

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

FCC TEST REPORT

FCC Part 27

Compiled by

(position+printed name+signature)..: File administrators Peter Xiao

Supervised by

(position+printed name+signature)..: Test Engineer Moon Tan

Approved by

(position+printed name+signature)..: Manager Simon Hu

Date of issue...... Sep.02, 2020

Representative Laboratory Name .: Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Address Garden, No.98, Pingxin North Road, Shangmugu Community,

Pinghu Street, Longgang District, Shenzhen, Guangdong

Applicant's name...... Green Packet Berhad, Taiwan

City, Taiwan

Test specification:

FCC CFR Title 47 Part 2, Part 27

Standard EIA/TIA 603-D: 2010

KDB 971168 D01

TRF Originator...... Shenzhen Global Test Service Co.,Ltd...

Shenzhen Global Test Service Co.,Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description LTE CPE

Trade Mark GreenPacket

Manufacturer Green Packet Berhad, Taiwan

Model/Type reference...... DA-725

Listed Models N/A

Modulation Type QPSK, 16QAM

Hardware version: V1.0 Software version: V1.0

Rating DC 12.0V /1.0A by Adapter

Result PASS

TEST REPORT

Test Report No. :	GTS20200812003-1-2	Sep.02, 2020
	G1320200012003-1-2	Date of issue

Equipment under Test : LTE CPE

Model /Type : DA-725

Listed model : N/A

Applicant : Green Packet Berhad, Taiwan

Address : 2F, NO.23, LANE 583 RUEIGUANG RD, NEIHU DISTRICT, Taipei

City, Taiwan

Manufacturer : Green Packet Berhad, Taiwan

Address : 2F, NO.23, LANE 583 RUEIGUANG RD, NEIHU DISTRICT, Taipei

City, Taiwan

Test result	Pass *
I	

^{*} In the configuration tested, the EUT complied with the standards specified page 4.

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1 TEST STANDARDS	4
2. SUMMARY	5
2.1. General Remarks	5
2.2. Product Description	5
2.3. Equipment Under Test	5
2.4. Short description of the Equipment under Test (EUT)	5
2.5. Environmental conditions	5
2.6. Description of Test Modes	6
2.7. Block Diagram of Test Setup	6
2.8. Special Accessories	6
2.9. External I/O Cable	6
2.10. Related Submittal(s) / Grant (s)	6
2.11. Modifications	6
3. TEST ENVIRONMENT	7
3.1. Address of the test laboratory	7
3.2. Test Facility	7
3.3. Environmental conditions	7
3.4. Statement of the measurement uncertainty	7
3.5. Test Description	8
3.6. Equipments Used during the Test	9
4. TEST CONDITIONS AND RESULTS	10
4.1. Output Power	10
4.2. Peak-to-Average Ratio (PAR)	14
4.3. Occupied Bandwidth and Emission Bandwidth	15
4.4. Band Edge compliance	16
4.5. Spurious Emission	17
4.6. Frequency Stability under Temperature & Voltage Variations	20
5. TEST SETUP PHOTOS OF THE EUT	22
6 EXTERNAL AND INTERNAL PHOTOS OF THE FLIT	22

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

TIA/EIA 603 D June 2010:Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

47 CFR FCC Part 15 Subpart B: - Unintentional Radiators

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

KDB971168 D01: v02r02 MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

ANSI C63.26:2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample		Aug.24, 2020
Testing commenced on	:	Aug.24, 2020
-		
Testing concluded on	:	Sep.02, 2020

2.2. Product Description

Product Name	LTE CPE	
Trade Mark	GreenPacket	
Model/Type reference	DA-725	
List Models	N/A	
Model Declaration	N/A	
Power supply:	DC 12.0V /1.0A by Adapter	
Sample ID	GTS20200812003-1-1-1# & GTS20200812003-1-1-2#	
WIFI(2.4G Band)		
Frequency Range	2412MHz ~ 2462MHz	
Channel Spacing	5MHz	
Channel Number	11 Channel for 20MHz bandwidth(2412~2462MHz) 7 channels for 40MHz bandwidth(2422~2452MHz)	
Modulation Type	802.11b: DSSS; 802.11g/n: OFDM	
Antenna Description	Two same Internal Antenna, support MIMO technology ANT0 used for WIFI TX/RX, 2.0dBi(Max.) for 2.4G Band ANT1 used for WIFI TX/RX, 2.0dBi(Max.) for 2.4G Band	
LTE		
LTE Operation Frequency Band	LTE Band 41	
LTE Release Version	R9	
Type Of Modulation	QPSK/16QAM	
Antenna Description	External Antenna; 1.0dBi (max.)	

