

TEST REPORT

DAkkS Deutsche Akkreditierungsstelle D-PL-12076-01-01

Test report no.: 1-3446/17-01-02-D

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>http://www.ctcadvanced.com</u> e-mail: <u>mail@ctcadvanced.com</u>

Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-01

Applicant

STEINEL GmbHDieselstr. 80 - 8433442 Herzebrock-Clarholz / GERMANYPhone:+49 (0) 5245 4 48-2 27Fax:+49 5245 448-208Contact:Bernd Stellinge-mail:Bernd Stelling@steinel.dePhone:+49 5245 448-230

Manufacturer

STEINEL GmbH Dieselstr. 80 - 84 33442 Herzebrock-Clarholz / GERMANY

Test standard/s

47 CFR Part 15

Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

For further applied test standards please refer to section 3 of this test report.

	Test Item	
Kind of test item:	Homodyne radar	
Model name:	SIR13D	
FCC ID:	W8J-SIR13D	•
IC:	8529A-SIR13D	
Frequency:	5.725 GHz – 5.875 GHz	The second s
Antenna:	Integrated antenna	
Power supply:	5 V by external DC power supply	
Temperature range:	-20°C to +70°C	

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Karsten Geraldy Lab Manager Radio Communications & EMC

Test performed:

Benedikt Gerber Lab Manager Radio Communications & EMC

1 Table of contents

1	Table of contents2				
2	Gener	al information	3		
	2.2	Notes and disclaimer Application details Test laboratories sub-contracted	3		
3	Test s	tandard/s and references	4		
4	Test e	nvironment	5		
5	Test it	em	5		
		General description Additional information			
6	Descr	iption of the test setup	6		
	6.2	Shielded semi anechoic chamber Shielded fully anechoic chamber Radiated measurements > 18 GHz	8		
7	Seque	ence of testing	10		
	7.2 7.3	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz	11 12		
8	Summ	nary of measurement results	14		
9	Additi	onal comments	14		
10	Меа	surement results	15		
	10.1 10.2 10.3 10.4	Field strength of emissions (wanted signal) Occupied bandwidth (99% bandwidth) Field strength of emissions (radiated spurious) RX spurious emissions conducted < 30 MHz	17 19		
An	nex A	Document history	27		
An	nex B	Further information	27		
An	nex C	Accreditation Certificate	28		

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2017-05-08
Date of receipt of test item:	2017-05-23
Start of test:	2017-05-31
End of test:	2017-05-31
Person(s) present during the test:	-/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS-210 Issue 9, Item B.10	08-2016	Licence-Exempt Radio Apparatus: Category I Equipment
RSS-GEN	11-2014	General Requirements for Compliance of Radio Apparatus
Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 **Test environment**

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests -/- °C during high temperature tests -/- °C during low temperature tests
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
Power supply	:	V _{nom} V _{max} V _{min}	5.0 V by external by external DC power supply -/- V -/- V

5 **Test item**

5.1 **General description**

Kind of test item :	Homodyne radar
Type identification :	SIR13D
HMN :	-/-
PMN :	SIR13D
HVIN :	SIR13D
FVIN :	-/-
Frequency band :	5.725 GHz – 5.875 GHz
Type of radio transmission : Use of frequency spectrum :	CW
Type of modulation :	-/-
Number of channels :	1
Antenna :	Integrated antenna
Power supply :	5 V by external DC power supply
Temperature range :	-20°C to +70°C

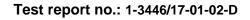
5.2 Additional information

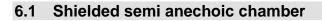
The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-3446/17-01-01_AnnexA 1-3446/17-01-01_AnnexB 1-3446/17-01-01-A_AnnexC

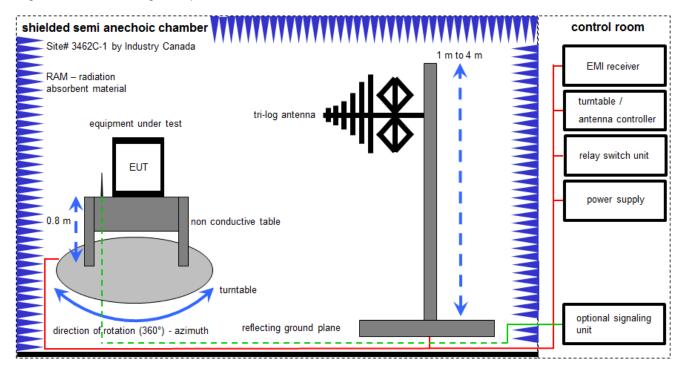
6 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).


