TEST REPORT

Dt&C

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664

1. Report No: DRTFCC1705-0088

- 2. Customer
 - Name : Suntech International Ltd.
 - Address : B-1506, Greatvally, 32, 9-Gil, Digital-Ro, Geumcheon-Gu, Seoul, South Korea 153-709
- 3. Use of Report : FCC & IC Original Grant
- 4. Product Name / Model Name : Tracker / ST310U FCC ID / IC : WA2-ST310U / 21484-ST310U
- 5. Test Method Used : KDB 971168, ANSI/TIA-603-E

Test Specification : §22(H), §24(E), RSS-132, 133

- 6. Date of Test : 2017.05.22 ~ 2017.05.25
- 7. Testing Environment : See appended test report.
- 8. Test Result : Refer to the attached test result.

	Tested by	Technical Manager					
Affirmation	Name : JungWoo Kim	Name : HyunSu Son					
The test	results presented in this test report are limited	only to the sample supplied by applicant and					
the use of	of this test report is inhibited other than its purp	cose. This test report shall not be reproduced					
	except in full, without the written ap	pproval of DT&C Co., Ltd.					
	2017.05.30.						
DT&C Co., Ltd.							
If this report is required to confirmation of authenticity, please contact to report@dtnc.net							

Test Report Version

Test Report No.	Date	Description
DRTFCC1705-0088	May. 30, 2017	Initial issue

Table of Contents

1. GENERAL INFORMATION 2. INTRODUCTION	
2.1. EUT DESCRIPTION	.5
2.2. SUPPORT EQUIPMENT	.5
2.3. TESTING ENVIRONMENT	.5
2.4. MEASURING INSTRUMENT CALIBRATION	.6
2.5. MEASUREMENT UNCERTAINTY	.6
2.6. TEST FACILITY	.6
3. DESCRIPTION OF TESTS	
3.1 ERP & EIRP	
3.2 PEAK TO AVERAGE RATIO	.9
3.3 OCCUPIED BANDWIDTH	11
3.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL	12
3.5 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	
3.6 RADIATED SPURIOUS EMISSIONS	14
3.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	
4. LIST OF TEST EQUIPMENT1	6
5. SUMMARY OF TEST RESULTS	
6. SAMPLE CALCULATION1 7. TEST DATA	
7.1 CONDUCTED OUTPUT POWER	
7.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	-
7.5 BAND EDGE	
7.6 EFFECTIVE RADIATED POWER	
7.7 EQUIVALENT ISOTROPIC RADIATED POWER	
7.8 RADIATED SPURIOUS EMISSIONS	
7.8.1 RADIATED SPURIOUS EMISSIONS (GSM850)	
7.8.2 RADIATED SPURIOUS EMISSIONS (GSM1900)	
7.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	
7.8.1 FREQUENCY STABILITY (GSM850)	
7.8.2 FREQUENCY STABILITY (GSM1900)	
8.1 Peak to Average Ratio	26
8.2 Occupied Bandwidth (99 % Bandwidth)	
8.3 Spurious Emissions at Antenna Terminal	
8.4 Band Edge	

1. GENERAL INFORMATION

Applicant Name:	Suntech International Ltd.			
Address:	B-1506, Greatvally, 32, 9-Gil, Digital-Ro, Geumcheon-Gu, Seoul, South Korea 153-709			
FCC ID : WA2-ST310U				
IC	: 21484-ST310U			
FCC Classification	PCS Licensed Transmitter (PCB)			
EUT	: Tracker			
Model Name	: ST310U			
Add Model Name	: NA			
Supplying power	: DC 12 V			
Antenna Type	: Internal Antenna			

Mode	Tx Frequency	Emission	ERP(Max.power)		EIRP(Max.power)	
Mode	(MHz)	Designator	dBm	w	dBm	w
GSM850	824.2 ~ 848.8 MHz	247KGXW	25.95	0.394	-	-
GSM1900	1850.2 ~ 1909.8 MHz	248KGXW	-	-	27.06	0.508

2. INTRODUCTION

2.1. EUT DESCRIPTION

The Equipment Under Test(EUT) supports GSM 850/1900.

2.2. SUPPORT EQUIPMENT

Equipment	Model No.	Serial No.	Manufacturer	Note
-	-	-	-	-
-	-	-	-	-

Note: The above equipment were supported by manufacturer.

2.3. TESTING ENVIRONMENT

Ambient Condition				
• Temperature +23 °C ~ +24 °C				
 Relative Humidity 	38 % ~ 41 %			

2.4. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.5. MEASUREMENT UNCERTAINTY

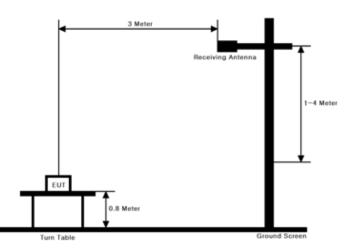
Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

Test items	Measurement uncertainty
Conducted spurious emission	0.94 dB (The confidence level is about 95 %, $k = 2$)
Radiated spurious emission (1 GHz Below)	5.1 dB (The confidence level is about 95 %, $k = 2$)
Radiated spurious emission (1 GHz ~ 18 GHz)	5.4 dB (The confidence level is about 95 %, $k = 2$)
Radiated spurious emission (18 GHz Above)	5.3 dB (The confidence level is about 95 %, k = 2)

2.6. TEST FACILITY

The 3m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 449-935. The site is constructed in conformance with the requirements.

- Semi anechoic chamber registration Number: 165783 (FCC) & 5740A-3 (IC)



3. DESCRIPTION OF TESTS

3.1 ERP & EIRP

(Effective Radiated Power & Equivalent Isotropic Radiated Power)

Test Set-up

Test Procedure

- ANSI/TIA-603-E-2016 Section 2.2.17
- KDB971168 v02r02 Section 5.2.1

These measurements were performed at 3 m test site. The equipment under test is placed on a nonconductive table 0.8-meters above a turntable which is flush with the ground plane and 3 meters from the receive antenna.

