

Application Submittal Report For

FCC And Industry Canada Grant Of Certification

FOR

Models: Z05FEE01 and Z05FEE02 5745-5825 MHz, 5755-5815 (40 MHz Mode) MIMO Broadband Digital Transmission System FCC ID: W9Z-FREEMILE5 IC: 8855A-FREEMILE5

FOR

SAF Tehnika AS

24a, Ganibu dambis Riga, Latvia, LV-1005

Test Report Number: 120209

Authorized Signatory: Sot DRogers

Scot D. Rogers

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02

Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002

Date: March 13, 2012

Page 1 of 65

ROGERS LABS, INC.

4405 West 259th Terrace Louisburg, KS 66053 Phone / Fax (913) 837-3214

Engineering Test Report For Grant of Certification Application

FOR

CFR 47, PART 15C - Intentional Radiators CFR 47 Paragraph 15.247 and Industry Canada RSS-210 License Exempt Intentional Radiator

For

SAF Tehnika AS

24a, Ganibu dambis Riga, Latvia, LV-1005

Models: Z05FEE01 and Z05FEE02

MiMo Broadband Digital Transmission System

Frequency Range 5745-5825 MHz, 5755-5815 (40 MHz Mode) FCC ID#: W9Z-FREEMILE5 IC: 8855A-FREEMILE5

Test Date: February 9, 2012

Scot D Rogers Certifying Engineer:

> Scot D. Rogers Rogers Labs, Inc.

4405 West 259th Terrace Louisburg, KS 66053

Telephone/Facsimile: (913) 837-3214

This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02

Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002

Date: March 13, 2012

Page 2 of 65

Table Of Contents

TABLE OF CONTENTS	3
FORWARD	6
APPLICABLE STANDARDS & TEST PROCEDURES	6
ENVIRONMENTAL CONDITIONS	6
OPINION / INTERPRETATION OF RESULTS	7
TEST SITE LOCATIONS	7
UNITS OF MEASUREMENTS	
EQUIPMENT TESTED	
EQUIPMENT FUNCTION AND CONFIGURATION	
Equipment Configuration	
APPLICATION FOR CERTIFICATION	
TEST PROCEDURES	
AC Line Conducted Emission Test Procedure	
Radiated Emission Test Procedure	
LIST OF TEST EQUIPMENT	11
INTENTIONAL RADIATORS	12
Antenna Requirements	
Restricted Bands of Operation	12
Radiated Emissions in Restricted Bands Data General	
Radiated Emissions in Restricted Bands Z05FEE01	13
Radiated Emissions in Restricted Bands Z05FEE02	13
Summary of Results for Radiated Emissions in Restricted Bands	13
AC Line Conducted Emissions Procedure	14
Figure 1 AC Line Conducted Emissions Line 1	15
Figure 2 AC Line Conducted Emissions Line 2	15
AC Line Conducted Emissions Data (Highest Emissions)	16
Summary of Results for AC Line Conducted Emissions	16
General Radiated Emissions Procedure	17
General Radiated Emissions from EUT Data (Worst-case General Emissions)	18

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209 Test to: CFR47 (15.247), RSS-210

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 3 of 65

Summary of Results for General Radiated Emissions	18
Operation in the Frequency Band of 5725 – 5850 MHz	19
Figure 3 Plot of Antenna Port Conducted (Power, 5745 MHz, Chain 0, 20 MHz Mode)	19
Figure 4 Plot of Antenna Port Conducted (Power, 5785 MHz, Chain 0, 20 MHz Mode)	20
Figure 5 Plot of Antenna Port Conducted (Power, 5825 MHz, Chain 0, 20 MHz Mode)	20
Figure 6 Plot of Antenna Port Conducted (Power, 5745 MHz, Chain 1, 20 MHz Mode)	21
Figure 7 Plot of Antenna Port Conducted (Power, 5785 MHz, Chain 1, 20 MHz Mode)	21
Figure 8 Plot of Antenna Port Conducted (Power, 5825 MHz, Chain 1, 20 MHz Mode)	22
Figure 9 Plot of Antenna Port Conducted (Power, 5755 MHz, Chain 0, 40 MHz Mode)	22
Figure 10 Plot of Antenna Port Conducted (Power, 5785 MHz, Chain 0, 40 MHz Mode)	23
Figure 11 Plot of Antenna Port Conducted (Power, 5815 MHz, Chain 0, 40 MHz Mode)	23
Figure 12 Plot of Antenna Port Conducted (Power, 5755 MHz, Chain 1, 40 MHz Mode)	24
Figure 13 Plot of Antenna Port Conducted (Power, 5785 MHz, Chain 1, 40 MHz Mode)	24
Figure 14 Plot of Antenna Port Conducted (Power, 5815 MHz, Chain 1, 40 MHz Mode)	25
Figure 15 Plot of Antenna Port Conducted 6dB Band width (5745 MHz, Chain 0, 20 MHz Mode)	25
Figure 16 Plot of Antenna Port Conducted 6dB Band width (5785 MHz, Chain 0, 20 MHz Mode)	26
Figure 17 Plot of Antenna Port Conducted 6dB Band width (5825 MHz, Chain 0, 20 MHz Mode)	26
Figure 18 Plot of Antenna Port Conducted 6dB Band width (5745 MHz, Chain 1, 20 MHz Mode)	27
Figure 19 Plot of Antenna Port Conducted 6dB Band width (5785 MHz, Chain 1, 20 MHz Mode)	27
Figure 20 Plot of Antenna Port Conducted 6dB Band width (5825 MHz, Chain 1, 20 MHz Mode)	28
Figure 21 Plot of Antenna Port Conducted 6dB Band width (5755 MHz, Chain 0, 40 MHz Mode)	28
Figure 22 Plot of Antenna Port Conducted 6dB Band width (5785 MHz, Chain 0, 40 MHz Mode)	29
Figure 23 Plot of Antenna Port Conducted 6dB Band width (5815 MHz, Chain 0, 40 MHz Mode)	29
Figure 24 Plot of Antenna Port Conducted 6dB Band width (5755 MHz, Chain 1, 40 MHz Mode)	30
Figure 25 Plot of Antenna Port Conducted 6dB Band width (5785 MHz, Chain 1, 40 MHz Mode)	30
Figure 26 Plot of Antenna Port Conducted 6dB Band width (5815 MHz, Chain 1, 40 MHz Mode)	31
Figure 27 Plot of Power Spectral Density (5745 MHz, Chain 0, 20 MHz Mode)	31
Figure 28 Plot of Power Spectral Density (5785 MHz, Chain 0, 20 MHz Mode)	32
Figure 29 Plot of Power Spectral Density (5825 MHz, Chain 0, 20 MHz Mode)	32
Figure 30 Plot of Power Spectral Density (5745 MHz, Chain 1, 20 MHz Mode)	33
Figure 31 Plot of Power Spectral Density (5785 MHz, Chain 1, 20 MHz Mode)	33
Figure 32 Plot of Power Spectral Density (5825 MHz, Chain 1, 20 MHz Mode)	34
Figure 33 Plot of Power Spectral Density (5755 MHz, Chain 0, 40 MHz Mode)	34
Figure 34 Plot of Power Spectral Density (5785 MHz, Chain 0, 40 MHz Mode)	35
Figure 35 Plot of Power Spectral Density (5815 MHz, Chain 0, 40 MHz Mode)	35
Figure 36 Plot of Power Spectral Density (5755 MHz, Chain 1, 40 MHz Mode)	36
Figure 37 Plot of Power Spectral Density (5785 MHz, Chain 1, 40 MHz Mode)	36
Figure 38 Plot of Power Spectral Density (5815 MHz, Chain 1, 40 MHz Mode)	37
Figure 39 Plot of Low Band Edge Compliance (5745 MHz, Chain 0, 20 MHz Mode)	37
Figure 40 Plot of High Band Edge Compliance (5825 MHz, Chain 0, 20 MHz Mode)	38
Figure 41 Plot of Low Band Edge Compliance (5745 MHz, Chain 1, 20 MHz Mode)	38

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209 Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 4 of 65

Figure 42 Plot of High Band Edge Compliance (5825 MHz, Chain 1, 20 MHz Mode)	39
Figure 43 Plot of Low Band Edge Compliance (5755 MHz, Chain 0, 40 MHz Mode)	39
Figure 44 Plot of High Band Edge Compliance (5815 MHz, Chain 0, 40 MHz Mode)	40
Figure 45 Plot of Low Band Edge Compliance (5755 MHz, Chain 1, 40 MHz Mode)	40
Figure 46 Plot of High Band Edge Compliance (5815 MHz, Chain 1, 40 MHz Mode)	41
Figure 47 Plot of Antenna Port Conducted Emissions (Chain 0)	41
Figure 48 Plot of Antenna Port Conducted Emissions (Chain 0)	
Figure 49 Plot of Antenna Port Conducted Emissions (Chain 0)	42
Figure 50 Plot of Antenna Port Conducted Emissions (Chain 0)	43
Figure 51 Plot of Antenna Port Conducted Emissions (Chain 0)	
Figure 52 Plot of Antenna Port Conducted Emissions (Chain 0)	
Figure 53 Plot of Antenna Port Conducted Emissions (Chain 0)	
Figure 54 Plot of Antenna Port Conducted Emissions (Chain 0)	
Figure 55 Plot of Antenna Port Conducted Emissions (Chain 1)	
Figure 56 Plot of Antenna Port Conducted Emissions (Chain 1)	
Figure 57 Plot of Antenna Port Conducted Emissions (Chain 1)	
Figure 58 Plot of Antenna Port Conducted Emissions (Chain 1)	
Figure 59 Plot of Antenna Port Conducted Emissions (Chain 1)	
Figure 60 Plot of Antenna Port Conducted Emissions (Chain 1)	
Figure 61 Plot of Antenna Port Conducted Emissions (Chain 1)	
Figure 62 Plot of Antenna Port Conducted Emissions (Chain 1)	49
Transmitter Emissions Data	49
Transmitter Antenna Port Conducted Emissions Data (Total for Both Chains)	49
Transmitter Antenna Port Conducted Emissions Data	50
Transmitter Antenna Port Conducted Spurious Emissions Data (Chain 0, HT Mixed Mode)	52
Transmitter Antenna Port Conducted Spurious Emissions Data (Chain 1, HT Mixed Mode)	53
Transmitter Antenna Port Conducted Spurious Emissions Data (Chain 0, HT Green Field)	54
Transmitter Antenna Port Conducted Spurious Emissions Data (Chain 1, HT Green Field)	
Transmitter Radiated Emission (23 dBi Panel, Worst-case)	56
Transmitter Radiated Emission (32 dBi Dish, Worst-case)	
Summary of Results for Transmitter Radiated Emissions of Intentional Radiator	58
STATEMENT OF MODIFICATIONS AND DEVIATIONS	58
ANNEX	59
Annex A Measurement Uncertainty Calculations	60
Annex B Rogers Labs Test Equipment List	62
Annex C Rogers Qualifications	63
Annex D FCC Site Registration Letter	
Annex E Industry Canada Site Registration Letter	65

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 5 of 65

Forward

The following information is submitted for consideration in obtaining Grant of Certification for License Exempt Digital Transmission System Intentional Radiator operating under CFR 47 Paragraph 15.247, KDB 662911, and Industry Canada RSS-210.

Name of Applicant: SAF Tehnika AS

> 24a, Ganibu dambis Riga, Latvia, LV-1005

Models: Z05FEE01 and Z05FEE02

FCC I.D.: W9Z-FREEMILE5 FRN: 0018 6623 12 IC: 8855A-FREEMILE5 Frequency Range: 5745-5825 (802.11n), 5755-5815 MHz (802.11n, 40 MHz Channel) Operating Power: 27.7 dBm, 0.5 Watts (chain 0), 26.2 dBm (chain 1), 0.990 Watt Total,

Occupied Bandwidth of 18,173 kHz (802.11n) or 37,308 kHz

Applicable Standards & Test Procedures

In accordance with the Federal Communications Code of Federal Regulations, dated October 1, 2011, Part 2, Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.925, 2.926, 2.1031 through 2.1057, and applicable parts of paragraph 15, Part 15C Paragraph 15.247, KDB 662911 MIMO and Industry Canada standard RSS-210 the following information is submitted.

Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in the ANSI C63.4-2009 Document, FCC KDB 662911 MIMO, KDB 558074 DTS Measurement Guide, and/or RSS-210. Testing for the AC line-conducted emissions were performed as defined in sections 7 and 13.1.3, testing of the radiated emissions was performed as defined in sections 8 and 13.1.4 of ANSI C63.4-2009. Testing of the intentional radiated emissions was performed as defined in section 13 of ANSI C63.4-2009.

Environmental Conditions

Ambient Temperature 20.6° C 29% Relative Humidity

1031.5 mb Atmospheric Pressure

Rogers Labs, Inc. SAF Tehnika AS 4405 W. 259th Terrace Models: Z05FEE01 and Z05FEE02 Louisburg, KS 66053 Test #: 120209

Phone/Fax: (913) 837-3214 Test to: CFR47 (15.247), RSS-210 Revision 1

Date: March 13, 2012 File: SAF Tehnika Freemile 5 TstRpt 120209 Page 6 of 65

FCC ID#: W9Z-FREEMILE5

IC#: 8855A-FREEMILE5

SN: 363710100002

Opinion / Interpretation of Results

Tests Performed	Margin (dB)	Results
Emissions as per CFR 47, 15.205, RSS-210 (Restricted)	-3.4	Complies
Emissions as per CFR 47, 15.207, RSS-210 (AC Line)	-9.1	Complies
Emissions as per CFR 47, 15.209, RS-210 (Gen, Radiated)	-3.4	Complies
Emissions as per CFR 47, 15.247, RSS210 (Tx Harmonic)	-11.5	Complies

Test Site Locations

Conducted EMI The AC power line conducted emissions testing performed in a shielded

screen room located at Rogers Labs, Inc., 4405 W. 259th Terrace,

Louisburg, KS

Radiated EMI The radiated emissions tests were performed at the 3 meters, Open Area

Test Site (OATS) located at Rogers Labs, Inc., 4405 W. 259th Terrace,

Louisburg, KS

Site Registration Refer to Annex for Site Registration Letters

NVLAP Accreditation Lab code 200087-0

Units of Measurements

Conducted EMI Data is in dBµV; dB referenced to one microvolt

Radiated EMI Data is in dBµV/m; dB/m referenced to one microvolt per meter

Sample Calculation:

RFS = Radiated Field Strength, FSM = Field Strength Measured

A.F. = Receive antenna factor, Gain = amplification gains and/or cable losses

RFS $(dB\mu V/m @ 3m) = FSM (dB\mu V) + A.F. (dB) - Gain (dB)$

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

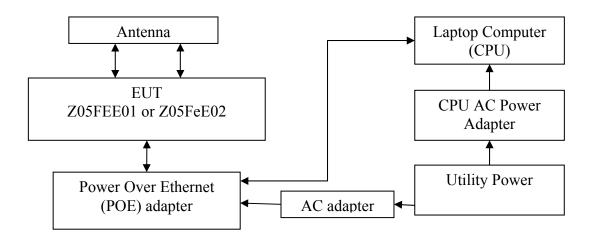
SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 7 of 65


Equipment Tested

<u>Equipment</u>	<u>Model</u>	FCC I.D.
EUT	Z05FEE01 and Z05FEE02	W9Z-FREEMILE5
POE	CFIP-TPI	N/A
POE (AC Adapter)	CFIP-AC-PS	N/A
Dell Latitude Laptop	E6520	N/A
DISH Antenna	HDDA5W-32-DP2	N/A
Panel Antenna	Z05FEE01	W9Z-FREEMILE5

Equipment Function and Configuration

The EUT is a 5745-5825 MHz, 2x2 Multiple Input Multiple Output (MiMo), Digital Transmission System used to transmit data in applications offering broadband wireless connectivity. The EUT is offered in two models Z05FEE01 (mounted with 23-dBi panel antenna) and Z05FEE02 (n-connector for use with authorized dish antenna). The equipment is marketed for use to incorporate a wireless link to exchange data information from one point to another. For testing purposes, the Z05FEE01 and Z05FEE02 transceiver was connected to the manufacturer supplied Power-Over-Ethernet (POE) interface and laptop computer allowing for power and operational control of the transmitter. The Z05FEE01 and Z05FEE02 receive power from authorized POE adapter only and offer no other provisions for interfacing. Testing was performed with the EUT set to transmit in available data modes. The design is marketed for professional installation, no provision for connection to alternate antenna systems is provided. The design complies with the unique antenna connection requirements.

Equipment Configuration

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

214

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02

Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 8 of 65

Application for Certification

(1) Manufacturer: SAF Tehnika AS

24a, Ganibu dambis Riga, Latvia, LV-1005

(2) Identification: Models: Z05FEE01 and Z05FEE02

FCC I.D.: W9Z-FREEMILE5 IC: 8855A-FREEMILE5

(3) Instruction Book:

Refer to Exhibit for Instruction Manual.

(4) Description of Circuit Functions:

Refer to Exhibit of Operational Description.

(5) Block Diagram with Frequencies:

Refer to Exhibit of Operational Description.

(6) Report of Measurements:

Report of measurements follows in this Report.

(7) Photographs: Construction, Component Placement, etc.:

Refer to Exhibit for photographs of equipment.

- (8) List of Peripheral Equipment Necessary for operation: Optional equipment available for the EUT includes Power Over Ethernet (POE) power adapter. The available configuration options were investigated for this and other reports in compliance to required standards with worst-case data presented.
- (9) Transition Provisions of CFR47 15.37 are not requested.
- (10) Not Applicable: The unit is not a scanning receiver.
- (11) Not Applicable: The EUT does not operate in the 59 64 GHz frequency band.
- (12) The equipment is not software defined and this section is not applicable.

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 9 of 65

NVLAP Lab Code 200087-0

Test Procedures

AC Line Conducted Emission Test Procedure

Testing for the AC line-conducted emissions was performed as defined in sections 7.2.4 and 13 of ANSI C63.4-2009. The test setup, including the EUT, was arranged in the test configurations as shown above and placed on a 1 x 1.5-meter wooden bench, 0.8 meters high located in a screen room. The power lines of the system were isolated from the power source using a standard LISN with a 50-μHy choke. EMI was coupled to the spectrum analyzer through a 0.1 μF capacitor internal to the LISN. The LISN was positioned on the floor beneath the wooden bench supporting the EUT. The power lines and cables were draped over the back edge of the table. Refer to photographs in exhibits for EUT placement used during testing.

Radiated Emission Test Procedure

The EUT was placed on a rotating 1 x 1.5-meter wooden platform, 0.8 meters above the ground plane at a distance of 3 meters from the FSM antenna. Testing for the radiated emissions was performed as defined in sections 8 and 13.1.4 of ANSI C63.4-2009. EMI energy was maximized by equipment placement, raising and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken using a spectrum analyzer. Refer to photographs in the test setup exhibits for EUT placement during testing.

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 10 of 65

List of Test Equipment

A Rohde and Schwarz ESU40 and/or Hewlett Packard 8591EM was used as the measuring device for the emissions testing of frequencies below 1 GHz. A Rohde and Schwarz ESU40 and/or Hewlett Packard 8562A Spectrum Analyzer was used as the measuring device for testing the emissions at frequencies above 1 GHz. The analyzer settings used are described in the following table. Refer to the appendix for a complete list of test equipment.

AC Line Conducted Emissions (0.150 -30 MHz)							
RBW	RBW AVG. BW Detector Function						
9 kHz	30 kHz	Peak / Quasi Peak					
	Emissions (30-1000 MHz)						
RBW	AVG. BW	Detector Function					
120 kHz	120 kHz 300 kHz Peak / Quasi						
	Emissions (Above 1000 MHz)						
RBW	Video BW	Detector Function					
100 kHz	100 kHz	Peak					
1 MHz	1 MHz	Peak / Average					

Equipment	<u>Manufacturer</u>	<u>Model</u>	Calibration Date	<u>Due</u>
LISN	Comp. Design	FCC-LISN-2-MOD.CD	10/11	10/12
Antenna	ARA	BCD-235-B	10/11	10/12
Antenna	EMCO	3147	10/11	10/12
Antenna	EMCO	3143	5/11	5/12
Analyzer	HP	8591EM	5/11	5/12
Analyzer	HP	8562A	5/11	5/12
Analyzer	Rohde & Schwarz	ESU40	5/11	5/12

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 11 of 65

Intentional Radiators

As per CFR47, Subpart C, paragraph 15.247, KDB 662911 MIMO, and RSS-210 Issue 8 the following information is submitted.

Antenna Requirements

The EUT is configured with attached panel antenna or N-connector port for use with authorized antenna systems. The design is marketed for professional installation and use in point-to-point applications as described in accompanying documentation. The antenna connection point complies with the unique antenna connection requirements. The requirements of 15.203 are fulfilled; there are no deviations or exceptions to the specification.

Restricted Bands of Operation

Spurious emissions falling in the restricted frequency bands of operation were measured at a distance of three meters on the OATS. The EUT utilizes frequency, determining circuitry, which generates harmonics falling in the restricted bands. Emissions were measured at the OATS, using appropriate antennas or pyramidal horns, amplification stages, and a spectrum analyzer. No other significant emission was observed which fell into the restricted bands of operation.

Radiated Emissions in Restricted Bands Data General

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Quasi-Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Quasi-Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)
73.2	37.1	25.9	N/A	54.8	29.8	N/A	40.0
73.3	37.4	25.4	N/A	53.8	29.8	N/A	40.0
73.7	37.7	24.3	N/A	53.0	27.4	N/A	40.0
125.0	45.5	40.1	N/A	38.2	30.0	N/A	43.5
145.3	42.4	39.2	N/A	39.5	30.3	N/A	43.5
242.0	41.5	28.3	N/A	36.4	25.2	N/A	46.0
1600.0	42.1	N/A	28.1	41.8	N/A	26.4	54.0

Other emissions present had amplitudes at least 20 dB below the limit.

Quasi-Peak amplitude emissions are recorded above for frequency range of 30-1000 MHz. Average amplitude emissions are recorded above for frequency range above 1000 MHz.

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 12 of 65

Radiated Emissions in Restricted Bands Z05FEE01

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Quasi-Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Quasi-Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)
11490.0	47.6	N/A	34.8	46.7	N/A	34.6	54.0
11490.0	47.9	N/A	34.8	47.5	N/A	34.4	54.0
11570.0	48.5	N/A	35.1	47.5	N/A	35.0	54.0
11650.0	35.3	N/A	22.8	34.7	N/A	32.7	54.0
22980.0	47.6	N/A	34.8	46.7	N/A	34.6	54.0

Other emissions present had amplitudes at least 20 dB below the limit.

Quasi-Peak amplitude emissions are recorded above for frequency range of 30-1000 MHz. Average amplitude emissions are recorded above for frequency range above 1000 MHz.

Radiated Emissions in Restricted Bands Z05FEE02

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Quasi-Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Quasi-Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)
11490.0	46.6	N/A	34.0	46.7	N/A	34.0	54.0
11490.0	46.4	N/A	34.1	46.5	N/A	34.1	54.0
11570.0	47.4	N/A	34.8	47.1	N/A	34.9	54.0
11650.0	35.7	N/A	33.2	36.3	N/A	33.1	54.0
22980.0	46.6	N/A	34.0	46.7	N/A	34.0	54.0

Other emissions present had amplitudes at least 20 dB below the limit.

Quasi-Peak amplitude emissions are recorded above for frequency range of 30-1000 MHz. Average amplitude emissions are recorded above for frequency range above 1000 MHz.

Summary of Results for Radiated Emissions in Restricted Bands

The EUT demonstrated compliance with the radiated emissions requirements of CFR 47 Part 15C Intentional Radiators. The EUT demonstrated a minimum margin of -3.4 dB below the radiated emissions requirements in restricted frequency bands. Peak, Quasi-peak, and average amplitudes were checked for compliance with the regulations. Worst-case emissions are reported with other emissions found in the restricted frequency bands at least 20 dB below the requirements.

