

FCC Part15 Subpart B

TEST REPORT

For

LED TV

MODEL NUMBER: 55S517, 55S511, 55S513, 55S515, 55S515-MX, 55S517-MX, 55S515-CA, 55S517-CA

FCC ID: W8U55S517

REPORT NUMBER: 4788332541.2-1

ISSUE DATE: February 13, 2018

Prepared for

TTE Technology, Inc. 2455 Anselmo Drive, Suite 101 Corona, CA 92879

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Room 101, Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China Tel: +86 769 33817100 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

Revision History

Rev.	Issue Date	Revisions	Revised By
	2/13/2018	Initial Issue	

Summary of Test Results							
Standard Test Item Limit Result R							
	Conducted Disturbance	Class B	PASS				
FCC Part15, Subpart B ANSI C63.4-2014	Radiated Disturbance below 1 GHz	Class B	PASS				
ANSI 603.4-2014	Radiated Disturbance above 1 GHz	Class B	PASS	NOTE (1)			

Note:

(1) If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz. If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, measurement shall only be made up to 5 GHz. If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 40 GHz, whichever is less.

CONTENTS

1.	ATTES	TATION OF TEST RESULTS5
2.	TEST N	/ETHODOLOGY6
3.	FACILI	TIES AND ACCREDITATION6
4.	CALIBI	RATION AND UNCERTAINTY7
4	4.1.	Measuring Instrument Calibration7
4	4.2.	Measurement Uncertainty7
5.	EQUIP	MENT UNDER TEST8
ł	5.1.	Description of EUT8
ł	5.2.	Test Mode8
5	5.3.	EUT Accessory
	_ /	Disch Discourse Observices the Osefice of Oseface Tested
,	5. <i>4.</i>	Block Diagram Showing the Configuration of System Tested9
6.		JRING EQUIPMENT AND SOFTWARE USED
	MEASU	
6. 7.	MEASU	JRING EQUIPMENT AND SOFTWARE USED11

1. ATTESTATION OF TEST RESULTS

Applicant Information	
Company Name:	TTE Technology, Inc.
Address:	2455 Anselmo Drive, Suite 101 Corona, CA 92879
Manufacturer Information	
Company Name:	TCL King Electrical Appliances (Huizhou) Co., Ltd.
Address:	NO.78 4TH HUIFENG RD ZHONGKAI NEW & HIGH-TECH INDUSTRIES DEVELOPMENT ZONE HUIZHOU GUANGDONG CHINA
EUT Information	
EUT Name:	LED TV
Model:	55S517, 55S511, 55S513, 55S515, 55S515-MX, 55S517-MX, 55S517-CA, 55S517-CA
Brand:	TCL
Sample Status:	Normal
Sample ID:	1377111
Sample Received Date:	January 19, 2018
Date of Tested:	January 24, 2018 ~ February 7, 2018

APPLICABLE STANDARDS				
STANDARDS TEST RESULTS				
FCC Part15, Subpart B ANSI C63.4-2014	PASS			

Prepared By:

Grany Shama

Gary Zhang Engineer Project Associate

Approved By:

Aephenbus

Stephen Guo Laboratory Manager

Checked By:

Shenny lies

Shawn Wen Laboratory Leader

2. TEST METHODOLOGY

All tests were performed in accordance with the standard FCC Part15 Subpart B and ANSI C63.4-2014.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No : 4102 01)
Accreditation Certificate	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. IAS (Lab Code: TL-702) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has demonstrated compliance with ISO/IEC Standard 17025:2005, General requirements for the competence of testing and calibration laboratories FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules IC(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with Industry Canada. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Accreditation	
••••••	
	•
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

4. CALIBRATION AND UNCERTAINTY

4.1. Measuring Instrument Calibration

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

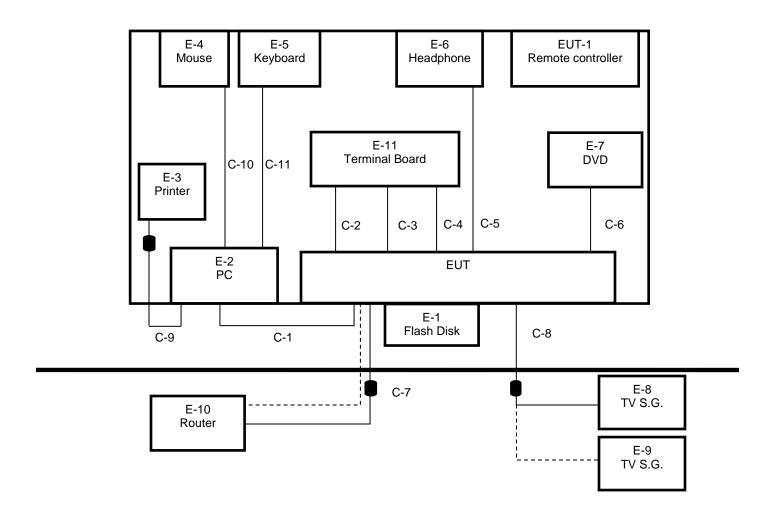
Test Item	Measurement Frequency Range	к	U(dB)		
Conducted disturbance at mains terminals ports	0.15MHz ~ 30MHz	2	2.9 dB		
Radiated disturbance Test	Below 1GHz	2	4.52 dB		
Radiated disturbance Test	Above 1GHz	2	5.04 dB		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.					

5. EQUIPMENT UNDER TEST

5.1. Description of EUT

EUT Name	LED TV
EUT Discription	The device LED TV, which can be used as Class B personal computers peripherals
Model	55S517
Series Model	55S511, 55S513, 55S515, 55S515-MX, 55S517-MX, 55S515-CA, 55S517-CA
Model Difference	All models are indentical except the model name which is intended to differentiate sales channels
Rated Input	120V~ 60Hz

5.2. Test Mode


Test Mode	Description
Mode 1	HDMI1 in (4K)
Mode 2	HDMI2 in (4K)
Mode 3	HDMI3 in (4K)
Mode 4	Ethernet Wired Play
Mode 5	WiFi 2.4GHz Play
Mode 6	WiFi 5GHz Play

Note: the EUT was set according to figure 16 as stated in Clause 11.4 of ANSI C63.4.

