

# **Application For** Grant of Certification

**FOR** 

Model: CFIP-24 LUMINA

P/N I24GGHT02L/H

24.05-24.25 GHz Point-to-point Transmitter

FCC ID: W9Z-LUMINA-24

IC ID: 8855A-LUMINA-24

**FOR** 

SAF TEHNIKA AS

24a, Ganibu dambis

Riga Latvia LV-1005

Test Report Number 100203

Authorized Signatory: Sot DRogers

Scot D. Rogers

Page 1 of 35





## ROGERS LABS, INC.

4405 West 259<sup>th</sup> Terrace Louisburg, KS 66053 Phone / Fax (913) 837-3214

## Test Report For Application Of Certification

For

## SAF TEHNIKA AS

24a, Ganibu dambis Riga Latvia LV-1005

Model: CFIP-24 LUMINA

P/N I24GGHT02L/H

24.05-24.25 GHz Fixed Point-to-point Transmitter

Frequency Range: 24,053.5 - 24,243.5 MHz

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24

Test Report Number: 100203

Test Date: February 3, 2010

Authorized Signatory: Scot DRogers

Scot D. Rogers Rogers Labs, Inc.

4405 West 259th Terrace Louisburg, KS 66053

Telephone/Facsimile: (913) 837-3214

This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product endorsement by NVLAP, NIST, or any agency of the Federal Government.

File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24

IC: 8855A-LUMINA-24

SN: 321590100037



## **Table Of Contents**

| TABLE OF CONTENTS                                             | 3  |
|---------------------------------------------------------------|----|
| FORWARD                                                       | 5  |
| APPLICABLE STANDARDS & TEST PROCEDURES                        | 5  |
| OPINION / INTERPRETATION OF RESULTS                           | 5  |
| SUMMARY OF RESULTS                                            | 6  |
| ENVIRONMENTAL CONDITIONS                                      | 6  |
| UNITS OF MEASUREMENTS                                         | 6  |
| TEST SITE LOCATIONS                                           | 6  |
| LIST OF TEST EQUIPMENT                                        | 7  |
| APPLICATION FOR CERTIFICATION                                 | 8  |
| STATEMENT OF MODIFICATIONS AND DEVIATIONS                     | 9  |
| EQUIPMENT TESTED                                              | 9  |
| Equipment and Cable Test Setup Configuration                  | 9  |
| EQUIPMENT FUNCTION AND TESTING PROCEDURES                     | 9  |
| Configuration options for the EUT                             | 10 |
| AC Line Conducted Emission Test Procedure                     | 10 |
| Radiated Emission Test Procedure                              | 10 |
| SUBPART C - INTENTIONAL RADIATORS                             | 11 |
| ANTENNA REQUIREMENTS                                          | 11 |
| RESTRICTED BANDS OF OPERATION                                 | 11 |
| Data, Radiated Emissions in Restricted Bands                  | 12 |
| Summary of Results for Radiated Emissions in Restricted Bands | 12 |
| AC LINE CONDUCTED EMISSIONS LIMITS; GENERAL REQUIREMENTS      | 13 |
| AC Line Conducted Emissions Testing                           | 13 |
| Figure One AC Line Conducted emissions of EUT line 1          | 14 |
| Figure Two AC Line Conducted emissions of EUT line 2          | 14 |
| Data, AC Line Conducted Emissions                             | 15 |
| Summary of Results for AC Line Conducted Emissions            | 15 |
| RADIATED EMISSIONS LIMITS; GENERAL REQUIREMENTS               | 16 |
| General Radiated Emissions Testing                            | 16 |
| Figure Three Radiated Emissions in screen room.               | 17 |
| Figure Four Radiated Emissions in screen room                 | 17 |

Rogers Labs, Inc. 4405 West 259<sup>th</sup> Terrace Louisburg, KS 66053

Revision 1

SAF Tehnika AS Model: CFIP-24 Lumina

SN: 321580100038 Test #:100203 Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12 File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 3 of 35



| Figure Five Radiated Emissions in screen room                   | 18 |
|-----------------------------------------------------------------|----|
| Figure Six Radiated Emissions in screen room                    | 18 |
| Figure Seven Radiated Emissions in screen room                  | 19 |
| Figure Eight Radiated Emissions in screen room                  | 19 |
| Figure Nine Radiated Emissions in screen room                   | 20 |
| Figure Ten Radiated Emissions in screen room                    | 20 |
| Figure Eleven Radiated Emissions in screen room                 | 21 |
| Figure Twelve Radiated Emissions in screen room                 | 21 |
| Data, General Radiated Emissions                                | 22 |
| Summary of Results for General Radiated Emissions               | 23 |
| OPERATION IN THE BAND 24.05-24.25 GHZ                           | 23 |
| Requirements                                                    | 23 |
| Transmitter Testing and Compliance Procedure                    | 24 |
| Data, Frequency Stability                                       | 25 |
| Figure Thirteen Output power across band                        | 26 |
| Figure Fourteen Occupied Bandwidth (14 MHz Bandwidth Operation) | 26 |
| Figure Fifteen Occupied Bandwidth (30 MHz Bandwidth Operation)  | 27 |
| Figure Sixteen Occupied Bandwidth (56 MHz Bandwidth Operation)  | 27 |
| Data, Transmitter Radiated Emissions                            | 28 |
| Summary of Results for Transmitter Radiated Emissions           | 28 |
| ANNEX                                                           | 29 |
| Annex A Measurement Uncertainty Calculations                    | 30 |
| Annex B Test Equipment List For Rogers Labs, Inc.               | 32 |
| Annex C Rogers Qualifications                                   | 33 |
| Annex D FCC Test Site Registration Letter                       | 34 |
| Annex E Industry Canada Test Site Registration Letter           | 35 |

SN: 321580100038 Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12 File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 4 of 35



#### **Forward**

The following information is submitted for consideration in obtaining Grant of Certification for License Exempt Intentional Radiator under CFR 47 Paragraph 15.249 and Industry Canada RSS-210 Annex 12 Fixed Point-to-point Transmitter operation in the 24.0-24.25 GHz frequency band.

Name of Applicant: SAF TEHNIKA AS

24a, Ganibu dambis Riga Latvia LV-1005

Model: CFIP-24 LUMINA, P/N I24GGHT02L/H

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24

Frequency Range: 24,053.5 - 24,243.5 MHz

Operating Power: Less than 5 mW (as design specification, measured peak 122.2

 $dB\mu V/m$  @ 3 meters), for operation in the 24,053.5 - 24,243.5 MHz, Occupied band width 12.15 MHz, 27.64 MHz, or 53.53 MHz

#### **Applicable Standards & Test Procedures**

In accordance with the Federal Communications Commission, Code of Federal Regulations CFR 47, dated October 1, 2009, Part 2, Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.925, 2.926, 2.1031 through 2.1057, applicable parts of paragraph 15, Part 15C paragraph 15.249, and RSS-210 Annex 12 the following information is submitted for consideration in obtaining grant of certification. Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in the ANSI 63.4-2003 Document.

## **Opinion / Interpretation of Results**

| Tests Performed                                                    | Results  |
|--------------------------------------------------------------------|----------|
| Antenna requirement per CFR 47 15.203                              | Complies |
| Radiated Emissions in Restricted Bands as per as per CFR 47 15.205 | Complies |
| Conducted Emissions CFR 47 15.207                                  | Complies |
| Radiated Emissions as per CFR 47 15.209                            | Complies |
| Emissions per CFR 47 15.249                                        | Complies |
| Emissions per RSS-210 Annex 12                                     | Complies |

Revision 1



## **Summary of Results**

| Test Performed                         | Margin (dB) | Results  |
|----------------------------------------|-------------|----------|
| Antenna requirement                    | N/A         | Complies |
| Radiated Emissions in Restricted Bands | 0.7         | Complies |
| AC Line Conducted Emissions            | 7.8         | Complies |
| General Radiated Emissions             | 7.5         | Complies |
| Transmitter Emissions                  | 5.8         | Complies |

#### **Environmental Conditions**

Ambient Temperature 21.6° C 27% **Relative Humidity** Atmospheric Pressure 1026.6 mb

#### **Units of Measurements**

Conducted EMI: Data is in dBuV; dB referenced to one microvolt.