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-32

Phone/Fax: (913) 837-3214

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02

Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

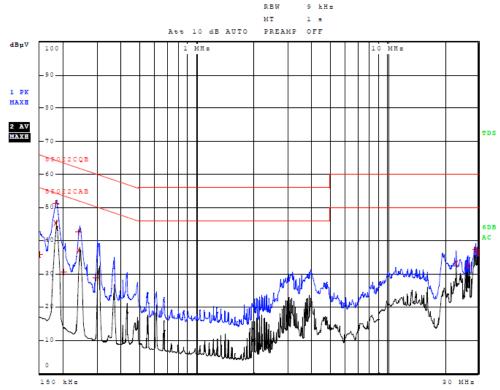
FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5

SN: 363710100002 Date: March 13, 2012 Page 13 of 65

AC Line Conducted Emissions Procedure

The EUT was arranged in the testing configuration, emulating a typical configuration, and placed on a 1 x 1.5-meter wooden bench 80 cm above the conducting ground plane, floor of a screen room. The bench was positioned 40 cm away from the wall of the screen room. The Power Over Ethernet for the EUT was connected to the LISN for AC line conducted emissions testing. A second LISN was positioned on the floor of the screen room 80-cm from the rear of the supporting equipment of the EUT. All power cords except the EUT were then powered from the second LISN. EMI was coupled to the spectrum analyzer through a 0.1 µF capacitor, internal to the LISN. Power line conducted emissions testing were carried out individually for each current carrying conductor of the EUT. The excess length of lead between the system and the LISN receptacle was folded back and forth to form a bundle not exceeding 40 cm in length. The screen room, conducting ground plane, analyzer, and LISN were bonded together to the protective earth ground. Preliminary testing was performed to identify the frequency of each radio frequency emission displaying the highest amplitude. The cables were repositioned to obtain maximum amplitude of measured EMI level. Once the worst-case configuration was identified, plots were made of the EMI from 0.15 MHz to 30 MHz then the data was recorded with maximum conducted emissions levels. Refer to figures one and two for plots of the EUT powered by POE, AC Power Line conducted emissions.

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214


Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 14 of 65

Figure 1 AC Line Conducted Emissions Line 1

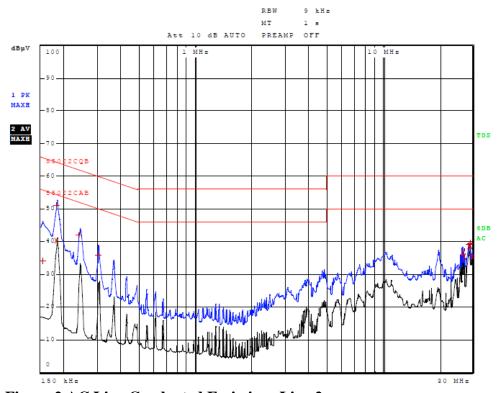


Figure 2 AC Line Conducted Emissions Line 2

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 15 of 65

AC Line Conducted Emissions Data (Highest Emissions)

Line 1

Trace	Frequenc	y	Level (dBµV)	Detector	Delta Limit/dB
1	150.000000000	kHz	35.91	Quasi Peak	-30.09
2	182.000000000	kHz	45.20	Average	-9.19
1	182.000000000	kHz	51.07	Quasi Peak	-13.32
1	202.000000000	kHz	30.61	Quasi Peak	-32.92
2	242.000000000	kHz	37.05	Average	-14.98
1	242.000000000	kHz	42.53	Quasi Peak	-19.49
1	298.000000000	kHz	28.88	Quasi Peak	-31.42
2	23.128000000	MHz	33.08	Average	-16.92
2	26.608000000	MHz	32.36	Average	-17.64
1	29.232000000	MHz	37.25	Quasi Peak	-22.75
2	29.236000000	MHz	37.14	Average	-12.86
2	29.968000000	MHz	36.08	Average	-13.92

Line 2

Trace	Frequenc	y	Level (dBµV)	Detector	Delta Limit/dB
1	154.000000000	kHz	34.22	Quasi Peak	-31.56
2	182.000000000	kHz	40.29	Average	-14.11
1	182.000000000	kHz	50.89	Quasi Peak	-13.50
1	242.000000000	kHz	41.98	Quasi Peak	-20.04
1	302.000000000	kHz	35.76	Quasi Peak	-24.42
2	26.608000000	MHz	36.39	Average	-13.61
2	27.160000000	MHz	35.50	Average	-14.50
2	28.684000000	MHz	38.62	Average	-11.38
1	28.684000000	MHz	39.18	Quasi Peak	-20.82
2	29.236000000	MHz	38.84	Average	-11.16
1	29.236000000	MHz	39.31	Quasi Peak	-20.69
2	29.908000000	MHz	35.35	Average	-14.65

Other emissions present had amplitudes at least 20 dB below the limit.

Summary of Results for AC Line Conducted Emissions

The EUT demonstrated compliance to the conducted emissions requirements of CFR47 Part 15C and RSS-GEN. The EUT demonstrated minimum margin of -9.1 dB below the limit.

Measurements were taken using the peak, quasi peak, and average, measurement function for each emissions amplitude and were below the limits stated in the specification. Other emissions were present with recorded data representing worst-case amplitudes.

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 16 of 65

General Radiated Emissions Procedure

The EUT was arranged in the testing configuration emulating typical equipment configuration and operated through available modes with worst-case data recorded. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions investigation measurements were performed to identify frequencies, which produced the highest emissions. The frequency spectrum from 9 kHz to 60,000 MHz was searched for general radiated emissions during investigation. Final radiated emissions data was taken with the EUT located at the OATS at a distance of 3 meters between the EUT and the receiving antenna. Each radiated emission was then maximized at the OATS location before final radiated emissions measurements were performed. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used were Broadband Biconical from 30 to 200 MHz, Biconilog from 30 to 1000 MHz, Log Periodic from 200 MHz to 1 GHz and or Double Ridge Horn or Pyramidal Horns and mixers from 1 GHz to 60 GHz, notch filters, and appropriate amplifiers and external mixers were utilized.

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053

Phone/Fax: (913) 837-3214 Revision 1

Models: Z05FEE01 and Z05FEE02 Test #: 120209

SAF Tehnika AS

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 17 of 65

General Radiated Emissions from EUT Data (Worst-case General Emissions)

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Quasi-Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Quasi-Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)
64.1	35.0	21.8	N/A	37.7	29.0	N/A	40.0
69.0	37.4	26.4	N/A	36.1	29.9	N/A	40.0
73.2	37.1	25.9	N/A	39.7	29.8	N/A	43.5
73.3	37.4	25.4	N/A	39.0	29.8	N/A	43.5
73.7	37.7	24.3	N/A	38.5	27.4	N/A	43.5
125.0	45.5	40.1	N/A	37.2	30.0	N/A	43.5
145.3	42.4	39.2	N/A	34.7	30.3	N/A	43.5
242.0	41.5	28.3	N/A	29.5	25.2	N/A	46.0
1600.0	42.1	N/A	28.1	41.8	N/A	26.4	56.0

Other emissions present had amplitudes at least 20 dB below the limit.

Quasi-Peak amplitude emissions are recorded above for frequency range of 30-1000 MHz. Average amplitude emissions are recorded above for frequency range above 1000 MHz.

Summary of Results for General Radiated Emissions

The EUT demonstrated compliance with the radiated emissions requirements of CFR47 Part 15C paragraph 15.209 Intentional Radiators. The EUT demonstrated a minimum margin of -3.4 dB below the requirements. Other emissions were present with amplitudes at least 20 dB below the Limits.

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 18 of 65

Operation in the Frequency Band of 5725 – 5850 MHz

The power output and emissions were measured at the antenna port in compliance with regulation. EUT radiated emissions were also measured on the open area test site at a threemeter distance. The EUT and test configurations were placed on a wooden turntable 0.8 meters above the ground plane at a distance of 3 meters from the FSM antenna. The peak and quasipeak amplitude of the frequencies below 1000 MHz were measured using a spectrum analyzer. The peak and average amplitude of emissions above 1000 MHz including were measured using a spectrum analyzer. Data was recorded from the analyzer measurement result. Plots were made of transmitter antenna port conducted performance taken in a screen room. Refer to figures three through sixty-two showing plots of the EUT emissions performance displaying compliance with the specifications. Emissions testing were performed on each chain of the EUT at the antenna ports.

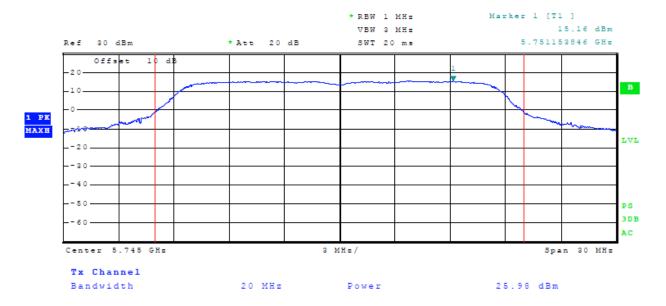


Figure 3 Plot of Antenna Port Conducted (Power, 5745 MHz, Chain 0, 20 MHz Mode)

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02

Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5

SN: 363710100002 Date: March 13, 2012 Page 19 of 65

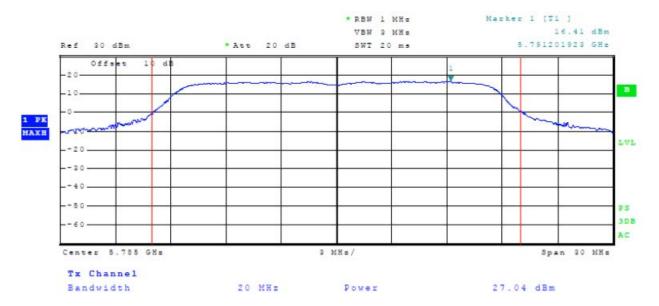


Figure 4 Plot of Antenna Port Conducted (Power, 5785 MHz, Chain 0, 20 MHz Mode)

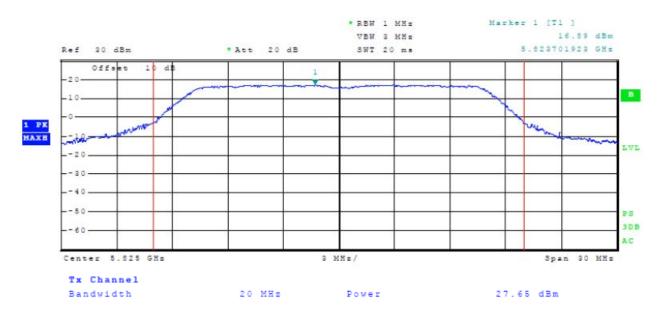


Figure 5 Plot of Antenna Port Conducted (Power, 5825 MHz, Chain 0, 20 MHz Mode)

Revision 1

4

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02

Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 20 of 65

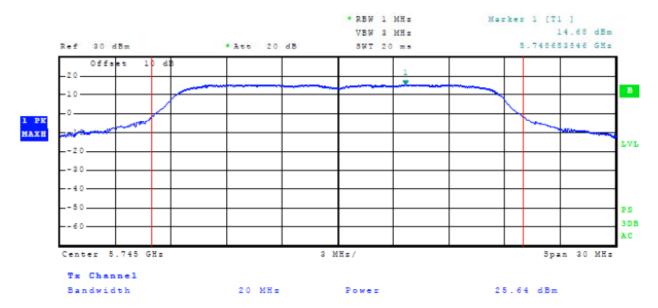


Figure 6 Plot of Antenna Port Conducted (Power, 5745 MHz, Chain 1, 20 MHz Mode)

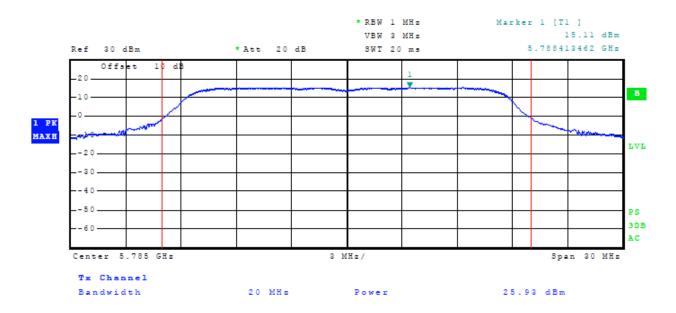


Figure 7 Plot of Antenna Port Conducted (Power, 5785 MHz, Chain 1, 20 MHz Mode)

