

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

TCL Zoom remote

MODEL NUMBER: TCL ZOOM

FCC ID: W8UTCLZOOM IC: 25533-TCLZOOM

REPORT NUMBER: 4789237289-2

ISSUE DATE: January 07, 2020

Prepared for

TTE Technology, Inc. 1860 Compton Ave Corona, CA 92881

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone, Dongguan, People's Republic of China Tel: +86 769-22038881 Fax: +86 769 33244054 Website: www.ul.com

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	01/07/2020	Initial Issue	

Summary of Test Results				
Clause	Test Items	FCC/ISED Rules	Test Results	
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass	
2	Peak Conducted Output Power	FCC Part 15.247 (b) (3) RSS-247 Clause 5.4 (d)	Pass	
3	Power Spectral Density	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass	
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d) RSS-247 Clause 5.5	Pass	
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Pass	
6	Conducted Emission Test For AC Power Port	FCC Part 15.207 RSS-GEN Clause 8.8	Not Applicable	
7	Antenna Requirement	FCC Part 15.203 RSS-GEN Clause 6.8	Pass	
Note: This test report is only published to and used by the applicant, and it is not for evidence purpose in China.				

TABLE OF CONTENTS

1. AT	TESTATION OF TEST RESULTS	6
2. TE	ST METHODOLOGY	7
3. FA	CILITIES AND ACCREDITATION	7
4. CA	LIBRATION AND UNCERTAINTY	
4.1.	MEASURING INSTRUMENT CALIBRATION	8
4.2.	MEASUREMENT UNCERTAINTY	
5. EQ	UIPMENT UNDER TEST	9
5.1.	DESCRIPTION OF EUT	9
5.2.	MAXIMUM OUTPUT POWER	9
5.3.	CHANNEL LIST	9
5.4.	TEST CHANNEL CONFIGURATION	10
5.5.	THE WORSE CASE POWER SETTING PARAMETER	10
5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	10
5.7.	WORST-CASE CONFIGURATIONS	10
5.8.	TEST ENVIRONMENT	10
5.9.	DESCRIPTION OF TEST SETUP	11
6. ME	EASURING INSTRUMENT AND SOFTWARE USED	12
-	EASURING INSTRUMENT AND SOFTWARE USED	
-		14
7. AN	ITENNA PORT TEST RESULTS	14 14
7. AN 7.1.	ITENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE	14 14 16
7. AN 7.1. 7.2.	ITENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% BANDWIDTH	14 14 16 18
7. AN 7.1. 7.2. 7.3.	ITENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% BANDWIDTH PEAK CONDUCTED OUTPUT POWER	14 14 16 18 20
7. AN 7.1. 7.2. 7.3. 7.4. 7.5.	ITENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% BANDWIDTH PEAK CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY	14 14 16 18 20 22
7. AN 7.1. 7.2. 7.3. 7.4. 7.5.	ITENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% BANDWIDTH PEAK CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	14 14 16 18 20 22 24
 AN 7.1. 7.2. 7.3. 7.4. 7.5. 8. RA 	ITENNA PORT TEST RESULTS. ON TIME AND DUTY CYCLE. 6 dB DTS BANDWIDTH AND 99% BANDWIDTH. PEAK CONDUCTED OUTPUT POWER. POWER SPECTRAL DENSITY. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS.	14 14 16 18 20 22 22 24 29
 AN 7.1. 7.2. 7.3. 7.4. 7.5. 8. RA 8.1. 8.2. 	ITENNA PORT TEST RESULTS. ON TIME AND DUTY CYCLE. 6 dB DTS BANDWIDTH AND 99% BANDWIDTH. PEAK CONDUCTED OUTPUT POWER. POWER SPECTRAL DENSITY. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS. DIATED TEST RESULTS. RESTRICTED BANDEDGE.	14 16 16 20 22 22 24 29 35
 AN 7.1. 7.2. 7.3. 7.4. 7.5. 8. RA 8.1. 8.2. 	ITENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% BANDWIDTH PEAK CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE SPURIOUS EMISSIONS (1~3GHz)	14 16 18 20 22 22 24 29 35 41
 7. AN 7.1. 7.2. 7.3. 7.4. 7.5. 8. RA 8.1. 8.2. 8.3.S 	ITENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% BANDWIDTH PEAK CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE SPURIOUS EMISSIONS (1~3GHz) SPURIOUS EMISSIONS (3~18GHz)	14 16 18 20 22 22 24 29 35 41 47
 7. AN 7.1. 7.2. 7.3. 7.4. 7.5. 8. RA 8.1. 8.2. 8.3.S 8.4. 	ITENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE	14 16 18 20 22 22 24 29 35 41 47 49
 7. AN 7.1. 7.2. 7.3. 7.4. 7.5. 8. RA 8.1. 8.2. 8.3.S 8.4. 8.5. 8.6. 	ITENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% BANDWIDTH PEAK CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE SPURIOUS EMISSIONS (1~3GHz) SPURIOUS EMISSIONS (3~18GHz) SPURIOUS EMISSIONS 18G ~ 26GHz SPURIOUS EMISSIONS 30M ~ 1 GHz	14 16 16 18 20 22 22 24 29 35 41 47 49 51

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Appendix B): Occupied Bandwidth	.57
Appendix C): Band-edge for RF Conducted Emissions	
Appendix D): RF Conducted Spurious Emissions	.61
Appendix E): Maximum Power Spectral Density	.66
Appendix D): RF Conducted Spurious Emissions Appendix E): Maximum Power Spectral Density	

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	TTE Technology, Inc.
Address:	1860 Compton Ave Corona, CA 92881

Manufacturer Information

Company Name:	TCL KING ELECTRICAL APPLIANCES (HUIZHOU) CO LTD
Address:	NO.78 4TH HUIFENG RD, ZHONGKAI NEW & HIGH-TECH
	INDUSTRIES DEVELOPMENT ZONE, HUIZHOU, GUANGDONG
	516006 CHINA

EUT Information

TCL Zoom remote
TCL ZOOM
Normal
2664026
November 13, 2019
November 14, 2019 ~January 06, 2020

APPLICABLE STANDARDS			
STANDARD TEST RESULTS			
CFR 47 FCC PART 15 SUBPART C	PASS		
ISED RSS-247 Issue 2	PASS		
ISED RSS-GEN Issue 5	PASS		

Prepared By:

Kebo. zhong.

Checked By:

Shammy lies

Kebo Zhang Project Engineer

Approved By:

Aephenbuo

Stephen Guo Laboratory Manager Shawn Wen Laboratory Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Delcaration of Conformity (DoC) and Certification
	rules
	ISED(Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	
	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty	
Conduction emission	3.62dB	
Radiation Emission test(include Fundamental emission) (9kHz-30MHz)	2.2dB	
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.00dB	
Radiation Emission test	5.78dB (1GHz-18Gz)	
(1GHz to 26GHz)(include Fundamental emission)	5.23dB (18GHz-26Gz)	
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.		

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	TCL Zoom remote			
Model	TCL ZOOM			
	Operation Frequency		2402 MHz ~ 2480 MHz	
Product Description	Modulation Type		Data Rate	
GFSK			1Mbps	
Power Supply	Battery DC 3V			

5.2. MAXIMUM OUTPUT POWER

Bluetooth Mode	Frequency (MHz)	Channel Number	Max Output Power (dBm)	EIRP (dBm)
BLE	2402-2480	0-39[40]	2.785	2.785

5.3. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	11	2424	22	2446	33	2468
1	2404	12	2426	23	2448	34	2470
2	2406	13	2428	24	2450	35	2472
3	2408	14	2430	25	2452	36	2474
4	2410	15	2432	26	2454	37	2476
5	2412	16	2434	27	2456	38	2478
6	2414	17	2436	28	2458	39	2480
7	2416	18	2438	29	2460	/	/
8	2418	19	2440	30	2462	/	/
9	2420	20	2442	31	2464	/	/
10	2422	21	2444	32	2468	/	/

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK	CH 0, CH 19, CH 39/ Low, Middle, High	2402MHz, 2440MHz, 2480MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band							
Test Se	oftware	Ampak RFTestTool					
Modulation Type	Transmit Antenna	Test Channel Power Setting					
	Number	CH 0	CH 19	CH 39			
GFSK	1	Default	Default	Default			

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna Frequency (MHz)		Antenna Type	MAX Antenna Gain (dBi)		
1	1 2402-2480		0		

Test Mode	Transmit and Receive Mode	Description
GFSK	1TX, 1RX	Chain 1 can be used as transmitting/receiving antenna.

