br>HZ <b>Mode</b>                       | Sween        |     |                                                                                                                  |                                  |
| SGL Coun                                                                                                                                          | t 300/300                                                                                                |               | 0011110               | <b>1011</b> 000 K               | ine mode                                   | oweeb        |     |                                                                                                                  |                                  |
| ⊖1Rm Avgl                                                                                                                                         | Pwr                                                                                                      |               |                       |                                 |                                            |              |     |                                                                                                                  |                                  |
|                                                                                                                                                   |                                                                                                          |               |                       |                                 | М                                          | 1[1]         |     | -                                                                                                                | 55.98 dBm                        |
|                                                                                                                                                   |                                                                                                          |               |                       |                                 |                                            | I            | i i | 877                                                                                                              | .2180 MHz                        |
| 10 dBm                                                                                                                                            |                                                                                                          |               |                       |                                 |                                            |              |     |                                                                                                                  |                                  |
|                                                                                                                                                   |                                                                                                          |               |                       |                                 |                                            |              |     |                                                                                                                  |                                  |
| 0 dBm                                                                                                                                             |                                                                                                          |               |                       |                                 |                                            |              |     |                                                                                                                  |                                  |
|                                                                                                                                                   |                                                                                                          |               |                       |                                 |                                            |              |     |                                                                                                                  |                                  |
| -10 dBm—                                                                                                                                          |                                                                                                          | 10-1          |                       |                                 |                                            |              |     |                                                                                                                  |                                  |
|                                                                                                                                                   | -DI -13.000                                                                                              | asm           |                       |                                 |                                            |              |     |                                                                                                                  |                                  |
| -20 dBm—                                                                                                                                          |                                                                                                          |               |                       |                                 |                                            |              |     |                                                                                                                  |                                  |
|                                                                                                                                                   |                                                                                                          |               |                       |                                 |                                            |              |     |                                                                                                                  |                                  |
| -30 dBm—                                                                                                                                          |                                                                                                          |               |                       |                                 |                                            |              |     |                                                                                                                  |                                  |
|                                                                                                                                                   |                                                                                                          |               |                       |                                 |                                            |              |     |                                                                                                                  |                                  |
| -40 dBm—                                                                                                                                          |                                                                                                          |               |                       |                                 |                                            |              |     |                                                                                                                  |                                  |
|                                                                                                                                                   |                                                                                                          |               |                       |                                 |                                            |              |     |                                                                                                                  |                                  |
| -50 dBm                                                                                                                                           |                                                                                                          |               |                       |                                 |                                            |              |     |                                                                                                                  |                                  |