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 21 of 65

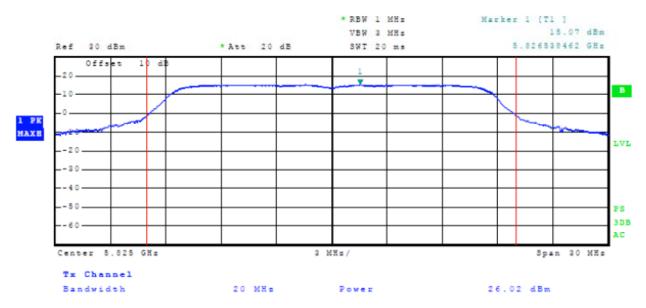


Figure 8 Plot of Antenna Port Conducted (Power, 5825 MHz, Chain 1, 20 MHz Mode)

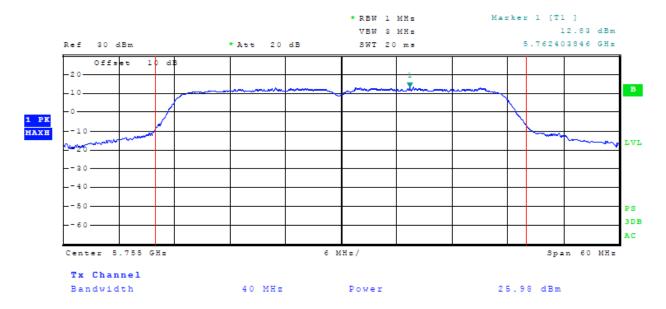


Figure 9 Plot of Antenna Port Conducted (Power, 5755 MHz, Chain 0, 40 MHz Mode)

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053

Phone/Fax: (913) 837-3214 Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02

Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002

Date: March 13, 2012 Page 22 of 65

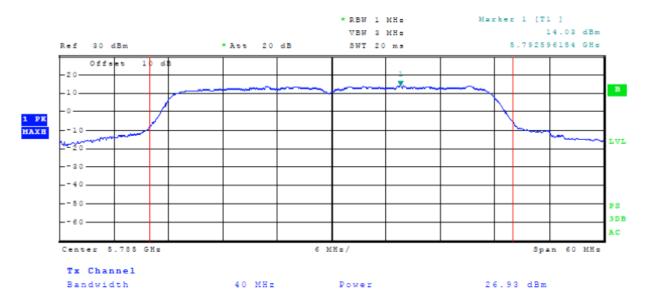


Figure 10 Plot of Antenna Port Conducted (Power, 5785 MHz, Chain 0, 40 MHz Mode)

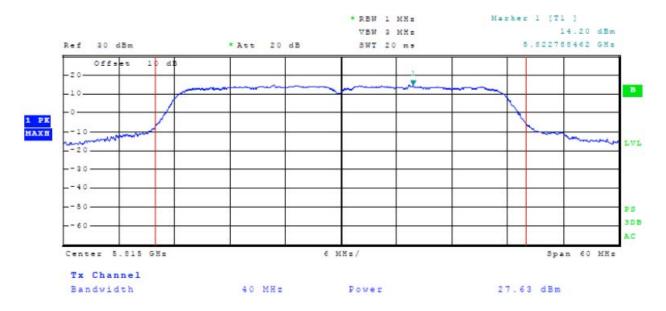


Figure 11 Plot of Antenna Port Conducted (Power, 5815 MHz, Chain 0, 40 MHz Mode)

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02

Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5

SN: 363710100002 Date: March 13, 2012 Page 23 of 65

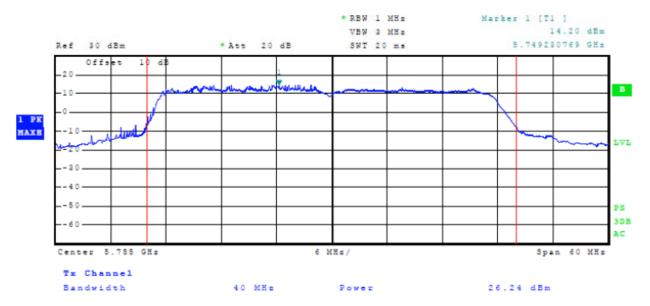


Figure 12 Plot of Antenna Port Conducted (Power, 5755 MHz, Chain 1, 40 MHz Mode)

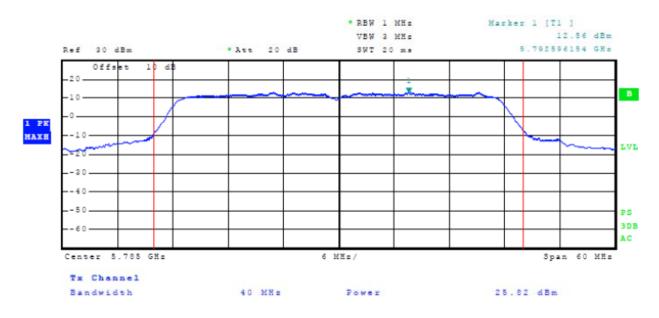


Figure 13 Plot of Antenna Port Conducted (Power, 5785 MHz, Chain 1, 40 MHz Mode)

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 24 of 65

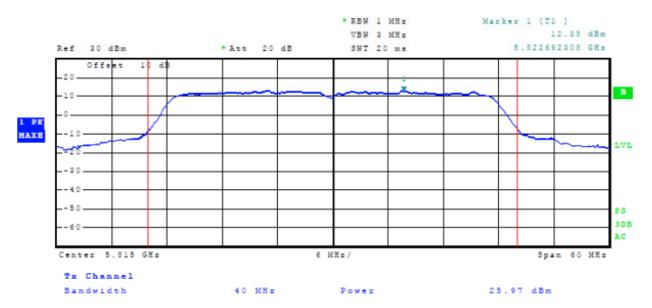


Figure 14 Plot of Antenna Port Conducted (Power, 5815 MHz, Chain 1, 40 MHz Mode)

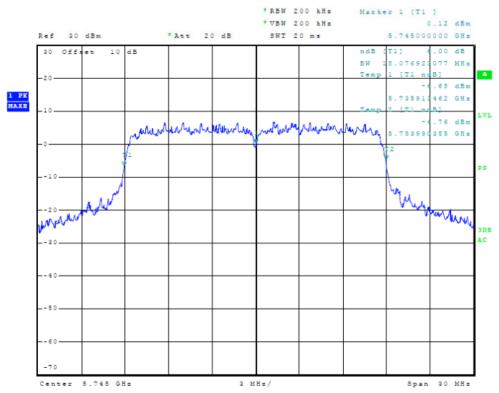


Figure 15 Plot of Antenna Port Conducted 6dB Band width (5745 MHz, Chain 0, 20 MHz Mode)

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 25 of 65

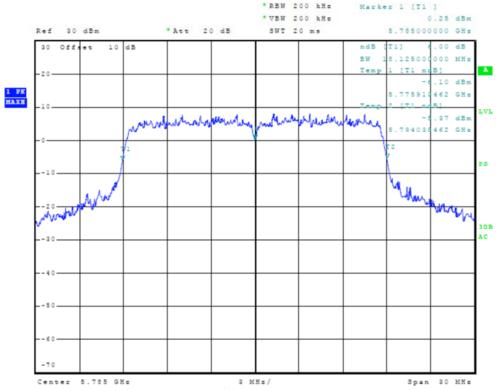


Figure 16 Plot of Antenna Port Conducted 6dB Band width (5785 MHz, Chain 0, 20 MHz Mode)

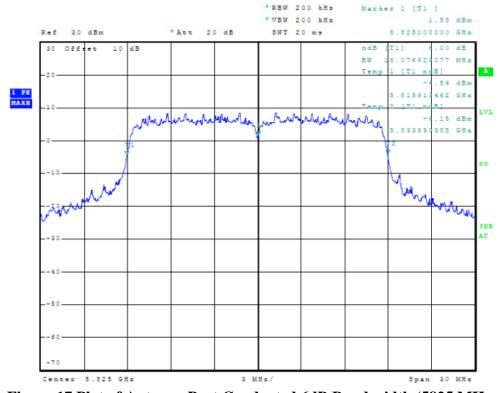


Figure 17 Plot of Antenna Port Conducted 6dB Band width (5825 MHz, Chain 0, 20 MHz Mode)

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 26 of 65

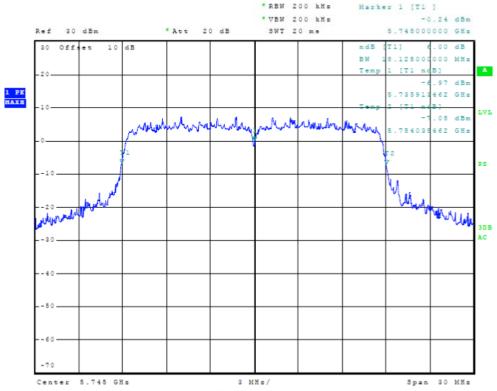


Figure 18 Plot of Antenna Port Conducted 6dB Band width (5745 MHz, Chain 1, 20 MHz Mode)

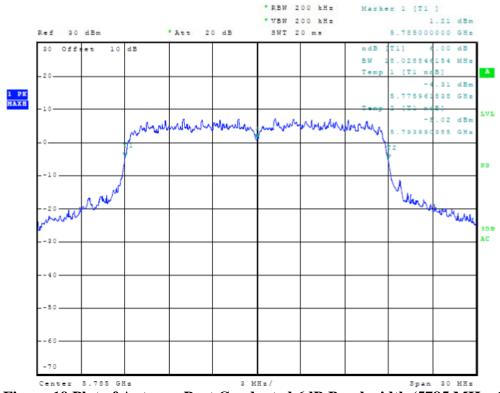


Figure 19 Plot of Antenna Port Conducted 6dB Band width (5785 MHz, Chain 1, 20 MHz Mode)

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 27 of 65

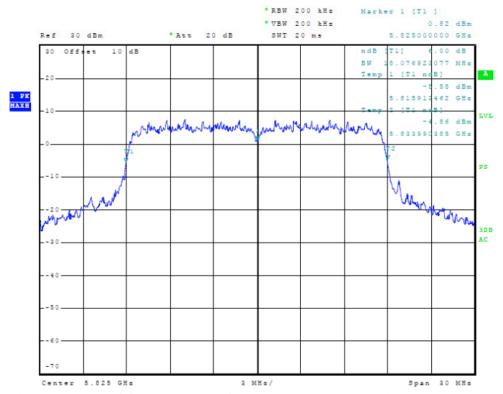


Figure 20 Plot of Antenna Port Conducted 6dB Band width (5825 MHz, Chain 1, 20 MHz Mode)

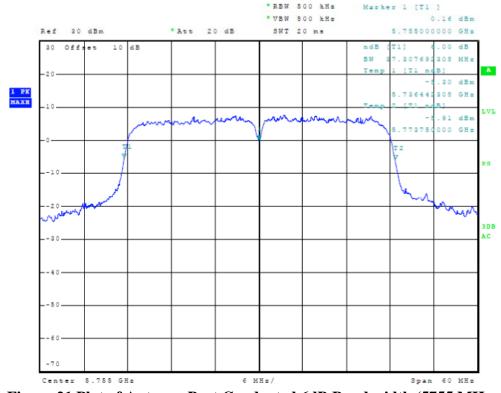


Figure 21 Plot of Antenna Port Conducted 6dB Band width (5755 MHz, Chain 0, 40 MHz Mode)

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 28 of 65

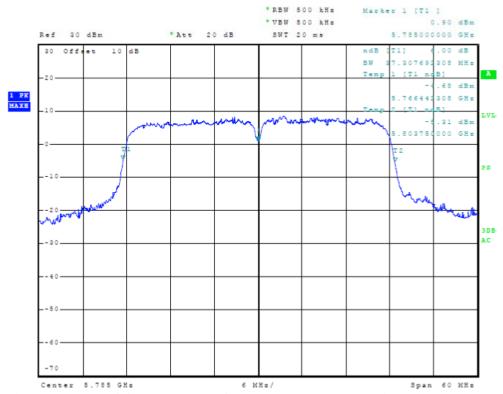


Figure 22 Plot of Antenna Port Conducted 6dB Band width (5785 MHz, Chain 0, 40 MHz Mode)