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		•	12 V DC	0	24 V DC
		0	Other (specified in blank bel	ow)

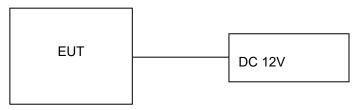
2.4. Short description of the Equipment under Test (EUT)

This is a LTE CPE.For more details, refer to the user's manual of the EUT.

2.5. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa


2.6. Description of Test Modes

The EUT has been tested under typical operating condition. The CMW500 used to control the EUT staying in continuous transmitting and receiving mode for testing. Regards to the frequency band operation: the lowest, middle and highest frequency of channel were selected to perform the test, then shown on this report.

- 1. For the ERP/EIRP and radiated emission test, every axis (X, Y, Z) was verified, and show the worst resulton this report.
- 2. Test method and refer to 3GPP TS136521.

3.

2.7. Block Diagram of Test Setup

2.8. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
TOSHIBA	PC	Satellite S40Dt-A		SDOC
Shenzhen Esun Power Technology Co.,Ltd.	Adapter	MKE-1202000DEXD		SDOC

Note: The PC is only used for auxiliary testing.

2.9. External I/O Cable

I/O Port Description	Quantity	Cable
DC IN Port	1	0.8M, Unscreened Cable
LAN Port	1	N/A
SIM CARD	1	N/A

2.10. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is filing to comply with of the FCC Part 27 Rules.

2.11. Modifications

No modifications were implemented to meet testing criteria.

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong, China.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L8169)

Shenzhen Global Test Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2019 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA (Certificate No. 4758.01)

Shenzhen Global Test Service Co., Ltd. has been assessed by the American Association for Laboratory Accreditation (A2LA). Certificate No. 4758.01.

Industry Canada Registration Number. is 24189.

FCC Designation Number is CN1234.

FCC Registered Test Site Number is165725.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd.. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Global Test Service Co.,Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.5. Test Description

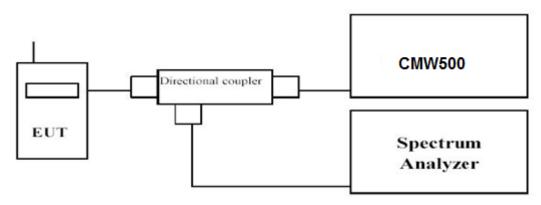
Test Item	Section in CFR 47	Test Sample	Result
RF Output Power	Part 2.1046 Part 27.50	GTS20200812003-1-1-1#	Pass
Peak-to-Average Ratio	N/A	GTS20200812003-1-1-1#	Pass
99% & -26 dB Occupied Bandwidth	Part 2.1049	GTS20200812003-1-1-1#	Pass
Spurious Emissions at Antenna Terminal	Part 2.1051 Part 27.53	GTS20200812003-1-1-1#	Pass
Field Strength of Spurious Radiation	Part 2.1053 Part 27.53	GTS20200812003-1-1-1#	Pass
Out of band emission, Band Edge	Part 2.1051 Part 27.53	GTS20200812003-1-1-1#	Pass
Frequency stability	Part 2.1055 Part 27.54	GTS20200812003-1-1-1#	Pass