In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

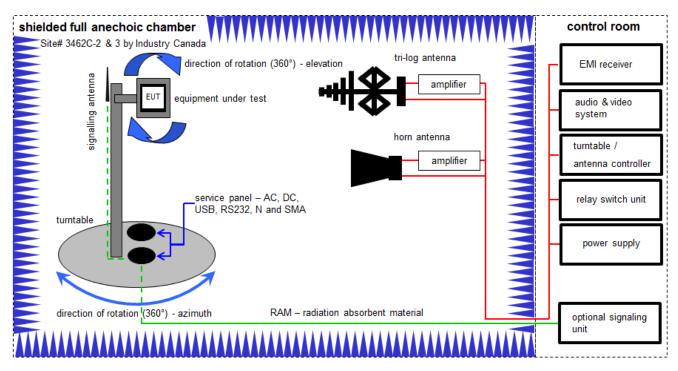

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

CTC | advanced

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF


(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

<u>Example calculation</u>: FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

Equipment table:

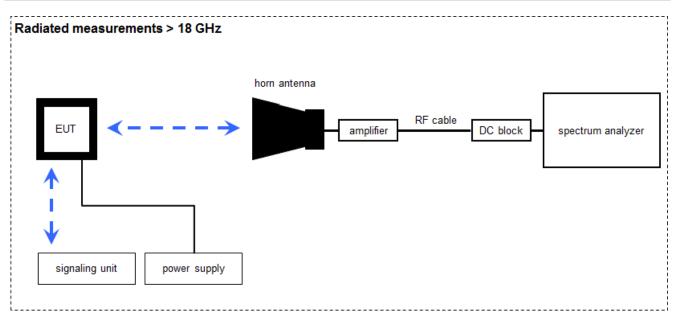
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	45	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	50	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	30000580	ne	-/-	-/-
3	93	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
4	n. a.	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	01.02.2017	31.01.2018
5	n. a.	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	02.02.2016	02.02.2018
6	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
7	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
8	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
9	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

CTC || advanced

member of RWTÜV group

Measurement distance: tri-log antenna and horn antenna 3 meter

OP = AV + D - G + CA


(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

<u>Example calculation:</u> OP [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 µW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	Ve	20.01.2015	20.01.2018
2	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	20.05.2015	-/-
3	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	n. a.	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	n. a.	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	31.01.2017	30.01.2018
6	n. a.	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
7	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854	vIKI!	29.10.2014	29.10.2017
8	n. a.	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
9	n. a.	Broadband Amplifier 5-13 GHz	CBLU5135235	CERNEX	22010	300004491	ev	-/-	-/-
10	n. a.	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
11	n. a.	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
12	n. a.	PC	ExOne	F+W		300004703	ne	-/-	-/-
13	n. a.	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-

6.3 Radiated measurements > 18 GHz

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

<u>Example calculation:</u> OP [dBm] = -59.0 [dBm] + 44.0 [dB] - 20.0 [dBi] + 5.0 [dB] = -30 [dBm] (1 µW)

Earri	pment	tabla.
ЕОШ	oment	table:
94	pilloill	labioi

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n.a.	Temperature and Climatic Test Chamber	VUK04/500	Heraeus Voetsch	32678	300000297	ev	03.09.2015	03.09.2017
2	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03449	300002115	vIKI!	26.01.2017	25.01.2020
3	n. a.	PXA Spectrum Analyzer 3Hz to 50GHz	N9030A PXA Signal Analyzer	Agilent Technologies	US51350267	300004338	k	24.01.2017	23.01.2018
4	CR 79	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	7911	300001751	ne	-/-	-/-
5	A023	Std. Gain Horn Antenna 39.3-59.7 GHz	2424-20	Flann	75	300001979	ne	-/-	-/-
6	A027	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda		300000486	k	10.09.2015	10.09.2017
7	n. a.	Broadband LNA 18- 50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	-/-	-/-

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

Test report no.: 1-3446/17-01-02-D

8	Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained

CTC I advanced

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	47 CFR Part 15 RSS 210, Issue 9, Item B.10	Passed	2018-02-09	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	Pass	Fail	NA	NP	Results (max.)
§15.249(a) RSS 210 / B.10(a)	Field strength of emissions (wanted signal)	Nominal	Nominal					92 dBµV
§2.1049	Occupied bandwidth (99% bandwidth)	Nominal	Nominal	\boxtimes				134.74 kHz
§15.209(a) / §15.249(a)(c)(d)(e) RSS 210 B.10 / RSS-Gen	Field strength of emissions (spurious)	Nominal	Nominal	\boxtimes				complies
§15.207(a) ICES-003	Conducted emissions < 30 MHz	Nominal	Nominal					-/-

Note: NA = Not Applicable; NP = Not Performed

9 Additional comments

Reference documents:	None	
Special test descriptions:	None	
Configuration descriptions:	None	
Test mode:	\boxtimes	N
		_

Normal operation, no special test mode available.

Special software is used.

10 Measurement results

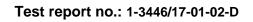
10.1 Field strength of emissions (wanted signal)

Description:

Measurement of the maximum radiated field strength of the wanted signal.

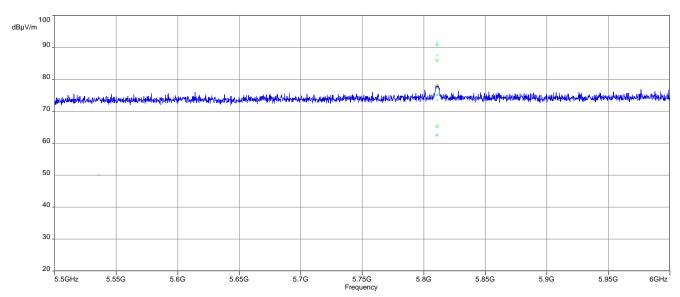
Measurement:

Measureme	Measurement parameter				
Detector:	Pos-Peak				
Sweep time:	Auto				
Video bandwidth:	Auto				
Resolution bandwidth:	1 MHz				
Span:	max. 100 MHz				
Trace-Mode:	Max Hold				


Limits:

FCC		IC			
CFR Part 15.249(a)		RSS - 210, Annex B.10(a)			
Field strength of emissions					
The field strength of emissions from in	tentional radiators of follow		requency bands shall comply with the		
Frequency Field Strength Measurement distance [GHz] [mV/m // dBµV/m] Measurement distance					
5.785 – 5.815	50 /	50 // 94 3			

Result:


Test condition t = 22 °C	Maximum field strength					
	Frequency [GHz]	Field strength E [mV/m] @ 3 m	Field strength e [dBµV/m] @ 3 m			
U _{DC} = 5 V	5810.85	39.8	92.0			
Measurement uncertainty	± 3 dB					

<u>Result:</u> The measurement is passed.

Plot 1:

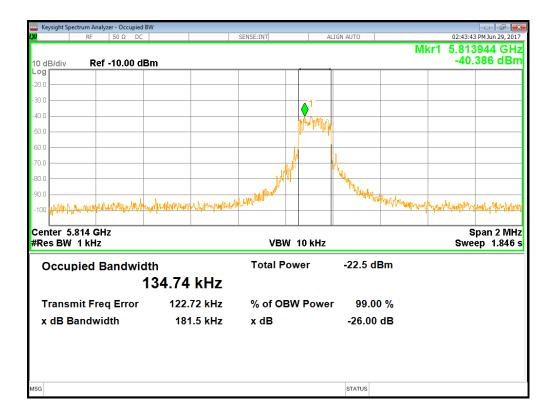
10.2 Occupied bandwidth (99% bandwidth)

Description:

Measurement of the 99% bandwidth of the wanted signal.

Measurement:

Measureme	nt parameter
Detector:	Peak
Sweep time:	Auto
Video bandwidth:	1 kHz
Resolution bandwidth:	10 kHz
Span:	1 MHz
Trace-Mode:	Max Hold


Results:

Test condition t = 22 °C	Occupied bandwidth					
	Frequency [MHz]	Occupied bandwidth [kHz]	see plot no.			
U _{DC} = 5 V	5814.12	134.74	2			

<u>Result:</u> The measurement is passed.

Plot 2:

10.3 Field strength of emissions (radiated spurious)

Description:

Measurement of the radiated spurious emissions in transmit mode.

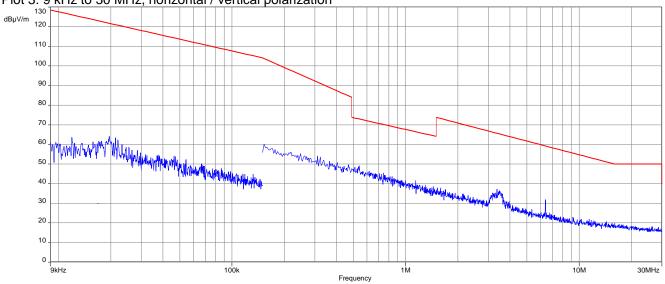
Measurement:

Measurement parameter						
Detector:	Peak / Quasi Peak					
Sweep time:	Auto					
Video bandwidth:	Auto					
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz					
Frequency range:	30 MHz to 50 GHz					
Trace-Mode:	Max Hold					

Limits:

FCC		IC				
CFR Part 15.209(a) / 15.249(a	a)(c)(d)(e)		RSS - GEN			
Radiated Spurious Emissions						
Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at leas 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.						
Frequency (MHz)	Field Streng	th (dBµV/m)	Measurement distance			
0.009 – 0.490	2400/F	F(kHz)	300			
0.490 – 1.705	24000/F(kHz)		24000/F(kHz)		30	
1.705 – 30.0	30		30			
30 88	30	0.0	10			
88 – 216	33.5		10			
216 - 960	36.0		36.0		10	
Above 960	54	l.0	3			

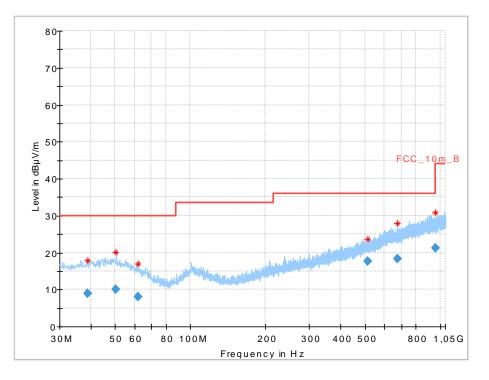



Results:

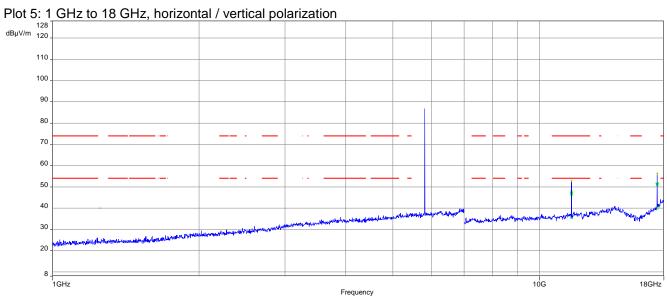
	TX Spurious Emissions Radiated [dBµV/m]									
	Lowest			Middle			Highest			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]		
			11624.4*	RMS	45.08					
			17436.8*	RMS	45,69					
			23236.0*	RMS	43.34					
			29038.0*	RMS	34.55					
			34856.5*	RMS	39.25					
			40660.0*	RMS	27.38					
Meas	urement unce	ertainty			± 3	dB				

*harmonics of fundamental

Result: The measurement is passed.

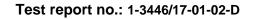


CTC I advanced


Plot 3: 9 kHz to 30 MHz, horizontal / vertical polarization

Plot 4: 30 MHz to 1 GHz, horizontal / vertical polarization

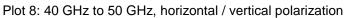
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.876850	9.01	30.00	20.99	1000.0	120.000	101.0	V	293.0	13.1
50.413800	10.14	30.00	19.86	1000.0	120.000	98.0	Н	14.0	13.7
61.647900	7.99	30.00	22.01	1000.0	120.000	101.0	Н	55.0	11.5
512.011050	17.62	36.00	18.38	1000.0	120.000	101.0	V	243.0	18.9
674.578950	18.33	36.00	17.67	1000.0	120.000	101.0	V	153.0	21.3
957.855600	21.20	36.00	14.80	1000.0	120.000	101.0	V	324.0	24.4


Test report no.: 1-3446/17-01-02-D

CTC I advanced

Plot 6: 18 GHz to 26.5 GHz, horizontal / vertical polarization

			Ilyzer - Swept SA					
LXI	İ	RF	50 Ω DC		SENSE:INT	ALIGN AUTO		01:15:07 PM May 31, 2017
10 dB/di			ffset -3.8 dB 32.00 dBµV				M	kr1 23.227 5 GHz 53.725 dBµV
		1 Pa 2 Pa						Limit 2
62.0								Limit 1
42.0			La un co matteriador a constructivo					PEAK
32.0	ter Muse		hadra fallen fallen fallen an	man and a second as a second as a		and a second a se	www.www.wallehamada.	RMS
12.0 <u> </u>								
-8.00								
Start 1 #Res B				#VB	W 3.0 MHz*		Sweep	Stop 26.500 GHz 14.20 ms (1001 pts)
MKR MODE	e trc	SCL	Х	Y	FUNCTI	ON FUNCTION WIDTH	FUN	ICTION VALUE
1 N 2 N 3 4	1 2	f	23.227 5 23.236 0					
5 6 7								
8 9 10								
11 12								,
MSG						STATUS		



CTC | advanced

member of RWTÜV group

Plot 7: 26.5 GHz to 40 GHz, horizontal / vertical polarization

10.4 RX spurious emissions conducted < 30 MHz

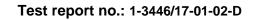
Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to Idle mode. Both power lines, phase and neutral line, are measured. Found peaks are remeasured with average and quasi peak detection to show compliance to the limits.

Measurement:

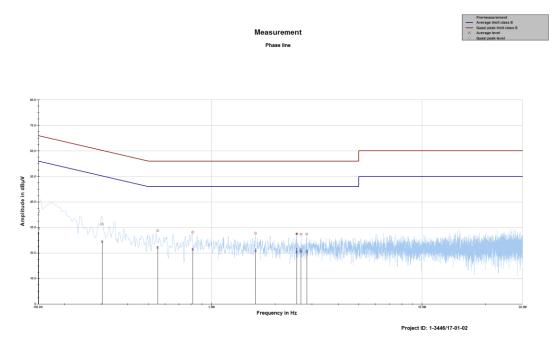
Measureme	nt parameter
Detector:	Peak - Quasi Peak / Average
Sweep time:	Auto
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz
Span:	9 kHz to 30 MHz
Trace-Mode:	Max Hold

Limits:

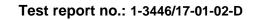

FCC			IC
CFR Part 15.107(a)			ICES-003, Issue 5
R	X Spurious Emission	s Conducted < 30 MH	Ηz
Frequency (MHz)	Quasi-Pea	k (dBµV/m)	Average (dBµV/m)
0.15 – 0.5	66 to	o 56*	56 to 46*
0.5 – 5	5	6	46
5 – 30.0	6	0	50

*Decreases with the logarithm of the frequency

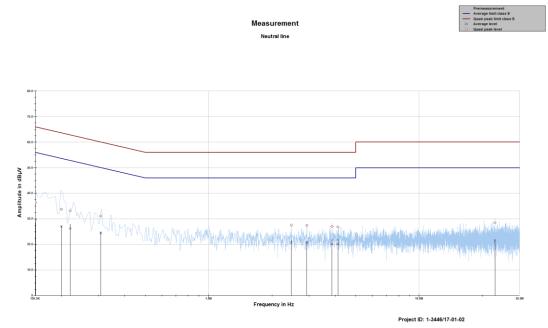
Result:


See plots on following pages.

Verdict: complies



Plot 9: AC-line conducted emissions, Phase line



Phase line tbl

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.150711	36.40	29.57	65.961	29.54	26.44	55.980
0.301906	31.36	28.83	60.190	24.55	27.11	51.660
0.553575	28.80	27.20	56.000	22.05	23.95	46.000
0.813968	28.21	27.79	56.000	21.39	24.61	46.000
1.617304	27.75	28.25	56.000	20.84	25.16	46.000
2.536979	27.51	28.49	56.000	20.64	25.36	46.000
2.657946	27.42	28.58	56.000	20.60	25.40	46.000
2.831953	27.40	28.60	56.000	20.57	25.43	46.000

CTC I advanced

Neutral line tbl

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.150376	36.47	29.50	65.979	29.54	26.45	55.989
0.199639	33.76	29.86	63.626	27.07	27.52	54.582
0.220112	33.17	29.64	62.815	26.23	27.77	53.997
0.307345	31.10	28.94	60.042	24.37	27.13	51.504
2.472661	27.57	28.43	56.000	20.71	25.29	46.000
2.929836	27.47	28.53	56.000	20.63	25.37	46.000
3.859187	27.03	28.97	56.000	20.12	25.88	46.000
4.107925	26.83	29.17	56.000	20.10	25.90	46.000
22.900860	28.46	31.54	60.000	21.56	28.44	50.000

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2017-06-09
-A	 Referenced Standards changed: 15.259 → 15.245; RSS-210 Annex B → RSS-210 Annex F OBW renewed due to load pulling effects caused by fixation of the test setup 	2017-07-01
-В	Temperature range of DUT changed (page 1 and 5)	2017-07-13
-C	Reference on RSS-210 and RSS-Gen added (chapter 5.2) AC-Conducted line test results added (Chapter 10.4) minor editorial changes	2017-09-15
-D	Referenced Standards changed: • 15.255 → 15.249; • RSS-210 Annex F → RSS-210 Issue 9, item B.10	2018-02-09

Annex B Further information

<u>Glossary</u>

FVIN-Firmware version identification numberOBWOccupied BandwidthOCOperating ChannelOCWOperating Channel Bandwidth
1 5

Annex C Accreditation Certificate

Note:

The current certificate including annex can be received on request.