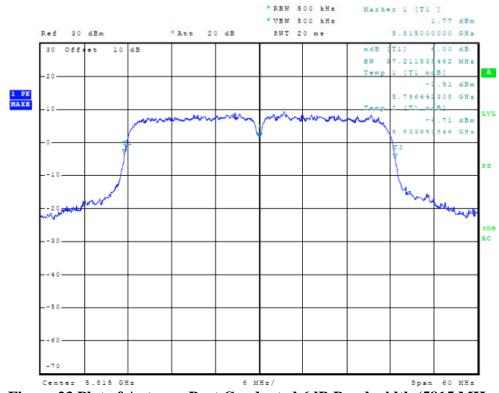


Figure 23 Plot of Antenna Port Conducted 6dB Band width (5815 MHz, Chain 0, 40 MHz Mode)

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 29 of 65

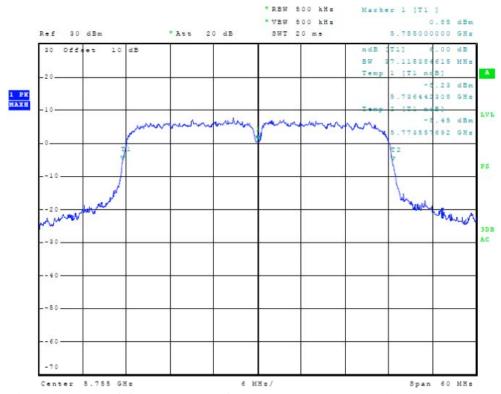


Figure 24 Plot of Antenna Port Conducted 6dB Band width (5755 MHz, Chain 1, 40 MHz Mode)

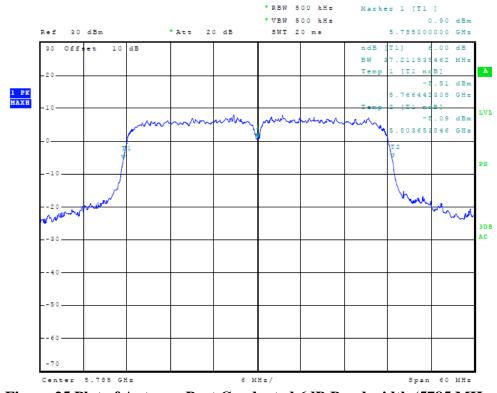


Figure 25 Plot of Antenna Port Conducted 6dB Band width (5785 MHz, Chain 1, 40 MHz Mode)

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210

IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 File: SAF Tehnika Freemile 5 TstRpt 120209 Page 30 of 65

FCC ID#: W9Z-FREEMILE5

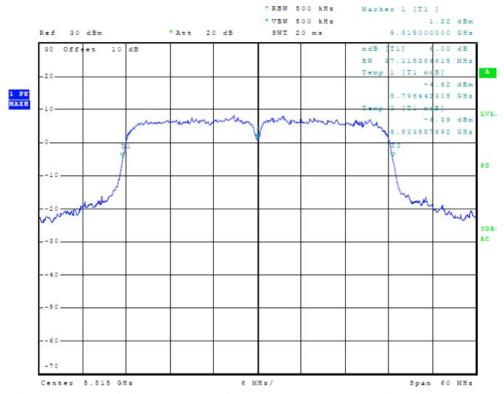


Figure 26 Plot of Antenna Port Conducted 6dB Band width (5815 MHz, Chain 1, 40 MHz Mode)

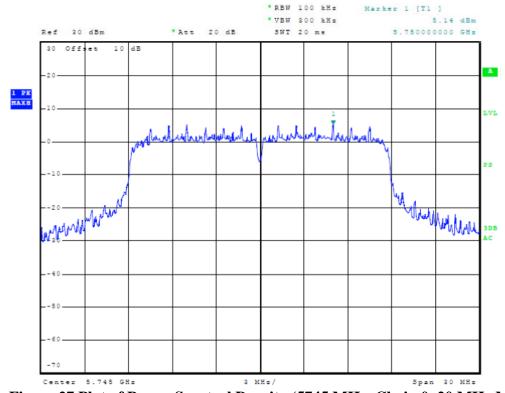


Figure 27 Plot of Power Spectral Density (5745 MHz, Chain 0, 20 MHz Mode)

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 31 of 65

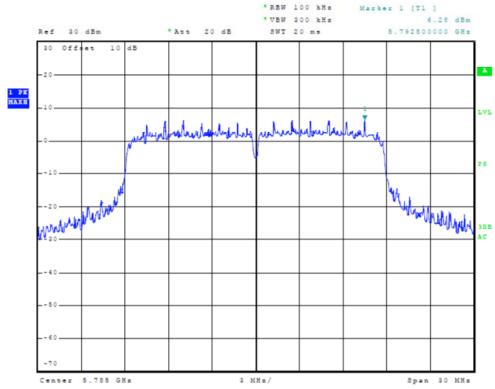


Figure 28 Plot of Power Spectral Density (5785 MHz, Chain 0, 20 MHz Mode)



Figure 29 Plot of Power Spectral Density (5825 MHz, Chain 0, 20 MHz Mode)

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 32 of 65

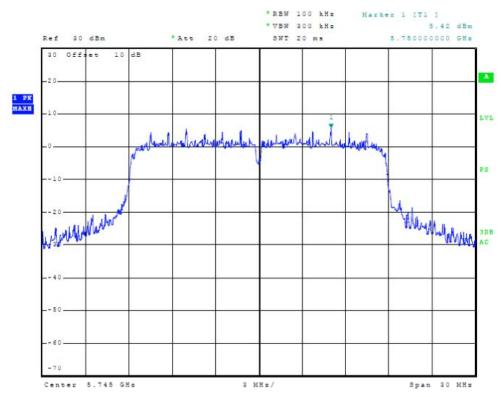


Figure 30 Plot of Power Spectral Density (5745 MHz, Chain 1, 20 MHz Mode)

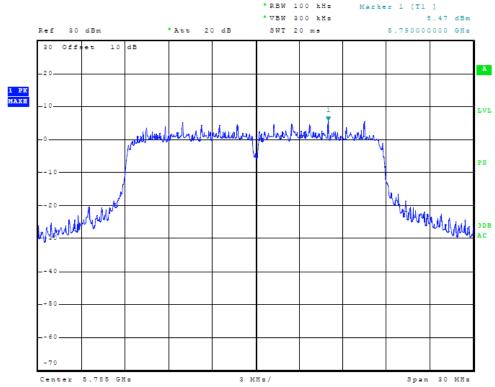


Figure 31 Plot of Power Spectral Density (5785 MHz, Chain 1, 20 MHz Mode)

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 33 of 65

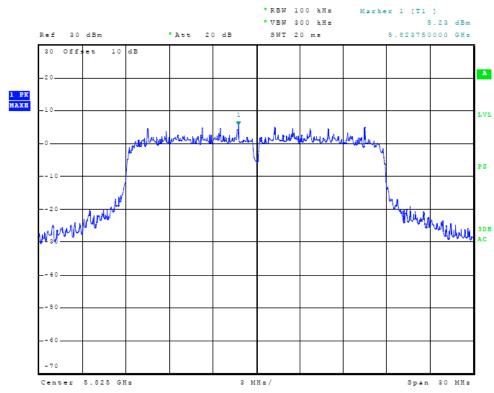


Figure 32 Plot of Power Spectral Density (5825 MHz, Chain 1, 20 MHz Mode)

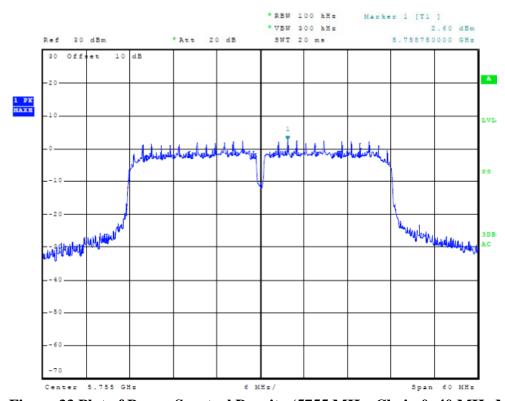


Figure 33 Plot of Power Spectral Density (5755 MHz, Chain 0, 40 MHz Mode)

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210

IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 File: SAF Tehnika Freemile 5 TstRpt 120209 Page 34 of 65

FCC ID#: W9Z-FREEMILE5

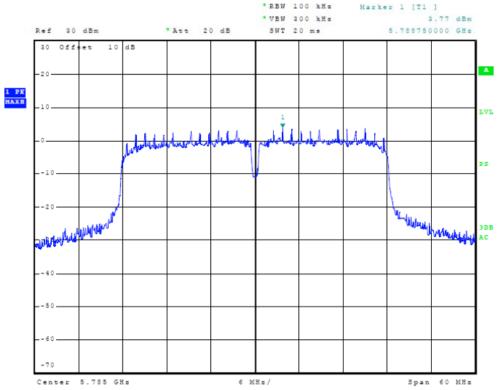


Figure 34 Plot of Power Spectral Density (5785 MHz, Chain 0, 40 MHz Mode)

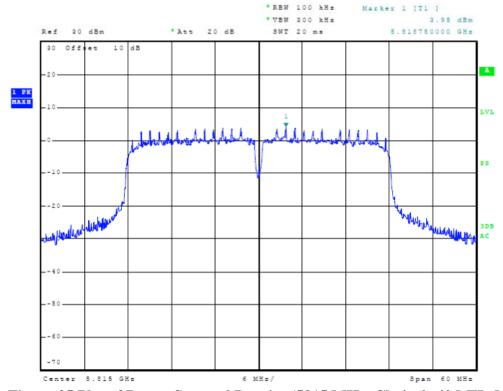


Figure 35 Plot of Power Spectral Density (5815 MHz, Chain 0, 40 MHz Mode)

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 35 of 65

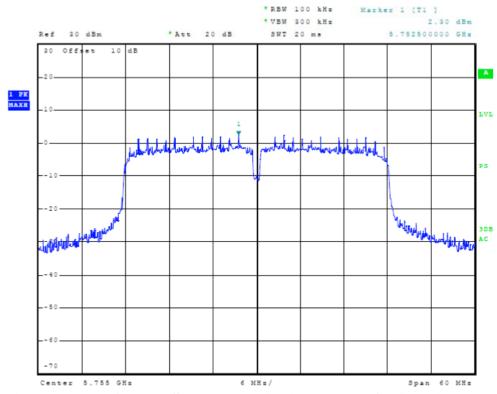


Figure 36 Plot of Power Spectral Density (5755 MHz, Chain 1, 40 MHz Mode)

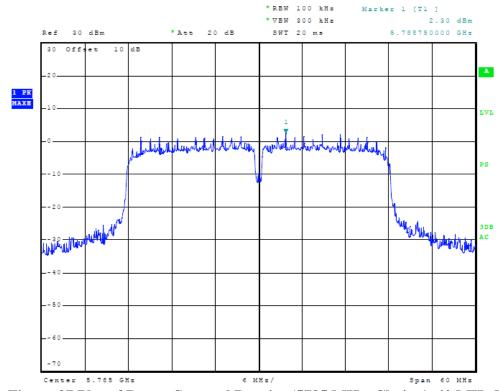


Figure 37 Plot of Power Spectral Density (5785 MHz, Chain 1, 40 MHz Mode)

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 36 of 65

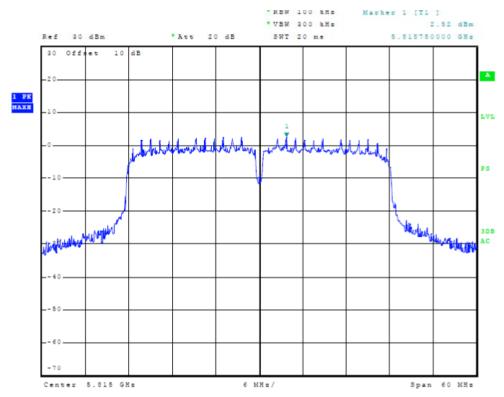


Figure 38 Plot of Power Spectral Density (5815 MHz, Chain 1, 40 MHz Mode)