5.3. EUT Accessory

Item	Accessory	Brand Name	Model Name	Description
1	Remote controller	TCL	/	/

5.4. Block Diagram Showing the Configuration of System Tested

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Specification	Series No.
E-1	USB Disk	Kingstone	DTSE9H/8GB	8GB	/
E-2	PC	LENOVO	ThinkCentre E73	/	PC0K9QL4
E-3	Printer	Canon	LBP2900+	/	NDLA530620
E-4	Mouse	Lenovo	MO28UOB	USB port	8SSM50G45918F CCC1545
E-5	Keyboard	Lenovo	LXH- JME2209U	USB port	60804634

E-6	Headphone	Sony	/		/
E-7	DVD	PHILIPS	BDP7750/93	4K output	KX1A1623930542
E-8	TV Signal Generator	Shibasoku	TG39BX	/	3000035889
E-9	MXG vector signal generator	N5182B	Keysight	/	MY56200284
E-10	Router	D-Link	DIR-809	2.4G wifi 5G wifi	RZMP2G4000780
E-11	Terminal load board	/	/	HDMI interface Audio & Video interface	/

Item	Type of cable	Shielded Type	Ferrite Core	Length
C-1	HDMI cable	YES	NO	1.5m
C-2	HDMI cable	YES	NO	1.5m
C-3	HDMI cable	YES	NO	1.5m
C-4	Optical Fiber cable	NO	NO	1.5m
C-5	Headphone cable	NO	NO	1.2m
C-6	AV cable	YES	NO	1.5m
C-7	Ethernet cable	YES	YES	10m
C-8	Coaxial cable	YES	YES	10m
C-9	USB Cable	YES	YES	1.5m

6. MEASURING EQUIPMENT AND SOFTWARE USED

Conducted Disturbance							
Used	Equipment	Manufacturer	Model No.		Serial No.	Last Cal.	Next Cal.
V	EMI Test Receiver	R&S	ESR3		101961	Dec. 12, 2017	Dec. 12, 2018
V	Two-Line V- Network	R&S	ENV2	216	101983	Dec. 12, 2017	Dec. 12, 2018
V	Artificial Mains Networks	Schwarzbeck	NSLK 8	3126	8126465	Dec. 12, 2017	Dec. 12, 2018
			Softwa	are			
Used	Des	cription		Man	ufacturer	Name	Version
\checkmark	Test Software for	Conducted Emi	issions		Farad	EZ-EMC	Ver. UL-3A1
		Rad	iated Dis	sturba	nce		
Used	Equipment	Manufacturer	Model	No.	Serial No.	Last Cal.	Next Cal.
V	MXE EMI Receiver	KESIGHT	N903	8A	MY56400 036	Dec. 12, 2017	Dec. 12, 2018
V	Hybrid Log Periodic Antenna	TDK	HLP-30	003C	130960	Jan. 09, 2016	Jan. 09, 2019
V	Preamplifier	HP	8447	′D	2944A090 99	Dec. 12, 2017	Dec. 12, 2018
V	EMI Measurement Receiver	R&S	ESR:	26	101377	Dec. 12, 2017	Dec. 12, 2018
\checkmark	Horn Antenna	TDK	HRN-0	118	130939	Jan. 09, 2016	Jan. 09, 2019
	Horn Antenna	Schwarzbeck	BBHAS	9170	#691	Jan. 06, 2016	Jan. 06, 2019
V	Preamplifier	TDK	PA-02-0118		TRS-305- 00067	Dec. 12, 2017	Dec. 12, 2018
V	Preamplifier	TDK	PA-02-2		TRS-307- 00003	Dec. 12, 2017	Dec. 12, 2018
V	Preamplifier	TDK	PA-02-3 TRS-		TRS-308- 00002	Dec. 12, 2017	Dec. 12, 2018
			Softwa	are			
Used	Des	cription		Man	ufacturer	Name	Version
\checkmark	Test Software for	Radiated Emis	ssions		Farad	EZ-EMC	Ver. UL-3A1

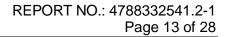
7. EMISSION TEST

7.1. Conducted Disturbance Measurement

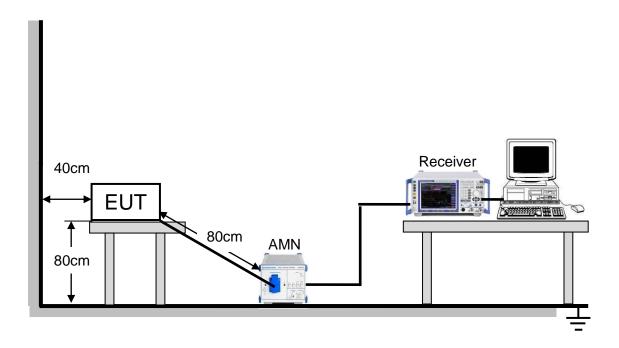
7.1.1. Limits of conducted disturbance voltage

FREQUENCY	□Class /	A (dBµV)	⊠Class B (dBµV)	
(MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *
0.50 -5.0	73.00	60.00	56.00	46.00
5.0 -30.0	73.00	60.00	60.00	50.00

Note:


- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor Margin Level = Measurement Value - Limit Value

The following table is the setting of the receiver


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

7.1.2. Test Procedure

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item:EUT Test Photos.

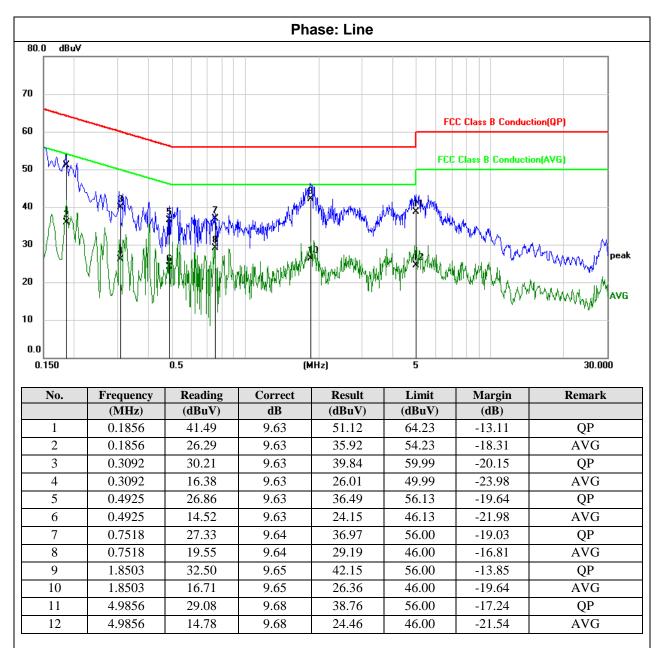
7.1.3. Test Setup

For the actual test configuration, please refer to Appendix I: Photographs of the Test Configuration.

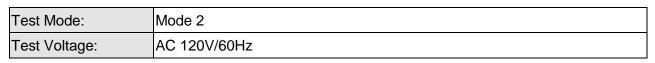
7.1.4. Test Environment

Temperature:	21.9°C
Humidity:	50%
ATM pressure:	102kPa

7.1.5. Test Mode


Pre-test Mode:	Mode 1, 2 & 3
Final Test Mode:	Mode 2

Note: According to pre-test results, the final test mode is each independent function's worst case and only shown in the report.