Test setting

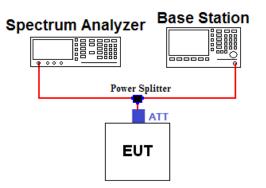
- 1. Set span to at least 1.5 times the OBW.
- 2. Set RBW = 1 5 % of the OBW, not to exceed 1 MHz.
- 3. Set VBW \geq 3 x RBW.
- 4. Set number of points in sweep $\ge 2 \times \text{Span} / \text{RBW}$.
- 5. Sweep time = Auto couple.
- 6. Detector = RMS (power averaging).
- 7. If the EUT can be configured to transmit continuously (i.e., burst duty cycle \geq 98 %), then set the trigger to free run.
- 8. If the EUT cannot be configured to transmit continuously (i.e., burst duty cycle < 98 %), then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep.

Ensure that the sweep time is less than or equal to the transmission burst duration.

- 9. Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- 10. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with the band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminal of the substitute antenna is measured.


The ERP/EIRP is calculated using the following formula:

ERP/EIRP = The conducted power at the substitute antenna's terminal [dBm] + Substitute Antenna gain [dBd for ERP, dBi for EIRP]

For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn antenna and an isotropic antenna are taken into consideration.

3.2 PEAK TO AVERAGE RATIO

Test set-up

Test Procedure

A peak to average ratio measurement is performed using the following procedure.

CCDF Procedure

- KDB971168 v02r02-Section 5.7.1
- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve
- 3. Set the measurement interval as follows:
 - 1) For continuous transmissions, set to 1 ms
 - 2) For burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 4. Record the maximum PAPR level associated with a probability of 0.1%

Alternate Procedure

- KDB971168 v02r02-Section 5.7.2

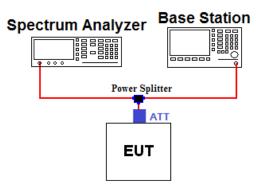
Use one of the measurement procedures of the peak power and record as PPk.

Use one of the measurement procedures of the average power and record as PAvg.

Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm).

- Peak Power Measurement


- 1. Set the RBW ≥ OBW
- 2. Set VBW \ge 3 x RBW
- 3. Set span ≥ 2 x RBW
- 4. Sweep time = Auto couple
- 5. Detector = Peak
- 6. Ensure that the number of measurement points \geq Span / RBW.
- 7. Trace mode = Max hold
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the peak amplitude level.

- Average Power Measurement

- 1. Set span to at least 1.5 times the OBW.
- 2. Set RBW = 1 5% of the OBW, not to exceed 1 MHz.
- 3. Set VBW \geq 3 x RBW.
- 4. Set number of points in sweep $\ge 2 \times \text{Span} / \text{RBW}$.
- 5. Sweep time = Auto-couple.
- 6. Detector = RMS (power averaging).
- 7. If the EUT can be configured to transmit continuously (i.e., burst duty cycle ≥ 98%), then set the trigger to free run.
- 8. If the EUT cannot be configured to transmit continuously (i.e., burst duty cycle < 98 %), then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep. Ensure that the sweep time is less than or equal to the transmission burst duration.</p>
- 9. Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- 10. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with the band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

3.3 OCCUPIED BANDWIDTH.

Test set-up

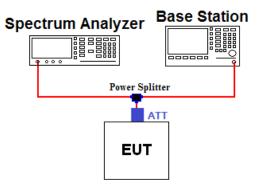
Offset value information

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
824.2	16.99	1850.2	17.92
836.6	17.03	1880.0	17.97
848.8	17.06	1909.8	18.01
-	-	-	-

Note. 1: The offset values from EUT to Spectrum analyzer were measured and used for test. Offset value = Cable + Splitter +ATT

Test Procedure

- KDB971168 v02r02 - Section 4.2


The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power of a given emission.

Test setting

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 ~ 5 % of the expected OBW & VBW \ge 3 X RBW
- 3. Detector = Peak
- 4. Trance mode = Max hold
- 5. Sweep = Auto couple
- 6. The trace was allowed to stabilize
- 7. If necessary, step 2 ~ 6 were repeated after changing the RBW such that it would be within $1 \sim 5 \%$ of the 99 % occupied bandwidth observed in step 6.

3.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL.

Test set-up

Offset value information

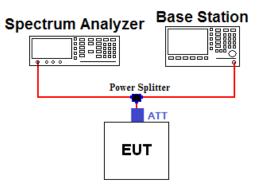
Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
824.0	16.99	1850.0	17.92
849.0	17.06	1910.0	18.01
-	-	-	-

Note. 1: The offset value from EUT to Spectrum analyzer was measured and used for test. Offset value = Cable + Splitter + ATT

Test Procedure

- KDB971168 v02r02 - Section 6.0

All out of band emissions are measured by means of a calibrated spectrum analyzer. The EUT was setup to maximum output power at its lowest and highest channel with all modulations.


The power of any spurious emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P) dB$

Test setting

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW \geq 1 % of the emission
- 4. VBW \geq 3 x RBW
- 5. Detector = RMS & Trace mode = Max hold
- 6. Sweep time = Auto couple or 1 s for band edge
- 7. Number of sweep point $\ge 2 \times \text{Span} / \text{RBW}$
- 8. The trace was allowed to stabilize
 - Note 1: In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of **at least one percent** of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

3.5 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL.