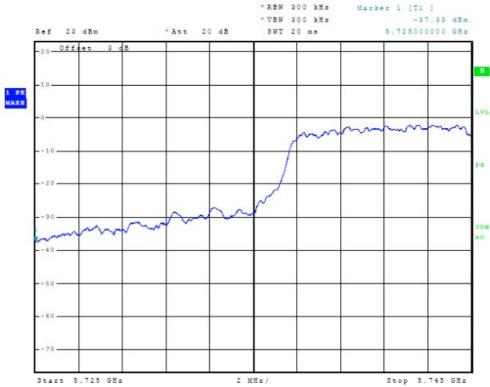


Figure 39 Plot of Low Band Edge Compliance (5745 MHz, Chain 0, 20 MHz Mode)

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 37 of 65

Figure 40 Plot of High Band Edge Compliance (5825 MHz, Chain 0, 20 MHz Mode)

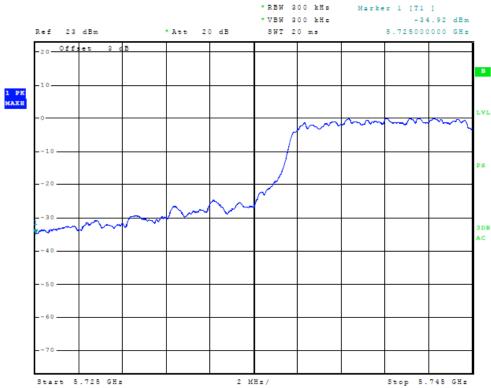


Figure 41 Plot of Low Band Edge Compliance (5745 MHz, Chain 1, 20 MHz Mode)

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 38 of 65

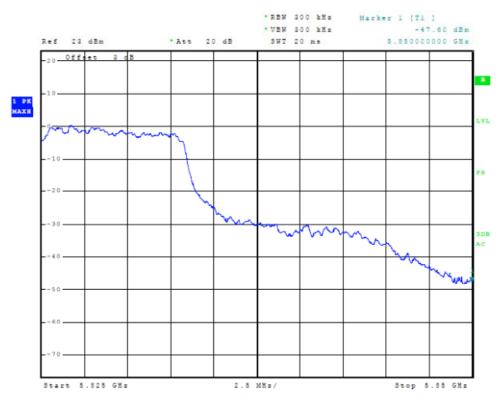


Figure 42 Plot of High Band Edge Compliance (5825 MHz, Chain 1, 20 MHz Mode)



Figure 43 Plot of Low Band Edge Compliance (5755 MHz, Chain 0, 40 MHz Mode)

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 39 of 65

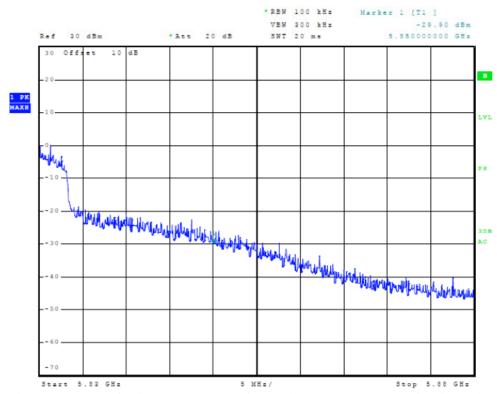


Figure 44 Plot of High Band Edge Compliance (5815 MHz, Chain 0, 40 MHz Mode)

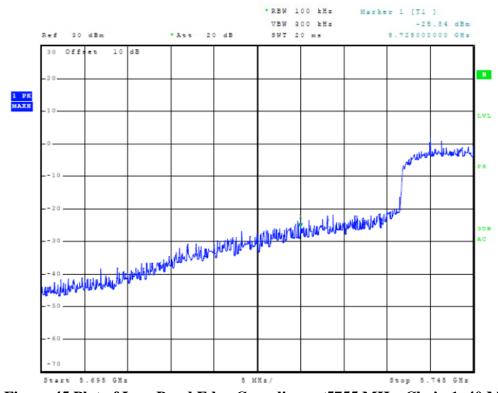


Figure 45 Plot of Low Band Edge Compliance (5755 MHz, Chain 1, 40 MHz Mode)

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 40 of 65

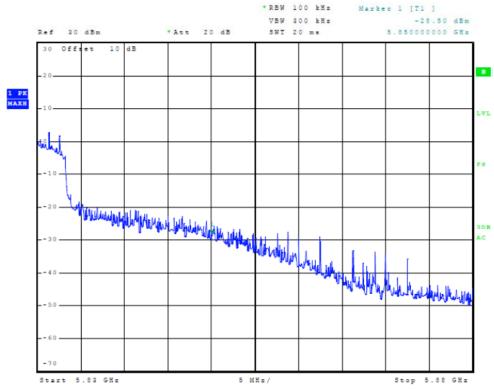


Figure 46 Plot of High Band Edge Compliance (5815 MHz, Chain 1, 40 MHz Mode)

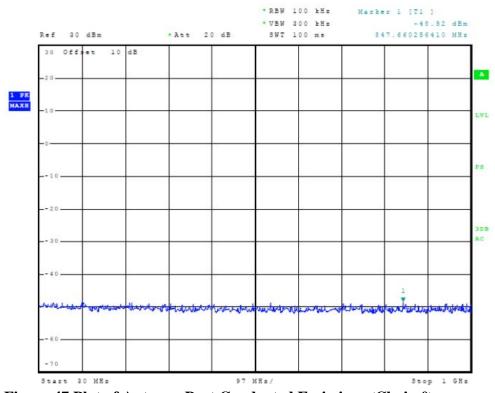


Figure 47 Plot of Antenna Port Conducted Emissions (Chain 0)

SAF Tehnika AS Models: Z05FEE Test #: 120209

Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 41 of 65

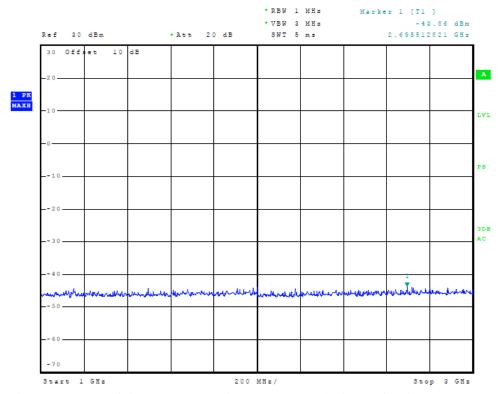


Figure 48 Plot of Antenna Port Conducted Emissions (Chain 0)

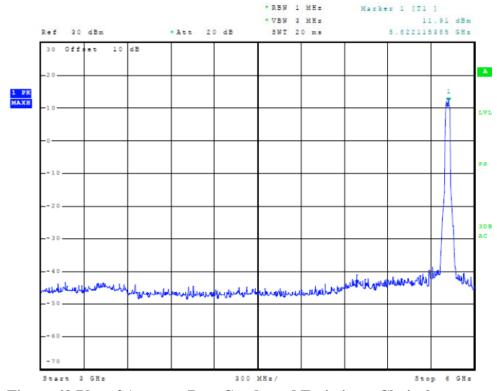


Figure 49 Plot of Antenna Port Conducted Emissions (Chain 0)

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 42 of 65

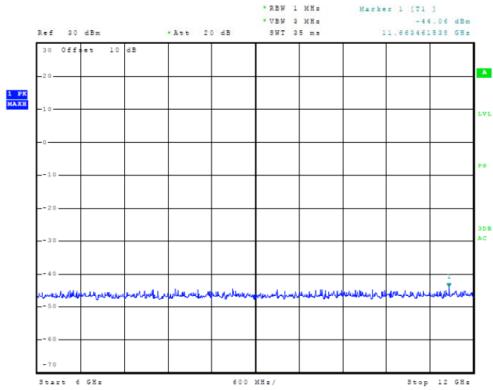


Figure 50 Plot of Antenna Port Conducted Emissions (Chain 0)

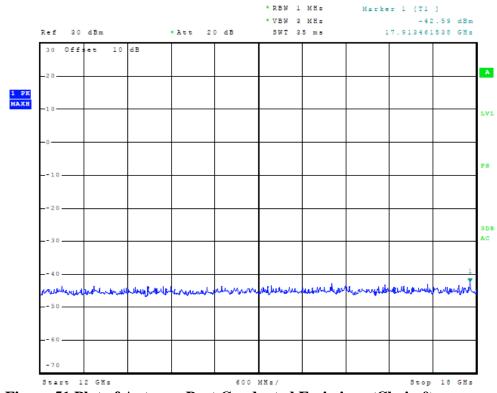


Figure 51 Plot of Antenna Port Conducted Emissions (Chain 0)

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 43 of 65

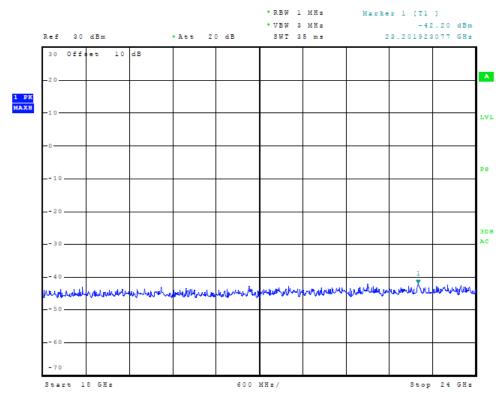


Figure 52 Plot of Antenna Port Conducted Emissions (Chain 0)

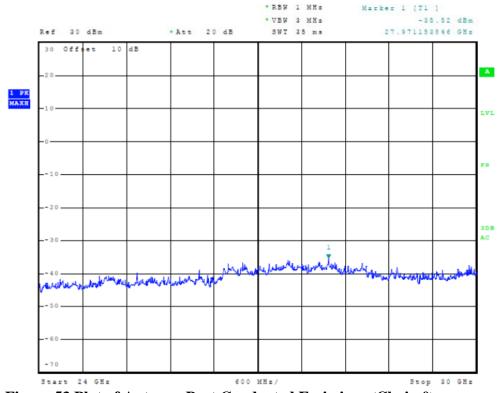


Figure 53 Plot of Antenna Port Conducted Emissions (Chain 0)

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 44 of 65

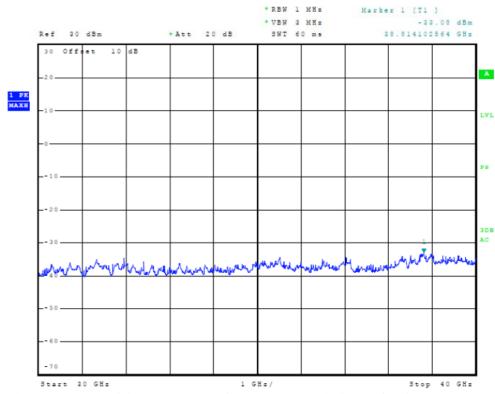


Figure 54 Plot of Antenna Port Conducted Emissions (Chain 0)

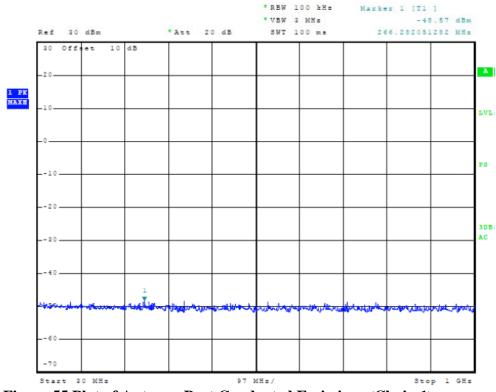


Figure 55 Plot of Antenna Port Conducted Emissions (Chain 1)

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 45 of 65

Figure 56 Plot of Antenna Port Conducted Emissions (Chain 1)

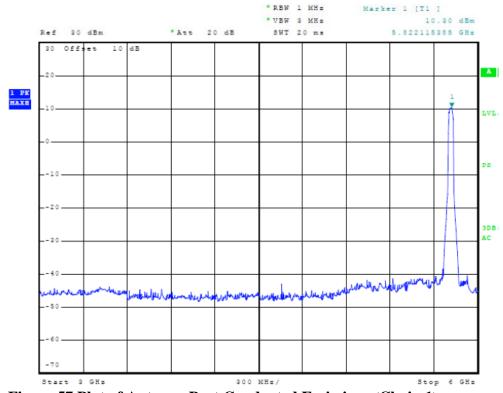


Figure 57 Plot of Antenna Port Conducted Emissions (Chain 1)

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 46 of 65

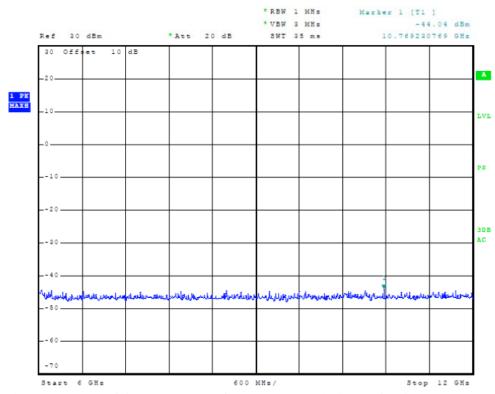


Figure 58 Plot of Antenna Port Conducted Emissions (Chain 1)

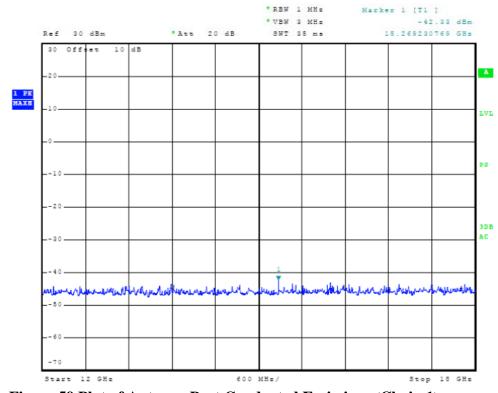


Figure 59 Plot of Antenna Port Conducted Emissions (Chain 1)

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 47 of 65

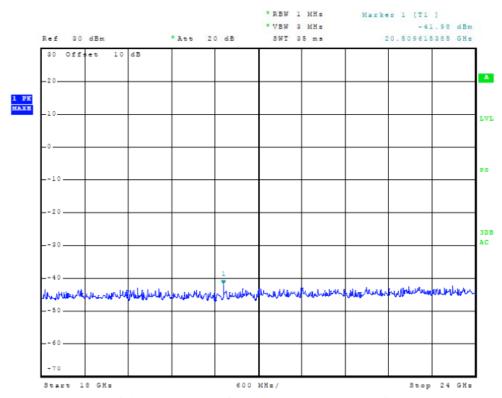


Figure 60 Plot of Antenna Port Conducted Emissions (Chain 1)

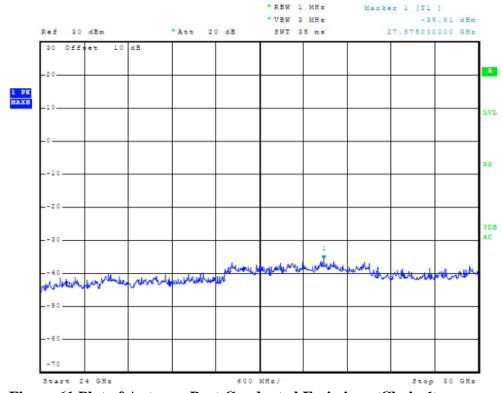


Figure 61 Plot of Antenna Port Conducted Emissions (Chain 1)

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 48 of 65

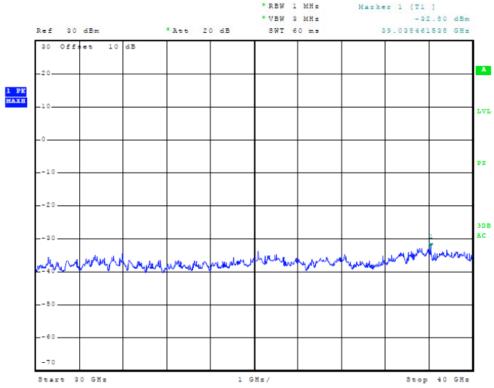


Figure 62 Plot of Antenna Port Conducted Emissions (Chain 1)

Transmitter Emissions Data

Transmitter Antenna Port Conducted Emissions Data (Total for Both Chains)

Channel Mode	Total Output Power dBm	Total Output Power milliwatt	Total Power Spectral Density (dBm)
CCK	16.5	45	-14.9
OFDM	29.9	990	-5.8
HT Mixed 20 MHz	29.9	983	-5.6
HT Green Field 40 MHz	29.9	975	-8.9

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002

Date: March 13, 2012 Page 49 of 65

Transmitter Antenna Port Conducted Emissions Data

Frequency MHz	Antenna Conducted Output Power dBm	Occupied Bandwidth MHz	Power Spectral Density dBm		
	CCK Mode 20	MHz Chain 0			
5745	12.13	15384.6	-17.82		
5785	13.44	15384.6	-16.84		
5825	14.35	15384.6	-16.10		
	CCK Mode 20	MHz Chain 1			
5745	11.96	15336.5	-18.01		
5785	12.44	15336.5	-17.57		
5825	11.55	15336.5	+17.75		
	OFDM Mode 2	0MHz Chain 0			
5745	25.84	17163.4	-9.86		
5785	27.11	17115.4	-8.47		
5825	27.65	17211.5	-7.87		
	OFDM Mode 20MHz Chain 1				
5745	26.11	17115.4	-9.93		
5785	25.80	17115.4	-9.66		
5825	25.64	17163.5	-9.97		

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02

Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 50 of 65

Frequency MHz	Antenna Conducted Output Power dBm	Occupied Bandwidth MHz	Power Spectral Density dBm		
	HT Mixed Mode	20MHz Chain 0			
5745	25.98	18076.9	-10.06		
5785	27.04	18125.0	-8.92		
5825	27.66	18076.9	-7.71		
	HT Mixed Mode	20MHz Chain 1			
5745	25.64	18125.0	-9.78		
5785	25.93	18028.8	-9.73		
5825	26.02	18076.9	-9.97		
	HT Green Field Mo	de 40MHz Chain 0			
5755	25.98	37307.7	-12.60		
5785	26.93	37307.7	-11.43		
5815	27.63	37211.5	-11.25		
	HT Green Field Mode 40MHz Chain 1				
5755	26.24	27115.4	-12.90		
5785	25.82	37211.5	-12.90		
5815	25.97	37115.4	-12.68		

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 51 of 65

Transmitter Antenna Port Conducted Spurious Emissions Data (Chain 0, HT Mixed Mode)

Channel MHz	Spurious Freq (MHz)	Measured Level (dBm)	Level Below Carrier (dBc)
5745.0	11490.0	-48.34	-74.3
	17235.0	-48.76	-74.7
	22980.0	-47.86	-73.8
	28725.0	-47.13	-73.1
	34470.0	-43.64	-69.6
5785.0	11570.0	-46.36	-73.3
	17355.0	-47.86	-74.8
	23140.0	-47.91	-74.8
	28925.0	-46.24	-73.2
	34710.0	-44.58	-71.5
5825.0	11650.0	-48.23	-75.9
	17475.0	-48.95	-76.6
	23300.0	-48.38	-76.0
	29125.0	-47.00	-74.6
	34950.0	-44.20	-71.8

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02

Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 52 of 65

Transmitter Antenna Port Conducted Spurious Emissions Data (Chain 1, HT Mixed Mode)

Channel MHz	Spurious Freq (MHz)	Measured Level (dBm)	Level Below Carrier (dBc)
5745.0	11490.0	-48.19	-74.2
	17235.0	-48.71	-74.7
	22980.0	-47.74	-73.7
	28725.0	-46.72	-72.7
	34470.0	-44.53	-70.5
5785.0	11570.0	-47.91	-74.8
	17355.0	-48.95	-75.9
	23140.0	-47.76	-74.7
	28925.0	-46.87	-73.8
	34710.0	-44.55	-71.5
5825.0	11650.0	-48.84	-76.5
	17475.0	-48.49	-76.1
	23300.0	-47.86	-75.5
	29125.0	-46.63	-74.3
	34950.0	-43.97	-71.6

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 53 of 65

Transmitter Antenna Port Conducted Spurious Emissions Data (Chain 0, HT Green Field)

Channel MHz	Spurious Freq (MHz)	Measured Level (dBm)	Level Below Carrier (dBc)
5755.0	11510.0	-48.49	-74.5
	17265.0	-48.41	-74.4
	23020.0	-48.03	-74.0
	28775.0	-46.75	-72.7
	34530.0	-44.58	-70.6
5785.0	11570.0	-47.98	-74.9
	17355.0	-48.65	-75.6
	23140.0	-48.23	-75.2
	28925.0	-46.18	-73.1
	34710.0	-44.33	-71.3
5815.0	11630.0	-48.41	-76.0
	17445.0	-49.07	-76.7
	23260.0	-48.79	-76.4
	29075.0	-45.98	-73.6
	34890.0	-45.30	-72.9

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02

Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 54 of 65

Transmitter Antenna Port Conducted Spurious Emissions Data (Chain 1, HT Green Field)

Channel MHz	Spurious Freq (MHz)	Measured Level (dBm)	Level Below Carrier (dBc)
5755.0	11510.0	-47.94	-73.9
	17265.0	-48.68	-74.7
	23020.0	-48.34	-74.3
	28775.0	-46.75	-72.7
	34530.0	-44.48	-70.5
5785.0	11570.0	48.65	21.7
	17355.0	-48.79	-75.7
	23140.0	-48.26	-75.2
	28925.0	-46.73	-73.7
	34710.0	-44.97	-71.9
5815.0	11630.0	-49.00	-76.6
	17445.0	-47.50	-75.1
	23260.0	-47.62	-75.3
	29075.0	-45.98	-73.6
	34890.0	-44.89	-72.5

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 55 of 65

Transmitter Radiated Emission (23 dBi Panel, Worst-case)

Frequency in MHz	Horizontal Peak (dBμV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBμV/m)	Vertical Average (dBμV/m)	Limit @ 3m (dBμV/m)
5745.0	122.8	111.1	122.6	110.9	
11490.0	47.6	34.8	46.7	34.6	54.0
17235.0	55.2	42.5	53.0	40.5	54.0
22980.0	35.3	22.8	34.7	32.7	54.0
28725.0	36.4	24.7	37.4	24.9	54.0
5785.0	123.5	111.7	122.5	110.9	
11570.0	47.9	34.8	47.5	34.4	54.0
17355.0	52.8	40.4	52.5	40.5	54.0
23140.0	37.5	33.9	36.9	34.3	54.0
28925.0	38.2	26.3	38.9	26.3	54.0
5825.0	123.5	111.7	122.1	110.2	
11650.0	48.5	35.1	47.5	35.0	54.0
17475.0	54.5	41.5	53.6	41.5	54.0
23300.0	35.6	33.0	35.3	32.9	54.0
29125.0	37.3	24.6	37.9	24.6	54.0

Other emissions present had amplitudes at least 20 dB below the limit.

Quasi-Peak amplitude emissions are recorded above for frequency range of 30-1000 MHz. Average amplitude emissions are recorded above for frequency range above 1000 MHz.