3.6. Equipments Used during the Test

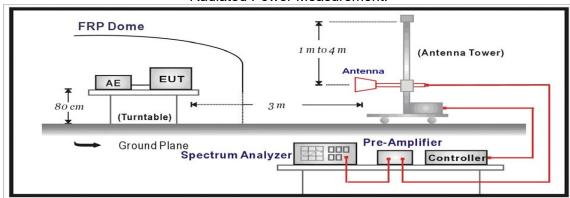
Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.08	2019/09/20	2020/09/19
LISN	R&S	ESH2-Z5	893606/008	2019/09/20	2020/09/19
EMI Test Receiver	R&S	ESPI3	101841-cd	2019/09/20	2020/09/19
EMI Test Receiver	R&S	ESCI7	101102	2019/09/20	2020/09/19
Spectrum Analyzer	Agilent	N9020A	MY48010425	2019/09/20	2020/09/19
Spectrum Analyzer	R&S	FSV40	100019	2019/09/20	2020/09/19
Vector Signal generator	Agilent	N5181A	MY49060502	2019/09/20	2020/09/19
Signal generator	Agilent	E4421B	3610AO1069	2019/09/20	2020/09/19
Climate Chamber	ESPEC	EL-10KA	A20120523	2019/09/20	2020/09/19
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2019/09/23	2020/09/22
Active Loop Antenna	Beijing Da Ze Technology Co.,Ltd.	ZN30900C	15006	2019/10/12	2020/10/11
Bilog Antenna	Schwarzbeck	VULB9163	000976	2020/05/25	2021/05/24
Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2019/09/20	2020/09/19
Amplifier	Schwarzbeck	BBV 9743	#202	2019/09/20	2020/09/19
Amplifier	Schwarzbeck	BBV9179	9719-025	2019/09/20	2020/09/19
Amplifier	EMCI	EMC051845B	980355	2019/09/20	2020/09/19
Temperature/Humidi ty Meter	Gangxing	CTH-608	02	2019/09/20	2020/09/19
High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	KL142031	2019/09/20	2020/09/19
High-Pass Filter	K&L	41H10- 1375/U12750- O/O	KL142032	2019/09/20	2020/09/19
RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	RE01	2019/09/20	2020/09/19
RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	RE02	2019/09/20	2020/09/19
Data acquisition card	Agilent	U2531A	TW53323507	2019/09/20	2020/09/19
Power Sensor	Agilent	U2021XA	MY5365004	2019/09/20	2020/09/19
Test Control Unit	Tonscend	JS0806-1	178060067	2020/06/21	2021/06/18
Automated filter bank	Tonscend	JS0806-F	19F8060177	2020/06/21	2021/06/18
Universal Radio Communication	R&S	CMU200	114353	2019/09/20	2020/09/19
Wireless Commnunication Tester	R&S	CMW500	125408	2019/09/20	2020/09/19
EMI Test Software	Tonscend	JS1120-1	Ver 2.6.8.0518	1	/
EMI Test Software	Tonscend	JS1120-3	Ver 2.5.77.0418	1	/
EMI Test Software	Tonscend	JS32-CE	Ver 2.5	1	/
EMI Test Software	Tonscend	JS32-RE	Ver 2.5.1.8	1	/

4. TEST CONDITIONS AND RESULTS

4.1. Output Power


LIMIT

According to § 27.50 specifies " The ERP of mobile transmitters and auxiliary test transmitters must not exceed 2 Watts."


The EIRP of mobile transmitters must not exceed 2 Watts for Band 41.

TEST CONFIGURATION

Conducted Power Measurement

Radiated Power Measurement:

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c) EUT Communicate with CMW500, then select a channel for testing.
- d) Add a correction factor to the display of spectrum, and then test.

Radiated Power Measurement:

- a. The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to thefrequency of the transmitter
- c. The output of the test antenna shall be connected to the measuring receiver.
- d. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.

- g. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h. The maximum signal level detected by the measuring receiver shall be noted.
- i. The transmitter shall be replaced by a substitution antenna.
- j. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- I. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- q. Test site anechoic chamber refer to ANSI C63.26.

TEST RESULTS

Temperature	24.5℃	Humidity	53.7%
Test Engineer	Moon Tan	Configurations	LTE

Conducted Measurement:

LTE FDD Band 41							
TX Channel	RB Size/Offset	Frequency	Average P	ower [dBm]			
Bandwidth	RB Size/Offset	(MHz)	QPSK	16QAM			
		2552.5	22.35	21.54			
	1 RB low	2605	22.42	21.53			
		2652.5	22.46	21.55			
		2552.5	22.30	21.48			
	1 RB high	2605	22.33	21.39			
5 MHz		2652.5	22.36	21.44			
J IVII IZ		2552.5	22.43	21.51			
	50% RB mid	2605	22.43	21.54			
		2652.5	22.22	21.23			
		2552.5	22.24	21.37			
	100% RB	2605	22.25	21.37			
		2652.5	22.22	21.27			
		2560	22.20	21.25			
	1 RB low	2605	22.34	21.48			
		2650	22.33	21.49			
		2560	22.22	21.38			
	1 RB high	2605	22.24	21.34			
10 MHz		2650	22.12	21.08			
IU IVIMZ		2560	22.11	21.14			
	50% RB mid	2605	22.10	21.18			
		2650	22.28	21.38			
		2560	22.30	21.28			
	100% RB	2605	22.25	21.28			
		2650	22.14	21.14			
15 MHz	1 RB low	2562.5	22.37	21.56			
I O IVITZ	I NO IOW	2605	22.45	21.60			