7.1.6. Test Results

Test Mode:	Mode 2
Test Voltage:	AC 120V/60Hz

Remark:

			Pha	ase: Neutra	al		
80.0 dBu¥							
0							
,						FCC Class B Conduc	stion(QP)
5		-			F	CC Class B Conducti	ion(AVG)
' MIL	1.3	•					
¹ ↓ ≩\	ΥĨ MA Π	5. Northern and the second s			A ADIAL M		
	MANN	Mr Mary	NUMBER OF BURNAM	I MANAMAN		Manan	
141			. A ababaraat.		J. JARDA	· · · · · · · · · · · · · · · · · · ·	
	V BALIS ANNAL	NAMA NA MARA	п М ^о	T here filmen	MR MAN	Insurah se	1 1 1
	* 1176 [•] 1877 11 161 •	1 T T T T T T T T T T T T T T T T T T T	ALANT A LANT V	A MARKATANA L. MUK	C 1 11 1 1 11	ጣ ጊዜ በዚህ እስከት እስከት እ	, , <i>f</i> hi
	· // // //	a ta	NY WWWWWWW	ALE	<u>г ч</u>	a manager	MWWWWWWWW AVG
			NANA WAYANA MAYAYA	AND ALAN I AND ALAN A		I WANT AND	1414MMMMM ^A peak
	· //··///		NANA WATE	autoritati a ultili			AMMMMMMM AVG
	· //• · //• //	0.5	INNIN KANANA T	(MHz)	5		1/1/1/1/1/1/1/1/AVG 30.000
.0	Frequency	0.5 Reading	Correct	(MHz)	5 Limit	Margin	
.0	(MHz)				-	Margin (dB)	30.000
.0 0.150 No.	(MHz) 0.1889	Reading (dBuV) 41.43	Correct dB 9.44	Result (dBuV) 50.87	Limit (dBuV) 64.08	Margin (dB) -13.21	30.000 Remark QP
.0 0.150 No.	(MHz)	Reading (dBuV)	Correct dB	Result (dBuV)	Limit (dBuV)	Margin (dB)	30.000 Remark
0.150 No.	(MHz) 0.1889	Reading (dBuV) 41.43 28.61 33.77	Correct dB 9.44	Result (dBuV) 50.87	Limit (dBuV) 64.08	Margin (dB) -13.21	30.000 Remark QP AVG QP
0.150 No.	(MHz) 0.1889 0.1889	Reading (dBuV) 41.43 28.61 33.77 23.95	Correct dB 9.44 9.44	Result (dBuV) 50.87 38.05	Limit (dBuV) 64.08 54.08	Margin (dB) -13.21 -16.03	30.000 Remark QP AVG
0.150 No. 1 2 3	(MHz) 0.1889 0.1889 0.2713	Reading (dBuV) 41.43 28.61 33.77	Correct dB 9.44 9.44 9.43	Result (dBuV) 50.87 38.05 43.20	Limit (dBuV) 64.08 54.08 61.08	Margin (dB) -13.21 -16.03 -17.88	30.000 Remark QP AVG QP
0.150 No. 1 2 3 4	(MHz) 0.1889 0.1889 0.2713 0.2713	Reading (dBuV) 41.43 28.61 33.77 23.95	Correct dB 9.44 9.44 9.43 9.43	Result (dBuV) 50.87 38.05 43.20 33.38	Limit (dBuV) 64.08 54.08 61.08 51.08	Margin (dB) -13.21 -16.03 -17.88 -17.70	30.000 Remark QP AVG QP AVG
0.150 No. 1 2 3 4 5	(MHz) 0.1889 0.1889 0.2713 0.2713 0.4773	Reading (dBuV) 41.43 28.61 33.77 23.95 30.94	Correct dB 9.44 9.44 9.43 9.43 9.43 9.42	Result (dBuV) 50.87 38.05 43.20 33.38 40.36	Limit (dBuV) 64.08 54.08 61.08 51.08 56.39	Margin (dB) -13.21 -16.03 -17.88 -17.70 -16.03	30.000 Remark QP AVG QP AVG QP
0.150 No. 1 2 3 4 5 6	(MHz) 0.1889 0.1889 0.2713 0.2713 0.4773 0.4773	Reading (dBuV) 41.43 28.61 33.77 23.95 30.94 19.02	Correct dB 9.44 9.43 9.43 9.42	Result (dBuV) 50.87 38.05 43.20 33.38 40.36 28.44	Limit (dBuV) 64.08 54.08 61.08 51.08 56.39 46.39	Margin (dB) -13.21 -16.03 -17.88 -17.70 -16.03 -17.95	30.000 Remark QP AVG QP AVG QP AVG QP AVG
0.150 No. 1 2 3 4 5 6 7	(MHz) 0.1889 0.1889 0.2713 0.2713 0.4773 0.4773 1.8099	Reading (dBuV) 41.43 28.61 33.77 23.95 30.94 19.02 31.17	Correct dB 9.44 9.43 9.43 9.42 9.42 9.45	Result (dBuV) 50.87 38.05 43.20 33.38 40.36 28.44 40.62	Limit (dBuV) 64.08 54.08 61.08 51.08 56.39 46.39 56.00	Margin (dB) -13.21 -16.03 -17.88 -17.70 -16.03 -17.95 -15.38	30.000 Remark QP AVG QP AVG QP AVG QP AVG QP
No. 1 2 3 4 5 6 7 8	(MHz) 0.1889 0.1889 0.2713 0.2713 0.4773 0.4773 1.8099 1.8099	Reading (dBuV) 41.43 28.61 33.77 23.95 30.94 19.02 31.17 15.19	Correct dB 9.44 9.43 9.43 9.42 9.45	Result (dBuV) 50.87 38.05 43.20 33.38 40.36 28.44 40.62 24.64	Limit (dBuV) 64.08 54.08 61.08 51.08 56.39 46.39 56.00 46.00	Margin (dB) -13.21 -16.03 -17.88 -17.70 -16.03 -17.95 -15.38 -21.36	30.000 Remark QP AVG QP AVG QP AVG QP AVG QP AVG
0.150 No. 1 2 3 4 5 6 7 8 9	(MHz) 0.1889 0.1889 0.2713 0.2713 0.4773 0.4773 1.8099 1.8099 3.9174	Reading (dBuV) 41.43 28.61 33.77 23.95 30.94 19.02 31.17 15.19 24.93	Correct dB 9.44 9.43 9.43 9.42 9.45 9.45 9.47	Result (dBuV) 50.87 38.05 43.20 33.38 40.36 28.44 40.62 24.64 34.40	Limit (dBuV) 64.08 54.08 61.08 51.08 56.39 46.39 56.00 46.00 56.00	Margin (dB) -13.21 -16.03 -17.88 -17.70 -16.03 -17.95 -15.38 -21.36 -21.60	30.000 Remark QP AVG QP AVG QP AVG QP AVG QP AVG