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 56 of 65

Transmitter Radiated Emission (32 dBi Dish, Worst-case)

Frequency in MHz	Horizontal Peak (dBμV/m)	Horizontal Average (dBμV/m)	Vertical Peak (dBμV/m)	Vertical Average (dBμV/m)	Limit @ 3m (dBμV/m)
5745.0	134.9	122.0	25.8	121.6	
11490.0	46.6	34.0	46.7	34.0	54.0
17235.0	52.8	40.2	52.5	40.2	54.0
22980.0	35.7	33.2	36.3	33.1	54.0
28725.0	37.6	24.9	37.6	25.0	54.0
5785.0	135.3	122.6	133.7	121.7	
11570.0	46.4	34.1	46.5	34.1	54.0
17355.0	53.6	40.2	52.7	40.3	54.0
23140.0	36.6	33.9	36.7	26.2	54.0
28925.0	38.5	26.2	38.3	26.2	54.0
5825.0	136.9	123.0	132.1	121.0	
11650.0	47.4	34.8	47.1	34.9	54.0
17475.0	54.7	41.5	54.6	41.5	54.0
23300.0	35.2	31.9	36.0	31.6	54.0
29125.0	37.0	24.4	37.0	24.5	54.0

Other emissions present had amplitudes at least 20 dB below the limit.

Quasi-Peak amplitude emissions are recorded above for frequency range of 30-1000 MHz. Average amplitude emissions are recorded above for frequency range above 1000 MHz.

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 57 of 65 NVLAP Lab Code 200087-0

requirements.

Summary of Results for Transmitter Radiated Emissions of Intentional Radiator

The EUT demonstrated compliance with the conducted and radiated emissions requirements of CFR47 Part 15.247. Conducted antenna port power of 27.66 dBm, 0.5 Watts (chain 0), 26.24 dBm, 0.5 Watts (chain 1) was measured. The EUT demonstrated a minimum radiated harmonic emission margin of -11.5 dB below requirements. There were no other significantly measurable emissions in the restricted bands other than those recorded in this report. Other emissions were present with amplitudes at least 20 dB below the requirements. The specifications of CFR47 paragraph 15.247 and RSS-210 were met; there are no deviations or exceptions to the

Statement of Modifications and Deviations

No modifications to the EUT were required for the unit to demonstrate compliance with the CFR47 Part 15C or RSS-210 emissions requirements. There were no deviations to the specifications.

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 58 of 65

Annex

- Annex A Measurement Uncertainty Calculations
- Annex B Rogers Labs Test Equipment List
- Annex C Rogers Qualifications
- Annex D FCC Site Registration Letter
- Annex E Industry Canada Site Registration Letter

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02

Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 59 of 65

Annex A Measurement Uncertainty Calculations

Radiated Emissions Measurement Uncertainty Calculation

Measurement of vertically polarized radiated field strength over the frequency range 30 MHz to 1 GHz on an open area test site at 3m and 10m includes following uncertainty:

	Probability	Uncertainty
Contribution	Distribution	(dB)
Antenna factor calibration	normal $(k = 2)$	± 0.58
Cable loss calibration	normal $(k = 2)$	± 0.2
Receiver specification	rectangular	±1.0
Antenna directivity	rectangular	± 0.1
Antenna factor variation with height	rectangular	± 2.0
Antenna factor frequency interpolation	rectangular	± 0.1
Measurement distance variation	rectangular	± 0.2
Site Imperfections	rectangular	±1.5

Combined standard uncertainty $u_C(y)$ is

$$U_c(y) = \pm \sqrt{\left[\frac{1.0}{2}\right]^2 + \left[\frac{0.2}{2}\right]^2 + \left[\frac{1.0^2 + 0.1^2 + 2.0^2 + 0.1^2 + 0.2^2 + 1.5^2}{3}\right]}$$

$$U_c(y) = \pm 1.6 \text{ dB}$$

It is probable that $u_c(y) / s(q_k) > 3$, where $s(q_k)$ is estimated standard deviation from a sample of n readings unless the repeatability of the EUT is particularly poor, and a coverage factor of k = 2 will ensure that the level of confidence will be approximately 95%, therefore:

$$s(q_k) = \sqrt{\frac{1}{(n-1)} \sum_{k=1}^{n} (q_k - \bar{q})^2}$$

$$U = 2 U_c(y) = 2 x \pm 1.6 dB = \pm 3.2 dB$$

Notes:

- Uncertainties for the antenna and cable were estimated, based on a normal probability distribution with k = 2.
- 1.2 The receiver uncertainty was obtained from the manufacturer's specification for which a rectangular distribution was assumed.
- 1.3 The antenna factor uncertainty does not take account of antenna directivity.
- 1.4 The antenna factor varies with height and since the height was not always the same in use as when the antenna was calibrated an additional uncertainty is added.
- 1.5 The uncertainty in the measurement distance is relatively small but has some effect on the received signal strength. The increase in measurement distance as the antenna height is increased is an inevitable consequence of the test method and is therefore not considered a contribution to uncertainty.
- 1.6 Site imperfections are difficult to quantify but may include the following contributions:
 - -Unwanted reflections from adjacent objects.
 - -Ground plane imperfections: reflection coefficient, flatness, and edge effects.
 - -Losses or reflections from "transparent" cabins for the EUT or site coverings.
 - -Earth currents in antenna cable (mainly effect Biconical antennas).

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 60 of 65

The specified limits for the difference between measured site attenuation and the theoretical value (\pm 4 dB) were not included in total since the measurement of site attenuation includes uncertainty contributions already allowed for in this budget, such as antenna factor.

Conducted Measurements Uncertainty Calculation

Measurement of conducted emissions over the frequency range 9 kHz to 30 MHz includes following uncertainty:

	Probability	Uncertainty
Contribution	Distribution	(dB)
Receiver specification	rectangular	±1.5
LISN coupling specification	rectangular	±1.5
Cable and input attenuator calibration	normal (k=2)	±0.5
Combined standard uncertainty $u_c(y)$ is		

$$U_c(y) = \pm \sqrt{\frac{0.5}{2}^2 + \frac{1.5^2 + 1.5^2}{3}}$$

$$U_c(y) = \pm 1.2 \text{ dB}$$

As with radiated field strength uncertainty, it is probable that $u_c(y) / s(q_k) > 3$ and a coverage factor of k = 2 will suffice, therefore:

$$U = 2 U_c(y) = 2 x \pm 1.2 dB = \pm 2.4 dB$$

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 61 of 65

Annex B Rogers Labs Test Equipment List List of Test Equipment

Annex B Rogers Labs Test Equipment List	G 111 .: D
List of Test Equipment	Calibration Date
Spectrum Analyzer: Dobdo & Sobwerz ESIMO	5/11
Spectrum Analyzer: Rohde & Schwarz ESU40	
Spectrum Analyzer: HP 8562A, HP Adapters: 11518, 11519, and 11520 Mixers: 11517A, 11970A, 11970K, 11970U, 11970V, 11970W	5/11
Spectrum Analyzer: HP 8591EM	5/11
Antenna: EMCO Biconilog Model: 3143	5/11
Antenna: Sunol Biconilog Model: JB6	10/12
Antenna: EMCO Log Periodic Model: 3147	10/12
Antenna: Com Power Model: AH-118	10/12
Antenna: Antenna Research Biconical Model: BCD 235	10/12
LISN: Compliance Design Model: FCC-LISN-2.Mod.cd, 50 µHy/50 ohm/	0.1 μf 10/12
R.F. Preamp CPPA-102	10/12
Attenuator: HP Model: HP11509A	10/12
Attenuator: Mini Circuits Model: CAT-3	10/12
Attenuator: Mini Circuits Model: CAT-3	10/12
Cable: Belden RG-58 (L1)	10/12
Cable: Belden RG-58 (L2)	10/12
Cable: Belden 8268 (L3)	10/12
Cable: Time Microwave: 4M-750HF290-750	10/12
Cable: Time Microwave: 10M-750HF290-750	10/12
Frequency Counter: Leader LDC825	2/11
Oscilloscope Scope: Tektronix 2230	2/11
Wattmeter: Bird 43 with Load Bird 8085	2/11
Power Supplies: Sorensen SRL 20-25, SRL 40-25, DCR 150, DCR 140	2/11
R.F. Generators: HP 606A, HP 8614A, HP 8640B	2/11
R.F. Power Amp 65W Model: 470-A-1010	2/11
R.F. Power Amp 50W M185- 10-501	2/11
R.F. Power Amp A.R. Model: 10W 1010M7	2/11
R.F. Power Amp EIN Model: A301	2/11
LISN: Compliance Eng. Model 240/20	2/11
LISN: Fischer Custom Communications Model: FCC-LISN-50-16-2-08	2/11
Antenna: EMCO Dipole Set 3121C	2/11
Antenna: C.D. B-101	2/11
Antenna: Solar 9229-1 & 9230-1	2/11
Antenna: EMCO 6509	2/11
Audio Oscillator: H.P. 201CD	2/11
ELGAR Model: 1751	2/11
ELGAR Model: TG 704A-3D	2/11
ESD Test Set 2010i	2/11
Fast Transient Burst Generator Model: EFT/B-101	2/11
Field Intensity Meter: EFM-018	2/11
KEYTEK Ecat Surge Generator	2/11
Shielded Room 5 M x 3 M x 3.0 M	

Rogers Labs, Inc. SAF T 4405 W. 259th Terrace Model Louisburg, KS 66053 Test # Phone/Fax: (913) 837-3214 Test to Revision 1 File: S

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209 Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012 Page 62 of 65 NVLAP Lab Code 200087-0

Annex C Rogers Qualifications

Scot D. Rogers, Engineer

Rogers Labs, Inc.

Mr. Rogers has approximately 17 years experience in the field of electronics. Engineering experience includes six years in the automated controls industry and remaining years working with the design, development and testing of radio communications and electronic equipment.

Positions Held

Systems Engineer: A/C Controls Mfg. Co., Inc. 6 Years

Electrical Engineer: Rogers Consulting Labs, Inc. 5 Years

Electrical Engineer: Rogers Labs, Inc. Current

Educational Background

- 1) Bachelor of Science Degree in Electrical Engineering from Kansas State University.
- 2) Bachelor of Science Degree in Business Administration Kansas State University.
- 3) Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming.

Scot D. Rogers

Scot DRogers

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 63 of 65

NVLAP Lab Code 200087-0

Annex D FCC Site Registration Letter

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

November 01, 2011

Registration Number: 90910

Rogers Labs, Inc. 4405 West 259th Terrace. Louisburg, KS 66053

Attention:

Scot Rogers,

Re:

Measurement facility located at Louisburg

3 & 10 meter site

Date of Renewal: November 01, 2011

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Industry Analyst

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 1

SAF Tehnika AS Models: Z05FEE01 and Z05FEE02

Test #: 120209

Test to: CFR47 (15.247), RSS-210

File: SAF Tehnika Freemile 5 TstRpt 120209

FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5

SN: 363710100002 Date: March 13, 2012

Page 64 of 65

Annex E Industry Canada Site Registration Letter

Industry

Industrie Canada

December 28, 2011

OUR FILE: 46405-3041 Submission No: 152685

Rogers Labs Inc. 4405 West 259th Terrance Louisburg, KS, 66053 USA

Attention: Mr. Scot D. Rogers

Dear Sir/Madame:

The Bureau has received your application for the renewal of 3/10m OATS. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (Site# 3041A-1). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please keep for your records the following information;

- The company address code associated to the site(s) located at the above address is: 3041A

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2003 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2003 or later shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 metre OATS or 3 metre chamber). If the test facility is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to **exceed three years**. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL;

http://strategis.ic.gc.ca/epic/internet/inceb-bhst.nsf/en/h_tt00052e.html.

If you have any questions, you may contact the Bureau by e-mail at <u>certification.bureau@ic.gc.ca</u> Please reference our file and submission number above for all correspondence.

Yours sincerely,

Dalwinder Gill

For: Wireless Laboratory Manager Certification and Engineering Bureau 3701 Carling Ave., Building 94 P.O. Box 11490, Station "H" Ottawa, Ontario K2H 882 Email: dalwinder.gill@ic.gc.ca Tel No. (613) 998-8363

Tel. No. (613) 998-8363 Fax. No. (613) 990-4752

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053

Phone/Fax: (913) 837-3214 Revision 1 SAF Tehnika AS

Models: Z05FEE01 and Z05FEE02 Test #: 120209

Test to: CFR47 (15.247), RSS-210 File: SAF Tehnika Freemile 5 TstRpt 120209 FCC ID#: W9Z-FREEMILE5 IC#: 8855A-FREEMILE5 SN: 363710100002 Date: March 13, 2012

Page 65 of 65