Test set-up

Offset value information

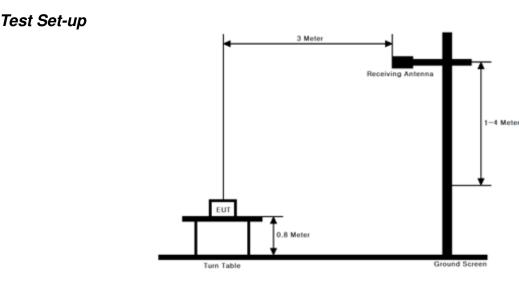
Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
10000.0	19.14	20000.0	21.51
-	-	-	-

Note. 1: The offset value from EUT to Spectrum analyzer was measured and used for test. Offset value = Cable + Splitter + ATT

Test Procedure

- KDB971168 v02r02 - Section 6.0

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The EUT was setup to maximum output power at its low, middle, high channel with all bandwidths. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.


The power of any spurious emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P) dB$

<u>Test setting</u>

- 1. RBW = 100 KHz or 1 MHz & VBW \ge 3 x RBW (Refer to Note 1)
- 2. Detector = RMS & Trace mode = Max hold
- 3. Sweep time = Auto couple
- 4. Number of sweep point \geq 2 x Span / RBW
- 5. The trace was allowed to stabilize

Note 1: Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for Part 22 and 1 MHz or greater for Part 24.

3.6 RADIATED SPURIOUS EMISSIONS

Test Procedure

- ANSI/TIA-603-E-2016 - Section 2.2.12

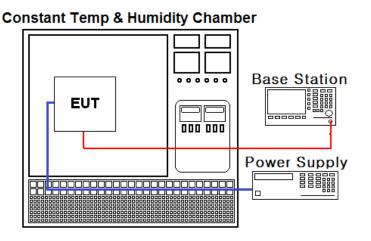
- KDB971168 v02r02 - Section 5.8

These measurements were performed at 3 m test site. The equipment under test is placed on a nonconductive table 0.8-meters above a turntable which is flush with the ground plane and 3 meters from the receive antenna.

Test setting

- 1. RBW = 100 kHz for below 1 GHz and 1 MHz for above 1 GHz & VBW \ge 3 x RBW
- 2. Detector = Peak & Trace mode = Max hold
- 3. Sweep time = Auto couple
- 4. Number of sweep point $\ge 2 \times \text{Span} / \text{RBW}$
- 5. The trace was allowed to stabilize

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.


For radiated power measurements below 1 GHz, a half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading.

For radiated power measurements above 1 GHz, a Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. The difference between the gain of the horn and an isotropic antenna are taken into consideration.

This measurement was performed with the EUT oriented in 3 orthogonal axis.

3.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test Set-up

Test Procedure

- ANSI/TIA-603-E-2016
- KDB971168 v02r02 Section 9.0

The frequency stability of the transmitter is measured by:

a.) **Temperature:**

The temperature is varied from - 30 °C to + 50 °C using an environmental chamber.

b.) Primary Supply Voltage:

The primary supply voltage is varied from 85 % to 115 % of the nominal value for non handcarried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification:

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block for Part 24. The frequency stability of the transmitter shall be maintained within \pm 0.000 25 % (\pm 2.5 ppm) of the center frequency for Part 22.

Time Period and Procedure:

- The carrier frequency of the transmitter is measured at room temperature. (20 °C to provide a reference)
- 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

4. LIST OF TEST EQUIPMENT

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal. Date (yy/mm/dd)	S/N
Signal Analyzer	Agilent Technologies	N9020A	16/09/09	17/09/09	MY50200834
DC Power Supply	SM techno	SDP30-5D	17/01/05	18/01/05	305DLJ204
DIGITAL MULTIMETER	Agilent Technologies	34401A	17/01/04	18/01/04	US36099541
Power Splitter	Anritsu	K241B	16/09/08	17/09/08	020611
Temp & Humi Test Chamber	SJ Science	SJ-TH-S50	17/01/25	18/01/25	SJ-TH-S50-140205
Thermohygrometer	BODYCOM	BJ5478	17/04/11	18/04/11	120612-2
Radio Communication Analyzer	Agilent Technologies	E5515C	16/09/09	17/09/09	GB41321164
Attenuator(3dB)	SMAJK	SMAJK-2-3	16/10/18	17/10/18	3
Attenuator(10dB)	Hefei Shunze	SS5T2.92-10-40	17/01/11	18/01/11	16012202
Signal Generator	R&S	SMBV100A	17/01/04	18/01/04	255571
Signal Generator	R&S	SMF100A	16/06/23	17/06/23	102341
Loop Antenna	Schwarzbeck	FMZB1513	16/04/22	18/04/22	1513-128
Bilog Antenna	Schwarzbeck	VULB9160	16/08/05	18/08/05	9160-3362
Dipole Antenna	Schwarzbeck	VHA9103	17/03/14	19/03/14	2116
Dipole Antenna	Schwarzbeck	VHA9103	16/04/15	18/04/15	2117
Dipole Antenna	Schwarzbeck	UHA9105	17/03/14	19/03/14	2261
Dipole Antenna	Schwarzbeck	UHA9105	16/04/15	18/04/15	2262
HORN ANT	ETS-LINDGREN	3115	17/01/13	19/01/13	9202-3820
HORN ANT	ETS-LINDGREN	3117	16/05/03	18/05/03	140394
HORN ANT	A.H.Systems	SAS-574	17/04/25	19/04/25	154
HORN ANT	A.H.Systems	SAS-574	15/09/03	17/09/03	155
Amplifier	EMPOWER	BBS3Q7ELU	16/09/08	17/09/08	1020
PreAmplifier	tsj	MLA-010K01-B01- 27	17/03/06	18/03/06	1844539
Amplifier (30dB)	Agilent	8449B	16/10/19	17/10/19	3008A02108
High-pass filter	Wainwright	WHKX12-935- 1000-15000-40SS	16/09/09	17/09/09	7
High-pass filter	Wainwright	WHKX12-2580- 3000-18000-80SS	16/09/09	17/09/09	3
Highpass Filter	Wainwright Instruments	WHNX6-6320- 8000-26500-40CC	16/09/13	17/09/13	1