Remark:

Result = Reading +Correct Margin = Result – Limit

7.2. Radiated Disturbance Measurement

7.2.1. Limits of radiated disturbance measurement

Below 1 GHz Measurement Method and Applied Limits:

ANSI C63.4:

Frequency	[[⊠Class B	
(MHz)	Field strength (uV/m) (at 10m)	Field strength (dBuV/m) (at 3m)	Field strength (dBuV/m) (at 3m)
30 - 88	90	49.5	40
88 - 216	150	53.9	43.5
216 - 960	210	56.9	46
Above 960	300	60	54

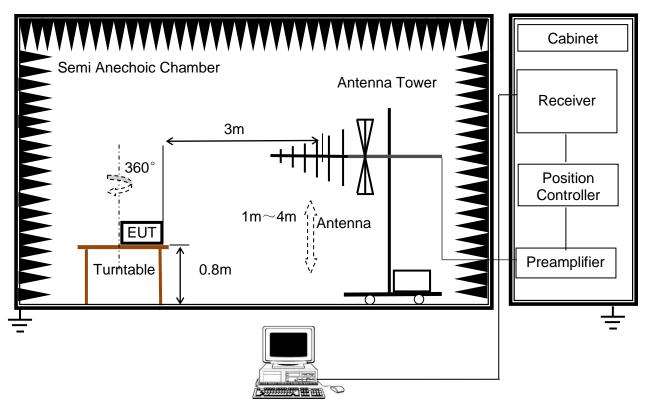
Above 1 GHz Measurement Method and Applied Limits: ANSI C63.4:

Fraguanay	Class A				⊠Cla	ass B
Frequency (MHz)	(dBuV/m) (at 3m)	(dBuV/m) (at 10m)		(dBuV/m) (at 3m)	
	Peak	Average	Peak	Average	Peak	Average
Above 1000	80	60	69.5	49.5	74	54

Frequency Range of Radiated Disturbance Measurement

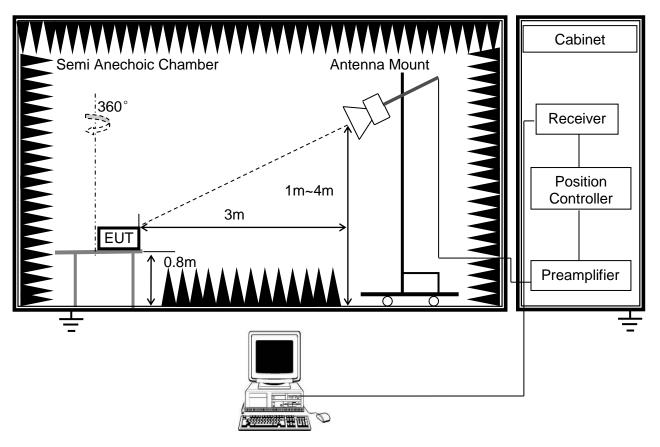
Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 - 108	1000
108 - 500	2000
500 - 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

NOTE:


- (1) The limit for radiated test was performed according to FCC Part 15, Subpart B;
- (2) The tighter limit applies at the band edges;
- (3) Emission level (dBuV/m) = 20log Emission level (uV/m),
 - 3m Emission level = 10m Emission level + 20log(10m/3m);
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use), Margin Level = Measurement Value - Limit Value.

7.2.2. Test Procedure

- a. The measuring distance of at 3m shall be used for measurements at frequency up to 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the actual test configuration, please refer to the related Item:EUT Test Photos.


7.2.3. Test Setup

(a) Radiated Disturbance Test Set-Up Frequency 30MHz - 1GHz

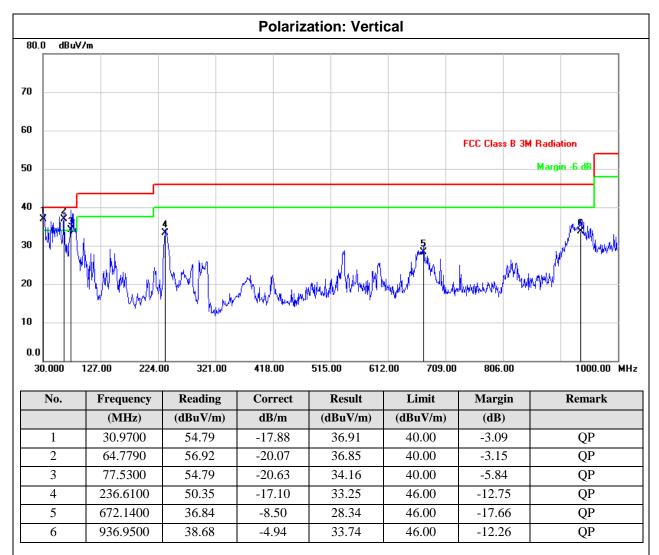
(b) Radiated Disturbance Test Set-Up Frequency above 1GHz

For the actual test configuration, please refer to Appendix I: Photographs of the Test Configuration.

7.2.4. Test Environment

Radiated Dist	urbance - below 1 GHz	Radiated Disturbance - above 1 GHz	
Temperature:	20.8°C	Temperature:	20.4°C
Humidity:	47%	Humidity:	45%
ATM pressure:	102kPa	ATM pressure:	102kPa

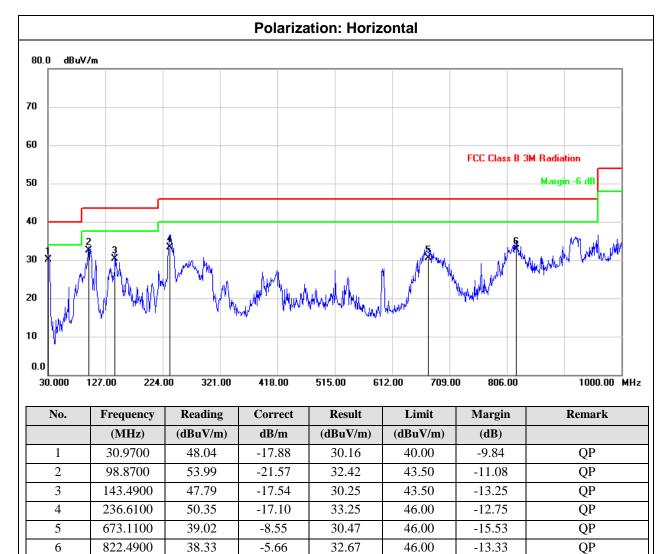
7.2.5. Test Mode


Radiated Disturbance - below 1 GHz		Radiated Disturbance - above 1 GHz		
Pre-test Mode:	Mode 1, 2, 3, 4, 5 & 6	Pre-test Mode:	Mode 1, 2, 3, 4, 5 & 6	
Final Test Mode:	Mode 4	Final Test Mode:	Mode 3 & 6	

Note: All the modes had been tested, but only the worst data were recorded in the report.