5.7. WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BLE	DTS	GFSK	1Mbit/s

5.8. TEST ENVIRONMENT

Environment Parameter	Environment Parameter Selected Va			
Relative Humidity	45 ~ 70%			
Atmospheric Pressure:	1025Pa			
Temperature	TN	22 ~ 28°C		
	VL	N/A		
Voltage :	VN	DC 3V		
	VH	N/A		

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage

TN= Normal Temperature

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

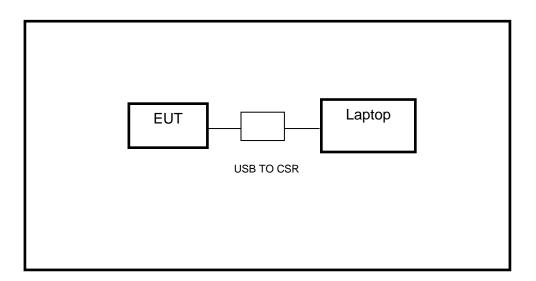
5.9. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N	
1	PC	Dell	Vostro 3902	8KNDDB2	
2	USB TO CSR	/	USB_SPI_TOOLS	/	

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	1.0	/


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description	
1	/	/	/	/	

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TEST

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0087 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6. MEASURING INSTRUMENT AND SOFTWARE USED

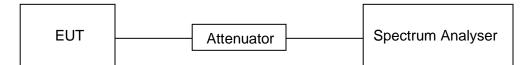
					cted Emis					
				I	nstrument					
Used	Equipment	Manufacturer	Mode	el No.	Serial	No.	Upper Last Cal.	Last Cal.	Next Cal.	
	EMI Test Receiver	R&S	ES	R3	1019	61	Dec.10,2018	Dec.05,2019	Dec.05,2020	
	Two-Line V- Network	R&S	EN∨	216	10198	33	Dec.10,2018	Dec.05,2019	Dec.05,2020	
	Artificial Mains Networks	Schwarzbeck	NSLK	8126	81264	65	Dec.10,2018	Dec.05,2019	Dec.05,2020	
					Software					
Used		Description			Manufa	acturer	Name	Ver	sion	
V	Test Software	e for Conducte	d distu	Irbance	e Fai	ad	EZ-EMC	Ver. U	L-3A1	
	Radiated Emissions									
				I	nstrument					
Used	Equipment	Manufacturer	Mode	el No.	Serial	No.	Upper Last Cal.	Last Cal.	Next Cal.	
	MXE EMI Receiver	KESIGHT	N90	38A	MY5640	0036	Dec.10,2018	Dec.06,2019	Dec.05,2020	
	Hybrid Log Periodic Antenna	TDK	HLP-3	3003C	13090	60	Sep.17,2018	Sep.17,2018	Sep.17,2021	
\checkmark	Preamplifier	HP	844	7D	2944A0	9099	Dec.10,2018	Dec.05,2019	Dec.05,2020	
V	EMI Measurement Receiver	R&S	ESF	R26	1013	77	Dec.10,2018	Dec.05,2019	Dec.05,2020	
\checkmark	Horn Antenna	TDK	HRN-	0118	13093	39	Sep.17,2018	Sep.17,2018	Sep.17,2021	
	High Gain Horn Antenna	Schwarzbeck	BBHA	-9170	691		Aug.11,2018	Aug.11,2018	Aug.11,2021	
\checkmark	Preamplifier	TDK	PA-02	-0118	TRS-305-	00067	Dec.10,2018	Dec.05,2019	Dec.05,2020	
	Preamplifier	TDK	PA-()2-2	TRS-307-	00003	Dec.10,2018	Dec.05,2019	Dec.05,2020	
	Loop antenna	Schwarzbeck	151	9B	0000	8	Jan.07,2019	Jan.07,2019	Jan.07,2022	
V	Band Reject Filter	Wainwright	WRC 2350- 248 253 403	2400- 3.5- 3.5-	4		Dec.10,2018	Dec.05,2019	Dec.05,2020	
V	High Pass Filter	Wi	WHKX10- 2700-3000- 18000- 40SS		23		Dec.10,2018	Dec.05,2019	Dec.05,2020	
					Software					
Used		scription		Man	ufacturer		Name	Ver	sion	
		are for Radiate	ed	F	arad	E	Z-EMC	Ver. U	L-3A1	

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

	Other instruments									
Used	Equipment	Manufacturer	Model No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.			
V	Spectrum Analyzer	Keysight	N9030A	MY55410512	Dec.10,2018	Dec.06,2019	Dec.05,2020			
V	Power Meter	Keysight	N1911A	MY55416024	Dec.10,2018	Dec.06,2019	Dec.05,2020			
N	Power Sensor	Keysight	U2021XA	MY58100022	Dec.10,2018	Dec.06,2019	Dec.05,2020			

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

Temperature	25.1°C	Relative Humidity	55%
Atmosphere Pressure	101kPa	Test Voltage	DC 3V

RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (KHz)	Final setting For VBW (KHz)
BLE	0.428	0.631	0.678	67.8	1.69	2.34	3

Note:

Duty Cycle Correction Factor= $10\log(1/x)$.

Where: x is Duty Cycle(Linear)

Where: T is On Time (transmit duration)

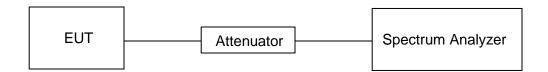
If that calculated VBW is not available on the analyzer then the next higher value should be used.

ON TIME AND DUTY CYCLE MID CH

7.2. 6 dB DTS BANDWIDTH AND 99% BANDWIDTH

<u>LIMITS</u>

CFR 47FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	6dB Bandwidth	>= 500KHz	2400-2483.5	
ISED RSS-Gen Clause 6.7	99% Occupied Bandwidth	For reporting purposes only.	2400-2483.5	


TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test	
Detector	Peak	
IBBW/	For 6 dB Bandwidth :100kHz For 99% Occupied Bandwidth :1% to 5% of the occupied bandwidth	
NRW	For 6dB Bandwidth : ≥3 × RBW For 99% Occupied Bandwidth : ≥3×RBW	
Trace	Max hold	
Sweep	Auto couple	

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB/99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

Temperature	25.1°C	Relative Humidity	55%
Atmosphere Pressure	101kPa	Test Voltage	DC 3V

RESULTS

Please refer to appendix A and B.

7.3. PEAK CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	Peak Output Power	1 watt or 30dBm	2400-2483.5	

TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure peak power each channel.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.1°C	Relative Humidity	55%
Atmosphere Pressure	101kPa	Test Voltage	DC 3V

RESULTS

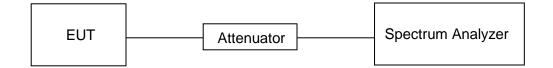
Test	Maximum Conducted Output Power(PK)	EIRP	LIMIT
Channel	(dBm)	(dBm)	dBm
Low	2.785	2.785	30
Middle	2.498	2.498	30
High	2.684	2.684	30

7.4. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5	

TEST PROCEDURE


Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤ 100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Connect the UUT to the spectrum analyser and use the following settings:

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.1°C	Relative Humidity	55%
Atmosphere Pressure	101kPa	Test Voltage	DC 3V

RESULTS

Please refer to appendix E.

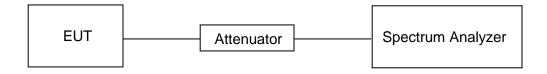
7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit			
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:


Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100kHz
VBW	≥3 × RBW
Span	≥1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Use the peak marker function to determine the maximum PSD level.

1.30AU	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple

Use the peak marker function to determine the maximum amplitude level.

TEST ENVIRONMENT

Temperature	25.1°C	Relative Humidity	55%
Atmosphere Pressure	101kPa	Test Voltage	DC 3V

RESULTS

Please refer to appendix C and D.