		2647.5	22.48	21.60
		2562.5	22.46	21.60
	1 RB high	2605	22.48	21.52
		2647.5	22.42	21.55
		2562.5	22.42	21.56
	50% RB mid	2605	22.31	21.37
		2647.5	22.22	21.38
		2562.5	22.25	21.25
	100% RB	2605	22.24	21.40
		2647.5	22.39	21.54
	1 RB low	2565	22.35	21.54
		2605	22.41	21.45
		2645	22.46	21.61
		2565	22.41	21.43
	1 RB high	2605	22.49	21.52
20 MHz		2645	22.42	21.49
ZU IVITIZ		2565	22.31	21.36
	50% RB mid	2605	22.50	21.66
		2645	22.34	21.50
		2565	22.26	21.44
	100% RB	2605	22.20	21.37
		2645	22.39	21.51

Radiated Measurement:

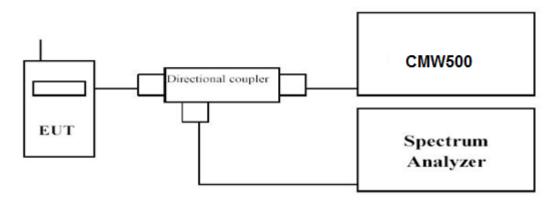
Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 41; recorded worst case for each Channel Bandwidth of LTE FDD Band 41.
- 2. ERP = EIRP 2.15dBi as EIRP by subtracting the gain of the dipole.

LTE Band 41

				Receiver	Substituted Method		Absolute			
Frequency (MHz)	BW (MHz)	Modulation	Polar (H/V)	Reading	Substituted Level (dBm)	Antenna Gain (dBd/ dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
2605.00	5		Н	84.88	12.85	11.66	2.66	21.85	33.00	11.15
2605.00	5		V	85.57	11.96	11.66	2.66	20.96	33.00	12.04
2605.00	10		Н	86.13	12.89	11.66	2.66	21.89	33.00	11.11
2605.00	10	QPSK	V	84.99	11.76	11.66	2.66	20.76	33.00	12.24
2605.00	15	QFSK	Н	87.59	14.51	11.66	2.66	23.51	33.00	9.49
2605.00	15		V	87.04	13.40	11.66	2.66	22.40	33.00	10.60
2605.00	20		Н	86.37	13.02	11.66	2.66	22.02	33.00	10.98
2605.00	20		٧	84.82	12.73	11.66	2.66	21.73	33.00	11.27
2605.00	_		Η	86.49	11.79	11.66	2.66	20.79	33.00	12.21
2605.00	5		V	86.69	12.43	11.66	2.66	21.43	33.00	11.57
2605.00	40		Н	87.12	11.47	11.66	2.66	20.47	33.00	12.53
2605.00	10	40044	V	86.86	12.62	11.66	2.66	21.62	33.00	11.38
2605.00	45	16QAM	Н	85.46	12.31	11.66	2.66	21.31	33.00	11.69
2605.00	15		V	85.97	12.92	11.66	2.66	21.92	33.00	11.08
2605.00	20		Н	86.53	12.79	11.66	2.66	21.79	33.00	11.21
2605.00	20		V	86.27	13.82	11.66	2.66	22.82	33.00	10.18

Note:


- (1) The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.
- (2) Absolute Level = Substituted Level Cable loss + Antenna Gain
- (3) Margin = Limit-Absolute Level

4.2. Peak-to-Average Ratio (PAR)

LIMIT

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

TEST PROCEDURE

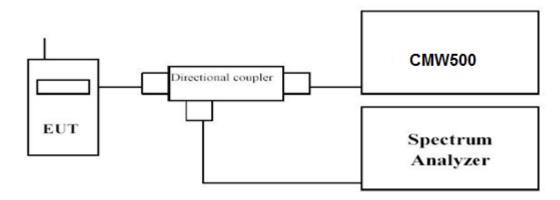
- Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function:
- 2. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 4. Set the measurement interval as follows:
 - 1). for continuous transmissions, set to 1 ms,
 - 2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 5. Record the maximum PAPR level associated with a probability of 0.1%.

TEST RESULTS

Temperature	24.5℃	Humidity	53.7%
Test Engineer	Moon Tan	Configurations	LTE

Remark:

We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE TDD Band 41; recorded worst case for each Channel Bandwidth of LTE TDD Band 41.


1.For E-UTRA Band 41, please refer to Appendix Band 41: Section A;

4.3. Occupied Bandwidth and Emission Bandwidth

LIMIT

FCC §2.1049, §27.53.

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded. Set RBW was set to about 1% of emission BW, VBW≥3 times RBW.

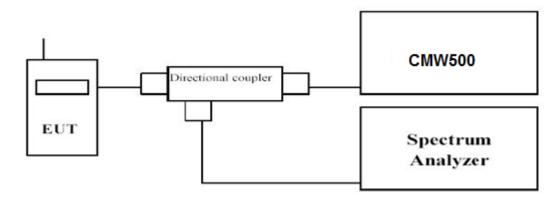
-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

Remark:

We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE TDD Band 41; recorded worst case for each Channel Bandwidth of LTE TDD Band 41.

1.For E-UTRA Band 41, please refer to Appendix Band 41: Section B;


Temperature	24.5 ℃	Humidity	53.7%
Test Engineer	Moon Tan	Configurations	LTE

4.4. Band Edge compliance

LIMIT

FCC § 2.1053, § 27.53.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest and highest channels for each band and different modulation.
- 5. Measure Band edge using RMS (Average) detector by spectrum

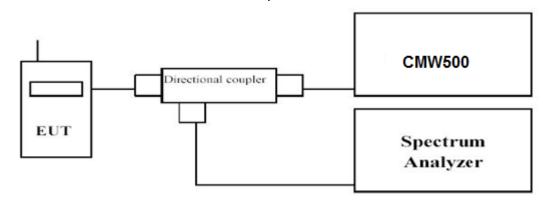
TEST RESULTS

Temperature	24.5℃	Humidity	53.7%
Test Engineer	Moon Tan	Configurations	LTE

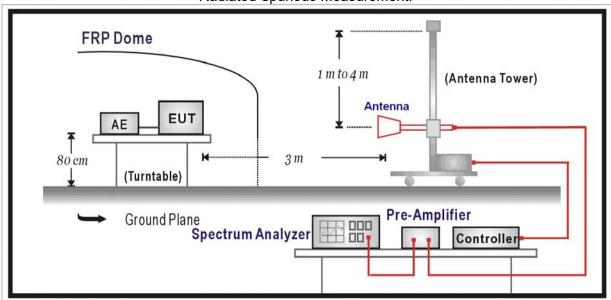
Remark:

We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE TDD Band 41; recorded worst case for each Channel Bandwidth of LTE TDD Band 41.

1.For E-UTRA Band 41, please refer to Appendix Band 41: Section C;


4.5. Spurious Emission

<u>LIMIT</u>


FCC § 2.1053, § 27.53.

TEST CONFIGURATION

Conducted Spurious Measurement:

Radiated Spurious Measurement:

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Conducted Spurious Measurement:

- a. Place the EUT on a bench and set it in transmitting mode.
- b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple
- c. EUT Communicate with CMW500, then select a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was set sufficient scans were taken to show the out of band Emission if any up to10th harmonic.
- f. Please refer to following tables for test antenna conducted emissions.

Working Frequency	Sub range (GHz)	RBW	VBW	Sweep time (s)
LTE FDD Band 41	0.000009~0.000015	1KHz	3KHz	Auto
	0.000015~0.03	10KHz	30KHz	Auto
	0.03~26.5	1 MHz	3 MHz	Auto

Radiated Spurious Measurement:

- The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c. The output of the test antenna shall be connected to the measuring receiver.
- d. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h. The maximum signal level detected by the measuring receiver shall be noted.
- i. The transmitter shall be replaced by a substitution antenna.
- j. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- I. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- q. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1MHz for Part 24. The frequency range was checked up to 10th harmonic.
- r. Test site anechoic chamber refer to ANSI C63.

TEST RESULTS

Conducted Measurement:

Temperature	24.5℃	Humidity	53.7%
Test Engineer	Moon Tan	Configurations	LTE

Remark:

We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE TDD Band 41; recorded worst case for each Channel Bandwidth of LTE TDD Band 41.

1.For E-UTRA Band 41, please refer to Appendix Band 41: Section D;

Radiated Measurement:

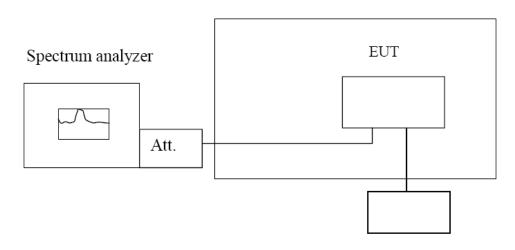
30-10G:

LTE Band 41 (30MHz-26.5GHz):

		Receiver	Su	bstituted Met	hod	Absolute		
Frequency (MHz)	Polar (H/V)	Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/ dBi)	T	Level (dBm)	Limit (dBm)	Margin (dB)
	QPSK,Frequency:2605.000 MHz							
5210	Н	49.80	-59.66	13.99	1.50	-47.17	-25.00	22.17
5210	V	50.88	-56.25	13.99	1.50	-43.76	-25.00	18.76
7820	Н	49.85	-61.31	13.32	1.53	-49.52	-25.00	24.52
7820	V	49.99	-62.37	13.32	1.53	-50.58	-25.00	25.58
305.2	Н	47.28	-61.06	0.00	0.55	-61.61	-25.00	36.61
305.2	V	45.70	-61.94	0.00	0.55	-62.49	-25.00	37.49

Note:

- The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.
 Absolute Level = Substituted Level Cable loss + Antenna Gain
- 3) Margin = Limit-Absolute Level


4.6. Frequency Stability under Temperature & Voltage Variations

LIMIT

FCC § 2.1055 (a), § 2.1055 (d), §27.54.

TEST CONFIGURATION

Temperature Chamber

Variable Power Supply

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Frequency Stability Under Temperature Variations:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30℃.
- 3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on middle channel for LTE band 5, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10° C increments from -30°C to +50°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +50°C.
- 7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 $^{\circ}\mathrm{C}$ increments from +50 $^{\circ}\mathrm{C}$ to -30 $^{\circ}\mathrm{C}$. Allow at least 1.5 hours at each temperature, unpowered, before making measurements
- 9. At all temperature levels hold the temperature to +/- 0.5℃ during the measurement procedure.

Frequency Stability Under Voltage Variations:

Set chamber temperature to 20° C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

TEST RESULTS

Temperature	24.5 ℃	Humidity	53.7%
Test Engineer	Moon Tan	Configurations	LTE

LTE Band 41:

QPSK, Channel Bandwidth:10MHz Middle Channel, f _C =2605MHz							
Temperature	Voltage	Frequency Error	Frequency Error				
°C	VDC	Hz	ppm	Result			
-30		7	0.003				
-20		46	0.022				
-10		89	0.043				
0		46	0.022				
10	12.0	93	0.044				
20		43	0.021				
30		35	0.017				
40		65	0.031	Pass			
50		51	0.024	1 400			
20	10.8	73	0.035				
20	13.2	58	0.028				

16QAM, Channel Bandwidth:10MHz Middle Channel, f _C =2605 MHz							
Temperature	Voltage	Frequency Error	Frequency Error	Result			
°C	VDC	Hz	ppm				
-30		81	0.039				
-20		38	0.018				
-10		13	0.006				
0	12.0	67	0.032				
10		59	0.028				
20		81	0.039				
30		60	0.029				
40		2	0.001	Pass			
50		66	0.032				
20	10.8	29	0.014				
20	13.2	35	0.017				

5. TEST SETUP PHOTOS OF THE EUT

6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Reference to the test report No. GTS20200812003-1-1.

Er	nd of	Report.	
- -		I VOPOI CI	