7.2.6. Test Results – below 1GHz

Test Mode:	Mode 4
Test Voltage:	AC 120V/60Hz



Remark:

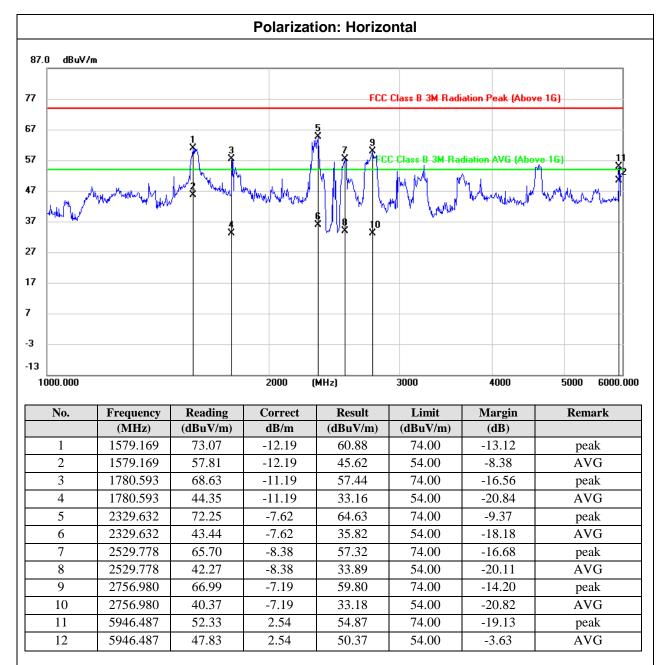
 Test Mode:
 Mode 4

 Test Voltage:
 AC 120V/60Hz

Remark:

7.2.7. Test Results – above 1GHz

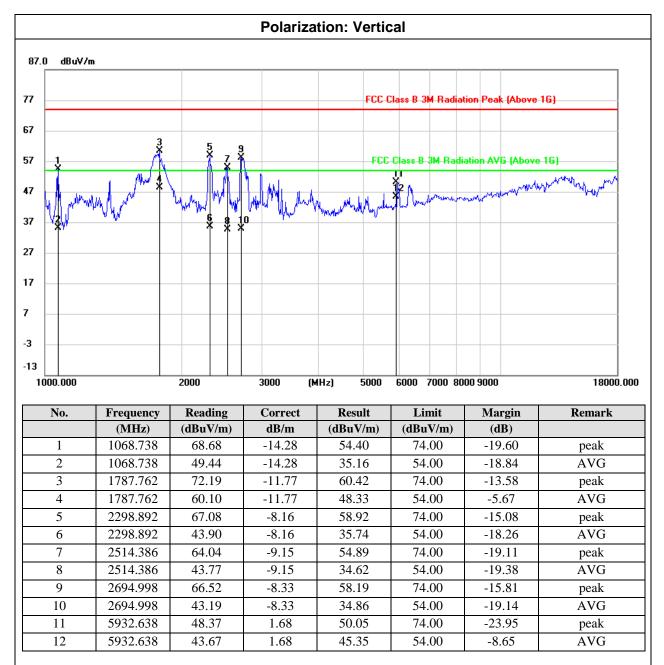
Test Mode:	Mode 3
Test Voltage:	AC 120V/60Hz