5. SUMMARY OF TEST RESULTS

FCC Part Section(s)	RSS Section(s)	Parameter	Status Note 1
2.1046	RSS-132 [5.4] RSS-133 [6.4]	Conducted Output Power	С
22.913(a)(2) 24.232(c)	RSS-132 [5.4] [SRSP-503(5.1.3)] RSS-133 [6.4] [SRSP-510(5.1.2)]	Effective Radiated Power Equivalent Isotropic Radiated Power	С
2.1049	RSS-Gen [6.6]	Occupied Bandwidth	С
22.917(a) 24.238(a) 2.1051	RSS-132 [5.5] RSS-133 [6.5]	Band Edge Spurious and Harmonic Emissions at Antenna Terminal	С
24.232(d)	RSS-132 [5.4] RSS-133 [6.4]	Peak to Average Ratio	С
22.917(a) 24.238(a) 2.1053	RSS-132 [5.5] RSS-133 [6.5]	Radiated Spurious and Harmonic Emissions	С
22.355 24.235 2.1055	RSS-132 [5.3] RSS-133 [6.3]	Frequency Stability	С
Note 1: C=Com	ply NC=Not Comply	NT=Not Tested NA=Not Applicable	

The sample was tested according to the following specification: ANSI/TIA/EIA-603-E-2016 and KDB 971168 D01 v02r02

6. SAMPLE CALCULATION

A. Emission Designator

GSM850 Emission Designator

Emission Designator = **247KGXW**

GSM OBW = 247.39 kHz

(Measured at the 99.75 % power bandwidth)

G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

GSM1900 Emission Designator

Emission Designator = **248KGXW** GSM OBW = 248.20 kHz (Measured at the 99.75 % power bandwidth) G = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data)

B. For substitution method

MODE Channe	Channel	Channel Freq.(MHz) Spectrum Reading Value(dBm)	Reading EU	EUT		Level(dBm)	TX Ant	Result	
	onanner		Axis	(H/V)	@ Ant Terminal	Gain(dBd)	(dBm)	(W)	
GSM1900	810	1909.8	-17.63	Х	Н	17.98	9.08	27.06	0.508

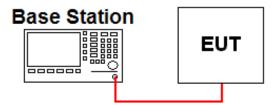
ERP = Level @ Ant Terminal LEVEL(dBm) + Tx Ant. Gain

1) The EUT mounted on a non-conductive turntable is 0.8 meter above test site ground level.

2) During the test, the turn table is rotated until the maximum signal is found.

3) Record the field strength meter's level.

4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.


5) Increase the signal generator output till the field strength meter's level is equal to the item (3).

6) The signal generator output level with substituted antenna gain is the rating of ERP, EIRP or Radiated spurious emission.

7. TEST DATA

7.1 CONDUCTED OUTPUT POWER

A base station simulator was used to establish communication with the EUT. The base station simulator parameters were set to produce the maximum power from the EUT. Conducted Output Powers of EUT are reported below.

The output power was measured using the Agilent E5515C

• GSM 850/1900

Mode	Channel	Test Mode			
Mode		1	2	3	
	128	31.72	31.70	31.27	
GSM 850	190	31.81	31.80	31.38	
	251	31.79	31.78	31.36	
	512	28.95	28.94	28.53	
GSM 1900	661	28.91	28.90	28.50	
	810	28.81	28.77	28.36	

NOTES:

Test Mode 1 : GSM Test Mode 2 : GPRS 1TX Slot Test Mode 3 : GPRS 2TX Slot

7.2 PEAK TO AVERAGE RATIO

- Plots of the EUT's Peak- to- Average Ratio are shown in Clause 8.1

7.3 OCCUPIED BANDWIDTH

Band	Channel	Frequency	Test Result (kHz)
	128	824.2	246.40
GSM850	190	836.6	244.21
	251	848.8	247.39
	512	1850.2	246.69
GSM1900	661	1880.0	248.20
	810	1909.8	242.49

- Plots of the EUT's Occupied Bandwidth are shown in Clause 8.2

7.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

- Plots of the EUT's Conducted Spurious Emissions are shown in Clause 8.3

7.5 BAND EDGE

- Plots of the EUT's Band Edge are shown in Clause 8.4

7.6 EFFECTIVE RADIATED POWER

- GSM850

	EUT	Test mode								
Freq(MHz) Channel	Position (Axis)	Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Rated Voltage	Note.		
824.2 128	Х	Н	24.54	1.23	25.77	0.378	DC 12V	GSM		
836.6 190	х	Н	24.19	1.17	25.36	0.344	DC 12V	GSM		
848.8 251	X	Н	24.84	1.11	25.95	0.394	DC 12V	GSM		

NOTES:

The GSM mode of power control level is set to "0" in PCS band and "5" in cellular band. We have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna. The worst case data is reported in the table above.

7.7 EQUIVALENT ISOTROPIC RADIATED POWER

- GSM1900

	EUT	Test mode								
Freq(MHz) Channel	Position (Axis)	Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Rated Voltage	Note.		
1850.2 512	х	Н	16.06	9.01	25.07	0.321	DC 12V	GSM		
1880.0 661	х	Н	17.53	9.05	26.58	0.455	DC 12V	GSM		
1909.80 810	X	Н	17.98	9.08	27.06	0.508	DC 12V	GSM		

NOTES:

The GSM mode of power control level is set to "0" in PCS band and "5" in cellular band.

We have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna. The worst case data is reported in the table above.

7.8 RADIATED SPURIOUS EMISSIONS

7.8.1 RADIATED SPURIOUS EMISSIONS (GSM850)

Channel (ERP)	Freq. (MHz)	EUT Position (Axis)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Result (dBc)	Limit (dBc)
	1648.39	Z	Н	-29.82	6.64	-23.18	48.95	
	2472.83	Z	V	-44.23	7.58	-36.65	62.42	
128 (0.378 W)	3296.53	Z	Н	-53.58	7.79	-45.79	71.56	38.77
(0.070 11)	4121.24	Х	V	-49.07	7.76	-41.31	67.08	
	4945.05	Y	V	-49.49	8.55	-40.94	66.71	
	1673.18	Z	Н	-30.42	6.66	-23.76	49.12	
	2509.70	Z	V	-44.59	7.61	-36.98	62.34	
190 (0.344 W)	3346.44	Z	Н	-55.67	7.83	-47.84	73.20	38.36
(0.0)	4182.97	Х	V	-49.12	7.91	-41.21	66.57	
	5019.40	Y	V	-50.20	8.54	-41.66	67.02	
	1697.42	Z	Н	-30.52	6.69	-23.83	49.78	
	2546.36	Z	V	-45.62	7.60	-38.02	63.97	
251 (0.394 W)	3395.21	Z	Н	-55.68	7.87	-47.81	73.76	38.95
	4243.68	Х	V	-49.15	8.06	-41.09	67.04	
	5092.73	Y	V	-49.69	8.57	-41.12	67.07	

- Limit Calculation= 43 + 10 log10(ERP [W]) [dBc]

- No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

The GSM mode of power control level is set to "0" in PCS band and "5" in cellular band. We have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna. The worst case data is reported in the table above.

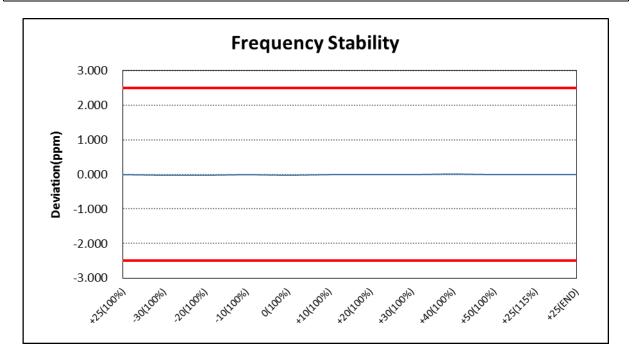
7.8.2 RADIATED SPURIOUS EMISSIONS (GSM1900)

Channel (EIRP)	Freq. (MHz)	EUT Position (Axis)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Result (dBc)	Limit (dBc)
512 (0.321 W)	3700.41	Y	V	-53.91	9.91	-44.00	69.07	
	5550.39	Y	V	-50.12	10.98	-39.14	64.21	29.07
	7401.09	Х	V	-53.37	11.55	-41.82	66.89	38.07
	9250.81	Х	V	-45.25	11.58	-33.67	58.74	
	3760.06	Y	V	-53.14	9.86	-43.28	69.86	- 39.58
661	5640.05	Y	V	-50.44	11.11	-39.33	65.91	
(0.455 W)	7520.38	Х	V	-52.60	11.51	-41.09	67.67	
	9399.49	Х	V	-46.32	11.70	-34.62	61.20	
	3819.95	Y	V	-52.22	9.80	-42.42	69.48	
810	5729.31	Y	V	-51.20	11.24	-39.96	67.02	40.06
(0.508 W)	7639.61	Х	V	-52.61	11.46	-41.15	68.21	
	9549.07	Х	V	-47.44	11.83	-35.61	62.67	

- Limit Calculation= 43 + 10 log₁₀(EIRP [W]) [dBc]

- No other spurious and harmonic emissions were reported greater than listed emissions above table.

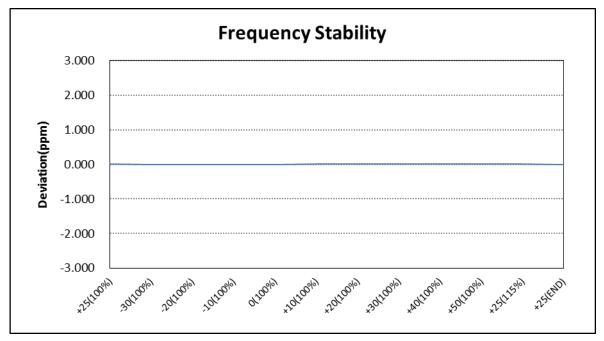
NOTES:


The GSM mode of power control level is set to "0" in PCS band and "5" in cellular band. We have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna. The worst case data is reported in the table above.

7.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

7.8.1 FREQUENCY STABILITY (GSM850)

OPERATING FREQUENCY	:	<u>836,600,000 Hz</u>		
CHANNEL	:	<u>190(Mid)</u>		
REFERENCE VOLTAGE	:	<u>12.0 V DC</u>		
DEVIATION LIMIT(FCC & IC)	:	<u>± 0.00025 </u> % or	2.5	_ppm

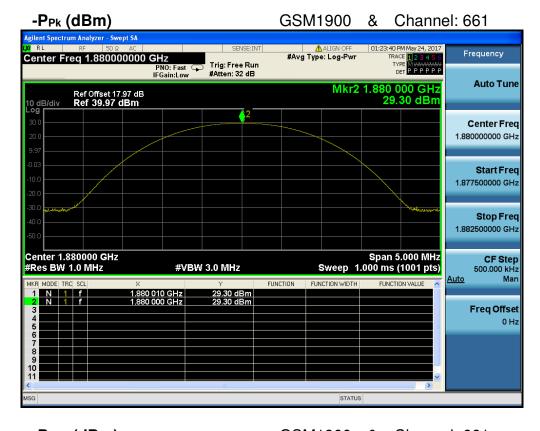

VOLTAGE	POWER	TEMP	FREQ	Dev	viation
(%)	(V DC)	(°C)	(Hz)	(ppm)	(%)
100%	12.0	+25(Ref)	836,599,987	-0.016	-0.00000158
100%		-30	836,599,976	-0.029	-0.00000287
100%		-20	836,599,980	-0.024	-0.00000239
100%		-10	836,599,989	-0.013	-0.00000131
100%		0	836,599,982	-0.022	-0.00000215
100%		+10	836,599,996	-0.005	-0.00000048
100%		+20	836,599,990	-0.012	-0.00000120
100%		+30	836,599,986	-0.017	-0.00000167
100%		+40	836,600,007	0.008	0.0000084
100%		+50	836,599,997	-0.004	-0.00000036
115%	13.8	+25	836,599,992	-0.010	-0.0000096
85%	10.2	+25	836,599,996	-0.005	-0.00000048

7.8.2 FREQUENCY STABILITY (GSM1900)

OPERATING FREQUENCY : 1.880,000,000 Hz CHANNEL : 661(Mid) REFERENCE VOLTAGE : 12.0 V DC LIMIT(FCC) : The frequency stability shall be sufficient to ensure that fundamental emission stays within the authorized frequency block. DEVIATION LIMIT(IC) : ± 0.00025 % or 2.5 ppm						
/OLTAGE	POWER	TEMP	FREQ	Dev	viation	
(%)	(V DC)	(°C)	(Hz)	(ppm)	(%)	
100%	12.0	+25(Ref)	1,880,000,014	0.007	0.00000074	
100%		-30	1,879,999,986	-0.007	-0.00000074	
100%		-20	1,879,999,990	-0.005	-0.00000053	
100%		-10	1 880 000 001	0.001	0.0000005	

100 /8		-30	1,079,999,900	-0.007	-0.0000074
100%		-20	1,879,999,990	-0.005	-0.00000053
100%		-10	1,880,000,001	0.001	0.00000005
100%		0	1,879,999,995	-0.003	-0.00000027
100%		+10	1,880,000,010	0.005	0.00000053
100%		+20	1,880,000,015	0.008	0.00000080
100%		+30	1,880,000,017	0.009	0.00000090
100%		+40	1,880,000,020	0.011	0.00000106
100%		+50	1,880,000,014	0.007	0.00000074
115%	13.8	+25	1,880,000,011	0.006	0.00000059
85%	10.2	+25	1,880,000,017	0.009	0.00000090

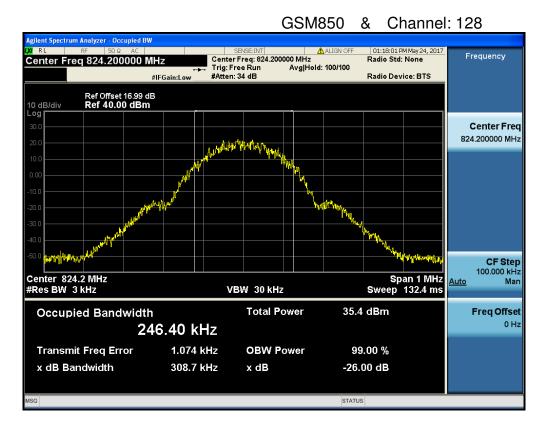
Note. Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. as such it is determined that the channels at the band edge would remain inband when the maximum measured frequency deviation noted during the frequency stability tests is applied. therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

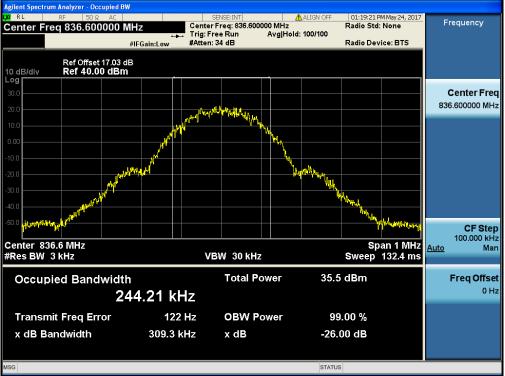

8. TEST PLOTS

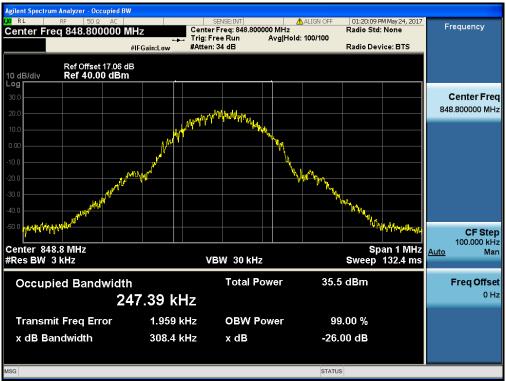
8.1 Peak to Average Ratio

-PPk (dBm) Channel: 190 GSM850 & gilent Spectrum Analyzer - Swept SA ALIGN OFF #Avg Type: Log-Pwr 03:15:20 PM May 24, 2017 Frequency TRACE 🖪 Trig: Free Run Atten: 38 dB PNO: Fast 🖵 IFGain:Low Auto Tune Mkr2 836.600 MHz 32.11 dBm Ref Offset 17.03 dB Ref 45.00 dBm _**∆_**2 **Center Freq** 836.600000 MHz Start Freq 834.100000 MHz WMM Stop Freq 839.100000 MHz Center 836.600 MHz #Res BW 1.0 MHz Span 5.000 MHz Sweep 1.000 ms (1001 pts) CF Step 500.000 kHz #VBW 3.0 MHz Auto Man FUNCTION FUNCTION WIDTH FUNCTION 1 N 1 f N 1 f 32.11 dBm 32.11 dBm 836.545 MHz 836.600 MHz Freq Offset 0 Hz

PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 32.11 dBm - 31.71 dBm = 0.4 dB

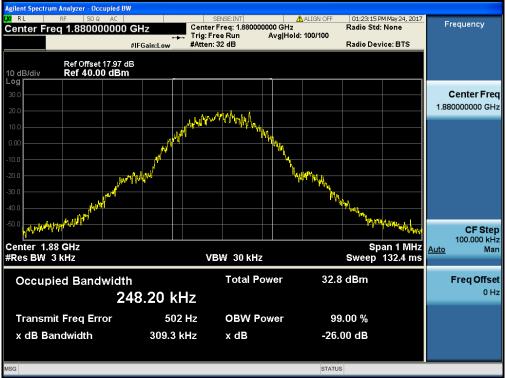


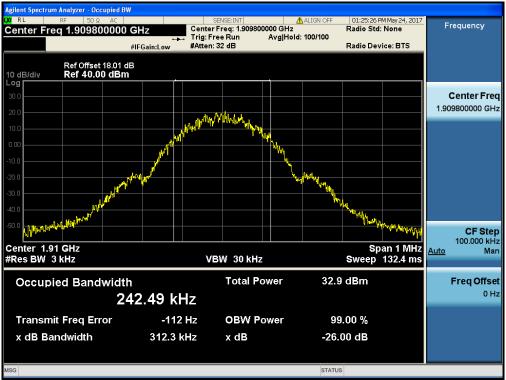

PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 29.30 dBm - 28.92 dBm = 0.38 dB


Dt&C

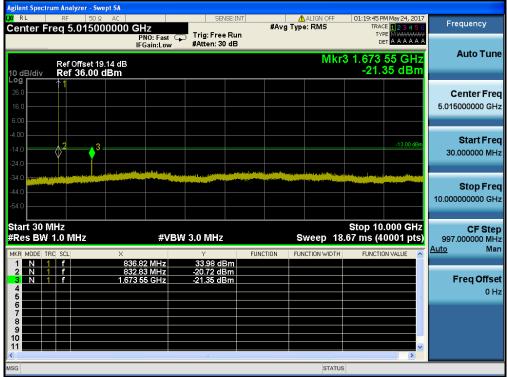
8.2 Occupied Bandwidth (99 % Bandwidth)




GSM850 & Channel: 190



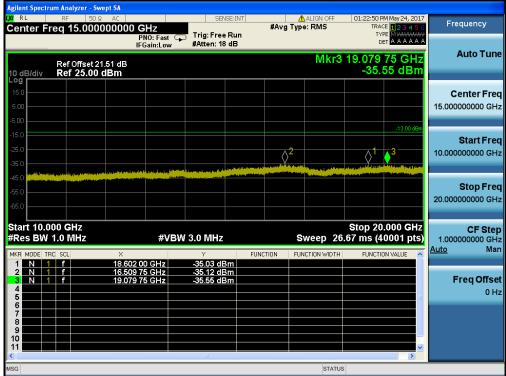
GSM850 & Channel: 251



8.3 Spurious Emissions at Antenna Terminal

GSM850 & Channel: 128 gilent Spectrum Analyzer - Swept SA ALIGN C 01:18:57 PM May 24, 2017 Trace/Detector Center Freq 5.015000000 GHz TRACE 12345 TYPE MWWWW DET A A A A A Trig: Free Run #Atten: 30 dB PNO: Fast 😱 IFGain:Low Select Trace Mkr3 5.295 41 GHz -28.26 dBm Ref Offset 19.14 dB Ref 36.00 dBm **Clear Write** <mark>}</mark>2 Trace Average 3 Max Hold Start 30 MHz #Res BW 1.0 MHz Stop 10.000 GHz Sweep 18.67 ms (40001 pts) #VBW 3.0 MHz Min Hold FUNCTION FUNCTION 33.88 dBm -18.94 dBm -28.26 dBm 1 f 1 f 1.648 38 GHz 5.295 41 GHz N View Blank View More 1 of 3 STATUS

GSM850 & Channel: 190

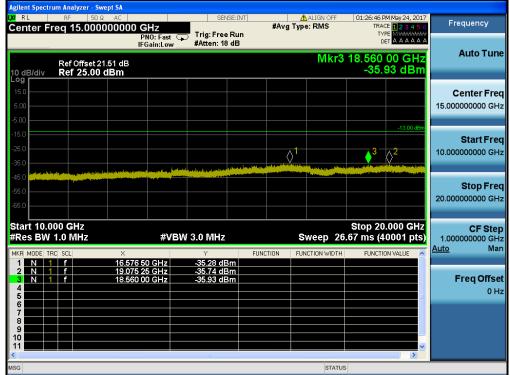

10. **214**

GSM850 & Channel: 251

Agilent Spectrum	Analyzer - Swept		CENC	E:INT	ALIGN OFF	01:21:06.01	4 May 24, 2017	
	q 5.015000			#A1	g Type: RMS	TRACI		Frequency
	Ref Offset 19.1	IFGain:Lov 4 dB			M	kr3 857.(Auto Tune
10 dB/div Log 26.0 16.0	Ref 36.00 dE	3m				-28.0	<u>да авт</u>	Center Freq 5.015000000 GHz
-4.00 -14.0 -24.0	3 ∂ ²						-13.00 dBm	Start Freq 30.000000 MHz
-34.0 -44.0 -54.0							edin post provident de la post post post post post post post post	Stop Freq 10.000000000 GHz
Start 30 MH #Res BW 1.	0 MHz	#V	BW 3.0 MHz	FUNCTION	Sweep 18			CF Step 997.000000 MHz Auto Man
1 N 1 2 N 1 3 N 1 4 5	f f	849.04 MHz 1.697 48 GHz 857.01 MHz	33.98 dB -22.60 dB -28.04 dB	m m				Freq Offset 0 Hz
6 7 8 9 10 11								
MSG					STATU	s		

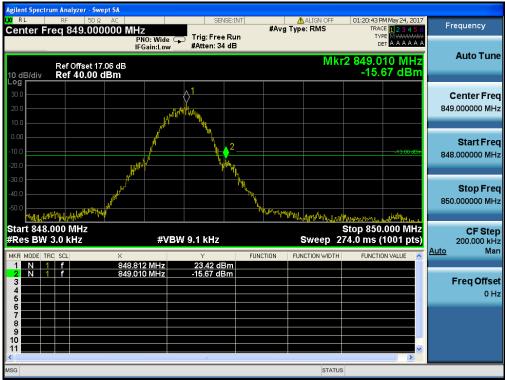


	rum Analyzer								
anter	RF 5.01	50 Ω AC	CHIT	SEN	SE:INT	ALIGN (Avg Type: RMS		M May 24, 2017	Frequency
Jenter P	req 5.01	5000000	PNO: Fast	Trig: Free	Run	ang type. tune	T	PE M WARAWARA	
			IFGain:Low	, 📕 #Atten: 30	dB		[ETAAAAAA	Auto Turo
	Pef Offee	t 19.14 dB				N	Mkr3 7.168	02 GHz	Auto Tune
10 dB/div	Ref 36.0	00 dBm					-29.	04 dBm	
Log		_X1							
26.0									Center Freq
16.0									5.015000000 GHz
6.00									
-4.00									Start Freq
-14.0								-13.00 dBm	30.000000 MHz
-24.0			2			3			30.000000 WHZ
-34.0	المطابقة والمارين والمراجع	start the sector description		the star provide starting of the last		Married Street Barried	and the second sec	والمريحة والألفان وروالا وسر	
and a state of the	- California - Cal	and the second descent of the second descent descent descent descent descent descent descent descent descent d			and the second				Stop Freq
-44.0									10.00000000 GHz
-54.0									
Start 30 I	VILI-7						Stop 1(.000 GHz	
#Res BW			#V	BW 3.0 MHz		Sweep	18.67 ms (4		CF Step 997.000000 MHz
MKR MODE T		×		Y	FUNCTIO		`	ON VALUE	Auto Man
			0 27 GHz	30.26 dE		N FUNCTION V	VIDTH FUNCT		
2 N		2.89	3 63 GHz	-28.90 dB	m				
3 N [·]		/.16	8 02 GHz	-29.04 dB	m				Freq Offset
5								=	0 Hz
6									
8									
9									
11								~	
<				ш					
MSG						S	STATUS		



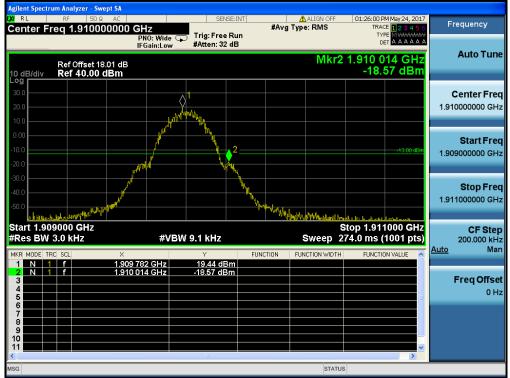
Agilent Spec	trum Ar												
KI RL Center I	RF Erec		Ω AC	GH7	SEN	ISE:INT	#Ava	ALIGN O	FF		PM May 24, 201 .CE <u>1 2 3 4 5</u>		Frequency
Cerner	Teq	5.0150		PNO: Fast IFGain:Low				.,,,		Th		÷	
10 dB/div	dB/div Ref 36.00 dBm										23 GHz 20 dBm		Auto Tune
26.0													Center Freq 5.015000000 GHz
-4.00 -14.0 -24.0				2			\$3				-13.00 dBr		Start Freq 30.000000 MHz
-34.0 -44.0 -54.0												1	Stop Freq 0.000000000 GHz
Start 30 #Res BV	V 1.0			#V	BW 3.0 MHz				18.0	67 ms (4	0.000 GHz 0001 pts)	CF Step 997.000000 MHz <u>uto</u> Man
MKR MODE	TRC SC 1 f 1 f		× 1.8 3.0	80 18 GHz 72 84 GHz	30.20 dE -28.51 dE	3m	JNCTION	FUNCTION W	IDTH	FUNCTI	ON VALUE		
3 N 4 5 6 7 8 9 9 10 11				34 23 GHZ	-29.20 dE								Freq Offset 0 Hz
MSG								ST	TATUS				

Agilent Spectru	um Ana											
XIRL	RL RF 50 Ω AC			SENS	SENSE:INT		ALIGN OFF #Avg Type: RMS		M May 24, 2017	Frequency		
Center Fr	PNO: Fast 😱					Trig: Free Run #Atten: 30 dB		pe. rune				
											Auto Tune	
	Ref Offset 19.14 dB Mkr3 3.179 02 GHz dB/div Ref 36.00 dBm -28.66 dBm											
10 dB/div Log	Ret	36.00 C	IBM 1						-20.	oo abiii		
26.0			•								Center Freq	
16.0											5.015000000 GHz	
6.00												
-4.00											Otort From	
-14.0										-13.00 dBm	Start Freq 30.000000 MHz	
-24.0				<mark> </mark>			2				30.000000 WH2	
-34.0		and the second second	harbert the board	aphone and the second	والمستخمرة ومراجعه الع	and the second second		and December 1999 and	and the second second second	aling the state of		
-44.0		a Malana ang Kabupatèn Perdukan									Stop Freq	
-54.0											10.00000000 GHz	
Start 30 N										.000 GHz	CF Step	
#Res BW	1.0 N	ЛНZ		#VB۱	N 3.0 MHz			Sweep 18	.67 ms (4	0001 pts)	997.000000 MHz Auto Man	
MKR MODE TR	_		×		Y		CTION F	UNCTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> Man	
1 N 1 2 N 1	f		1.910 0 5.895 6		29.93 dB -28.55 dB							
3 N 1 4	f		3.179 0	2 GHz	-28.66 dB	m					Freq Offset	
5										=	0 Hz	
6	+											
8												
10												
11										~		
MSG	_							STATUS	3			


TDt&C

8.4 Band Edge




GSM850 & Channel: 128

GSM850 & Channel: 251