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10

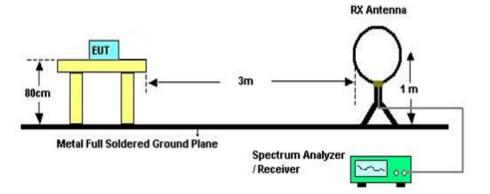
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Radiation Disturbance Test Limit for FCC (Class B)(9kHz-1GHz)

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

Frequency (MHz)	dB(uV/m) (at 3 meters)		
	Peak	Average	
Above 1000	74	54	


Radiation Disturbance Test Limit for FCC (Above 1GHz)

About Restricted bands of operation please refer to RSS-Gen section 8.10 and FCC §15.205 (a)

TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
Sweep	Auto
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of 1 meter height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

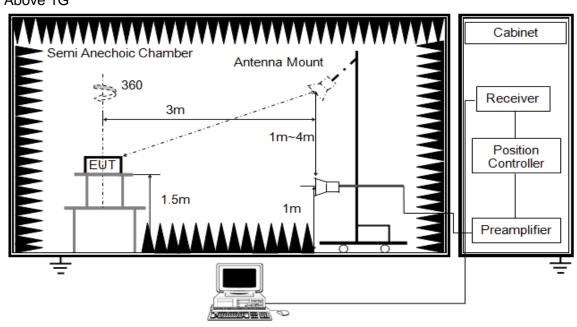
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0087 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Below 1G and above 30MHz

The setting of the spectrum analyser

RBW	120kHz
VBW	300kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.


2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

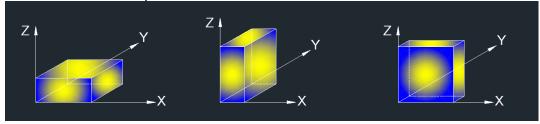
The setting of the spectrum analyser

RBW	1MHz
VBW	PEAK: 3MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (1.5 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5m above ground.


4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

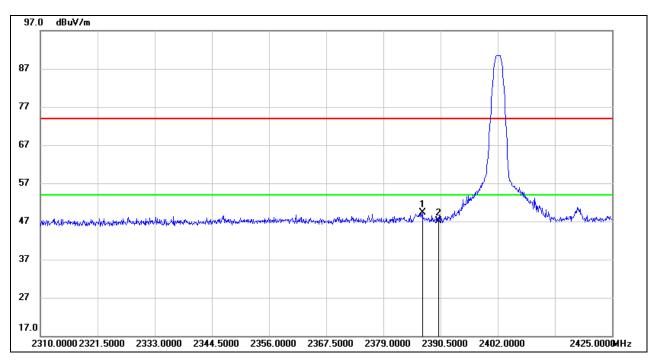
6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: The EUT does not support simultaneous transmission.

Note 3: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.


TEST ENVIRONMENT

Temperature	25.1°C	Relative Humidity	55%
Atmosphere Pressure	101kPa	Test Voltage	DC 3V

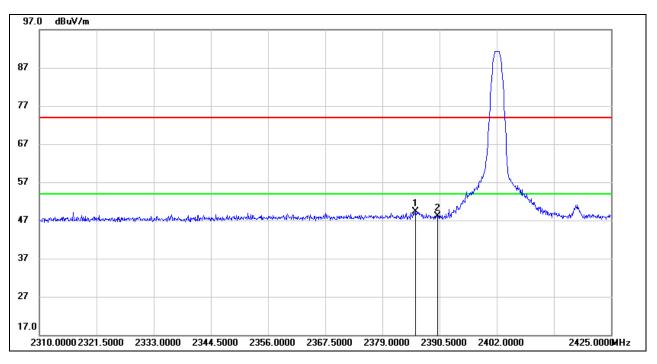
RESULTS

8.1. RESTRICTED BANDEDGE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2386.820	16.33	32.94	49.27	74.00	-24.73	peak
2	2390.000	14.16	32.94	47.10	74.00	-26.90	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

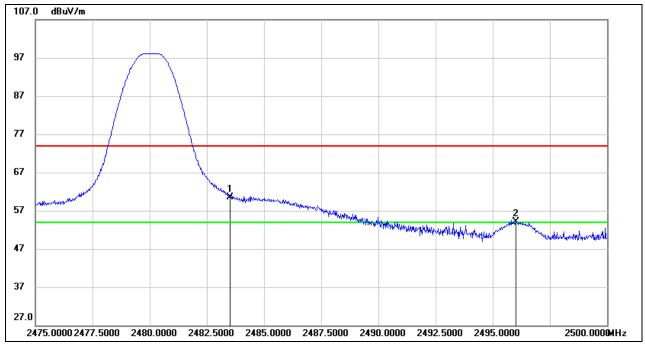
4. Only the worst case emission will be recorder, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2385.670	16.33	32.93	49.26	74.00	-24.74	peak
2	2390.000	15.11	32.94	48.05	74.00	-25.95	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

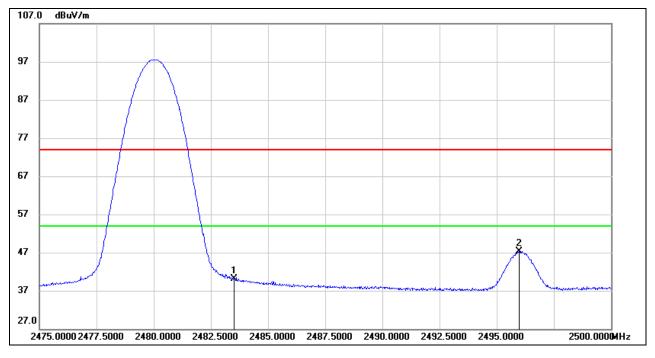
4. Only the worst case emission will be recorder, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	26.89	33.58	60.47	74.00	-13.53	peak
2	2495.975	20.48	33.67	54.15	74.00	-19.85	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

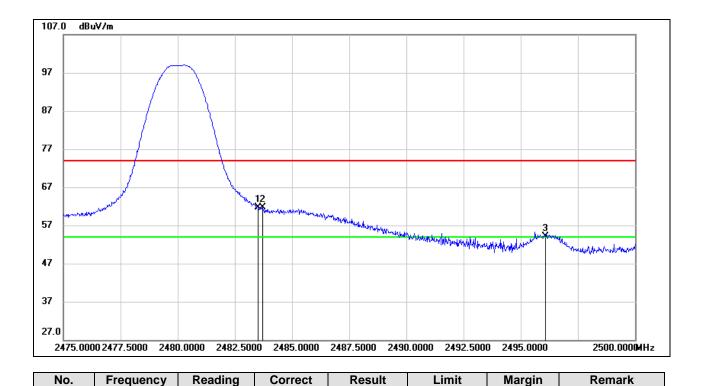
3. Peak: Peak detector.

4. Only the worst case emission will be recorder, if it complies with the limit, the other emissions deemed to comply with the limit.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	6.57	33.58	40.15	54.00	-13.85	AVG
2	2495.975	13.56	33.67	47.23	54.00	-6.77	AVG

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Only the worst emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

<u>RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)</u>

PEAK

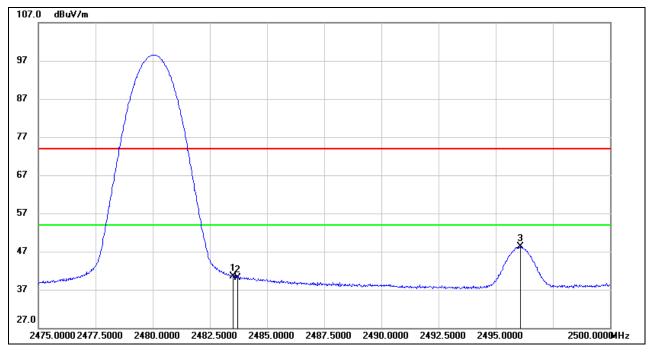
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	28.17	33.58	61.75	74.00	-12.25	peak
2	2483.700	28.09	33.58	61.67	74.00	-12.33	peak
3	2496.075	20.48	33.67	54.15	74.00	-19.85	peak

Result

Limit

Margin

Note: 1. Measurement = Reading Level + Correct Factor.


Frequency

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. 3. Peak: Peak detector.

4. Only the worst case emission will be recorder, if it complies with the limit, the other emissions deemed to comply with the limit.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	6.90	33.58	40.48	54.00	-13.52	AVG
2	2483.700	6.48	33.58	40.06	54.00	-13.94	AVG
3	2496.075	14.59	33.67	48.26	54.00	-5.74	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

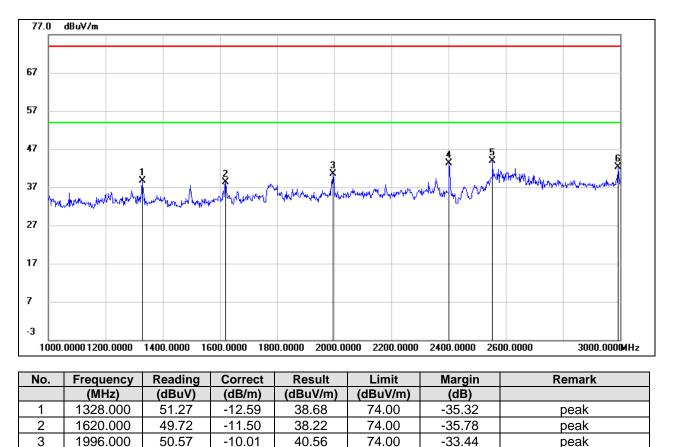
5. For the transmitting duration, please refer to clause 7.1.

6. Only the worst emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

fundamental

peak

peak


1

-30.06

-31.68

8.2. SPURIOUS EMISSIONS (1~3GHz)

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

Note: 1. Peak Result = Reading Level + Correct Factor.

-7.95

-7.53

-5.30

51.18

51.47

47.62

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

74.00

74.00

3. Peak: Peak detector.

2402.000

2554.000

2992.000

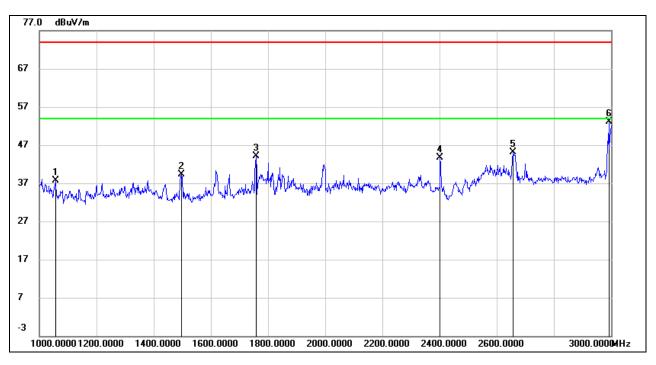
4

5

6

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

43.23

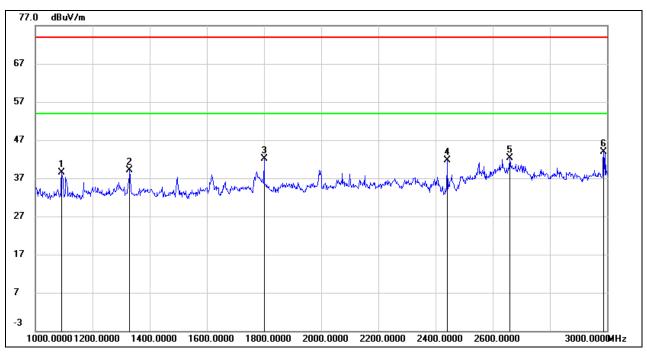

43.94

42.32

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1056.000	51.59	-13.81	37.78	74.00	-36.22	peak
2	1498.000	51.67	-12.43	39.24	74.00	-34.76	peak
3	1758.000	54.58	-10.53	44.05	74.00	-29.95	peak
4	2402.000	51.61	-7.95	43.66	/	/	fundamental
5	2658.000	52.51	-7.42	45.09	74.00	-28.91	peak
6	2992.000	58.38	-5.30	53.08	74.00	-20.92	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

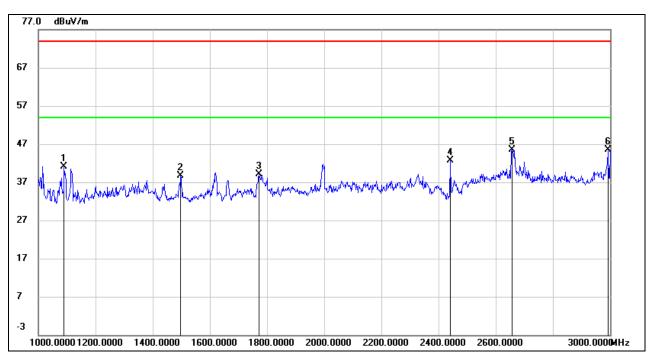
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1092.000	52.26	-13.77	38.49	74.00	-35.51	peak
2	1330.000	51.79	-12.59	39.20	74.00	-34.80	peak
3	1800.000	52.23	-10.11	42.12	74.00	-31.88	peak
4	2440.000	49.45	-7.68	41.77	/	/	fundamental
5	2660.000	49.75	-7.40	42.35	74.00	-31.65	peak
6	2988.000	49.23	-5.31	43.92	74.00	-30.08	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

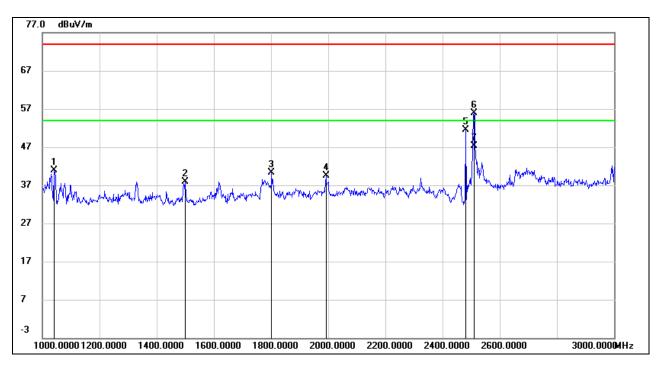

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1090.000	54.83	-13.78	41.05	74.00	-32.95	peak
2	1498.000	51.19	-12.43	38.76	74.00	-35.24	peak
3	1772.000	49.45	-10.40	39.05	74.00	-34.95	peak
4	2440.000	50.46	-7.68	42.78	/	/	fundamental
5	2656.000	52.87	-7.43	45.44	74.00	-28.56	peak
6	2992.000	50.80	-5.30	45.50	74.00	-28.50	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

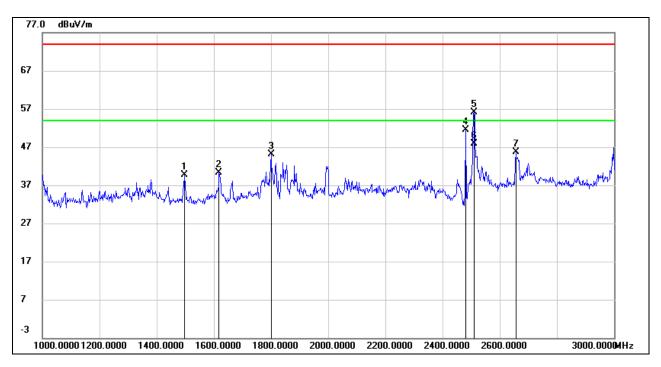
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1040.000	54.70	-13.82	40.88	74.00	-33.12	peak
2	1500.000	50.34	-12.43	37.91	74.00	-36.09	peak
3	1802.000	50.49	-10.11	40.38	74.00	-33.62	peak
4	1992.000	49.52	-10.01	39.51	74.00	-34.49	peak
5	2480.000	58.86	-7.39	51.47	/	/	fundamental
6	2509.300	63.30	-7.30	56.00	74.00	-18.00	peak
7	2509.300	54.60	-7.30	47.30	54.00	-6.70	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 7.1.

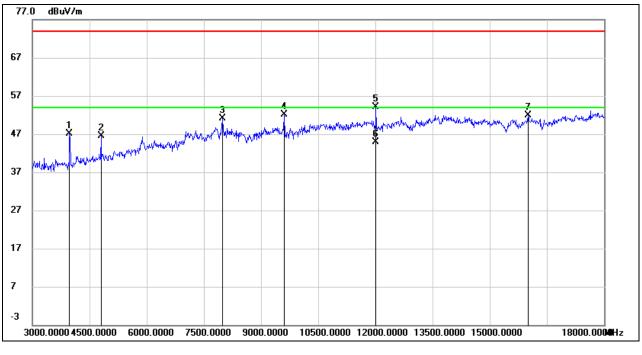
6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1496.000	52.17	-12.44	39.73	74.00	-34.27	peak
2	1618.000	51.85	-11.52	40.33	74.00	-33.67	peak
3	1800.000	55.14	-10.11	45.03	74.00	-28.97	peak
4	2480.000	58.80	-7.39	51.41	/	/	fundamental
5	2509.481	63.35	-7.30	56.05	74.00	-17.95	peak
6	2509.481	55.22	-7.30	47.92	54.00	-6.08	AVG
7	2656.000	53.09	-7.43	45.66	74.00	-28.34	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

8.3.SPURIOUS EMISSIONS (3~18GHz)

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	50.00	-2.81	47.19	74.00	-26.81	peak
2	4800.000	46.67	-0.14	46.53	74.00	-27.47	peak
3	7995.000	42.59	8.45	51.04	74.00	-22.96	peak
4	9615.000	41.53	10.64	52.17	74.00	-21.83	peak
5	12009.342	39.52	14.59	54.11	74.00	-19.89	peak
6	12009.342	30.24	14.59	44.83	54.00	-9.17	AVG
7	16005.000	34.32	17.63	51.95	74.00	-22.05	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	50.70	-2.81	47.89	74.00	-26.11	peak
2	4800.000	46.20	-0.14	46.06	74.00	-27.94	peak
3	7962.871	47.07	8.55	55.62	74.00	-18.38	peak
4	7962.871	27.26	8.55	35.81	54.00	-18.19	AVG
5	12009.086	30.27	14.60	44.87	54.00	-9.13	AVG
6	12015.000	39.66	14.61	54.27	74.00	-19.73	peak
7	12990.000	37.69	14.98	52.67	74.00	-21.33	peak
8	14955.000	37.90	15.94	53.84	74.00	-20.16	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton where: ton is transmit duration.

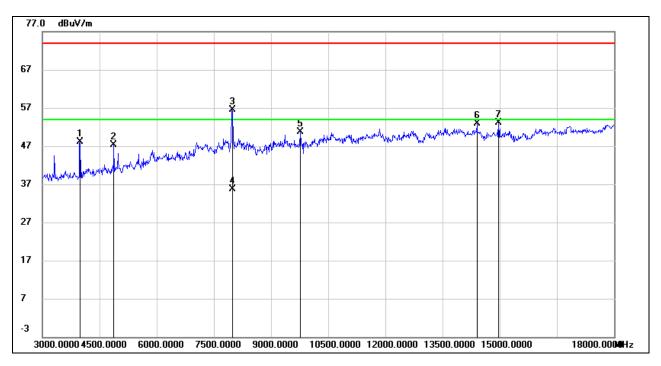
5. For transmit duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	49.97	-2.81	47.16	74.00	-26.84	peak
2	4875.000	49.38	0.10	49.48	74.00	-24.52	peak
3	9759.386	43.65	10.61	54.26	74.00	-19.74	peak
4	9759.386	35.56	10.61	46.17	54.00	-7.83	AVG
5	12585.000	36.22	14.57	50.79	74.00	-23.21	peak
6	14445.000	35.57	16.66	52.23	74.00	-21.77	peak
7	16530.000	32.22	19.46	51.68	74.00	-22.32	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

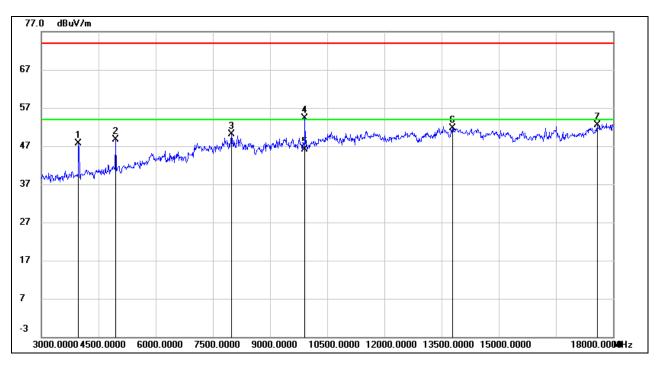
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	50.81	-2.80	48.01	74.00	-25.99	peak
2	4875.000	47.15	0.10	47.25	74.00	-26.75	peak
3	8000.202	48.12	8.43	56.55	74.00	-17.45	peak
4	8000.202	27.35	8.43	35.78	54.00	-18.22	AVG
5	9765.000	40.17	10.60	50.77	74.00	-23.23	peak
6	14400.000	36.27	16.68	52.95	74.00	-21.05	peak
7	14970.000	37.16	15.92	53.08	74.00	-20.92	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

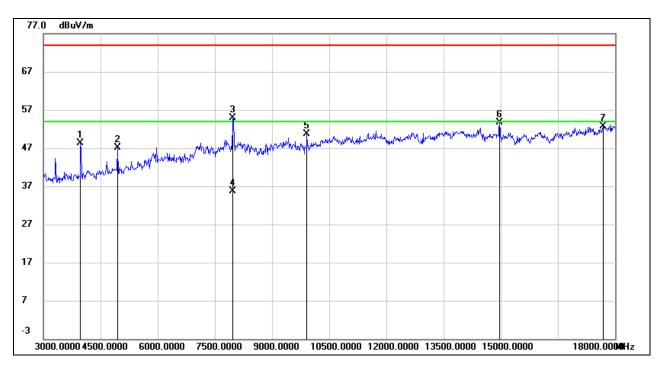
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	50.57	-2.81	47.76	74.00	-26.24	peak
2	4950.000	48.36	0.40	48.76	74.00	-25.24	peak
3	7980.000	41.64	8.49	50.13	74.00	-23.87	peak
4	9919.495	43.30	10.94	54.24	74.00	-19.76	peak
5	9919.495	35.22	10.94	46.16	54.00	-7.84	AVG
6	13785.000	34.33	17.40	51.73	74.00	-22.27	peak
7	17580.000	30.64	21.87	52.51	74.00	-21.49	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 7.1.

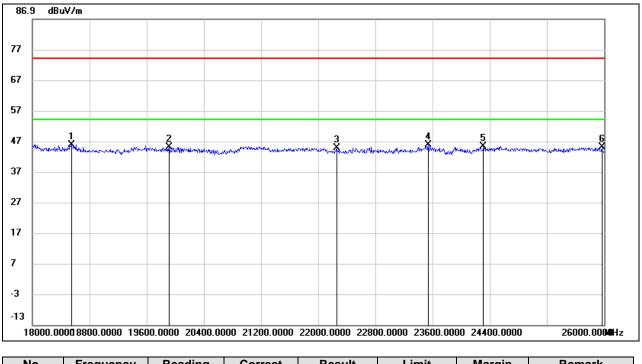
6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	51.08	-2.81	48.27	74.00	-25.73	peak
2	4950.000	46.73	0.40	47.13	74.00	-26.87	peak
3	7962.821	46.38	8.55	54.93	74.00	-19.07	peak
4	7962.821	27.08	8.55	35.63	54.00	-18.37	AVG
5	9915.000	39.84	10.95	50.79	74.00	-23.21	peak
6	14970.000	37.83	15.92	53.75	74.00	-20.25	peak
7	17685.000	30.26	22.43	52.69	74.00	-21.31	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

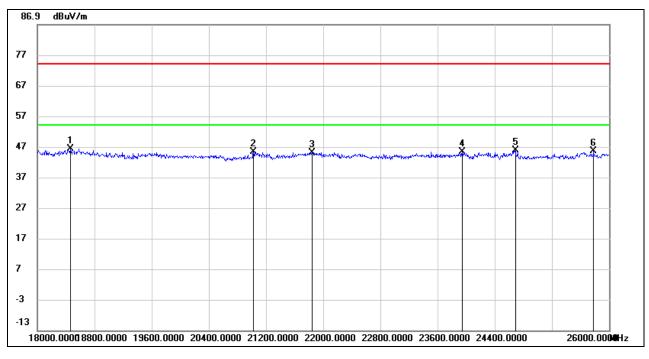
4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18544.000	50.26	-4.46	45.80	74.00	-28.20	peak
2	19912.000	49.41	-4.36	45.05	74.00	-28.95	peak
3	22256.000	50.95	-6.06	44.89	74.00	-29.11	peak
4	23536.000	50.46	-4.74	45.72	74.00	-28.28	peak
5	24312.000	48.60	-3.35	45.25	74.00	-28.75	peak
6	25968.000	47.41	-2.31	45.10	74.00	-28.90	peak

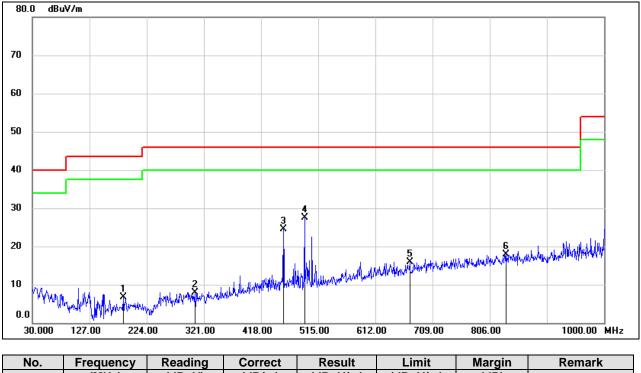

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18464.000	50.70	-4.39	46.31	74.00	-27.69	peak
2	21024.000	50.64	-5.30	45.34	74.00	-28.66	peak
3	21840.000	51.08	-5.93	45.15	74.00	-28.85	peak
4	23944.000	49.45	-4.14	45.31	74.00	-28.69	peak
5	24688.000	47.89	-2.11	45.78	74.00	-28.22	peak
6	25784.000	47.08	-1.49	45.59	74.00	-28.41	peak

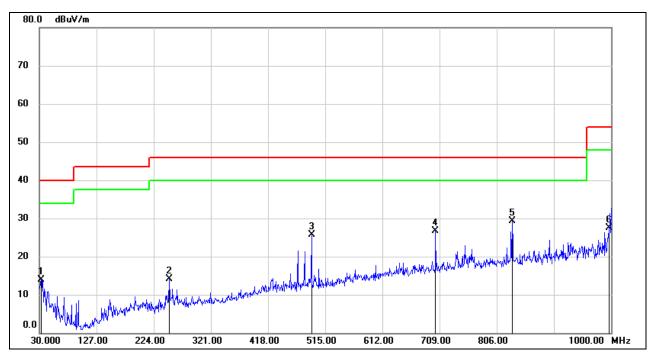

Note: 1. Peak Result = Reading Level + Correct Factor.

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.

Note: All the test modes have been tested, only the worst data record in the report.

8.5. SPURIOUS EMISSIONS 30M ~ 1 GHz

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	184.2300	23.55	-16.80	6.75	43.50	-36.75	QP
2	305.4800	22.00	-14.16	7.84	46.00	-38.16	QP
3	455.8300	36.32	-11.83	24.49	46.00	-21.51	QP
4	491.7200	38.47	-11.06	27.41	46.00	-18.59	QP
5	670.2000	23.42	-7.61	15.81	46.00	-30.19	QP
6	834.1300	22.94	-5.01	17.93	46.00	-28.07	QP

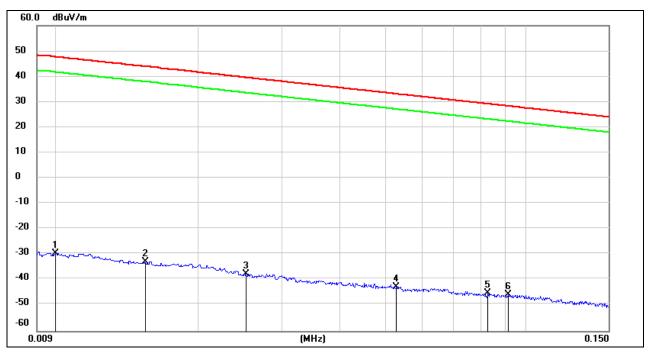
Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit. 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	32.9100	31.26	-17.33	13.93	40.00	-26.07	QP
2	250.1900	30.49	-16.34	14.15	46.00	-31.85	QP
3	491.7200	36.70	-11.06	25.64	46.00	-20.36	QP
4	702.2100	33.66	-6.89	26.77	46.00	-19.23	QP
5	832.1900	34.35	-5.07	29.28	46.00	-16.72	QP
6	996.1200	30.51	-2.93	27.58	54.00	-26.42	QP

Note: 1. Result Level = Read Level + Correct Factor.


2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

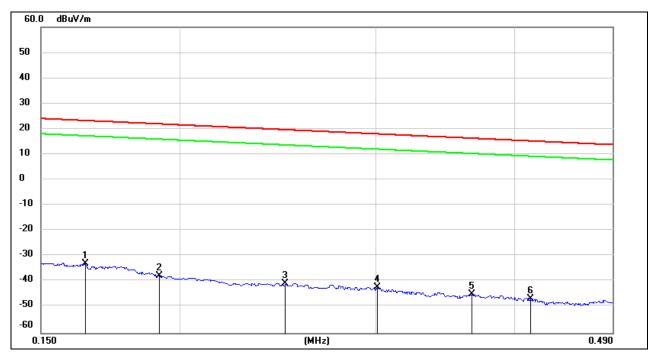
3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

Note: All the test modes has been tested, only the worst data record in the report

8.6. SPURIOUS EMISSIONS BELOW 30M

SPURIOUS EMISSIONS (LOW CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

<u>0.09kHz~ 150kHz</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0100	71.72	-101.40	-29.68	47.60	-77.28	peak
2	0.0154	68.44	-101.37	-32.93	43.85	-76.78	peak
3	0.0252	63.82	-101.37	-37.55	39.57	-77.12	peak
4	0.0529	58.80	-101.49	-42.69	33.13	-75.82	peak
5	0.0830	56.38	-101.65	-45.27	29.22	-74.49	peak
6	0.0913	55.84	-101.73	-45.89	28.39	-74.28	peak

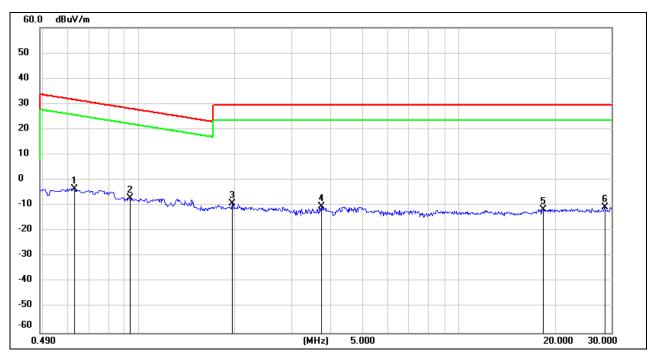
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>150kHz ~ 490kHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1645	68.75	-101.66	-32.91	23.28	-56.19	peak
2	0.1917	64.04	-101.70	-37.66	21.95	-59.61	peak
3	0.2489	61.19	-101.80	-40.61	19.68	-60.29	peak
4	0.3013	59.83	-101.85	-42.02	18.02	-60.04	peak
5	0.3662	57.08	-101.93	-44.85	16.33	-61.18	peak
6	0.4138	55.33	-101.98	-46.65	15.27	-61.92	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>490kHz ~ 30MHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.6298	58.67	-62.09	-3.42	31.62	-35.04	peak
2	0.9385	55.17	-62.23	-7.06	28.15	-35.21	peak
3	1.9521	52.61	-61.84	-9.23	29.54	-38.77	peak
4	3.7100	51.20	-61.41	-10.21	29.54	-39.75	peak
5	18.3430	49.36	-60.90	-11.54	29.54	-41.08	peak
6	28.6128	49.37	-60.10	-10.73	29.54	-40.27	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the test modes have been tested, only the worst data record in the report.

9. ANTENNA REQUIREMENTS

Applicable requirements

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

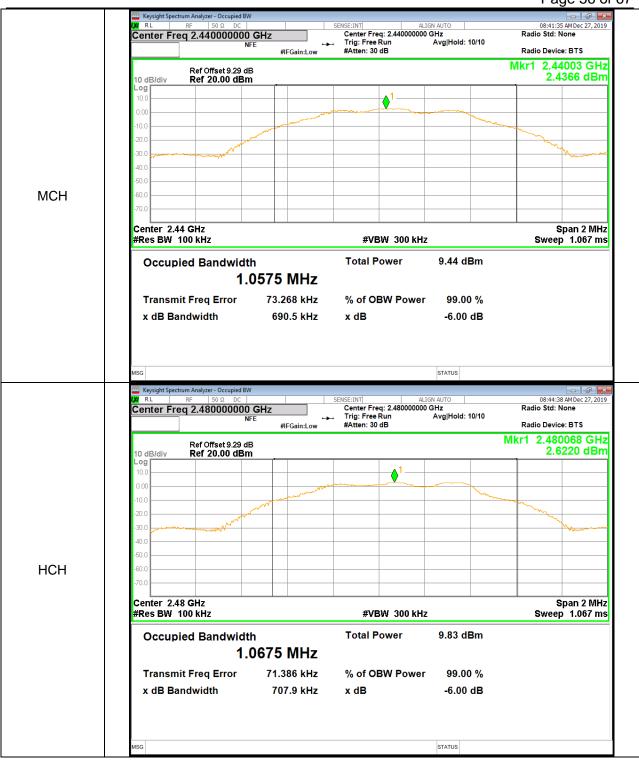
Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

Appendix A): 6dB Bandwidth


Test Result			
Mode	Channel	6dB Bandwidth [MHz]	Verdict
BLE	LCH	0.6848	PASS
BLE	MCH	0.6905	PASS
BLE	HCH	0.7079	PASS

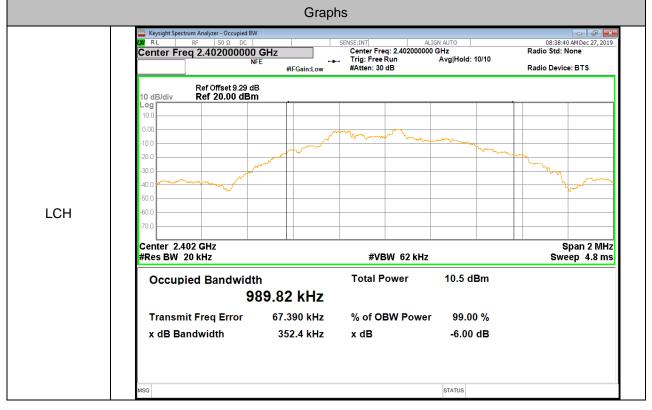
Test Graphs

	Graph	IS	
	Keysight Spectrum Analyzer - Occupied BW RL RF 50 Ω DC Center Freq 2.402000000 GHz NFE #/FGain:Low	SENSE:INT ALIGN AUTO Center Freq: 2.402000000 GHz Trig: Free Run Avg Hold: 10/10 #Atten: 30 dB	08:38:23 AM Dec 27, 2019 Radio Std: None Radio Device: BTS
	Ref Offset 9.29 dB 10 dB/div Ref 20.00 dBm	Mł	r1 2.4020728 GHz 2.7062 dBm
	-10.0 -20.0		
	-30.0		
LCH	-60.0		
	Center 2.402 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 2 MHz Sweep 1.067 ms
	Occupied Bandwidth 1.0586 MHz	Total Power 9.74 dBm	
	Transmit Freq Error65.739 kHzx dB Bandwidth684.8 kHz	% of OBW Power 99.00 % x dB -6.00 dB	
	MSG	STATUS	

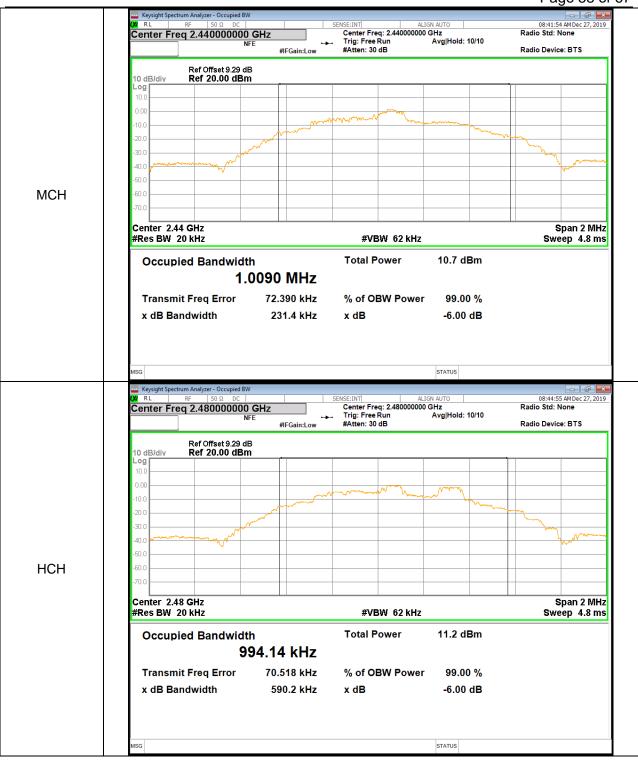
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

REPORT No.: 4789237289-2 Page 56 of 67

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0087 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.



Appendix B): Occupied Bandwidth


Test Result

Mode	Channel	99% OBW[MHz]	Verdict
BLE	LCH	0.98982	PASS
BLE	MCH	1.0090	PASS
BLE	НСН	0.99414	PASS

Test Graphs

REPORT No.: 4789237289-2 Page 58 of 67

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0087 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Appendix C): Band-edge for RF Conducted Emissions

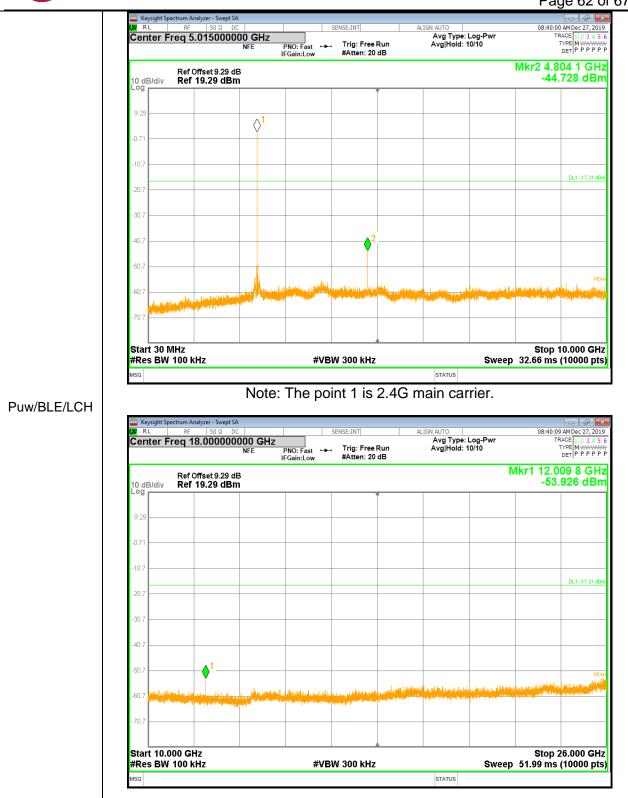
Resul	t Table				
Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	2.712	-46.094	-17.29	PASS
BLE	HCH	2.610	-46.315	-17.39	PASS

Test Graphs

Center Freq 2.3950 Ref Offset 9	00000 GHz	SENSE:INT	Free Run	AUTO Avg Type: Log-Pwr Avg Hold: 10/10	Т	3 AM Dec 27, 2019 RACE 1 2 3 4 5
			n: 30 dB			TYPE MWWWW DET P P P P P
				Mk	r4 2.399 7 -46	97 5 GHz .094 dBm
Log 10.0 -10.0 -20.0 -30.0 -40.0 -60.0 -70.0		https://www.com/weicy/Weichen		at when the second s		DL1 -17.29 dBr PEAI
Start 2.38500 GHz #Res BW 100 kHz		#VBW 300 I	(Hz	Swee		.40500 GHz s (8001 pts
MRR MODE TRC SEL 1 N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5 6 7 7 7 8 9 9	X 2.402 070 0 GHz 2.400 000 0 GHz 2.390 000 0 GHz 2.399 797 5 GHz	¥ 2.712 dBm -49.995 dBm -54.322 dBm -46.094 dBm	FUNCTION FUNCTION	ON WIDTH	FUNCTION VALUE	
11						•
	Log 10.0 -0.00 -10.0 -20.0 -30.0 -30.0 -40.0 -60.0 -60.0 -60.0 -70.0 Start 2.38500 GHz #Res BW 100 kHz MSR M002 HKG Sci 40.0 -70.0 -	Log 10.0 10.0 -20.0 -30.0 -30.0 -40.0 -50.0 -50.0 -70.0 -50.0	Log 100 100 100 -200	Log 10.0 10.0 -20.0	Log 100 100 100 100 100 100 100 10	Log International and a state 100

REPORT No.: 4789237289-2 Page 60 of 67 Keysight Spectrum Analyzer - Swept SA CRL RF 50 Ω DC 08:45:48 AM Dec 27, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P P P P P P ALIGN AUTO Avg Type: Log-Pwr Avg|Hold: 10/10 Center Freq 2.487500000 GHz PNO: Wide Trig: Free Run #Atten: 30 dB NFE Mkr4 2.496 113 GHz -46.315 dBm Ref Offset 9.29 dB Ref 20.00 dBm 10 dB/div .od DL1 -17.39 dB 20.0 30.0 <mark>4</mark> 40.0 λ^2 50.0 HCH 60.0 Stop 2.50000 GHz Sweep 1.067 ms (8001 pts) Start 2.47500 GHz #Res BW 100 kHz #VBW 300 kHz MKR MODE TRC SCL FUNCTION VALUE FUNCTION FUNCTION WIDTH 2.610 dBm -53.031 dBm -54.109 dBm -46.315 dBm 2.480 094 GHz 2.483 500 GHz 2.500 000 GHz 2.496 113 GHz 1 2 3 N N N 4 5 7 8 9 10 STATUS SG

Appendix D): RF Conducted Spurious Emissions


able			
Channel	Pref [dBm]	Puw[dBm]	Verdict
LCH	2.686	<limit< td=""><td>PASS</td></limit<>	PASS
MCH	2.415	<limit< td=""><td>PASS</td></limit<>	PASS
HCH	2.599	<limit< td=""><td>PASS</td></limit<>	PASS
	Channel LCH MCH	Channel Pref [dBm] LCH 2.686 MCH 2.415	Channel Pref [dBm] Puw[dBm] LCH 2.686 <limit< td=""> MCH 2.415 <limit< td=""></limit<></limit<>

Test Graphs

	BLE_LCH_Graphs
	Keysight Spectrum Analyzer - Swept SA Constraint ALIGN AUTO 08:39:48 AMDec 27, 2019 Center Freq 2.402000000 GHz SENSE:INT ALIGN AUTO 08:39:48 AMDec 27, 2019 NFE PNO: Wide IFGain:Low Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr Avg Hold: 10/10 TreE
	Ref Offset 9.29 dB Mkr1 2.401 775 08 GHz 10 dB/div Ref 20.00 dBm 10.0 10.0
	0.00 -10.0 -20.0
Pref/BLE/LCH	-30.0 -40.0
	Center 2.402000 GHz Span 2.000 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.333 ms (10000 pts) Msg status

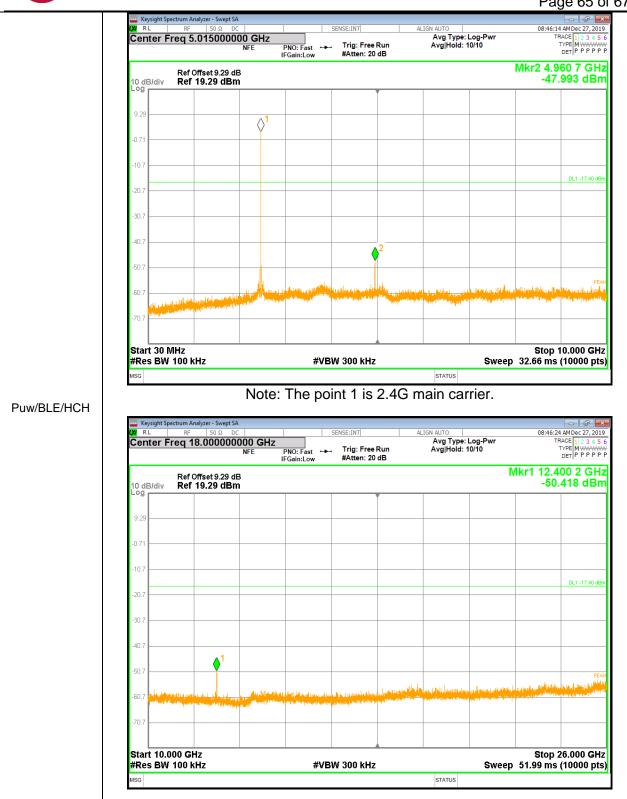
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

REPORT No.: 4789237289-2 Page 62 of 67

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0087 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

REPORT No.: 4789237289-2 Page 63 of 67

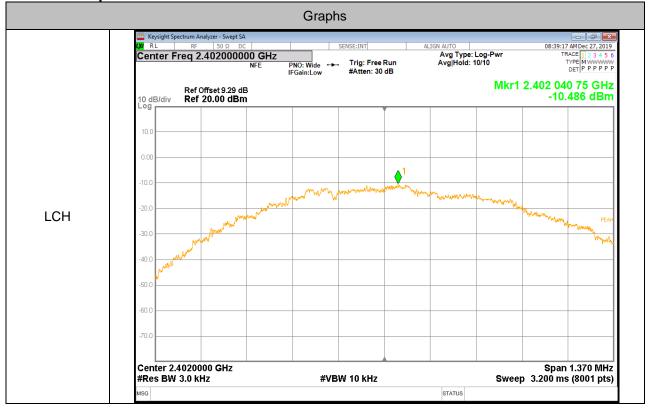
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0087 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

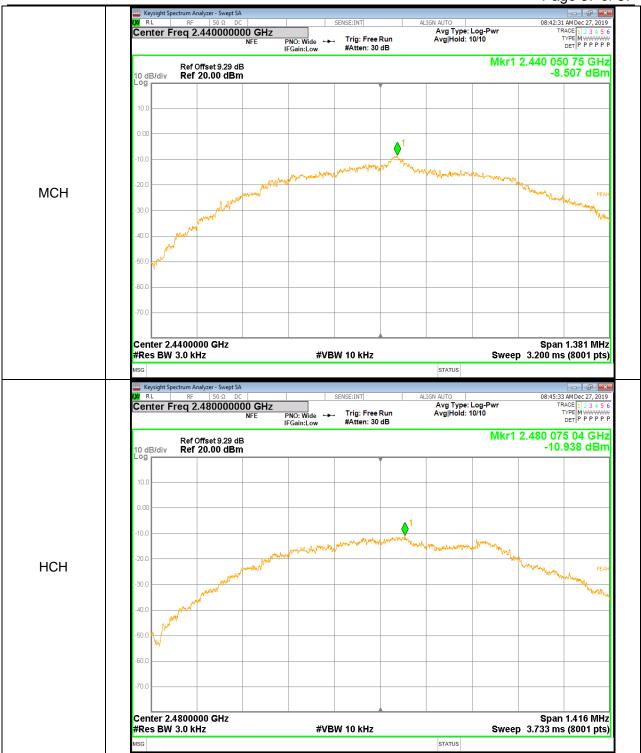

REPORT No.: 4789237289-2 Page 64 of 67

LXI F	RL	RF	alyzer - Swept	DC		SENSE:INT		ALIGN AUTO Avg Type	Log Pur	08:43:1	9 AM Dec 27, 2019
Cer	nter F	req 1	5.00000	NFE	PNO: Fast IFGain:Low	⊶⊶ Trig: Free #Atten: 20		Avg Hold:	10/10	'	RACE 1 2 3 4 5 TYPE MWWW DET P P P P P
10 d Log	IB/div		ffset 9.29 (19.29 dB							Mkr1 25.9 -54	018 4 GH .085 dBr
9.29											
-0.71											
-10.7	-										DL1 -17.59 dBr
-20.7											
-30.7	-										
-40.7	-										
-50.7				at a state			المدار ويتجوز ليرين ال	المقدر والمعامين والعدار و	in littly	en glasse het seles te ha	PEA
-60.7	and the second	anti-destille Setteration	al traffic de la della de la della del Northe della de Northe della de		iller (fra f.) (fra sjana) nagi stra gabieraj				a na sini di suli si si		
-70.7	<u> </u>										
		000 GH 100 k			#1	VBW 300 kHz	<u> </u>		Swee	Stop 51.99 ms	26.000 GHz (10000 pts
MSG								STATUS			

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

REPORT No.: 4789237289-2 Page 65 of 67


UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0087 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.


Appendix E): Maximum Power Spectral Density

Result Table			
Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-10.486	PASS
BLE	MCH	-8.507	PASS
BLE	HCH	-10.938	PASS

Test Graphs

REPORT No.: 4789237289-2 Page 67 of 67

END OF REPORT

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.