| So abii                                                                                                                                           |                                                                                                          |               |                       |                                 |                                            |              |     | M1                                                                                                               |                                  |
| BUL dura                                                                                                                                          |                                                                                                          | -             |                       |                                 |                                            |              |     | and the second |                                  |
| -00 aBm                                                                                                                                           |                                                                                                          |               |                       |                                 |                                            |              |     |                                                                                                                  |                                  |
| 70 do                                                                                                                                             |                                                                                                          |               |                       |                                 |                                            |              |     |                                                                                                                  |                                  |
| -/0 dBm-                                                                                                                                          |                                                                                                          |               |                       |                                 |                                            |              |     |                                                                                                                  |                                  |
|                                                                                                                                                   |                                                                                                          |               |                       |                                 |                                            |              |     |                                                                                                                  |                                  |
| Start 30.0                                                                                                                                        | ) MHz                                                                                                    | 1             | 1                     | 3000                            | 1 pts                                      | 1            | 1   | Sto                                                                                                              | p 1.0 GHz                        |
|                                                                                                                                                   |                                                                                                          |               |                       |                                 |                                            |              |     |                                                                                                                  |                                  |
|                                                                                                                                                   |                                                                                                          |               |                       | Low C                           | hannel                                     |              |     |                                                                                                                  |                                  |
| Spectru                                                                                                                                           | m                                                                                                        | Offset        | 12.52 dB 🖷            | Low C                           | hannel                                     |              |     |                                                                                                                  |                                  |
| Spectrui<br>Ref Leve                                                                                                                              | m<br>al 20.00 dBm<br>30 dB                                                                               | Offset<br>SWT | 12.52 dB 👄<br>57 ms 👄 | Low C                           | <sup>2</sup> hannel<br><sup>2</sup> Mode S | Sweep        |     |                                                                                                                  |                                  |
| Spectrue<br>Ref Leve<br>Att<br>SGL Coun                                                                                                           | m<br>el 20.00 dBm<br>30 dB<br>t 300/300                                                                  | Offset<br>SWT | 12.52 dB 🖷<br>57 ms 🖷 | Low C<br>RBW 1 MHz<br>VBW 3 MHz | <sup>2</sup><br><sup>2</sup> Mode S        | Sweep        |     |                                                                                                                  |                                  |
| Spectrui<br>Ref Leve<br>Att<br>SGL Coun<br>IRm Avgl                                                                                               | m<br>el 20.00 dBm<br>30 dB<br>t 300/300<br>Pwr                                                           | Offset<br>SWT | 12.52 dB 👄<br>57 ms 👄 | Low C                           | <sup>2</sup><br><sup>2</sup> Mode S        | )weep        |     |                                                                                                                  |                                  |
| Spectrue<br>Ref Leve<br>Att<br>SGL Coun                                                                                                           | m<br>el 20.00 dBm<br>30 dB<br>t 300/300<br>Pwr                                                           | Offset<br>SWT | 12.52 dB 👄<br>57 ms 👄 | Low C                           | 2<br>2 Mode S                              | Weep<br>1[1] |     |                                                                                                                  | (<br>▼<br>33.92 dBm<br>12920 GHz |
| Spectrue<br>Ref Leve<br>Att<br>SGL Coun<br>IRm Avgi                                                                                               | m<br>el 20.00 dBm<br>30 dB<br>t 300/300<br>Pwr                                                           | Offset<br>SWT | 12.52 dB ●<br>57 ms ● | Low C<br>RBW 1 MHz<br>VBW 3 MHz | <sup>z</sup> Mode s                        | weep<br>1[1] |     | -<br>19.9                                                                                                        | ₩<br>33.92 dBm<br>12920 GHz      |
| Spectrui<br>Ref Leve<br>SGL Coun<br>IRm Avgi                                                                                                      | m                                                                                                        | Offset<br>SWT | 12.52 dB 👄<br>57 ms 👄 | Low C                           | Mode S                                     | weep<br>1[1] |     | -<br>19.9                                                                                                        | ₩<br>33.92 dBm<br>12920 GHz      |
| Spectrui<br>Ref Leve<br>SGL Coun<br>IRm Avgi                                                                                                      | m<br>30 dB<br>30 dB<br>t 300/300<br>Pwr                                                                  | Offset<br>SWT | 12.52 dB 🖷<br>57 ms 🖷 | Low C                           | Mode S                                     | weep<br>1[1] |     | -<br>19.9                                                                                                        | ₩<br>33.92 dBm<br>12920 GHz      |
| Spectrui<br>Ref Leva<br>Att<br>SGL Coun<br>1Rm Avgi<br>10 dBm                                                                                     | m<br>30 dB<br>t 300/300<br>Pwr                                                                           | Offset<br>SWT | 12.52 dB 🖷<br>57 ms 👄 | Low C                           | <sup>2</sup><br><sup>2</sup><br>Mode S     | weep<br>1[1] |     | -<br>19.9                                                                                                        | ₩<br>33.92 dBm<br>12920 GHz      |
| Spectrui<br>Ref Leva<br>Att<br>SGL Coun<br>10 dBm-<br>0 dBm-                                                                                      | m<br>30 dB<br>t 300/300<br>Pwr                                                                           | Offset<br>SWT | 12.52 dB 🖷<br>57 ms 🖷 | Low C                           | Mode S                                     | weep<br>1[1] |     |                                                                                                                  | ₩<br>33.92 dBm<br>12920 GHz      |
| Spectrui<br>Ref Levi<br>Att<br>SGL Coun<br>10 dBm-<br>0 dBm-<br>-10 dBm-                                                                          | n<br>30 dB<br>30 dB<br>1 20.00 dBm<br>30 dB<br>200/300<br>Pwr<br>D1 -13.000                              | dBm           | 12.52 dB 🖷<br>57 ms 🖷 | Low C                           | Mode S                                     | weep<br>1[1] |     |                                                                                                                  | ₩<br>33.92 dBm<br>12920 GHz      |
| Spectrui<br>Ref Levi<br>Att<br>SGL Coun<br>10 dBm-<br>0 dBm-<br>-10 dBm-                                                                          | n<br>30 dB<br>30 dD<br>20.00 JBm<br>30 dD<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>200 | dBm           | 12.52 dB e<br>57 ms e | Low C                           | Mode S                                     | weep         |     | - 19.9                                                                                                           | 33.92 dBm<br>12920 GHz           |
| Spectrui<br>Ref Levi<br>Att<br>SGL Coun<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-                                                              | n<br>30 dB<br>30 dD<br>20.00 JBm<br>30 dD<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>200 | dBm           | 12.52 dB e<br>57 ms e | Low C                           | Mode S                                     | Sweep        |     | - 19.9                                                                                                           | 33.92 dBm<br>12920 GHz           |
| Spectrui<br>Ref Levi<br>Att<br>SGL Coun<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-                                                              | n<br>30 dB<br>30 dD<br>20.00 JBm<br>30 dD<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>200 | dBm           | 12.52 dB •<br>57 ms • | Low C                           | Mode S                                     | Sweep        |     | - 19.9                                                                                                           | 33.92 dBm<br>12920 GHz           |
| Spectrui<br>Ref Levi<br>Att<br>SGL Coun<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-                                                  | n<br>30 dB<br>30 dD<br>20.00 dBm<br>30 dD<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>200 | dBm           | 12.52 dB • 57 ms •    | Low C                           | Mode S                                     | Sweep        |     | - 19.9                                                                                                           | 33.92 dBm<br>12920 GHz           |
| Spectrui<br>Ref Levi<br>Att<br>SGL Coun<br>10 dBm                                                                                                 | m 30 dB<br>30 dB<br>1 20.00 dBm<br>30 dB<br>200/300<br>2007                                              | dBm           | 12.52 dB • 57 ms •    | Low C                           | Mode S                                     | Sweep        |     |                                                                                                                  | 33.92 dBm<br>12920 GHz           |
| Spectrui<br>Ref Levi<br>Att<br>SGL Coun<br>10 dBm-<br>0 d6m-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-                                                  | m                                                                                                        | dBm           | 12.52 dB • 57 ms •    | Low C                           | Mode S                                     | Weep         |     | 19.9                                                                                                             | 33.92 dBm<br>12920 GHz           |
| Spectrui<br>Ref Levi<br>Att<br>SGL Coun<br>10 dBm-<br>0 d6m-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-                                                  | m                                                                                                        | dBm           | 12.52 dB •<br>57 ms • | Low C                           | Mode S                                     | Weep         |     | 19.9                                                                                                             | 33.92 dBm<br>12920 GHz           |
| Spectrui<br>Ref Levi<br>Att<br>SGL Coun<br>10 dBm-<br>0 dEm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-                                      | m                                                                                                        | dBm           | 12.52 dB • 57 ms •    | RBW 1 MHA<br>VBW 3 MHA          | Mode S                                     | weep         |     | 19.9                                                                                                             | 33.92 dBm<br>12920 GHz           |
| Spectrui<br>Ref Levi<br>Att<br>SGL Coun<br>10 dBm                                                                                                 | m                                                                                                        | dBm           | 12.52 dB • 57 ms •    | Low C                           | Mode S                                     | weep         |     |                                                                                                                  | 33.92 dBm<br>12920 GHz           |
| Spectrui<br>Ref Levi<br>Att<br>SGL Coun<br>10 dBm-<br>0 dEm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-<br>-50 dBm-<br>-50 dBm-              | m                                                                                                        | dBm           | 12.52 dB • 57 ms •    | Low C                           | Mode S                                     | weep         |     | - 19.9                                                                                                           | 33.92 dBm<br>12920 GHz           |
| Spectrui<br>Ref Levi<br>Att<br>SGL Coun<br>10 dBm                                                                                                 | m                                                                                                        | dBm           | 12.52 dB • 57 ms •    | Low C                           | <sup>2</sup> Mode S                        | weep         |     | - 19.9                                                                                                           | 33.92 dBm<br>12920 GHz           |
| Spectrui<br>Ref Levi<br>Att<br>SGL Coun<br>10 dBm                                                                                                 | m                                                                                                        | dBm           | 12.52 dB • 57 ms •    | Low C                           | <sup>z</sup> Mode S                        | weep         |     | - 19.9                                                                                                           | 33.92 dBm<br>12920 GHz           |
| Spectrui<br>Ref Levi<br>Att<br>SGL Coun<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-<br>-20 dBm-<br>-30 dBm-<br>-50 dBm-<br>-60 dBm-              | m                                                                                                        | dBm           | 12.52 dB • 57 ms •    | Low C                           | Z       Mode S         Mode S       Mode S | weep         |     | - 19.9                                                                                                           | 33.92 dBm<br>12920 GHz           |
| Spectrui<br>Ref Levi<br>Att<br>SGL Coun<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-<br>-50 dBm-<br>-50 dBm-<br>-70 dBm-  | n                                                                                                        | dBm           | 12.52 dB • 57 ms •    | Low C                           | hannel                                     | weep         |     | - 19.9                                                                                                           | 33.92 dBm<br>12920 GHz           |
| Spectrui<br>Ref Levi<br>Att<br>SGL Coun<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-40 dBm-<br>-50 dBm-<br>-70 dBm-<br>Start 1.0 | m                                                                                                        | dBm           | 12.52 dB • 57 ms •    | Low C                           | Mode S                                     | weep         |     |                                                                                                                  | 33.92 dBm<br>12920 GHz           |



Page 68 of 81

Report No. : OT-199-RWD-006









#### 14.5.3 Test data for LTE Band 12 QPSK

| <u> </u>                                                                                          |                                                     |                 |                         |                                 |                                    |              |              |                                   |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------|-------------------------|---------------------------------|------------------------------------|--------------|--------------|-----------------------------------|
| Spectrun                                                                                          | י 🕒                                                 |                 |                         |                                 |                                    |              |              |                                   |
| Ref Leve                                                                                          | 20.00 dBm                                           | Offset :        | 10.23 dB 😑              | <b>RBW</b> 100 k                | Hz                                 |              |              |                                   |
| Att                                                                                               | 30 dB                                               | SWT             | 30.1 ms 👄               | <b>VBW</b> 300 k                | Hz Mode                            | Sweep        |              |                                   |
| SGL Count                                                                                         | 300/300                                             |                 |                         |                                 |                                    |              |              |                                   |
| ⊖1Rm AVgP                                                                                         | wr                                                  |                 | 1                       |                                 |                                    |              |              |                                   |
|                                                                                                   |                                                     |                 |                         |                                 | M                                  | 1[1]         |              | 55.22 dBm                         |
| 10 d0m                                                                                            |                                                     |                 |                         |                                 |                                    |              | 091          |                                   |
| TO UBIII                                                                                          |                                                     |                 |                         |                                 |                                    |              |              |                                   |
|                                                                                                   |                                                     |                 |                         |                                 |                                    |              |              |                                   |
| 0 dBm                                                                                             |                                                     |                 |                         |                                 |                                    |              |              |                                   |
|                                                                                                   |                                                     |                 |                         |                                 |                                    |              |              |                                   |
| -10 dBm                                                                                           |                                                     |                 |                         |                                 |                                    |              |              |                                   |
|                                                                                                   | D1 -13.000                                          | dBm             |                         |                                 |                                    |              |              |                                   |
| 00 d0m                                                                                            |                                                     |                 |                         |                                 |                                    |              |              |                                   |
| -20 ubiii                                                                                         |                                                     |                 |                         |                                 |                                    |              |              |                                   |
|                                                                                                   |                                                     |                 |                         |                                 |                                    |              |              |                                   |
| -30 dBm                                                                                           |                                                     |                 |                         |                                 |                                    |              |              |                                   |
|                                                                                                   |                                                     |                 |                         |                                 |                                    |              |              |                                   |
| -40 dBm—                                                                                          |                                                     |                 |                         |                                 |                                    |              |              |                                   |
|                                                                                                   |                                                     |                 |                         |                                 |                                    |              |              |                                   |
| 50 d2-5                                                                                           |                                                     |                 |                         |                                 |                                    |              |              |                                   |
| -30 aBm                                                                                           |                                                     |                 |                         |                                 |                                    | M            |              |                                   |
|                                                                                                   |                                                     |                 |                         |                                 |                                    |              |              |                                   |
| -ou asm                                                                                           |                                                     |                 |                         |                                 |                                    |              |              |                                   |
|                                                                                                   |                                                     |                 |                         |                                 |                                    |              |              |                                   |
| -70 dBm                                                                                           |                                                     |                 |                         |                                 |                                    |              |              |                                   |
|                                                                                                   |                                                     |                 |                         |                                 |                                    |              |              |                                   |
|                                                                                                   |                                                     |                 |                         |                                 |                                    |              |              |                                   |
| Start 30.0                                                                                        | MHz                                                 |                 |                         | 3000                            | 1 pts                              |              | Sto          | p 1.0 GHz                         |
|                                                                                                   |                                                     |                 |                         |                                 |                                    |              |              |                                   |
|                                                                                                   |                                                     |                 |                         |                                 |                                    |              |              |                                   |
|                                                                                                   |                                                     |                 |                         | Low C                           | hannel                             |              |              |                                   |
|                                                                                                   | _                                                   |                 |                         | Low C                           | hannel                             |              |              |                                   |
| Spectrun                                                                                          | ı )                                                 |                 |                         | Low C                           | hannel                             |              |              |                                   |
| Spectrun<br>Ref Leve                                                                              | ר<br>20.00 dBm                                      | Offset          | 11.31 dB 👄              | Low C                           | hannel                             |              |              |                                   |
| Spectrun<br>Ref Leve<br>Att                                                                       | ר<br>1 20.00 dBm<br>30 dB                           | Offset :<br>SWT | 11.31 dB 👄<br>30.1 ms 🖷 | Low C                           | hannel                             | weep         |              |                                   |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count                                                          | 1 20.00 dBm<br>30 dB<br>300/300                     | Offset :<br>SWT | 11.31 dB 🖷<br>30.1 ms 🖶 | Low C                           | hannel<br><sup>2</sup><br>Mode S   | weep         |              |                                   |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>9 1Rm AvgP                                            | 1 20.00 dBm<br>30 dB<br>300/300<br>wr               | Offset :<br>SWT | 11.31 dB 👄<br>30.1 ms 👄 | Low C                           | hannel<br><sup>2</sup> Mode S      | weep         |              |                                   |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>O 1Rm AvgP                                            | 1 20.00 dBm<br>30 dB<br>300/300<br>wr               | Offset :<br>SWT | 11.31 dB 👄<br>30.1 ms 👄 | Low C                           | hannel<br>Mode S                   | weep<br>1[1] |              | (₩<br>▼<br>37.97 dBm              |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count                                                          | 1 20.00 dBm<br>30 dB<br>300/300<br>wr               | Offset :<br>SWT | 11.31 dB 🖷<br>30.1 ms 🖷 | Low C<br>RBW 1 MHz<br>VBW 3 MHz | hannel<br><sup>2</sup> Mode S<br>M | weep         | 6.9          | (₩<br>⊽<br>37.97 dBm<br>54950 GHz |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>IRm AvgP                                              | 1 20.00 dBm<br>30 dB<br>300/300<br>wr               | Offset :<br>SWT | 11.31 dB 🖷<br>30.1 ms 🖷 | Low C<br>RBW 1 MHz<br>VBW 3 MHz | hannel<br><sup>2</sup> Mode S<br>M | weep<br>1[1] | <br>6.9      | (₩<br>37.97 dBm<br>54950 GHz      |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>@IRm AvgP                                             | 1 20.00 dBm<br>30 dB<br>300/300<br>wr               | Offset :<br>SWT | 11.31 dB 🖷<br>30.1 ms 🖷 | Low C<br>RBW 1 MHz<br>VBW 3 MHz | hannel<br><sup>2</sup> Mode S<br>M | weep<br>1[1] | <br>-<br>6.9 | (₩<br>37.97 dBm<br>54950 GHz      |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>IRm AvgP                                              | 1 20.00 dBm<br>30 dB<br>300/300<br>wr               | Offset :<br>SWT | 11.31 dB 🖷<br>30.1 ms 🖷 | Low C                           | Mode S                             | weep<br>1[1] | -<br>6.9     | (₩<br>37.97 dBm<br>54950 GHz      |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>IRm AvgP                                              | 1 20.00 dBm<br>30 dB<br>300/300<br>wr               | Offset :<br>SWT | 11.31 dB 🖷<br>30.1 ms 🖷 | Low C                           | Mode S                             | weep<br>1[1] | 6.9          | (<br>▼<br>37.97 dBm<br>54950 GHz  |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>IRm AvgP<br>10 dBm                                    | 1 20.00 dBm<br>30 dB<br>300/300<br>wr               | Offset :<br>SWT | 11.31 dB 🖷<br>30.1 ms 🖷 | Low C                           | Mode S                             | weep         | 6.9          | 37.97 dBm<br>54950 GHz            |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>IRm AvgP<br>10 dBm                                    | 1 20.00 dBm<br>30 dB<br>300/300<br>wr               | Offset :<br>SWT | 11.31 dB •<br>30.1 ms • | Low C                           | Mode S                             | weep         | 6.9          | 37.97 dBm<br>54950 GHz            |
| Spectrun<br>Ref Leve<br>> Att<br>SGL Count<br>• 1Rm AvgP<br>10 dBm                                | D 20.00 dBm<br>30 dB<br>300/300<br>wr               | Offset :<br>SWT | 11.31 dB •<br>30.1 ms • | Low C                           | Mode S                             | weep         | 6.9          | 37.97 dBm<br>54950 GHz            |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-             | D 20.00 dBm<br>30 dB<br>300/300<br>wr               | Offset :<br>SWT | 11.31 dB                | Low C                           | Mode S                             | weep         | 6.9          | 37.97 dBm<br>54950 GHz            |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>10 dBm                                                | D 20.00 dBm<br>30 dB<br>300/300<br>wr               | Offset :<br>SWT | 11.31 dB •<br>30.1 ms • | Low C                           | Mode S                             | weep         | 6.9          | (₩<br>37.97 dBm<br>54950 GHz      |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-             | D 20.00 dBm<br>30 dB<br>300/300<br>wr               | dBm             | 11.31 dB •<br>30.1 ms • | Low C                           | Mode S                             | weep         | 6.9          | (₩<br>37.97 dBm<br>54950 GHz      |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm- | D 20.00 dBm<br>30 dB<br>300/300<br>wr               | dBm             | 11.31 dB  30.1 ms       | Low C                           | Mode S                             | weep<br>1[1] | 6.9          | (₩<br>37.97 dBm<br>54950 GHz      |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>ID dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm      | D<br>20.00 dBm<br>300/300<br>wr<br>D1 -13.000       | dBm-            | 11.31 dB                | Low C                           | hannel                             | weep         | 6.9          | 37.97 dBm<br>54950 GHz            |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>IRm AvgP<br>10 dBm                                    | D 20.00 dBm<br>30 dB<br>300/300<br>wr               | dBm             | 11.31 dB •<br>30.1 ms • | Low C                           | hannel                             | weep         | 6.9          | 37.97 dBm<br>54950 GHz            |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>IN AvgP<br>10 dBm                                     | D 20.00 dBm<br>30 dB<br>300/300<br>wr               | dBm             | 11.31 dB • 30.1 ms •    | Low C                           | hannel                             | weep         | 6.9          | 37.97 dBm<br>54950 GHz            |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>10 dBm                                                | D 20.00 dBm<br>30 dB<br>300/300<br>wr               | dBm             | 11.31 dB • 30.1 ms •    | Low C                           | hannel                             | weep         | 6.9          | 37.97 dBm<br>54950 GHz            |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>ID dBm                                                | D1 -13.000                                          | dBm             | 11.31 dB •<br>30.1 ms • | Low C                           | hannel                             | weep         | 6.9          | (₩<br>37.97 dBm<br>54950 GHz      |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>ID dBm                                                | D 20.00 dBm<br>30 dB<br>300/300<br>wr               | dBm             | 11.31 dB •<br>30.1 ms • | Low C                           | hannel                             | Weep         | 6.9          | (₩<br>37.97 dBm<br>54950 GHz      |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>IRm AvgP<br>10 dBm                                    | D 20.00 dBm<br>30 dB<br>300/300<br>wr               | dBm             | 11.31 dB  30.1 ms       | Low C                           | hannel                             | weep         | 6.9          | 37.97 dBm<br>54950 GHz            |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>IRm AvgP<br>10 dBm                                    | D 20.00 dBm<br>30 dB<br>300/300<br>wr               | dBm-            | 11.31 dB                | Low C                           | hannel                             | Weep         | 6.9          | 37.97 dBm<br>54950 GHz            |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>IRm AvgP<br>10 dBm                                    | D 20.00 dBm<br>30 dB<br>300/300<br>wr               | dBm             | 11.31 dB • 30.1 ms •    | Low C                           | hannel                             | weep         | 6.9          | 37.97 dBm<br>54950 GHz            |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>ID dBm                                                | D 20.00 dBm<br>30 dB<br>300/300<br>wr               | dBm             | 11.31 dB • 30.1 ms •    | Low C                           | hannel                             | weep         | 6.9          | 37.97 dBm<br>54950 GHz            |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>10 dBm                                                | D 20.00 dBm<br>30 dB<br>300/300<br>wr               | dBm             | 11.31 dB •<br>30.1 ms • | Low C                           | hannel                             | weep         | 6.9          | (<br>37.97 dBm<br>54950 GHz       |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>ID dBm                                                | D 20.00 dBm<br>30 dB<br>300/300<br>wr<br>D1 -13.000 | dBm             | 11.31 dB • 30.1 ms •    | Low C                           | hannel                             | Weep         | -<br>6.9     | (<br>37.97 dBm<br>54950 GHz       |











#### 14.5.4 Test data for LTE Band 12 16QAM

|                                                                                                                                                               | n I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                         |                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------|---------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------|
| Poflow                                                                                                                                                        | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Offcot            | 10.22 dB 👄              | DDW 100 k                       | LI-7                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | (∀                                      |
| Att                                                                                                                                                           | 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SWT               | 30.1 ms 👄               | <b>VBW</b> 300 k                | Hz Mode                                    | Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                         |
| SGL Count                                                                                                                                                     | : 300/300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                         |                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |
| ⊜1Rm AvgF                                                                                                                                                     | 'wr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                         |                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         |                                 | M                                          | (II)<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 883     | 56.66 dBm<br>.0700 MHz                  |
| 10 dBm—                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         |                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>      |                                         |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         |                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |
| 0 dBm                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         |                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         |                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |
| -10 dBm—                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         |                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>      |                                         |
|                                                                                                                                                               | D1 -13.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dBm               |                         |                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |
| -20 dBm—                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         |                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>      |                                         |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         |                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |
| -30 dBm—                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         |                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         |                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |
| -40 dBm—                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         |                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>      |                                         |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         |                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |
| -50 dBm—                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | ļ                       |                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>      |                                         |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         |                                 |                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1        |                                         |
| -60 dBm                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         |                                 |                                            | and product of the local division of the loc |           |                                         |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         |                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |
| -70 dBm—                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         |                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>      |                                         |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         |                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |
| 01                                                                                                                                                            | NALL-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                         | 0000                            | 1                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01-       | - 1 0 011-                              |
| start 30.0                                                                                                                                                    | MHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                         | 3000                            | 1 pts                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 510       | p 1.0 GHZ                               |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         |                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         | Law                             | 1 1                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                         | Low C                           | hannel                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | _                                       |
| Spectrur                                                                                                                                                      | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                         | Low C                           | hannel                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |
| Spectrur<br>Ref Leve                                                                                                                                          | n<br>I 20.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Offset          | 11.31 dB 🕳              | Low C                           | <sup>2</sup> hannel                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |
| Spectrur<br>Ref Leve                                                                                                                                          | n<br>1 20.00 dBm<br>30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n Offset<br>8 SWT | 11.31 dB 🖷<br>30.1 ms 🖷 | Low C                           | <sup>z</sup><br><sup>z</sup> Mode S        | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                                         |
| Spectrur<br>Ref Leve<br>Att<br>SGL Count                                                                                                                      | n<br>1 20.00 dBm<br>30 dB<br>: 300/300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Offset<br>8 SWT | 11.31 dB 🖷<br>30.1 ms 🖶 | Low C<br>RBW 1 MH2<br>VBW 3 MH2 | <sup>2</sup> hannel<br><sup>2</sup> Mode S | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <br>      |                                         |
| Spectrur<br>Ref Leve<br>Att<br>SGL Count                                                                                                                      | n<br>1 20.00 dBm<br>30 dE<br>: 300/300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 Offset<br>8 SWT | 11.31 dB 👄<br>30.1 ms 👄 | Low C                           | hannel<br><sup>2</sup> Mode Si             | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | (₩<br>▼<br>37.70 dBm                    |
| Spectrur<br>Ref Leve<br>Att<br>SGL Count                                                                                                                      | n<br>1 20.00 dBm<br>30 dE<br>: 300/300<br>Iwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Offset<br>3 SWT   | 11.31 dB 🖷<br>30.1 ms 🖷 | Low C<br>RBW 1 MHa<br>VBW 3 MHa | 'hannel<br><sup>2</sup> Mode S             | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <br>- 6.9 | (₩<br>7 37.70 dBm 61850 GHz             |
| Spectrur<br>Ref Leve<br>Att<br>SGL Count<br>IRm AvgF                                                                                                          | n<br>1 20.00 dBm<br>30 dE<br>300/300<br>!wr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o Offset<br>3 SWT | 11.31 dB ●<br>30.1 ms ● | Low C                           | <sup>2</sup><br>Mode S                     | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>6.9  | (<br>▼<br>37.70 dBm<br>61850 GHz        |
| Spectrur<br>Ref Leva<br>Att<br>SGL Count<br>1Rm AvgF                                                                                                          | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n Offset<br>3 SWT | 11.31 dB 🖷<br>30.1 ms 🖶 | Low C                           | <sup>2</sup><br>Mode S                     | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>6.9  | (<br>▼<br>37.70 dBm<br>61850 GHz        |
| Spectrur<br>Ref Leve<br>Att<br>SGL Count<br>110 dBm<br>10 dBm<br>0 dBm                                                                                        | n<br>1 20.00 dBm<br>30 dE<br>300/300<br>'wr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o Offset<br>3 SWT | 11.31 dB 🖷<br>30.1 ms 🖷 | Low C                           | Mode S                                     | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>6.9  | (₩<br>37.70 dBm<br>61850 GHz            |
| Spectrur<br>Ref Leve<br>Att<br>SGL Count<br>10 dBm<br>10 dBm<br>0 dBm                                                                                         | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o Offset<br>3 SWT | 11.31 dB ●<br>30.1 ms ● | Low C<br>RBW 1 MHa<br>VBW 3 MHa | Mode S                                     | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 6.9     | ₩<br>37.70 dBm<br>61850 GHz             |
| Spectrur<br>Ref Leve<br>Att<br>SGL Count<br>IRm Avgf<br>10 dBm                                                                                                | n 30 dBm | SWT               | 11.31 dB                | Low C<br>RBW 1 MH:<br>VBW 3 MH: | Mode S                                     | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.9       | (₩<br>37.70 dBm<br>61850 GHz            |
| Spectrur<br>Ref Leve<br>Att<br>SGL Count<br>IRm Avgf<br>10 dBm                                                                                                | n<br>30 dB<br>300/300<br>Wr<br>D1 -13.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dBm               | 11.31 dB                | Low C                           | Mode S                                     | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.9       | (₩<br>37.70 dBm<br>61850 GHz            |
| Spectrur<br>Ref Leve<br>Att<br>SGL Count<br>In Avgf<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm                                                                  | n<br>30 dB<br>300/300<br>'wr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dBm               | 11.31 dB •<br>30.1 ms • | Low C                           | Mode S                                     | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.9       | (₩<br>37.70 dBm<br>61850 GHz            |
| Spectrur<br>Ref Leve<br>Att<br>SGL Count<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                            | n<br>30 dBr<br>30 dBr<br>300/300<br>'wr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dBm               | 11.31 dB •<br>30.1 ms • | Low C                           | Mode S                                     | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.9       | (₩<br>37.70 dBm<br>61850 GHz            |
| Spectrur<br>Ref Leve<br>Att<br>SGL Count<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                 | n<br>30 dBr<br>30 dBr<br>300/300<br>'wr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dBm               | 11.31 dB •<br>30.1 ms • | Low C                           | Mode S                                     | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 6.9     | (₩<br>37.70 dBm<br>61850 GHz            |
| Spectrur<br>Ref Leve<br>Att<br>SGL Count<br>IN Avgf<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                | n 30 dBr<br>30 dE<br>300/300<br>'wr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dBm               | 11.31 dB •<br>30.1 ms • | Low C                           | Mode S                                     | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 6.9     | (₩<br>37.70 dBm<br>61850 GHz            |
| Spectrur<br>Ref Leve<br>Att<br>SGL Count<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                      | n 30 dBr<br>30 dE<br>300/300<br>'wr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dBm               | 11.31 dB •<br>30.1 ms • | Low C                           | Mode S                                     | Weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 6.9     | (₩<br>37.70 dBm<br>61850 GHz            |
| Spectrur<br>Ref Leve<br>Att<br>SGL Count<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                      | n 30 dBr<br>30 dE<br>300/300<br>'wr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dBm               | 11.31 dB •<br>30.1 ms • | Low C                           | Mode S                                     | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 6.9     | (₩<br>37.70 dBm<br>61850 GHz            |
| Spectrur<br>Ref Leve<br>Att<br>SGL Coun'<br>IRm Avgf<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-                                     | n 30 dBr<br>30 dE<br>300/300<br>'wr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dBm               | 11.31 dB •<br>30.1 ms • | Low C                           | Mode S                                     | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 6.9     | (₩<br>37.70 dBm<br>61850 GHz            |
| Spectrur<br>Ref Leve<br>Att<br>SGL Couni<br>10 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-40 dBm-                                                | n 30 dBr<br>30 dE<br>300/300<br>'wr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dBm               | 11.31 dB •<br>30.1 ms • | Low C                           | Mode S                                     | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 6.9     | (₩<br>37.70 dBm<br>61850 GHz            |
| Spectrur<br>Ref Leve<br>Att<br>SGL Coun'<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-<br>-50 dBm-<br>-50 dBm-                         | n 30 dBr<br>30 dE<br>300/300<br>'wr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dBm               | 11.31 dB •<br>30.1 ms • | Low C                           | 'hannel                                    | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 6.9     | (₩<br>37.70 dBm<br>61850 GHz            |
| Spectrur<br>Ref Leve<br>Att<br>SGL Coun'<br>IRm Avgf<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-<br>-50 dBm-<br>-60 dBm-             | n 30 dBr<br>30 dE<br>300/300<br>'wr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dBm               | 11.31 dB •<br>30.1 ms • | Low C                           | 'hannel                                    | Weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 6.9     | (₩<br>37.70 dBm<br>61850 GHz            |
| Spectrur<br>Ref Leve<br>Att<br>SGL Coun'<br>IRm Avgf<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-<br>-50 dBm-<br>-60 dBm-             | n 30 dBr<br>30 dBr<br>30 dV<br>WWr<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dBm               | 11.31 dB • 30.1 ms •    | Low C                           | <sup>2</sup> Mode S                        | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 6.9     | (₩<br>37.70 dBm<br>61850 GHz            |
| Spectrur<br>Ref Leve<br>Att<br>SGL Count<br>IRm Avgf<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-<br>-50 dBm-<br>-60 dBm-<br>-70 dBm- | n 30 dBr<br>30 dBr<br>30 dDr<br>wwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dBm               | 11.31 dB • 30.1 ms •    | Low C                           | <sup>2</sup> Mode S                        | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 6.9     | (₩<br>37.70 dBm<br>61850 GHz            |
| Spectrur<br>Ref Leve<br>Att<br>SGL Count<br>IRm Avgf<br>10 dBm—<br>0 dBm—<br>-10 dBm—<br>-20 dBm—<br>-30 dBm—<br>-30 dBm—<br>-50 dBm—<br>-60 dBm—             | n 30 dBr<br>30 dBr<br>30 dPr<br>wwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dBm               | 11.31 dB • 30.1 ms •    | Low C                           | <sup>2</sup> Mode S                        | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.9       | (₩<br>37.70 dBm<br>61850 GHz            |
| Spectrur<br>Ref Leve<br>Att<br>SGL Count<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm<br>-50 dBm<br>-70 dBm           | n 30 dBr<br>30 dBr<br>30 dZ<br>wr<br>-D1 -13,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dBm               | 11.31 dB • 30.1 ms •    | Low C                           | hannel                                     | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>6.9  | (<br>37.70 dBm<br>61850 GHz<br>10.0 GHz |



Page 74 of 81

Report No. : OT-199-RWD-006









#### 14.5.5 Test data for LTE Band 13 QPSK





#### 14.5.6 Test data for LTE Band 13 16QAM





## **15. FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE**

#### **15.1 Operating environment**

| Temperature       | : | 24 °C     |
|-------------------|---|-----------|
| Relative humidity | : | 48 % R.H. |

#### 15.2 Test set-up

1. Frequency Stability (Voltage Variation)

+20 °C temperature and  $\pm 15\%$  supply voltage variations. If a product is specified to operate over a range of input voltage then the -15% variation is applied to the lowermost voltage and the +15% is applied to the uppermost voltage.

(1) Vary primary supply voltage from  $\pm 15\%$  of the nominal value for other than hand carried battery equipment.

(2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery-operating end point which shall be specified by the manufacturer.

2. Frequency Stability (Temperature Variation)

Turn EUT off and set chamber temperature to -30 °C and then allow sufficient time (approximately 20 to 30 minutes after chamber reach the assigned temperature) for EUT to stabilize. Turn ON EUT and measure the EUT operating frequency and then turn off the EUT after the measurement. The temperature in the chamber was raised 10 °C step from -30 °C to +50 °C. Repeat above method for frequency measurements every 10 °C step and then record all measured frequencies on each temperature step.

#### 15.3 Test equipment used

|     | Model Number | Manufacturer         | Description                  | Serial Number | Last Cal.          |
|-----|--------------|----------------------|------------------------------|---------------|--------------------|
| -   | FSV30        | Rohde & Schwarz      | Signal Analyzer              | 101372        | Jul. 24, 2019 (1Y) |
| ■ - | AAMCS-UDC    | AA-MCS               | Directional Coupler          | 400           | Jul. 25, 2019 (1Y) |
| ■ - | MT8821C      | ANRITSU              | Radio Communication Analyzer | 6261849029    | Jul. 26, 2019 (1Y) |
| -   | PSL-2KP      | ESPEC                | Environmental Test Chamber   | 14009407      | Feb. 22, 2019 (1Y) |
| -   | GP-4303D     | LG Precision Co.,Ltd | DC Power Supply              | 5071069       | Jan. 10, 2019 (1Y) |

All test equipment used is calibrated on a regular basis.



# 15.4 Test data

## 15.4.1 Test data for Voltage(V)\_LTE Band 4

| Temperature(°C) | Power(VDC) | Center Freq.  | Measured Freq. | PPM     |
|-----------------|------------|---------------|----------------|---------|
|                 | 12.0       |               | 1 732 500 011  | 0.006 3 |
| 20              | 10.2       | 1 732 500 000 | 1 732 500 008  | 0.004 6 |
|                 | 13.8       |               | 1 732 500 013  | 0.007 5 |

# 15.4.2 Test data for Temperature( ° C) \_LTE Band 4

| Temperature(°C) | Power(VDC) | Center Freq.  | Measured Freq. | PPM      |
|-----------------|------------|---------------|----------------|----------|
| -30             |            |               | 1 732 499 989  | -0.006 3 |
| -20             |            |               | 1 732 499 991  | -0.005 2 |
| -10             |            |               | 1 732 499 994  | -0.003 5 |
| 0               |            |               | 1 732 499 999  | -0.000 6 |
| 10              | 12         | 1 732 500 000 | 1 732 500 004  | 0.002 3  |
| 20              |            |               | 1 732 500 011  | 0.006 3  |
| 30              |            |               | 1 732 500 014  | 0.008 1  |
| 40              |            |               | 1 732 500 011  | 0.006 3  |
| 50              |            |               | 1 732 500 013  | 0.007 5  |

Tested by: Ju Yun Park / Assistant Manager

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)



## 15.4.3 Test data for Voltage(V)\_LTE Band 12

| Temperature(°C) | Power(VDC) | Center Freq. | Measured Freq. | PPM      |
|-----------------|------------|--------------|----------------|----------|
| 20              | 12.0       | 707 500 000  | 707 500 008    | 0.011 3  |
|                 | 10.8       |              | 707 500 004    | 0.005 7  |
|                 | 13.2       |              | 707 499 998    | -0.002 8 |

# 15.4.4 Test data for Temperature( ° C) \_LTE Band 12

| Temperature(°C) | Power(VDC) | Center Freq. | Measured Freq. | PPM      |
|-----------------|------------|--------------|----------------|----------|
| -30             |            |              | 707 500 011    | 0.015 5  |
| -20             |            |              | 707 500 009    | 0.012 7  |
| -10             |            |              | 707 500 002    | 0.002 8  |
| 0               |            |              | 707 499 998    | -0.002 8 |
| 10              | 12         | 707 500 000  | 707 500 004    | 0.005 7  |
| 20              |            |              | 707 500 008    | 0.011 3  |
| 30              |            |              | 707 500 004    | 0.005 7  |
| 40              |            |              | 707 499 996    | -0.005 7 |
| 50              |            |              | 707 499 998    | -0.002 8 |

0

Tested by: Ju Yun Park / Assistant Manager

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)



## 15.4.5 Test data for Voltage(V)\_LTE Band 13

| Temperature( °C) | Power(VDC) | Center Freq. | Measured Freq. | PPM      |
|------------------|------------|--------------|----------------|----------|
|                  | 12.0       |              | 781 999 991    | -0.011 5 |
| 20               | 10.2       | 782 000 000  | 781 999 989    | -0.014 1 |
|                  | 13.8       |              | 781 999 994    | -0.007 7 |

# 15.4.6 Test data for Temperature( ° C) \_LTE Band 13

| P                 | 1 , ,      | —            |                |          |
|-------------------|------------|--------------|----------------|----------|
| Temperature( ° C) | Power(VDC) | Center Freq. | Measured Freq. | PPM      |
| -30               |            |              | 781 999 987    | -0.016 6 |
| -20               |            |              | 781 999 982    | -0.023 0 |
| -10               |            |              | 781 999 987    | -0.016 6 |
| 0                 |            |              | 781 999 993    | -0.009 0 |
| 10                | 12         | 782 000 000  | 781 999 994    | -0.007 7 |
| 20                |            |              | 781 999 991    | -0.011 5 |
| 30                |            |              | 782 000 002    | 0.002 6  |
| 40                |            |              | 782 000 004    | 0.005 1  |
| 50                |            |              | 782 000 006    | 0.007 7  |

Tested by: Ju Yun Park / Assistant Manager