			Polariza	tion: Vertio	al		
87.0 dBuV/	/m						
7				FCC (Class B 3M Radia	tion Peak (Above	16)
7		3		5 7			
,		. 🛝		Ĵ Ì	Slass B 3M Radi	ation AVG (Abou	. 16)
		Y JAA	A A A B				<u>, 10)</u> <u>1</u> 2
,	- Mar	/ ^{//} *	Z MA P	WWW M.	MA A	Mr. Las	with the second second
4 Mart	Martin Strand Star	1	ister par und frente	\ ∭ ™] ₩	NAME -	V When were a	and the france of the second
. M. M.		*		V\$ *			
3			2000 (1		3000	4000	5000 6000.00
1000.000			2000 (1	mri2)	3000	4000	5000 6000.00
No.		1	a .	Result	Limit	Margin	
	Frequency	Reading	Correct	ixcourt		Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	Remark
1	(MHz) 1483.178	(dBuV/m) 66.16	dB/m -12.28	(dBuV/m) 53.88	(dBuV/m) 74.00	(dB) -20.12	peak
2	(MHz) 1483.178 1483.178	(dBuV/m) 66.16 47.92	dB/m -12.28 -12.28	(dBuV/m) 53.88 35.64	(dBuV/m) 74.00 54.00	(dB) -20.12 -18.36	peak AVG
23	(MHz) 1483.178 1483.178 1750.000	(dBuV/m) 66.16 47.92 74.25	dB/m -12.28 -12.28 -11.27	(dBuV/m) 53.88 35.64 62.98	(dBuV/m) 74.00 54.00 74.00	(dB) -20.12 -18.36 -11.02	peak AVG peak
2 3 4	(MHz) 1483.178 1483.178 1750.000 1750.000	(dBuV/m) 66.16 47.92 74.25 60.60	dB/m -12.28 -12.28 -11.27 -11.27	(dBuV/m) 53.88 35.64 62.98 49.33	(dBuV/m) 74.00 54.00 74.00 54.00	(dB) -20.12 -18.36 -11.02 -4.67	peak AVG
2 3 4 5	(MHz) 1483.178 1483.178 1750.000 1750.000 2467.108	(dBuV/m) 66.16 47.92 74.25 60.60 69.96	dB/m -12.28 -12.28 -11.27 -11.27 -8.27	(dBuV/m) 53.88 35.64 62.98 49.33 61.69	(dBuV/m) 74.00 54.00 74.00 54.00 74.00	(dB) -20.12 -18.36 -11.02 -4.67 -12.31	peak AVG peak AVG peak
2 3 4 5 6	(MHz) 1483.178 1483.178 1750.000 1750.000 2467.108 2467.108	(dBuV/m) 66.16 47.92 74.25 60.60 69.96 42.46	dB/m -12.28 -12.28 -11.27 -11.27 -8.27 -8.27	(dBuV/m) 53.88 35.64 62.98 49.33 61.69 34.19	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00	(dB) -20.12 -18.36 -11.02 -4.67 -12.31 -19.81	peak AVG peak AVG
2 3 4 5 6 7	(MHz) 1483.178 1483.178 1750.000 1750.000 2467.108 2467.108 2688.682	(dBuV/m) 66.16 47.92 74.25 60.60 69.96 42.46 68.54	dB/m -12.28 -12.28 -11.27 -8.27 -8.27 -7.69	(dBuV/m) 53.88 35.64 62.98 49.33 61.69 34.19 60.85	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00	(dB) -20.12 -18.36 -11.02 -4.67 -12.31 -19.81 -13.15	peak AVG peak AVG peak AVG peak
2 3 4 5 6 7 8	(MHz) 1483.178 1483.178 1750.000 1750.000 2467.108 2467.108 2688.682 2688.682	(dBuV/m) 66.16 47.92 74.25 60.60 69.96 42.46 68.54 43.30	dB/m -12.28 -12.28 -11.27 -8.27 -8.27 -7.69 -7.69	(dBuV/m) 53.88 35.64 62.98 49.33 61.69 34.19 60.85 35.61	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	(dB) -20.12 -18.36 -11.02 -4.67 -12.31 -19.81 -13.15 -18.39	peak AVG peak AVG peak AVG peak AVG
2 3 4 5 6 7 8 9	(MHz) 1483.178 1483.178 1750.000 1750.000 2467.108 2467.108 2688.682 2688.682 2983.131	(dBuV/m) 66.16 47.92 74.25 60.60 69.96 42.46 68.54 43.30 62.00	dB/m -12.28 -12.28 -11.27 -11.27 -8.27 -8.27 -7.69 -7.69 -6.59	(dBuV/m) 53.88 35.64 62.98 49.33 61.69 34.19 60.85 35.61 55.41	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	(dB) -20.12 -18.36 -11.02 -4.67 -12.31 -19.81 -13.15	peak AVG peak AVG peak AVG peak AVG peak
2 3 4 5 6 7 8 9 10	(MHz) 1483.178 1483.178 1483.178 1750.000 1750.000 2467.108 2467.108 2688.682 2688.682 2983.131 2983.131	(dBuV/m) 66.16 47.92 74.25 60.60 69.96 42.46 68.54 43.30 62.00 40.10	dB/m -12.28 -12.28 -11.27 -8.27 -8.27 -7.69 -7.69 -6.59 -6.59	(dBuV/m) 53.88 35.64 62.98 49.33 61.69 34.19 60.85 35.61 55.41 33.51	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	(dB) -20.12 -18.36 -11.02 -4.67 -12.31 -19.81 -13.15 -18.39 -18.59 -20.49	peak AVG peak AVG peak AVG peak AVG peak AVG
2 3 4 5 6 7 8 9	(MHz) 1483.178 1483.178 1750.000 1750.000 2467.108 2467.108 2688.682 2688.682 2983.131	(dBuV/m) 66.16 47.92 74.25 60.60 69.96 42.46 68.54 43.30 62.00	dB/m -12.28 -12.28 -11.27 -11.27 -8.27 -8.27 -7.69 -7.69 -6.59	(dBuV/m) 53.88 35.64 62.98 49.33 61.69 34.19 60.85 35.61 55.41	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	(dB) -20.12 -18.36 -11.02 -4.67 -12.31 -19.81 -13.15 -18.39 -18.59	peak AVG peak AVG peak AVG peak AVG peak

Remark: Result = Reading +Correct Margin = Result - Limit

 Test Mode:
 Mode 3

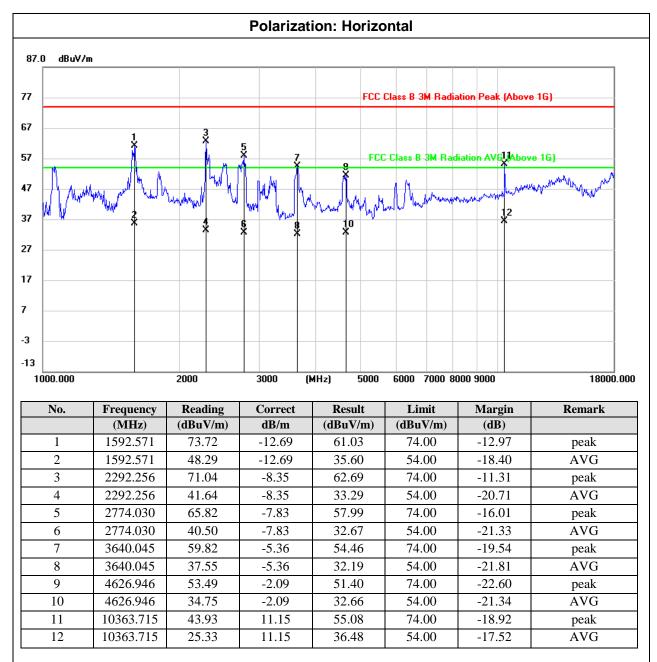
 Test Voltage:
 AC 120V/60Hz


Remark:

Result = Reading +Correct Margin = Result - Limit

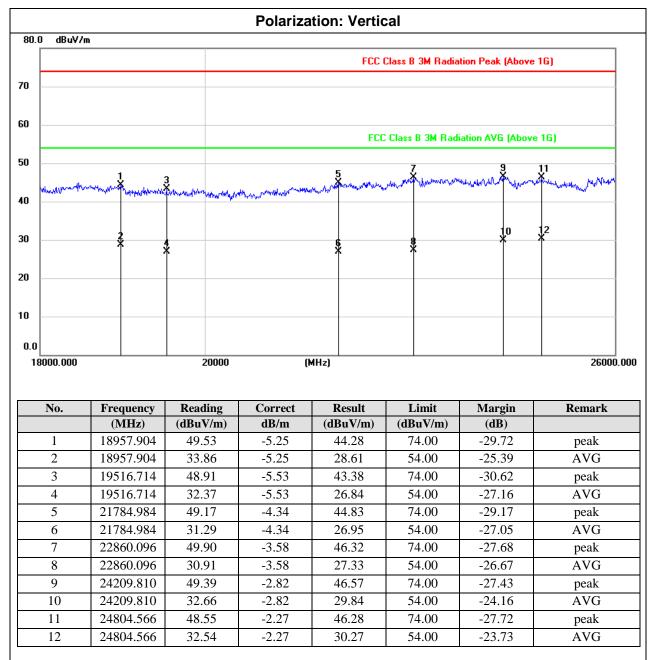
 Test Mode:
 Mode 6

 Test Voltage:
 AC 120V/60Hz


Remark:

Result = Reading +Correct Margin = Result - Limit

 Test Mode:
 Mode 6


 Test Voltage:
 AC 120V/60Hz

Remark:

Test Mode:Mode 6Test Voltage:AC 120V/60Hz

Remark:

 Test Mode:
 Mode 6

 Test Voltage:
 AC 120V/60Hz

			Polarizat	ion: Horizo	ontal		
80.0 dBuV/i	m						
				FCC	Class B 3M Badia	ation Peak (Above	16)
							,
0							
,							
'				FC	C Class B 3M Rad	iation AVG (Above	e 1G)
	1	3	5	7	9	11 X	
www.www.	where a war when a war where the	wed you fur my	mound and when the second	when all all the second	work white the prove	Verter year freshow the	with a support of the second
				9	10	12 *	
	*	*	6 X	×	*	î	
)							
D.O							
18000.000	I	20000	' I	MHz)		I	26000.
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	19013.757	50.12	-5.23	44.89	74.00	-29.11	peak
2	19013.757	33.38	-5.23	28.15	54.00	-25.85	AVG
3	20003.530	50.58	-5.45	45.13	74.00	-28.87	peak
4	20003.530	31.96	-5.45	26.51	54.00	-27.49	AVG
5	21099.068	49.82	-4.83	44.99	74.00	-29.01	peak
6	21099.068	30.71	-4.83	25.88	54.00	-28.12	AVG
7	22197.394	50.49	-4.27	46.22	74.00	-27.78	peak
					54.00	-25.66	AVC
8	22197.394	32.61	-4.27	28.34			AVG
8 9	22197.394 23181.775	49.51	-3.39	46.12	74.00	-27.88	peak
8 9 10	22197.394 23181.775 23181.775	49.51 32.57	-3.39 -3.39	46.12 29.18	74.00 54.00	-27.88 -24.82	peak AVG
8 9	22197.394 23181.775	49.51	-3.39	46.12	74.00	-27.88	peak

Remark:

Test Mode:	Mode 6
Test Voltage:	AC 120V/60Hz

			Polariza	tion: Vertio	cal		
10.0 dBuV/	/m						
				FCC (Class B 3M Radiat	ion Peak (Above 1	16)
						ation AVG (Above	
J.	3 5×	7 9	11 X	A A STATE AND AND AND AND A STATE	M. marganes Marga	Anna want of the state of the s	mounder
month	Walnut And Con General Con Ma	a	with the second and the second	VVV MILLY II I			
2	4 \$	8 10 8 ×	12				
			Î				
							I
.0							
		30	4) 000	(Hz)			40000.0
.0	Frequency	30 Reading	000 (M	(Hz) Result	Limit	Margin	40000.0 Remark
0	(MHz)			-	Limit (dBuV/m)	Margin (dB)	
26000.000	(MHz) 26623.375	Reading (dBuV/m) 51.75	Correct dB/m -5.11	Result (dBuV/m) 46.64	(dBuV/m) 74.00	(dB) -27.36	Remark peak
26000.000 No.	(MHz)	Reading (dBuV/m)	Correct dB/m	Result (dBuV/m)	(dBuV/m)	(dB)	Remark
0 26000.000 No. 1	(MHz) 26623.375	Reading (dBuV/m) 51.75	Correct dB/m -5.11 -5.11 -3.20	Result (dBuV/m) 46.64 30.15 46.69	(dBuV/m) 74.00 54.00 74.00	(dB) -27.36 -23.85 -27.31	Remark peak AVG peak
0 26000.000 No. 1 2 3 4	(MHz) 26623.375 26623.375	Reading (dBuV/m) 51.75 35.26	Correct dB/m -5.11 -5.11	Result (dBuV/m) 46.64 30.15	(dBuV/m) 74.00 54.00	(dB) -27.36 -23.85	Remark peak AVG
0 0 26000.000 No. 1 2 3	(MHz) 26623.375 26623.375 27485.746	Reading (dBuV/m) 51.75 35.26 49.89	Correct dB/m -5.11 -5.11 -3.20	Result (dBuV/m) 46.64 30.15 46.69	(dBuV/m) 74.00 54.00 74.00	(dB) -27.36 -23.85 -27.31	Remark peak AVG peak AVG peak
0 26000.000 No. 1 2 3 4	(MHz) 26623.375 26623.375 26623.375 27485.746 27485.746	Reading (dBuV/m) 51.75 35.26 49.89 34.62	Correct dB/m -5.11 -5.11 -3.20 -3.20	Result (dBuV/m) 46.64 30.15 46.69 31.42	(dBuV/m) 74.00 54.00 74.00 54.00	(dB) -27.36 -23.85 -27.31 -22.58	Remark peak AVG peak AVG
0 0 26000.000 No. 1 2 3 4 5	(MHz) 26623.375 26623.375 27485.746 27485.746 28400.508	Reading (dBuV/m) 51.75 35.26 49.89 34.62 48.16	Correct dB/m -5.11 -5.11 -3.20 -3.20 -0.62	Result (dBuV/m) 46.64 30.15 46.69 31.42 47.54	(dBuV/m) 74.00 54.00 74.00 54.00 74.00	(dB) -27.36 -23.85 -27.31 -22.58 -26.46	Remark peak AVG peak AVG peak
0 0 26000.000 No. 1 2 3 4 5 6	(MHz) 26623.375 26623.375 27485.746 27485.746 28400.508 28400.508	Reading (dBuV/m) 51.75 35.26 49.89 34.62 48.16 33.13	Correct dB/m -5.11 -5.11 -3.20 -3.20 -0.62 -0.62	Result (dBuV/m) 46.64 30.15 46.69 31.42 47.54 32.51	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00	(dB) -27.36 -23.85 -27.31 -22.58 -26.46 -21.49	Remark peak AVG peak AVG peak AVG
0 0 26000.000 No. 1 2 3 4 5 6 7	(MHz) 26623.375 26623.375 27485.746 27485.746 28400.508 28400.508 28906.577	Reading (dBuV/m) 51.75 35.26 49.89 34.62 48.16 33.13 47.12	Correct dB/m -5.11 -5.11 -3.20 -3.20 -0.62 -0.62 1.22	Result (dBuV/m) 46.64 30.15 46.69 31.42 47.54 32.51 48.34	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00	(dB) -27.36 -23.85 -27.31 -22.58 -26.46 -21.49 -25.66	Remark peak AVG peak AVG peak AVG peak
0 26000.000 No. 1 2 3 4 5 6 7 8	(MHz) 26623.375 26623.375 27485.746 27485.746 28400.508 28400.508 28906.577 28906.577	Reading (dBuV/m) 51.75 35.26 49.89 34.62 48.16 33.13 47.12 30.42	Correct dB/m -5.11 -5.11 -3.20 -3.20 -0.62 -0.62 1.22 1.22	Result (dBuV/m) 46.64 30.15 46.69 31.42 47.54 32.51 48.34 31.64	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	(dB) -27.36 -23.85 -27.31 -22.58 -26.46 -21.49 -25.66 -22.36	Remark peak AVG peak AVG peak AVG peak AVG
No. 1 2 3 4 5 6 7 8 9	(MHz) 26623.375 26623.375 27485.746 27485.746 28400.508 28400.508 28906.577 28906.577 29523.232	Reading (dBuV/m) 51.75 35.26 49.89 34.62 48.16 33.13 47.12 30.42 47.91	Correct dB/m -5.11 -5.11 -3.20 -3.20 -0.62 -0.62 1.22 1.22 1.22 0.58	Result (dBuV/m) 46.64 30.15 46.69 31.42 47.54 32.51 48.34 31.64 48.49	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	(dB) -27.36 -23.85 -27.31 -22.58 -26.46 -21.49 -25.66 -22.36 -25.51	Remark peak AVG peak AVG peak AVG peak AVG