Radiated EMI: Data is in dBµV/m; dB/m referenced to one microvolt per meter.

**Radiated Emissions Calculations:** 

Note: The limit is expressed for a measurement in dBµV/m when the measurement is taken at a distance of 3 meters. Data taken for this report was taken at a distance of 3 meters.

$$dB\mu V/m @ 3m = FSM(dB\mu V) + A.F.(dB/m) - Amp Gain(dB) dB\mu V/m @ 3m = 16.3+23.0-0 = 39.3$$

## **Test Site Locations**

Rogers Labs, Inc. located at 4405 W. 259<sup>th</sup> Terrace, Louisburg, KS. Conducted EMI

Radiated EMI The radiated emissions tests were performed at Rogers Labs, Inc. 3 meters

Open Area Test Site (OATS) located at 4405 W. 259th Terrace,

Louisburg, KS.

Site Approval Refer to Annex for FCC Site Registration Letter, Reference 90910,

Industry Canada Site Registration Reference 3041A-1

Rogers Labs, Inc. 4405 West 259<sup>th</sup> Terrace Louisburg, KS 66053 Revision 1

SAF Tehnika AS Model: CFIP-24 Lumina

SN: 321580100038 Test #:100203 Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12 File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 6 of 35



## **List of Test Equipment**

A Rhodes & Schwarz ESU40 and or Hewlett Packard 8591EM Spectrum Analyzer was used as the measuring device for the emissions testing of frequencies below 1 GHz. A Rhodes & Schwarz ESU40 and or Hewlett Packard 8562A Spectrum Analyzer was used as the measuring device for testing the emissions at frequencies above 1 GHz. The analyzer settings used are described in the following table. Refer to the appendix for a complete list of test equipment.

| Test Equipment Settings           |                               |                   |  |  |  |  |  |
|-----------------------------------|-------------------------------|-------------------|--|--|--|--|--|
|                                   | Conducted Emissions           |                   |  |  |  |  |  |
| RBW                               | Detector Function             |                   |  |  |  |  |  |
| 9 kHz                             | Peak / Quasi Peak             |                   |  |  |  |  |  |
| Radiated Emissions below 1000 MHz |                               |                   |  |  |  |  |  |
| RBW                               | Detector Function             |                   |  |  |  |  |  |
| 120 kHz                           | 300 kHz                       | Peak / Quasi Peak |  |  |  |  |  |
| Rac                               | diated Emissions above 1000 M | ΙΗz               |  |  |  |  |  |
| RBW                               | Video BW                      | Detector Function |  |  |  |  |  |
| 100 kHz                           | Peak                          |                   |  |  |  |  |  |
| 1 MHz                             | 1 MHz                         | Peak / Average    |  |  |  |  |  |

| <u>Equipment</u> | <u>Manufacturer</u> | <u>Model</u>      | Calibration Date | <u>Due</u> |
|------------------|---------------------|-------------------|------------------|------------|
| LISN             | Comp. Design        | FCC-LISN-2-MOD.CD | 10/09            | 10/10      |
| LISN             | Comp. Design        | 1762              | 2/09             | 2/10       |
| Antenna          | ARA                 | BCD-235-B         | 10/09            | 10/10      |
| Antenna          | EMCO                | 3147              | 10/09            | 10/10      |
| Antenna          | EMCO                | 3143              | 5/09             | 5/10       |
| Analyzer         | Rohde s & Schwarz   | ESU40             | 2/09             | 2/10       |
| Analyzer         | HP                  | 8591EM            | 5/09             | 5/10       |
| Analyzer         | HP                  | 8562A             | 5/09             | 5/10       |



## **Application for Certification**

(1) Manufacturer: SAF TEHNIKA AS

24a, Ganibu dambis Riga Latvia LV-1005

- (2) Identification: FCC I.D.: W9Z-LUMINA-24
- (3) Copy of the installation and operating manual: Refer to exhibit for Draft Instruction Manual
- (4) Description of Circuit Functions, Device Operation: The CFIP-24 LUMINA is a point to point communications system incorporating a low power Transmitter. This device features low power transmitter operation in communications frequency band of 24.0-24.25 GHz.
- (5) Block Diagram with Frequencies: Refer to exhibit for the Block Diagram
- (6) Report of measurements demonstrating compliance with the pertinent FCC technical requirements is provided in this report.
- (7) Photographs of equipment are provided in application exhibits.
- (8) Peripheral equipment or accessories for the equipment. Optional equipment available for the EUT includes AC power adapter and Power Over Ethernet (POE) adapter. The available configuration options were investigated for this and other reports in compliance to required standards with worst-case data presented.
- (9) Transition Provisions of 15.37 are not being requested.
- (10) The equipment is not a scanning receiver.
- (11) The equipment is not a transmitter operating in the 59-64 GHz frequency range.

File: SAF Tehnika TstRpt CFIP24 Lumina

Page 8 of 35



#### Statement of Modifications and Deviations

No modifications to the EUT were required for the equipment to demonstrate compliance with the FCC CFR 47 Part 15C and Industry Canada RSS-210 Emissions Standards. There were no deviations to the specifications.

#### **Equipment Tested**

| <u>Equipment</u>          | <u>Serial Number</u> | FCC I.D.#     |
|---------------------------|----------------------|---------------|
| CFIP-24 LUMINA (EUT Low)  | 321590100037         | W9Z-LUMINA-24 |
| CFIP-24 LUMINA (EUT High) | 321580100038         | W9Z-LUMINA-24 |
| AC Adapter (10AB4805)     | 3209101 03438        | N/A           |
| CPU (Dell)                | 2574199693           | N/A           |

#### Equipment and Cable Test Setup Configuration

The CFIP-24 LUMINA is a point to point transceiver offering high bandwidth and low power communications solution. The transmitter section allows for communications to other compliant devices. The EUT was arranged as a typical user equipment configuration for testing purposes. Two antenna options are available for the product, 905-HAA2403 09-PA1 and 905-HAA2406 09-PA1. The highest gain antenna (60 cm, 40 dBi) was used during testing. The antennas comply with requirements of CFR 47 15.249 and RSS-210, gain higher than 33 dBi and beam width less than 3.5 degrees. The transmitter offers no other interface connections than those in the configuration options shown below. The EUT is powered from externally provided power option as shown in configuration diagram. As requested by the manufacturer and required by regulations, the unit was tested for emissions compliance using the available configurations with the worst-case data presented. Test results in this report relate only to the products described in this report.

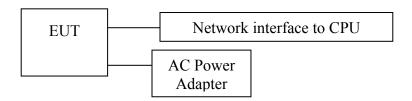
## **Equipment Function and Testing Procedures**

The EUT is a low power point to point transmitter with operation capability in the 24.0-24.25 GHz frequency band (CFR 47 15.249 and RSS-210). The equipment offers communications to other 24.0-24.25 GHz compliant equipment. Two samples were offered for testing due to frequency band of operation. EUT (Sample #1) tunes lower frequencies and sample 2 tuned to higher frequencies (both required to cover frequency band of operation). The EUT utilizes

Rogers Labs, Inc. 4405 West 259<sup>th</sup> Terrace Louisburg, KS 66053

Revision 1

SAF Tehnika AS Model: CFIP-24 Lumina


SN: 321580100038 Test #:100203 Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12 File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 9 of 35



software control offering ability to configure the radio to 14 MHz, 28 MHz, 40 MHz or 56 MHz channel widths with frequency of operation limitations and use of QPSK, 16APSK, 32APSK, 64QAM, 128QAM and 256QAM modulation. Upon selection of channel width, the EUT restricts frequency of operation maintaining emissions within the authorized frequency band.

#### Configuration options for the EUT



#### AC Line Conducted Emission Test Procedure

Testing for the AC line-conducted emissions was performed as defined in sections 7.2.4 and 13 of ANSI C63.4. The test setup, including the EUT, was arranged in the test configurations as shown above and placed on a 1 x 1.5-meter wooden bench, 0.8 meters high located in a screen room. The power lines of the system were isolated from the power source using a standard LISN with a 50-μHy choke. EMI was coupled to the spectrum analyzer through a 0.1 μF capacitor internal to the LISN. The LISN was positioned on the floor beneath the wooden bench supporting the EUT. The power lines and cables were draped over the back edge of the table. Refer to photographs in exhibits for EUT placement used during testing.

#### Radiated Emission Test Procedure

Testing for the radiated emissions was performed as defined in sections 8.3 and 13.1 of ANSI C63.4. The EUT was arranged in the test configurations as shown above and placed on a rotating 1 x 1.5-meter wooden platform 0.8 meters above the ground plane at a distance of 3 meters from the FSM antenna. EMI energy was maximized by equipment placement, raising and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before final data was taken using a spectrum analyzer. Refer to photographs in exhibits for EUT placement used during testing.

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 10 of 35

NVLAP Lab Code 200087-0

**Subpart C - Intentional Radiators** 

As per CFR 47 Part 15, Subpart C and RSS-210 the following information is submitted for

consideration in obtaining a grant of certification for unlicensed intentional radiators.

**Antenna Requirements** 

The design utilizes a unique mount offering connection for approved antennas. The end product

is marketed and sold for professional installation only. The antenna connection point complies

with the unique antenna connection requirements. The requirements of 15.203 are fulfilled and

there are no deviations or exceptions to the specification.

**Restricted Bands of Operation** 

Spurious emissions falling in the restricted frequency bands of operation were measured at the

OATS. The EUT utilizes frequency, determining circuitry, which generates harmonics falling in the

restricted bands. Emissions were investigated at the OATS, using appropriate antennas or pyramidal

horns, amplification stages, external mixers, and spectrum analyzer. Peak and average amplitudes of

frequencies above 1000 MHz were compared to the required limits with worst-case data presented

below. Test procedures of ANSI 63.4-2003 paragraphs 13.1 and 8.3.1.2 were used during testing.

No other significant emission was observed which fell into the restricted bands of operation.

Computed emission values take into account the received radiated field strength, receive antenna

correction factor, amplifier gain stage, and test system cable losses.

File: SAF Tehnika TstRpt CFIP24 Lumina

Date: March 3, 2010 Page 11 of 35



#### Data, Radiated Emissions in Restricted Bands

| Emission<br>Frequency<br>(MHz) | FSM<br>Horz.<br>(dBµV) | FSM<br>Vert.<br>(dBµV) | Ant.<br>Factor<br>(dB) | Amp.<br>Gain<br>(dB) | RFS Horz.<br>@ 3m<br>(dBµV/m) | RFS Vert.<br>@ 3m<br>(dBµV/m) | Limit<br>@ 3m<br>(dBµV/m) |
|--------------------------------|------------------------|------------------------|------------------------|----------------------|-------------------------------|-------------------------------|---------------------------|
| 24,000.0                       | 16.3                   | 17.5                   | 23.0                   | 0                    | 39.3                          | 40.5                          | 54.0                      |
| 48,114.0                       | 18.7                   | 18.7                   | 23.0                   | 0                    | 41.7                          | 41.7                          | 54.0                      |
| 48,286.0                       | 17.0                   | 17.8                   | 23.0                   | 0                    | 40.0                          | 40.8                          | 54.0                      |
| 48,480.0                       | 17.1                   | 17.5                   | 23.0                   | 0                    | 40.1                          | 40.5                          | 54.0                      |
| 72,171.0                       | 16.3                   | 16.8                   | 35.0                   | 0                    | 51.3                          | 51.8                          | 54.0                      |
| 72,429.0                       | 14.7                   | 14.9                   | 35.0                   | 0                    | 49.7                          | 49.9                          | 54.0                      |
| 72,720.0                       | 14.6                   | 14.9                   | 35.0                   | 0                    | 49.6                          | 49.9                          | 54.0                      |
| 96,228.0                       | 13.0                   | 13.5                   | 39.8                   | 0                    | 52.8                          | 53.3                          | 54.0                      |
| 96,572.0                       | 13.1                   | 13.5                   | 39.8                   | 0                    | 52.9                          | 53.3                          | 54.0                      |
| 96,960.0                       | 13.2                   | 13.4                   | 39.8                   | 0                    | 53.0                          | 53.2                          | 54.0                      |

Other emissions found in the restricted bands were at least 20 dB below the limits.

#### Summary of Results for Radiated Emissions in Restricted Bands

The EUT demonstrated compliance with the radiated emissions requirements of FCC CFR 47 Part 15.205 restricted bands of operation. The EUT worst-case configuration demonstrated minimum margin of 0.7 dB below the FCC limits. Other emissions were present with amplitudes at least 20 dB below the required limits.

SN: 321580100038 Test #:100203 Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12 File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 12 of 35



## AC Line Conducted emissions limits; general requirements

#### AC Line Conducted Emissions Testing

The EUT was arranged in typical equipment configurations (AC power adapter). Testing was performed with the EUT placed on a 1 x 1.5-meter wooden bench 80 cm above the conducting ground plane, floor of a screen room. The bench was positioned 40 cm away from the wall of the screen room. The LISN was positioned on the floor of the screen room 80-cm from the rear of the EUT. Testing for the line-conducted emissions were the procedures of ANSI 63.4-2003 paragraphs 13.1.3 and 7.2.4. The AC adapter for the EUT was connected to the LISN for lineconducted emissions testing. A second LISN was positioned on the floor of the screen room 80cm from the rear of the supporting equipment of the EUT. All power cords except the EUT were then powered from the second LISN. EMI was coupled to the spectrum analyzer through a 0.1 μF capacitor, internal to the LISN. Power line conducted emissions testing was carried out individually for each current carrying conductor of the EUT. The excess length of lead between the system and the LISN receptacle was folded back and forth to form a bundle not exceeding 40 cm in length. The screen room, conducting ground plane, analyzer, and LISN were bonded together to the protective earth ground. Preliminary testing was performed to identify the frequencies of each of the emissions, which had the highest amplitudes. The cables were repositioned to obtain maximum amplitude of measured EMI level. Once the worst-case configuration was identified, plots were made of the EMI from 0.15 MHz to 30 MHz then data was recorded with maximum conducted emissions levels. Refer to Figures one and two showing plots of the worst-case AC Line conducted emissions frequency spectrum taken in the screen room.

SN: 321580100038 Test #:100203 Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12 File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 13 of 35



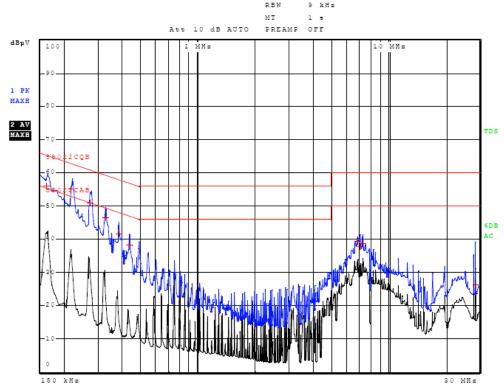



Figure One AC Line Conducted emissions of EUT line 1

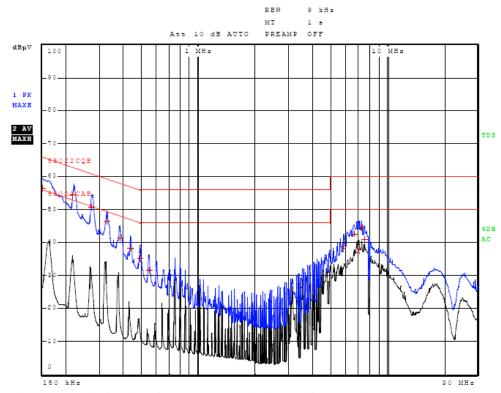



Figure Two AC Line Conducted emissions of EUT line 2

SAF Tehnika AS Model: CFIP-24 Lumina

SN: 321580100038 Test #:100203 Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12 File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 14 of 35



#### Data, AC Line Conducted Emissions

Line 1

| Trace | Frequency     |     | Level (dBµV) | Detector   | Delta Limit/dB |
|-------|---------------|-----|--------------|------------|----------------|
| 1     | 162.000000000 | kHz | 56.07        | Quasi Peak | -9.29          |
| 1     | 218.000000000 | kHz | 55.05        | Quasi Peak | -7.84          |
| 1     | 274.000000000 | kHz | 51.01        | Quasi Peak | -9.99          |
| 1     | 326.000000000 | kHz | 46.58        | Quasi Peak | -12.98         |
| 1     | 382.000000000 | kHz | 41.43        | Quasi Peak | -16.81         |
| 1     | 434.000000000 | kHz | 38.03        | Quasi Peak | -19.14         |
| 1     | 6.820000000   | MHz | 39.42        | Quasi Peak | -20.58         |
| 1     | 7.092000000   | MHz | 37.64        | Quasi Peak | -22.36         |
| 1     | 7.304000000   | MHz | 38.46        | Quasi Peak | -21.54         |
| 1     | 28.564000000  | MHz | 26.26        | Quasi Peak | -33.74         |

Line 2

| Trace | Frequenc      | у   | Level (dBµV) | Detector   | Delta Limit/dB |
|-------|---------------|-----|--------------|------------|----------------|
| 1     | 150.000000000 | kHz | 56.37        | Quasi Peak | -9.63          |
| 1     | 218.000000000 | kHz | 54.35        | Quasi Peak | -8.54          |
| 1     | 274.000000000 | kHz | 50.66        | Quasi Peak | -10.34         |
| 1     | 326.000000000 | kHz | 46.49        | Quasi Peak | -13.07         |
| 1     | 382.000000000 | kHz | 41.36        | Quasi Peak | -16.87         |
| 1     | 434.000000000 | kHz | 38.17        | Quasi Peak | -19.00         |
| 1     | 490.000000000 | kHz | 35.16        | Quasi Peak | -21.01         |
| 1     | 546.000000000 | kHz | 31.62        | Quasi Peak | -24.38         |
| 1     | 5.860000000   | MHz | 39.01        | Quasi Peak | -20.99         |
| 1     | 6.660000000   | MHz | 42.61        | Quasi Peak | -17.39         |
| 2     | 7.032000000   | MHz | 37.47        | Average    | -12.53         |
| 1     | 7.352000000   | MHz | 44.44        | Quasi Peak | -15.56         |
| 1     | 7.568000000   | MHz | 40.79        | Quasi Peak | -19.21         |

Other emissions present had amplitudes at least 20 dB below the limit.

## Summary of Results for AC Line Conducted Emissions

The EUT demonstrated compliance with the conducted emissions requirements of CFR 47 Part 15C and other applicable standards for Intentional Radiators. The EUT worst-case configuration demonstrated minimum margin of 7.8 dB below the CFR 47 limits. Other emissions were present with recorded data representing the worst-case amplitudes.



## Radiated emissions limits; general requirements

#### General Radiated Emissions Testing

The EUT was arranged in all typical equipment configurations and operated through all of its various modes. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions investigations were performed to identify the frequencies, which produced the highest emissions. Plots were made of the radiated emission frequency spectrum from 30 MHz to 110,000 MHz for preliminary transmitter testing. Refer to figures three through twelve showing the worst-case radiated emission spectrum displayed on the spectrum analyzer taken in a screen room. The each radiated emission measured was then remaximized at the OATS site before final radiated emissions measurements were performed. Final data was taken with the EUT located at the open field test site at a distance of 3 meters between the EUT and the receiving antenna. Test procedures of ANSI 63.4-2003 paragraphs 13.1 and 8.3.1.2 were used during radiated emissions testing. The frequency spectrum from 30 MHz to 110,000 MHz was searched for radiated emissions. Peak and average amplitudes of frequencies above 1000 MHz were compared to the required limits with worst-case data presented below. Measured emission levels were maximized by EUT placement on the table, changing cable location, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna polarization between horizontal and vertical. Antennas used were Broadband Biconical from 30 MHz to 200 MHz, Log Periodic from 200 MHz to 5 GHz, and/or Biconilog from 30 MHz to 1000 MHz, Double-Ridge horn and/or Pyramidal Horns from 5 GHz to 25 GHz, external mixers above 25 GHz, and amplification stages.

SN: 321580100038 Test #:100203 Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12 File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 16 of 35



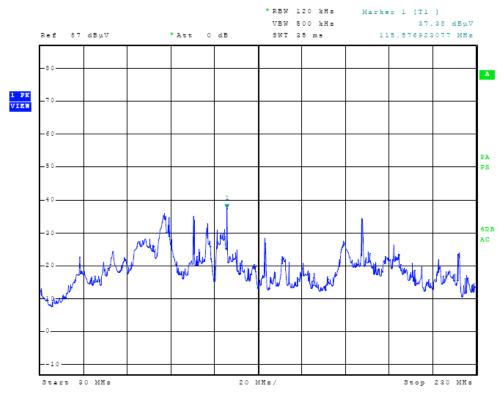



Figure Three Radiated Emissions in screen room

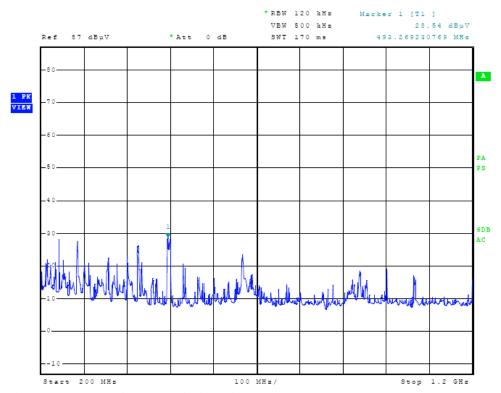



Figure Four Radiated Emissions in screen room

SAF Tehnika AS Model: CFIP-24 Lumina

SN: 321580100038 Test #:100203 Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12 File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 17 of 35



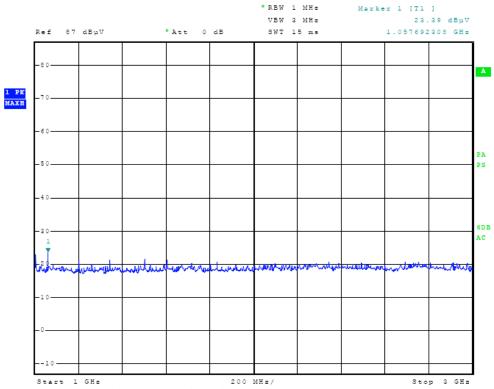



Figure Five Radiated Emissions in screen room

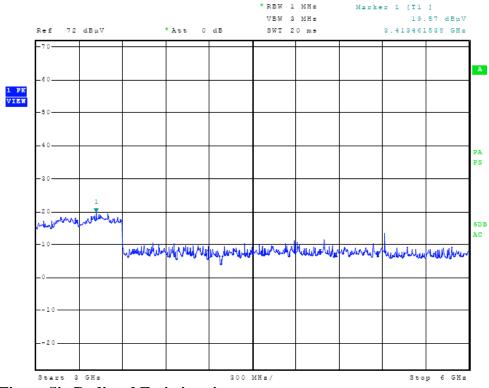



Figure Six Radiated Emissions in screen room

SAF Tehnika AS Model: CFIP-24 Lumina

Test #:100203 SN: 321580100038 Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12 File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 18 of 35



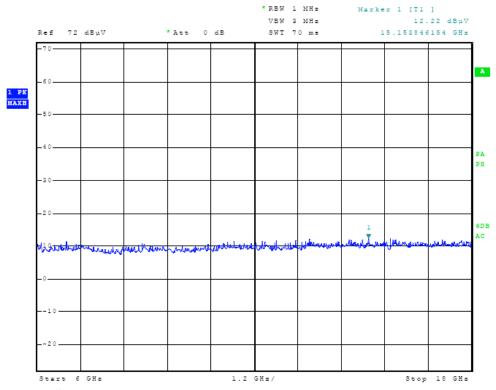



Figure Seven Radiated Emissions in screen room

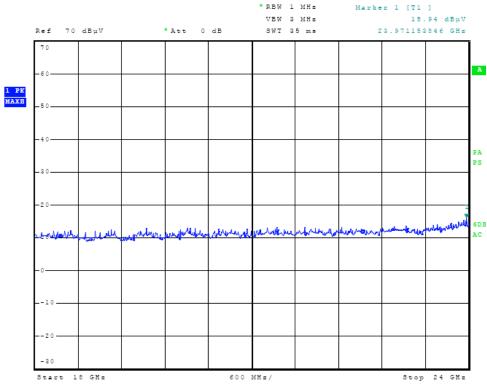



Figure Eight Radiated Emissions in screen room

SAF Tehnika AS Model: CFIP-24 Lumina

Test #:100203 SN: 321580100038 Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12 File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 19 of 35



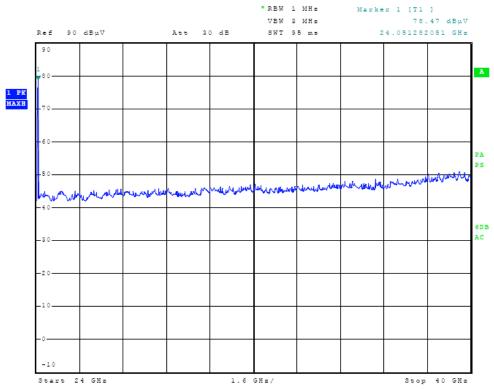



Figure Nine Radiated Emissions in screen room

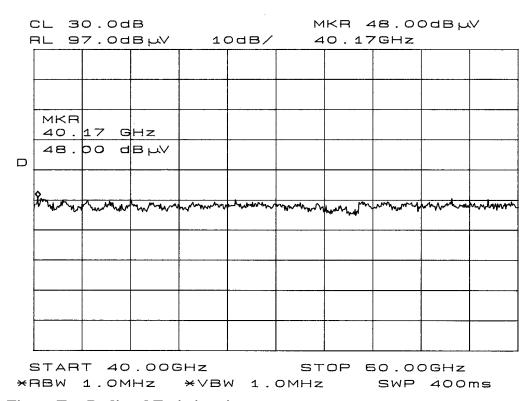



Figure Ten Radiated Emissions in screen room

SAF Tehnika AS Model: CFIP-24 Lumina

SN: 321580100038 Test #:100203 Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12 File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 20 of 35



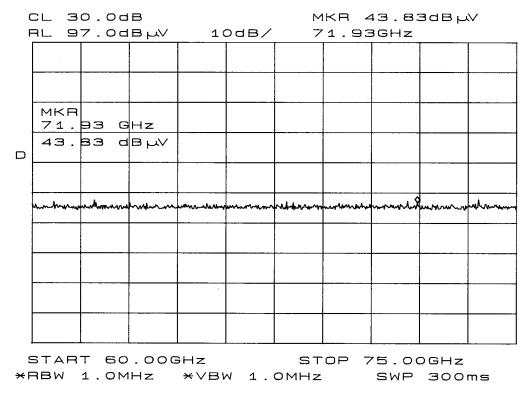



Figure Eleven Radiated Emissions in screen room

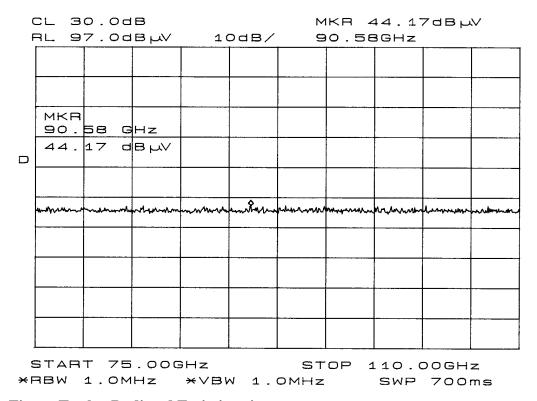



Figure Twelve Radiated Emissions in screen room

SAF Tehnika AS Model: CFIP-24 Lumina

SN: 321580100038 Test #:100203 Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12 File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 21 of 35



#### Data, General Radiated Emissions

| Emission<br>Freq. (MHz) | FSM<br>Horz.<br>(dBµV) | FSM<br>Vert.<br>(dBµV) | Ant.<br>Factor<br>(dB) | Amp.<br>Gain<br>(dB) | RFS Horz.<br>@ 3m<br>(dBµV/m) | RFS Vert.<br>@ 3m<br>(dBµV/m) | Limit<br>@ 3m<br>(dBµV/m) |
|-------------------------|------------------------|------------------------|------------------------|----------------------|-------------------------------|-------------------------------|---------------------------|
| 86.4                    | 43.4                   | 48.1                   | 7.6                    | 30                   | 21.0                          | 25.7                          | 40.0                      |
| 88.8                    | 55.1                   | 53.1                   | 7.4                    | 30                   | 32.5                          | 30.5                          | 40.0                      |
| 100.0                   | 56.4                   | 53.6                   | 7.2                    | 30                   | 33.6                          | 30.8                          | 43.5                      |
| 110.9                   | 51.8                   | 49.2                   | 6.7                    | 30                   | 28.5                          | 25.9                          | 43.5                      |
| 112.8                   | 51.4                   | 48.0                   | 6.7                    | 30                   | 28.1                          | 24.7                          | 43.5                      |
| 114.3                   | 50.9                   | 47.9                   | 6.7                    | 30                   | 27.6                          | 24.6                          | 43.5                      |
| 115.5                   | 54.7                   | 52.3                   | 6.7                    | 30                   | 31.4                          | 29.0                          | 43.5                      |
| 132.9                   | 48.3                   | 48.4                   | 8.4                    | 30                   | 26.7                          | 26.8                          | 43.5                      |
| 133.1                   | 49.8                   | 48.2                   | 8.4                    | 30                   | 28.2                          | 26.6                          | 43.5                      |
| 168.0                   | 48.7                   | 54.7                   | 8.8                    | 30                   | 27.5                          | 33.5                          | 43.5                      |
| 177.3                   | 50.1                   | 49.6                   | 9.2                    | 30                   | 29.3                          | 28.8                          | 43.5                      |
| 192.0                   | 54.2                   | 44.6                   | 10.5                   | 30                   | 34.7                          | 25.1                          | 43.5                      |
| 240.0                   | 51.4                   | 46.4                   | 11.8                   | 30                   | 33.2                          | 28.2                          | 46.0                      |
| 284.7                   | 40.8                   | 44.6                   | 13.2                   | 30                   | 24.0                          | 27.8                          | 46.0                      |
| 399.4                   | 38.6                   | 47.7                   | 16.5                   | 30                   | 25.1                          | 34.2                          | 46.0                      |
| 422.5                   | 44.0                   | 42.5                   | 16.7                   | 30                   | 30.7                          | 29.2                          | 46.0                      |
| 492.2                   | 40.5                   | 45.7                   | 18.2                   | 30                   | 28.7                          | 33.9                          | 46.0                      |
| 666.4                   | 40.2                   | 43.2                   | 20.6                   | 30                   | 30.8                          | 33.8                          | 46.0                      |

Other emissions were present with amplitudes at least 20 dB below limits.

LAP Lab Code 200087-0

Summary of Results for General Radiated Emissions

The EUT demonstrated compliance with the radiated emissions requirements of CFR 47 Part

15C, RSS-210, and other applicable standards for Intentional Radiators. The EUT worst-case

configuration demonstrated compliance with a minimum margin of 7.5 dB below the limits.

Other emissions were present with amplitudes at least 20 dB below the Limits.

Operation in the Band 24.05-24.25 GHz

Requirements

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from

intentional radiators operated within these frequency bands shall comply with the provisions of

this paragraph.

(b) Fixed, point-to-point operation as referred to in this paragraph shall be limited to systems

employing a fixed transmitter transmitting to a fixed remote location. Point-to-multipoint

systems, omnidirectional applications, and multiple co-located intentional radiators transmitting

the same information are not allowed. Fixed, point-to-point operation is permitted in the 24.05-

24.25 GHz band subject to the following conditions:

(1) The field strength of emissions in this band shall not exceed 2500 millivolts/meter.

(2) The frequency tolerance of the carrier signal shall be maintained within +0.001% of the

operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal

supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated

supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment

tests shall be performed using a new battery.

(3) Antenna gain must be at least 33 dBi. Alternatively, the main lobe beamwidth must not

exceed 3.5 degrees. The beamwidth limit shall apply to both the azimuth and elevation planes.

At antenna gains over 33 dBi or beamwidths narrower than 3.5 degrees, power must be reduced

to ensure that the field strength does not exceed 2500 millivolts/meter.

(c) Field strength limits are specified at a distance of 3 meters.

Revision 1

File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 23 of 35



- (d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.
- (e) As shown in Section 15.35(b), for frequencies above 1000 MHz, the above field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.
- (f) Parties considering the manufacture, importation, marketing or operation of equipment under this section should also note the requirement in Section 15.37(d).

#### Transmitter Testing and Compliance Procedure

The power output was measured on an open area test site @ 3 meters. Test procedures of ANSI 63.4-2003 paragraphs 13.1 and 8.3.1.2 were used during testing. The EUT was placed on a wooden turntable 0.8 meters above the ground plane and at a distance of 3 meters from the FSM antenna. The peak and quasi-peak amplitude of frequencies below 1000 MHz were measured using a spectrum analyzer. The peak and average amplitude of frequencies above 1000 MHZ were measured using a spectrum analyzer. The amplitude of the emission was then recorded from the analyzer display. Emissions radiated outside of the specified bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in 15.209, whichever is the lesser attenuation. Refer to figures thirteen through sixteen demonstrating compliance with frequency and amplitude of emission requirements of 15.249. The amplitudes of each radiated emission were measured at the OATS at a distance of 3 meters from the FSM antenna. The amplitude of each radiated spurious emission was maximized by varying the FSM antenna height, polarization, and by rotating the turntable. A Biconilog Antenna was used for measuring emissions from 30 to 1000 MHz, a Log Periodic Antenna for 200 to 5000 MHz, and Double-ridge horn and/or Pyramidal Horn Antennas from 4 GHz to 25 GHz, and mixers above 25 GHz. Emissions were measured in dBµV/m @ 3 meters.

Rogers Labs, Inc. 4405 West 259<sup>th</sup> Terrace Louisburg, KS 66053

Revision 1

SAF Tehnika AS Model: CFIP-24 Lumina

SN: 321580100038 Test #:100203 Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12 File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 24 of 35



## Data, Frequency Stability

| Frequency 24.143 (GHz) |     | Frequency Stability Vs Temperature In Parts Per Million (PPM) and % |         |         |         |       |       |       |       |
|------------------------|-----|---------------------------------------------------------------------|---------|---------|---------|-------|-------|-------|-------|
| Temperature °C         | -30 | -20                                                                 | -10     | 0       | +10     | +20   | +30   | +40   | +50   |
| Change (Hz)            |     | -10000                                                              | -1000.0 | -1000.0 | -1000.0 | 0.0   | 0.0   | 0.0   | 0.0   |
| PPM                    |     | 0                                                                   | 0       | 0       | 0       | 0     | 0     | 0     | 0     |
| %                      |     | 0.000                                                               | 0.000   | 0.000   | 0.000   | 0.000 | 0.000 | 0.000 | 0.000 |
| Limit (ppm)            |     | .001                                                                | .001    | .001    | .001    | .001  | .001  | .001  | .001  |

| Frequency 24.143 (GHz)  | Frequency Stability Vs Voltage Variation 120.0 volts nominal Input Voltage; Results In PPM and % |       |       |  |
|-------------------------|--------------------------------------------------------------------------------------------------|-------|-------|--|
| Voltage V <sub>ac</sub> | 102.0                                                                                            | 120.0 | 138.0 |  |
| Change (Hz)             | 0.0                                                                                              | 0.0   | 0.0   |  |
| PPM                     | 0                                                                                                | 0     | 0     |  |
| %                       | 0                                                                                                | 0     | 0     |  |

Rogers Labs, Inc. 4405 West 259<sup>th</sup> Terrace Louisburg, KS 66053 Revision 1

SAF Tehnika AS Model: CFIP-24 Lumina

SN: 321580100038 Test #:100203 Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12 File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 25 of 35



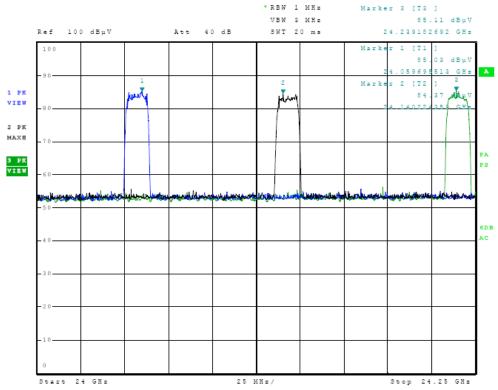



Figure Thirteen Output power across band



Figure Fourteen Occupied Bandwidth (14 MHz Bandwidth Operation)

SAF Tehnika AS Model: CFIP-24 Lumina

Test #:100203 SN: 321580100038

Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12 File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 26 of 35



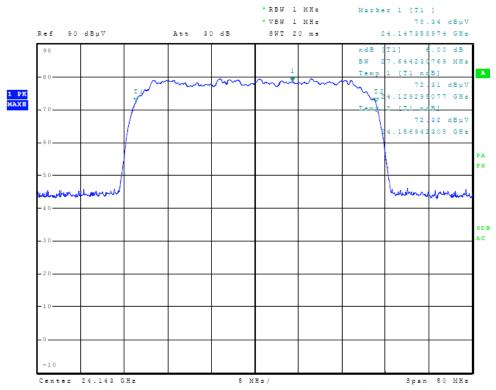



Figure Fifteen Occupied Bandwidth (30 MHz Bandwidth Operation)

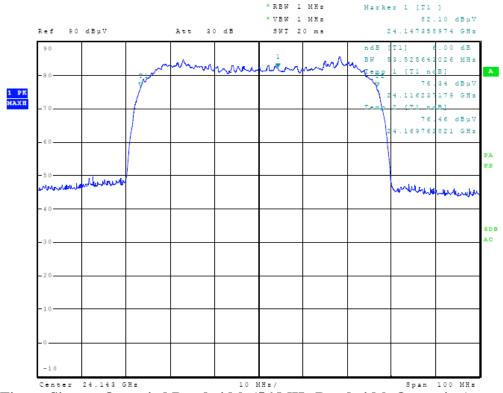



Figure Sixteen Occupied Bandwidth (56 MHz Bandwidth Operation)

Rogers Labs, Inc. 4405 West 259<sup>th</sup> Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-321 Revision 1 SAF Tehnika AS Model: CFIP-24 Lumina

Test #:100203 SN: 321580100038

Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12
Revision 1 File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 27 of 35



#### Data, Transmitter Radiated Emissions

| Frequency<br>MHz | FSM<br>Hor<br>Peak | FSM<br>Hor<br>Ave | FSM<br>Vert<br>Peak | FSM<br>Vert<br>Ave | AF   | Amp<br>Gain | CFS @<br>3 m<br>Hor<br>Peak | CFS @ 3 m<br>Hor<br>Ave | CFS @<br>3 m<br>Vert<br>Peak | CFS @<br>3 m<br>Vert<br>Ave | Ave<br>Limit |
|------------------|--------------------|-------------------|---------------------|--------------------|------|-------------|-----------------------------|-------------------------|------------------------------|-----------------------------|--------------|
| 24,053.5         | 69.5               | 62.5              | 85.0                | 78.0               | 37.1 | 0           | 106.6                       | 99.6                    | 122.1                        | 115.1                       | 128.0        |
| 48,107.0         | 25.4               | 18.7              | 25.7                | 18.7               | 23.0 | 0           | 48.4                        | 41.7                    | 48.7                         | 41.7                        | 54.0         |
| 72,160.5         | 24.3               | 16.3              | 24.8                | 16.8               | 35.0 | 0           | 59.3                        | 51.3                    | 59.8                         | 51.8                        | 54.0         |
| 96,214.0         | 23.4               | 13.0              | 24.3                | 13.5               | 39.8 | 0           | 63.2                        | 52.8                    | 64.1                         | 53.3                        | 54.0         |
| 24,143.0         | 68.7               | 61.7              | 84.4                | 77.4               | 37.1 | 0           | 105.8                       | 98.8                    | 121.5                        | 114.5                       | 128.0        |
| 48,286.0         | 24.3               | 17.0              | 24.5                | 17.8               | 23.0 | 0           | 47.3                        | 40.0                    | 47.5                         | 40.8                        | 54.0         |
| 72,429.0         | 23.3               | 14.7              | 23.5                | 14.9               | 35.0 | 0           | 58.3                        | 49.7                    | 58.5                         | 49.9                        | 54.0         |
| 96,572.0         | 23.3               | 13.1              | 24.5                | 13.5               | 39.8 | 0           | 63.1                        | 52.9                    | 64.3                         | 53.3                        | 54.0         |
| 24,243.5         | 69.7               | 62.7              | 85.1                | 78.1               | 37.1 | 0           | 106.8                       | 99.8                    | 122.2                        | 115.2                       | 128.0        |
| 48,487.0         | 24.2               | 17.1              | 24.3                | 17.5               | 23.0 | 0           | 47.2                        | 40.1                    | 47.3                         | 40.5                        | 54.0         |
| 72,730.5         | 23.5               | 14.6              | 23.6                | 14.9               | 35.0 | 0           | 58.5                        | 49.6                    | 58.6                         | 49.9                        | 54.0         |
| 96,974.0         | 22.8               | 13.2              | 23.3                | 13.4               | 39.8 | 0           | 62.6                        | 53.0                    | 63.1                         | 53.2                        | 54.0         |

Note: Levels measured @ 3-meter OATS site.

#### Summary of Results for Transmitter Radiated Emissions

The EUT demonstrated compliance with the radiated emissions requirements of CFR 47 Part 15.249, RSS-210, and other applicable standards for Intentional Radiators. The EUT transmitting worst-case configuration demonstrated minimum peak amplitude emission of 5.8 dB below limit. The EUT worst-case configuration demonstrated minimum radiated harmonic emission of 0.7 dB below limit. Other radiated emissions in restricted bands were present with amplitudes at least 20 dB below limit. Other general radiated emissions present with amplitudes at least 20 dB below the Limits.

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 28 of 35



## **Annex**

- Annex A Measurement Uncertainty Calculations
- Annex B Test Equipment List
- Annex C Rogers Qualifications
- Annex D FCC Test Site Registration Letter
- Annex E Industry Canada Test Site Registration Letter

SN: 321580100038 Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12 File: SAF Tehnika TstRpt CFIP24 Lumina



#### Annex A Measurement Uncertainty Calculations

Radiated Emissions Measurement Uncertainty Calculation

Measurement of vertically polarized radiated field strength over the frequency range 30 MHz to 1 GHz on an open area test site at 3m and 10m includes following uncertainty:

|                                        | Probability   | Uncertainty |
|----------------------------------------|---------------|-------------|
| Contribution                           | Distribution  | (dB)        |
| Antenna factor calibration             | normal(k = 2) | ±0.58       |
| Cable loss calibration                 | normal(k = 2) | ±0.2        |
| Receiver specification                 | rectangular   | ±1.0        |
| Antenna directivity                    | rectangular   | ±0.1        |
| Antenna factor variation with height   | rectangular   | ±2.0        |
| Antenna factor frequency interpolation | rectangular   | ±0.1        |
| Measurement distance variation         | rectangular   | ±0.2        |
| Site Imperfections                     | rectangular   | ±1.5        |

Combined standard uncertainty u<sub>c</sub>(y) is

$$U_c(y) = \pm \sqrt{\left[\frac{1.0}{2}\right]^2 + \left[\frac{0.2}{2}\right]^2 + \left[1.0^2 + 0.1^2 + 2.0^2 + 0.1^2 + 0.2^2 + 1.5^2\right]}$$

$$U_c(y) = \pm 1.6 \text{ dB}$$

It is probable that  $u_c(y) / s(q_k) > 3$ , where  $s(q_k)$  is estimated standard deviation from a sample of n readings unless the repeatability of the EUT is particularly poor, and a coverage factor of k = 2will ensure that the level of confidence will be approximately 95%, therefore:

$$s(q_k) = \sqrt{\frac{1}{(n-1)} \sum_{k-1}^{n} (q_k - \bar{q})^2}$$

$$U = 2 U_c(y) = 2 x \pm 1.6 dB = \pm 3.2 dB$$

#### Notes:

- 1.1 Uncertainties for the antenna and cable were estimated, based on a normal probability distribution with k = 2.
- 1.2 The receiver uncertainty was obtained from the manufacturer's specification for which a rectangular distribution was assumed.
- 1.3 The antenna factor uncertainty does not take account of antenna directivity.
- 1.4 The antenna factor varies with height and since the height was not always the same in use as when the antenna was calibrated an additional uncertainty is added.

Rogers Labs, Inc. 4405 West 259<sup>th</sup> Terrace Louisburg, KS 66053

Revision 1

SAF Tehnika AS Model: CFIP-24 Lumina

Test #:100203 SN: 321580100038 Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12 File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 30 of 35

- NVLAP Lab Code 200087-0
- 1.5 The uncertainty in the measurement distance is relatively small but has some effect on the received signal strength. The increase in measurement distance as the antenna height is increased is an inevitable consequence of the test method and is therefore not considered a contribution to uncertainty.
- 1.6 Site imperfections are difficult to quantify but may include the following contributions:
  - -Unwanted reflections from adjacent objects.
  - -Ground plane imperfections: reflection coefficient, flatness, and edge effects.
  - -Losses or reflections from "transparent" cabins for the EUT or site coverings.
  - -Earth currents in antenna cable (mainly effect biconical antennas).

The specified limits for the difference between measured site attenuation and the theoretical value (± 4 dB) were not included in total since the measurement of site attenuation includes uncertainty contributions already allowed for in this budget, such as antenna factor.

Conducted Measurements Uncertainty Calculation

Measurement of conducted emissions over the frequency range 9 kHz to 30 MHz includes following uncertainty:

|                                        | Probability  | Uncertainty |
|----------------------------------------|--------------|-------------|
| Contribution                           | Distribution | (dB)        |
| Receiver specification                 | rectangular  | ±1.5        |
| LISN coupling specification            | rectangular  | ±1.5        |
| Cable and input attenuator calibration | normal (k=2) | $\pm 0.5$   |

Combined standard uncertainty u<sub>c</sub>(y) is

$$U_c(y) = \pm \sqrt{\left[\frac{0.5}{2}\right]^2 + \frac{1.5^2 + 1.5^2}{3}}$$

$$U_c(y) = \pm 1.2 \text{ dB}$$

As with radiated field strength uncertainty, it is probable that  $u_c(y) / s(q_k) > 3$  and a coverage factor of k = 2 will suffice, therefore:

$$U = 2 U_c(y) = 2 x \pm 1.2 dB = \pm 2.4 dB$$



## Annex B Test Equipment List For Rogers Labs, Inc.

The test equipment used is maintained in calibration and good operating condition. Use of this calibrated equipment ensures measurements are traceable to national standards.

| List of Test Equipment                                          | Calibration Date |
|-----------------------------------------------------------------|------------------|
| Oscilloscope Scope: Tektronix 2230                              | 2/09             |
| Wattmeter: Bird 43 with Load Bird 8085                          | 2/09             |
| Power Supplies: Sorensen SRL 20-25, SRL 40-25, DCR 150, DCR 140 | 2/09             |
| H/V Power Supply: Fluke Model: 408B (SN: 573)                   | 2/09             |
| R.F. Generator: HP 606A                                         | 2/09             |
| R.F. Generator: HP 8614A                                        | 2/09             |
| R.F. Generator: HP 8640B                                        | 2/09             |
| Spectrum Analyzer: Rhodes & Schwarz ESU 40                      | 2/09             |
| Spectrum Analyzer: HP 8562A,                                    | 5/09             |
| Mixers: 11517A, 11970A, 11970K, 11970U, 11970V, 11970W          |                  |
| HP Adapters: 11518, 11519, 11520                                |                  |
| Spectrum Analyzer: HP 8591EM                                    | 5/09             |
| Frequency Counter: Leader LDC825                                | 2/09             |
| Antenna: EMCO Biconilog Model: 3143                             | 5/09             |
| Antenna: EMCO Log Periodic Model: 3147                          | 10/09            |
| Antenna: Antenna Research Biconical Model: BCD 235              | 10/09            |
| Antenna: EMCO Dipole Set 3121C                                  | 2/09             |
| Antenna: C.D. B-101                                             | 2/09             |
| Antenna: Solar 9229-1 & 9230-1                                  | 2/09             |
| Antenna: EMCO 6509                                              | 2/09             |
| Audio Oscillator: H.P. 201CD                                    | 2/09             |
| R.F. Power Amp 65W Model: 470-A-1010                            | 2/09             |
| R.F. Power Amp 50W M185- 10-501                                 | 2/09             |
| R.F. PreAmp CPPA-102                                            | 2/09             |
| LISN 50 μHy/50 ohm/0.1 μf                                       | 10/09            |
| LISN Compliance Eng. 240/20                                     | 2/09             |
| LISN Fischer Custom Communications FCC-LISN-50-16-2-08          | 2/09             |
| Peavey Power Amp Model: IPS 801                                 | 2/09             |
| Power Amp A.R. Model: 10W 1010M7                                | 2/09             |
| Power Amp EIN Model: A301                                       | 2/09             |
| ELGAR Model: 1751                                               | 2/09             |
| ELGAR Model: TG 704A-3D                                         | 2/09             |
| ESD Test Set 2010i                                              | 2/09             |
| Fast Transient Burst Generator Model: EFT/B-101                 | 2/09             |
| Current Probe: Singer CP-105                                    | 2/09             |
| Current Probe: Solar 9108-1N                                    | 2/09             |
| Field Intensity Meter: EFM-018                                  | 2/09             |
| KEYTEK Ecat Surge Generator                                     | 2/09             |
|                                                                 |                  |

Rogers Labs, Inc. 4405 West 259<sup>th</sup> Terrace Louisburg, KS 66053 Revision 1

SAF Tehnika AS Model: CFIP-24 Lumina Test #:100203

SN: 321580100038 Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12 File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 32 of 35



#### Annex C Rogers Qualifications

Scot D. Rogers, Engineer

#### Rogers Labs, Inc.

Mr. Rogers has approximately 17 years experience in the field of electronics. Six years working in the automated controls industry and 6 years working with the design, development and testing of radio communications and electronic equipment.

#### Positions Held

Systems Engineer: A/C Controls Mfg. Co., Inc. 6 Years

Electrical Engineer: Rogers Consulting Labs, Inc. 5 Years

Electrical Engineer: Rogers Labs, Inc. Current

#### **Educational Background**

Bachelor of Science Degree in Electrical Engineering from Kansas State University

Bachelor of Science Degree in Business Administration Kansas State University

Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming

Scot D. Rogers

Scot DRogers

SN: 321580100038 Test #:100203 Phone/Fax: (913) 837-3214 Test to: CFR 47 15.249, RSS-210 Annex 12 File: SAF Tehnika TstRpt CFIP24 Lumina

FCC ID: W9Z-LUMINA-24 IC: 8855A-LUMINA-24 SN: 321590100037 Date: March 3, 2010 Page 33 of 35



#### Annex D FCC Test Site Registration Letter

#### FEDERAL COMMUNICATIONS COMMISSION

**Laboratory Division** 7435 Oakland Mills Road Columbia, MD 21046

June 18, 2008

Registration Number: 90910

Rogers Labs, Inc. 4405 West 259th Terrace, Louisburg, KS 66053

Attention:

Scot Rogers

Re:

Measurement facility located at Louisburg

3 & 10 meter site

Date of Renewal: June 18, 2008

#### Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,

**Industry Analyst** 

Page 34 of 35



#### Annex E Industry Canada Test Site Registration Letter



Industry Canada Industrie Canada

July 29th, 2008

OUR FILE: 46405-3041 Submission No: 127059

Rogers Labs Inc. 4405 West 259th Terrace Louisburg KY 66053 USA

Attention: Scot D. Rogers

#### Dear Sir/Madame:

The Bureau has received your application for the registration / renewal of a 3/10m OATS. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (3040A-1). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please be informed that the Bureau is now utilizing a new site numbering scheme in order to simplify the electronic filing process. Our goal is to reduce the number of secondary codes associated to one particular company. The following changes have been made to your records.

Your primary code is: 3041

The company number associated to the site(s) located at the above address is: 3041A The table below is a summary of the changes made to the unique site registration number(s):

| New Site Number | Obsolete Site Number | Description of Site | Expiry Date<br>(YYYY-MM-DD) |
|-----------------|----------------------|---------------------|-----------------------------|
| 3041A-1         | 3041-1               | 3 / 10m OATS        | 2010-07-29                  |

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2003 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2003 shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 meter OATS or 3 meter chamber). If the test facility is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to exceed two years. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL;

If you have any questions, you may contact the Bureau by e-mail at <u>certification.bureau@ic.gc.ca</u> Please reference our file and submission number above for all correspondence. Yours sincerely,

S. Proulx Wireless Laboratory Manager Certification and Engineering Bureau Industry Canada 3701 Carling Ave., Building 94 Ottawa, Ontario K2H 8S2

Canada

Canada

File: SAF Tehnika TstRpt CFIP24 Lumina

Date: March 3, 2010 Page 35 of 35

FCC ID: W9Z-LUMINA-24

IC: 8855A-LUMINA-24

SN: 321590100037