Remark:

 Test Mode:
 Mode 6

 Test Voltage:
 AC 120V/60Hz

			Polarizat	ion: Horizo	ontal		
).0 dBuV/	/m						
				FCC	Class B 3M Radia	ation Peak (Above	16)
				FC		liation AVG (Above	
	3	5 7.	9 11		К. к. с. Б.	Maria Martha	purchastines and a
1 miles	wa harmon the	MUNINAL	Myny Ward	my row Marine	W. HWYWWWWWWWWWWWWWW	and a glower have a	
	** * .						
	4		10 12				
	¥	ь ж	* 12 * *	<u> </u>			
0							
0 26000.000		30	0000 ((MHz)			40000.
	Frequency	30 Reading	0000 Correct	MH2) Result	Limit	Margin	40000. Remark
26000.000	Frequency (MHz)				Limit (dBuV/m)	Margin (dB)	
26000.000		Reading	Correct	Result			
26000.000 No.	(MHz) 26497.516 26497.516	Reading (dBuV/m)	Correct dB/m	Result (dBuV/m)	(dBuV/m)	(dB) -27.62 -23.50	Remark
26000.000 No.	(MHz) 26497.516 26497.516 28266.248	Reading (dBuV/m) 51.17 35.29 48.42	Correct dB/m -4.79 -4.79 -0.53	Result (dBuV/m) 46.38 30.50 47.89	(dBuV/m) 74.00 54.00 74.00	(dB) -27.62 -23.50 -26.11	Remark peak AVG peak
No. 1 2 3 4	(MHz) 26497.516 26497.516 28266.248 28266.248	Reading (dBuV/m) 51.17 35.29 48.42 33.05	Correct dB/m -4.79 -4.79 -0.53 -0.53	Result (dBuV/m) 46.38 30.50 47.89 32.52	(dBuV/m) 74.00 54.00 74.00 54.00	(dB) -27.62 -23.50 -26.11 -21.48	Remark peak AVG
No. 1 2 3 4 5	(MHz) 26497.516 26497.516 28266.248 28266.248 28720.392	Reading (dBuV/m) 51.17 35.29 48.42 33.05 46.50	Correct dB/m -4.79 -4.79 -0.53 -0.53 1.41	Result (dBuV/m) 46.38 30.50 47.89 32.52 47.91	(dBuV/m) 74.00 54.00 74.00 54.00 74.00	(dB) -27.62 -23.50 -26.11 -21.48 -26.09	Remark peak AVG peak AVG peak
No. 1 2 3 4 5 6	(MHz) 26497.516 26497.516 28266.248 28266.248	Reading (dBuV/m) 51.17 35.29 48.42 33.05	Correct dB/m -4.79 -4.79 -0.53 -0.53	Result (dBuV/m) 46.38 30.50 47.89 32.52	(dBuV/m) 74.00 54.00 74.00 54.00	(dB) -27.62 -23.50 -26.11 -21.48	Remark peak AVG peak AVG
No. 1 2 3 4 5 6 7	(MHz) 26497.516 26497.516 28266.248 28266.248 28720.392	Reading (dBuV/m) 51.17 35.29 48.42 33.05 46.50	Correct dB/m -4.79 -4.79 -0.53 -0.53 1.41	Result (dBuV/m) 46.38 30.50 47.89 32.52 47.91	(dBuV/m) 74.00 54.00 74.00 54.00 74.00	(dB) -27.62 -23.50 -26.11 -21.48 -26.09	Remark peak AVG peak AVG peak
No. 1 2 3 4 5 6	(MHz) 26497.516 26497.516 28266.248 28266.248 28720.392 28720.392	Reading (dBuV/m) 51.17 35.29 48.42 33.05 46.50 29.64	Correct dB/m -4.79 -4.79 -0.53 -0.53 1.41 1.41	Result (dBuV/m) 46.38 30.50 47.89 32.52 47.91 31.05	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00	(dB) -27.62 -23.50 -26.11 -21.48 -26.09 -22.95	Remark peak AVG peak AVG peak AVG
26000.000 No. 1 2 3 4 5 6 7	(MHz) 26497.516 26497.516 28266.248 28266.248 28720.392 28720.392 29485.103	Reading (dBuV/m) 51.17 35.29 48.42 33.05 46.50 29.64 46.69	Correct dB/m -4.79 -4.79 -0.53 -0.53 1.41 1.41 0.73	Result (dBuV/m) 46.38 30.50 47.89 32.52 47.91 31.05 47.42	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00	(dB) -27.62 -23.50 -26.11 -21.48 -26.09 -22.95 -26.58	RemarkpeakAVGpeakAVGpeakAVGpeak
No. 1 2 3 4 5 6 7 8	(MHz) 26497.516 26497.516 28266.248 28266.248 28720.392 28720.392 29485.103 29485.103	Reading (dBuV/m) 51.17 35.29 48.42 33.05 46.50 29.64 46.69 30.12	Correct dB/m -4.79 -0.53 -0.53 1.41 0.73 0.73	Result (dBuV/m) 46.38 30.50 47.89 32.52 47.91 31.05 47.42 30.85	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	(dB) -27.62 -23.50 -26.11 -21.48 -26.09 -22.95 -26.58 -23.15	Remark peak AVG peak AVG peak AVG peak AVG
26000.000 No. 1 2 3 4 5 6 7 8 9	(MHz) 26497.516 26497.516 28266.248 28266.248 28720.392 28720.392 29485.103 30995.932	Reading (dBuV/m) 51.17 35.29 48.42 33.05 46.50 29.64 46.69 30.12 48.32	Correct dB/m -4.79 -4.79 -0.53 -0.53 1.41 1.41 0.73 0.73 -1.15	Result (dBuV/m) 46.38 30.50 47.89 32.52 47.91 31.05 47.42 30.85 47.17	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	(dB) -27.62 -23.50 -26.11 -21.48 -26.09 -22.95 -26.58 -23.15 -26.83	Remark peak AVG peak AVG peak AVG peak AVG peak

Remark: