

Warn Industries, Inc.

Handheld Winch Controller

SAR Evaluation Report #: WARN0052

Evaluated to the following SAR Specification:

FCC 2.1093:2014

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report may only be duplicated in its entirety

CERTIFICATE OF TEST

Last Date of Test: October 8, 2014 Warn Industries, Inc. Model: Handheld Winch Controller

Applicable Standard

Test Description	Specification	Test Method	Pass/Fail
	FCC 2.1093:2014	IEEE Std 1528:2003	
SAR Evaluation	FCC 2.1093.2014 FCC 15.247:2014	FCC KDB 447498 D01 v05r02	Pass
	FCC 15.247.2014	FCC KDB 865664 D01 v01r03 and D02 v01r01	

Highest SAR Values:

Frequency Bands (GHz)	Body (W/kg) 1g	Limit (W/kg) 1g	Exposure Environment
2.4	0.29	1.6	General Population

Deviations From Test Standards

None

Approved By:

Don Facteau, IS Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

REVISION HISTORY

Revision Number		Description	Date	Page Number
00	None			

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC Guide 65 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

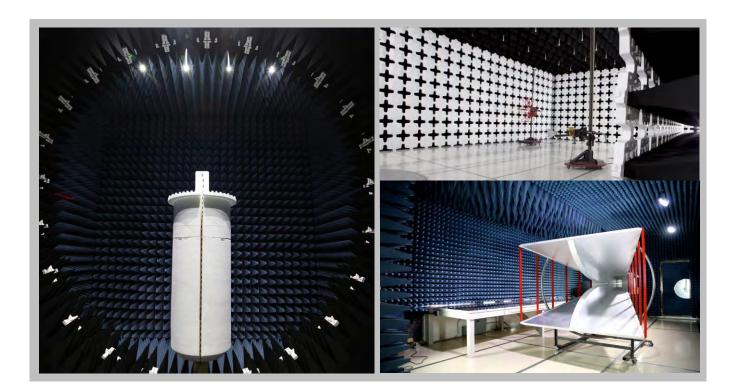
Hong Kong

OFTA – Recognized by OFTA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE


For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/accreditations/</u>

FACILITIES

California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota New York Labs MN01-08, MN10 Labs NY01-04 9349 W Broadway Ave. 4939 Jordan Rd. Brooklyn Park, MN 55445 Elbridge, NY 13060 (612)-638-5136 (315) 685-0796		C01-13 Labs MN01-08, MN10 Labs NY01-04 Labs EV01-12 resla 9349 W Broadway Ave. 4939 Jordan Rd. 22975 NW Evergreen Pkwy A 92618 Brooklyn Park, MN 55445 Elbridge, NY 13060 Hillsboro, OR 97124		Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 9801 (425)984-6600		
NVLAP								
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0			
		Industry	Canada					
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	In Process	2834F-1			
		BS	MI					
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	In Process	SL2-IN-E-1153R			
VCCI								
A-0029	A-0109	N/A	A-0108	A-0201	A-0110			

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Warn Industries, Inc.
Address:	13270 SE Pheasant Court
City, State, Zip:	Milwaukie, OR 97222
Test Requested By:	Bryon Borntrager
Model:	Handheld Winch Controller
First Date of Test:	October 08, 2014
Last Date of Test:	October 08, 2014
Receipt Date of Samples:	October 08, 2014
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

Handheld winch and wireless remote control that contains a 2.4 GHz ISM radio, 802.15.4 compliant with 1 integral antenna. There are no authorized accessories to wear the device on the body. Testing was done with a 0 cm spacing to the phantom.

Testing Objective:

To demonstrated compliance with the SAR requirements of FCC 2.1093.

CONFIGURATIONS

Configuration WARN0053-1

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Wireless Winch Controller	Warn Industries, Inc.	89656-A2	040037410047			

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	10/8/2014	SAR Evaluation	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Characterization of tissue-equivalent liquid dielectric properties

Per IEEE 1528: 2003, Section 5.2.2, the permittivity and conductivity of the tissue material should be measured at least within 24 hours of any full-compliance test. The measured values must be within +/- 5% of the target values. The temperature variation in the liquid during SAR measurements must be within +/- 2 degrees C of that recorded when the dielectric properties were measured.

The dielectric parameters of the tissue-equivalent liquids were measured within 24 hours of the start of testing using the HP85070E dielectric probe kit. The dielectric measurements were made across the frequency range of the liquid. The attached data sheets show that the dielectric parameters of the liquid were within the required 5% tolerances.

Target values of dielectric parameters

Per KDB 865664 D01 v01r01, Appendix A.1:

"The head tissue dielectric parameters recommended by IEEE Std 1528-2003 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in 1528 are derived from tissue dielectric parameters computed from the 4-Cole-Cole equations described above and extrapolated according to the head parameters specified in 1528."

Target Frequency	Не	ad	Bo	ody
(MHz)	Er	σ (S/m)	٤r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 - 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

TISSUE – EQUIVALENT LIQUID

Composition of Ingredients for Liquid Tissue Phantoms

Northwest EMC uses tissue-equivalent liquids prepared by SPEAG and confirmed by them to be within +/- 5% from the target values. Their recipes are based upon the following formulations as found in IEEE 1528: 2003, Annex C:

"The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation."

Ingredients	1				Frequen	cy (MHz))								
(% by weight)	4	450		835		915		1900		2450					
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body					
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2					
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04					
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0					
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0					
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0					
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0					
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7					
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5					
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78					

Salt: 99^+ % Pure Sodium Chloride Water: De-ionized, 16 M Ω^+ resistivity Sugar: 98⁺% Pure Sucrose

ity HEC: Hydroxyethyl Cellulose

DGBE: 99⁺% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

TISSUE – EQUIVALENT LIQUID

Date:	10/08/2014	Temperature:	23.7°C
Tissue:	Body, MSL2450, 2450MHz	Liquid Temperature:	22.5°C
Tested By:	Ethan Schoonover	Relative Humidity:	1015%
Job Site:	EV08	Bar. Pressure:	1015 mb

TEST SPECIFICATIONS

Specification:	Method:
FCC 2.1093:2014	IEEE Std 1528:2003 FCC KDB 865664 D01 v01r03 and D02 v01r01

RESULTS

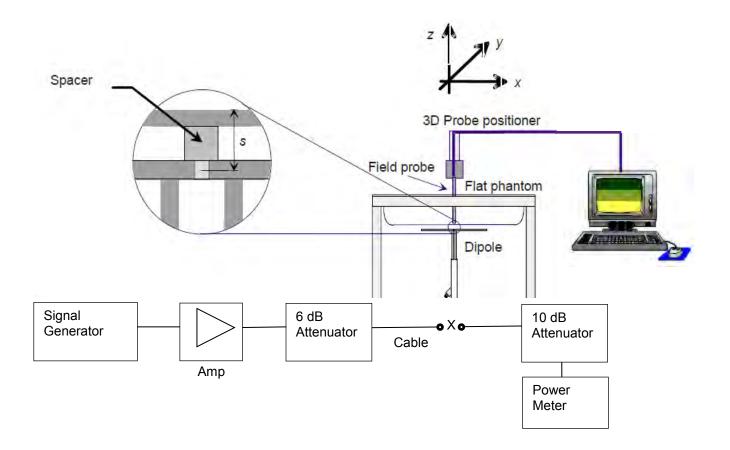
	Actual Values		Target	Values	Deviation (%)		
Frequency (MHz)	Relative Permittivity	Conductivity	Relative Permittivity	Conductivity	Relative Permittivity	Conductivity	
2450	54.13	2.029	52.7	1.95	-2.71	-4.05	

Frequency	Relative	Conductivity
(MHz)	Permittivity	-
2000	55.66	1.435
2035	55.61	1.468
2070	55.55	1.508
2110	55.45	1.566
2145	55.34	1.621
2185	55.22	1.669
2220	55.03	1.715
2255	54.95	1.756
2295	54.7	1.811
2330	54.64	1.868
2370	54.46	1.913
2405	54.33	1.96
2440	54.15	2.014
2450	54.13	2.029
2480	54.01	2.071
2515	53.82	2.123
2555	53.78	2.174
2590	53.5	2.224
2625	53.39	2.271
2665	53.33	2.331
2700	53.15	2.376
2740	52.97	2.431
2775	52.83	2.488
2810	52.68	2.532
2850	52.53	2.586
2885	52.41	2.646
2925	52.29	2.701
2960	52.15	2.752
3000	52.02	2.81

REQUIREMENT

Per IEEE 1528, Section 8.2.1, "System checks are performed prior to compliance tests and the results must always be within \pm 10% of the target value corresponding to the test frequency, liquid, and the source used. The target values are 1 g or 10 g averaged SAR values measured on systems having current system validation and calibration status, and using the system check setup as shown in Figure 14. These target values should be determined using a standard source."

TEST DESCRIPTION


Within 24 hours of a measurement, then every 72 hours thereafter, Northwest EMC used the system validation kit (calibrated reference dipole) to test whether the system was operating within its specifications. The validation was performed in the indicated bands by making SAR measurements of the reference dipole with the phantom filled with the tissue-equivalent liquid. First, a signal generator and power amplifier were used to produce a 100mW level as measured with a power meter at the antenna terminals of the dipole (X). Then, the reference dipole was positioned below the bottom of the phantom and centered with its axis parallel to the longest side of the phantom. A low loss and low relative permittivity spacer was used to establish the correct distance between the center axis of the reference dipole and the liquid.

For the reference dipoles, the spacing distance s is given by:

s = 15mm, +/- 0.2mm for 300MHz \leq f \geq 1000 MHz:

s = 10mm, +/- 0.2mm for 1000MHz \leq f \geq 6000MHz

The measured 1 g and 10 g spatial average SAR values were normalized to a 1W dipole input power for comparison to the calibration data. The results are summarized in the attached table. The deviation is less than 10% in all cases, indicating that the system performance check was within tolerance.

TEST SPECIFICATIONS

Specification:	Method:
FCC 2.1093:2014	IEEE Std 1528:2003 FCC KDB 865664 D01 v01r03 and D02 v01r01

RESULTS

Date	Liquid part number and	Conducted Power into the Dipole	Correction Factor	Measured		Normalized to 1W		Target (Normalized to 1W) Get from Dipole Calibration Certificate		% Difference		
		frequency	(dBm)		1g	10g	1g	10g	1g	10g	1g	10g
	10/8/2014	MSL 2450 (2450 MHz)	20.00	10.00	4.87	2.29	48.70	22.90	50.40	23.70	-3.37	-3.38

Tested By:	Ethan Schoonover	Room Temperature (°C):	23.6°C
Date:	10/8/2014	Liquid Temperature (°C):	22.4°C
Configuration:	Body	Humidity (%RH):	46.8%
		Bar. Pressure (mb):	1015 mb

MSL2450 System Check 10-8-14

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:xxx

Communication System: UID 10000, CW; Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz;Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2450 MHz; σ = 2.029 S/m; ε_r = 54.132; ρ = 1000 kg/m³, Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

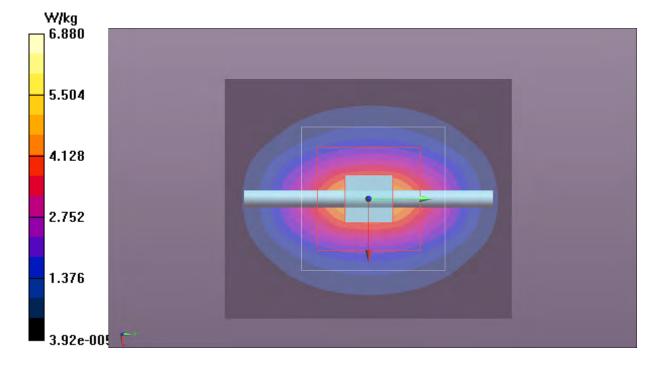
DASY Configuration:

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ٠

System Check/System Check/Area Scan (51x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 5.28 W/kg

System Check/System Check/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of Total (measured) = 58.22 V/m

System Check/System Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 49.64 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 9.51 W/kg SAR(1 g) = 4.87 W/kg; SAR(10 g) = 2.29 W/kg Maximum value of SAR (measured) = 4.96 W/kg

Maximum value of SAR (measured) = 6.88 W/kg

Approved By

MSL2450 System Check 10-8-14

OUTPUT POWER

2.4 GHz Band

Per FCC KDB 447498, the conducted output power was measured at the lowest, middle, and highest channels in the 2.4 GHz Band. Measurements were made while the EUT transmitted at its only available data rate.

Average output power measurements are on the following pages.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Power Meter	Agilent	N1913A	SQR	4/29/2013	36 mo
Power Sensor	Agilent	E9300H	SQO	4/29/2013	36 mo

OUTPUT POWER

EUT:	Handheld Winch Controller	Work Order:	WARN0053
Serial Number:	040037410047	Date:	10-8-14
Customer:	Warn Industries, Inc	Temperature:	23
Attendees:	Kevin Christensen	Relative Humidity:	46.7
Customer Project:	None	Bar. Pressure:	1015.2
Tested By:	Ethan Schoonover	Job Site:	EV08
Power:	Internal Battery	Configuration:	WARN0053-1

TEST SPECIFICATIONS

Specification:	Method:
	IEEE Std 1528:2003
FCC 2.1093:2014	FCC KDB 447498 D01 v05r02
	FCC KDB 865664 D01 v01r03 and D02 v01r01

COMMENTS

Conducted output power.

DEVIATIONS FROM TEST STANDARD

None

RESULTS

Channel Number	Frequency	Data Rate	Modulation	dBm	W
11	2405 MHz	250 kbps	QPSK	16.68	.0153
18	2440 MHz	250 kbps	QPSK	16.65	.0152
25	2475 MHz	250 kbps	QPSK	16.02	.0133

Tested By

Test Configurations

Test Locations

All available sides were tested. There are no authorized accessories to wear the device on the body. Testing was done with a 0 cm spacing to the phantom.

Summary

The following table summarizes the measured SAR values. The EUT was transmitting at nearly 100% duty cycle.

Per FCC KDB 447498, the measured SAR values were scaled to the maximum tune-up tolerance limit. The results are referred to as the "Reported SAR" values. The measured SAR data was scaled by a factor of 1.7 to calculate the reported SAR values. The following formula was used to calculate the linear SAR scaling factor:

SAR scaling factor = 10⁽((Maximum Rated Power¹ (dBm) - Measured Power (dBm)) / 10) SAR scaling factor = 10⁽¹⁹ dBm - 16.7 dBm)/10 = 1.7

Per FCC KDB 447498, SAR must be measured on the channel with the highest conducted output power. When the SAR measured on the highest output channel is >0.8 W/kg, SAR evaluation for the other required test channels is necessary.

Note 1: Manufacturer's Maximum Rated Output Power

MRF24J40MC

TABLE 4-4: TRANSMITTER AC CHARACTERISTICS

Typical values are at TA = 25°C, VDD = 3.3V, LO Frequency = 2.445 GHz

Parameters	Condition	Min	Тур	Мах	Units
RF Carrier Frequency	_	2.405	—	2.475	GHz
Maximum RF Output Power	50Ω	_	(<mark>19⁽¹⁾)</mark>	_	dBm
RF Output Power Control Range	_	_	45	_	dB
Tx Gain Control Resolution	Programmed by Register	_	1.25	_	dB
Carrier Suppression	_	_	-30	_	dBc
Tx Spectrum Mask for O-QPSK Signal	Offset Frequency >3.5 MHz, at 0 dBm Output Power	-33	_	_	dBm
Tx EVM	_	—	15	—	%

Note 1: Output power at antenna connector J1.

EUT:	Handheld Winch Controller	Work Order:	WARN0053
Customer:	Warn Industries, Inc.	Job Site:	EV08
Attendees:	None	Customer Project:	None

TEST SPECIFICATIONS

Specification:	Method:
FCC 2.1093:2014 FCC 15.247:2014	IEEE Std 1528:2003 FCC KDB 447498 D01 v05r02 FCC 865664 D01 v01r03 and D02 v01r01

COMMENTS

None

DEVIATIONS FROM TEST STANDARD

None

RESULTS

Test Configuration	Frequency Band	Transmit Frequency (MHz)	Transmit Channel	Data Rate	Modulation		Power Drift During Test (dB)	Measured 1g SAR Level (mW/g)	Measured 10g SAR Level (mW/g)	Cooling	1g Reported SAR	10g Reported SAR	Test #
Body	2.4	2405	11	250 kbps	QPSK	Face	-0.05	0.17	0.08	1.71	0.29	0.12	1
Body	2.4	2405	11	250 kbps	QPSK	Left	N/A	0.04	0.04	1.71	0.07	0.07	2
Body	2.4	2405	11	250 kbps	QPSK	Back	-0.19	0.04	0.03	1.71	0.07	0.05	3
Body	2.4	2405	11	250 kbps	QPSK	Right	N/A	0.07	0.07	1.71	0.12	0.12	4
Body	2.4	2405	11	250 kbps	QPSK	Bottom	-0.69	0.01	0.01	1.71	0.02	0.02	5

Tested By:	Ethan Schoonover	Room Temperature (°C):	24
Date:	10/8/2014	Liquid Temperature (°C):	22.4
Serial Number:	0047	Humidity (%RH):	47.2
Configuration:	WARN0053-1	Bar. Pressure (mb):	1015
Comments:	None	· · · ·	·

Test 1

DUT: Wireless Controller; Type: 89656-A2; Serial: 0047

Communication System: UID 0, CW; Communication System Band: D2450 (2450.0 MHz); Frequency: 2405 MHz;Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2405 MHz; σ = 1.96 S/m; ϵ_r = 54.331; ρ = 1000 kg/m³, Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³

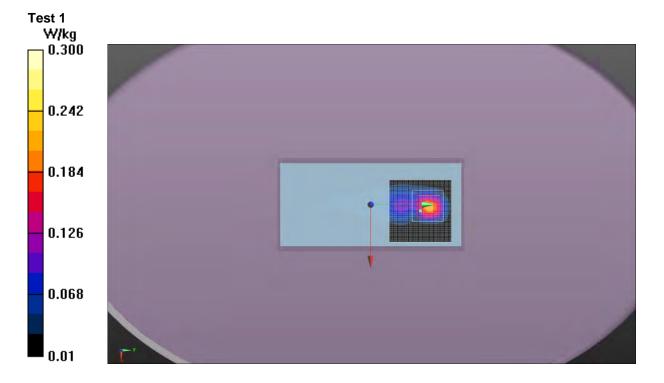
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.82 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.348 W/kg SAR(1 g) = 0.169 W/kg; SAR(10 g) = 0.077 W/kg Maximum value of SAR (measured) = 0.221 W/kg


Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.220 W/kg

Body/Body/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of Total (measured) = 7.682 V/m

Body/Body/Reference scan (31x61x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm Maximum value of SAR (interpolated) = 0.166 W/kg Maximum value of SAR (measured) = 0.116 W/kg

Approved By

Tested By:	Ethan Schoonover	Room Temperature (°C):	24
Date:	10/8/2014	Liquid Temperature (°C):	22
Serial Number:	0047	Humidity (%RH):	46.3
Configuration:	WARN0053-1	Bar. Pressure (mb):	1015
Comments:	None		

Test 2

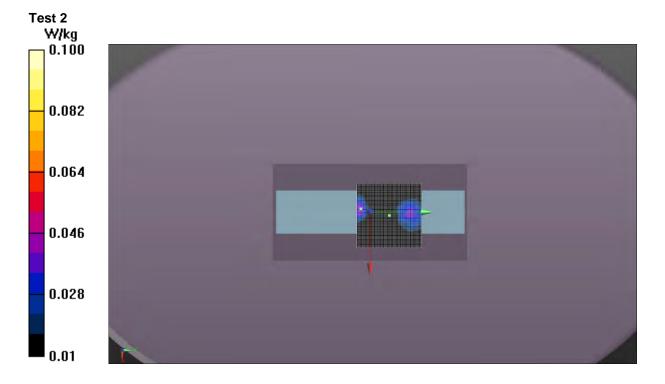
DUT: Wireless Controller; Type: 89656-A2; Serial: 0047

Communication System: UID 0, CW; Communication System Band: D2450 (2450.0 MHz); Frequency: 2405 MHz;Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2405 MHz; σ = 1.96 S/m; ϵ_r = 54.331; ρ = 1000 kg/m³ Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0424 W/kg

Body/Body/Reference scan (31x61x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm Maximum value of SAR (interpolated) = 0.0254 W/kg

Body/Body/Area scan (6x6x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.0344 W/kg

Approved By

Tested By:	Ethan Schoonover	Room Temperature (°C):	24
Date:	10/8/2014	Liquid Temperature (°C):	22
Serial Number:	0047	Humidity (%RH):	47.2
Configuration:	WARN0053-1	Bar. Pressure (mb):	1015
Comments:	None		

Test 3

DUT: Wireless Controller; Type: 89656-A2; Serial: 0047

Communication System: UID 0, CW; Communication System Band: D2450 (2450.0 MHz); Frequency: 2405 MHz;Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2405 MHz; σ = 1.96 S/m; ϵ_r = 54.331; ρ = 1000 kg/m³, Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³

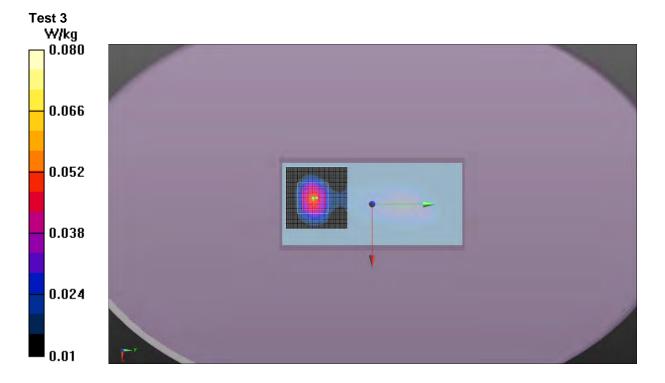
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.075 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 0.0580 W/kg SAR(1 g) = 0.041 W/kg; SAR(10 g) = 0.027 W/kg Maximum value of SAR (measured) = 0.0470 W/kg


Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0533 W/kg

Body/Body/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of Total (measured) = 3.798 V/m

Body/Body/Reference scan (31x61x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm Maximum value of SAR (interpolated) = 0.0552 W/kg Maximum value of SAR (measured) = 0.0283 W/kg

Approved By

Tested By:	Ethan Schoonover	Room Temperature (°C):	24
Date:	10/8/2014	Liquid Temperature (°C):	22
Serial Number:	0047	Humidity (%RH):	46.3
Configuration:	WARN0053-1	Bar. Pressure (mb):	1015
Comments:	None		

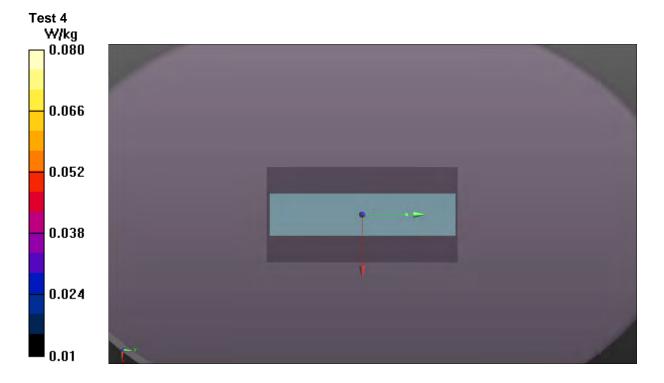
Test 4

DUT: Wireless Controller; Type: 89656-A2; Serial: 0047

Communication System: UID 0, CW; Communication System Band: D2450 (2450.0 MHz); Frequency: 2405 MHz;Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2405 MHz; σ = 1.96 S/m; ϵ_r = 54.331; ρ = 1000 kg/m³ Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY Configuration:


- - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0681 W/kg

Body/Body/Reference scan (31x61x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm Maximum value of SAR (interpolated) = 0.0894 W/kg

Approved By

Tested By:	Ethan Schoonover	Room Temperature (°C):	24
Date:	10/8/2014	Liquid Temperature (°C):	22
Serial Number:	0047	Humidity (%RH):	46.9
Configuration:	WARN0053-1	Bar. Pressure (mb):	1015
Comments:	None		

Test 5

DUT: Wireless Controller; Type: 89656-A2; Serial: 0047

Communication System: UID 0, CW; Communication System Band: D2450 (2450.0 MHz); Frequency: 2405 MHz;Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2405 MHz; σ = 1.96 S/m; ϵ_r = 54.331; ρ = 1000 kg/m³, Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³

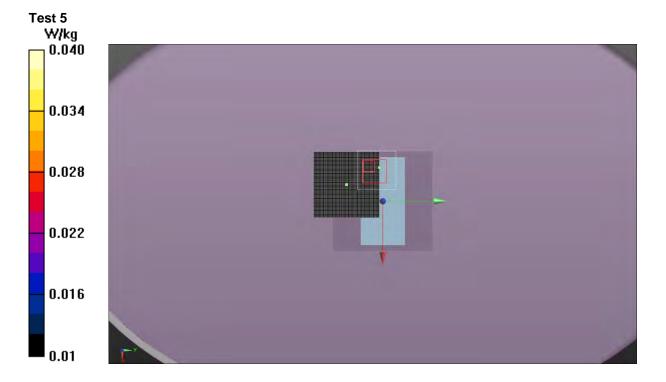
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

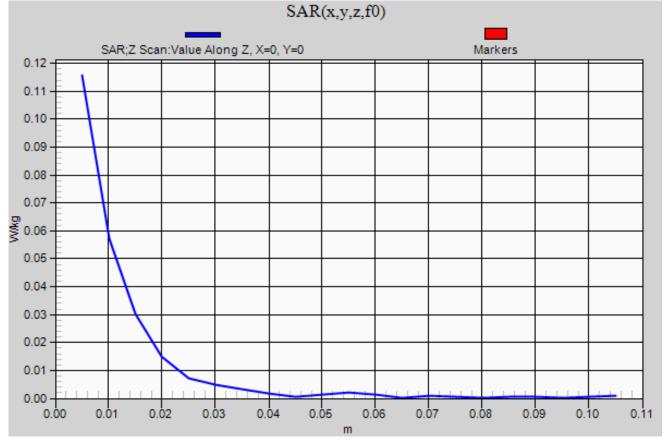
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.068 V/m; Power Drift = -0.69 dB Peak SAR (extrapolated) = 0.0160 W/kg SAR(1 g) = 0.00922 W/kg; SAR(10 g) = 0.00662 W/kg Maximum value of SAR (measured) = 0.0108 W/kg

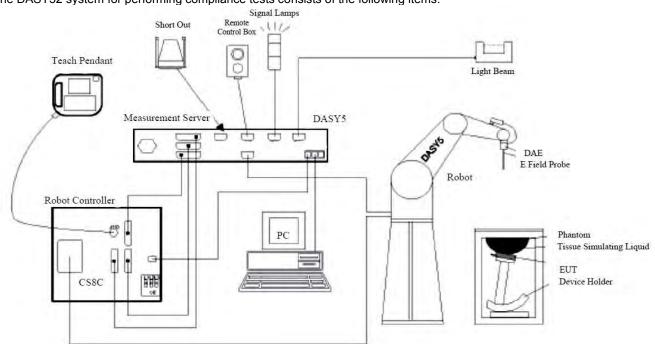

Body/Body/Area scan (51x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.00968 W/kg

Body/Body/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of Total (measured) = 1.281 V/m

Body/Body/Reference scan (31x31x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm Maximum value of SAR (interpolated) = 0.0121 W/kg Maximum value of SAR (measured) = 0.00322 W/kg


Approved By

Test 1 – Z-scan


SYSTEM AND TEST SITE DESCRIPTION

SAR MEASUREMENT SYSTEM

Schmid & Partner Engineering AG, DASY52

Northwest EMC selected the leader in SAR evaluation systems to provide the measurement tools for this evaluation. SPEAG's DASY52 is the fastest and most accurate scanner on the market. It is fully compatible with all world-wide standards for transmitters operating at the ear or within 20cm of the body. It provides full compatibility with IEC 62209-1, IEC 62209-2, IEEE 1528 as well as national adaptations such as FCC OET-65c and Korean Std. MIC #2000-93

The DASY52 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom, oval flat phantom, device holder, tissue simulating liquids, and validation dipole kits.

SYSTEM AND TEST SITE DESCRIPTION

TEST SITE

Northwest EMC, Lab EV08

The SAR measurement system is located in a semi-anechoic chamber. This provides an ambient free environment that also eliminates reflections.

The chamber is 12 ft wide by 16 ft long x 8 ft high. A dedicated HVAC unit provides +/- 1 degree C temperature control.

TEST EQUIPMENT

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Amplifier	Mini Circuits	ZVE-3W-83+	TTA	NCR ¹	0 mo
Antenna, Dipole 2450MHz SAR	SPEAG	D2450V2	ADL	11/14/2013	12 mo
Body Solution	SPEAG	MSL 2450	SAM	At start of	testing
DAE	SPEAG	SD 000 D04 EJ	SAH	11/13/2013	12 mo
DASY5 Measurement Server	Staeubli	DAYS5	SAK	11/01/2013	36 mo
Device Holder	SPEAG	N/A	SAW	NCR	0 mo
Dielectric Assessment Kit	SPEAG	DAKS:200	IPR	3/6/2014	36 mo
Humidity Temperature Meter	Omega	HH311	DUI	2/19/2013	36 mo
Light Beam Unit	SPEAG	SE UKS 030 AA	SAD	NCR	0 mo
MXG Analog Signal Generator with					
associated cables and attenuators	Agilent	N5181A	TIG	03/28/2014 ¹	36 mo
Phantom, 2mm Oval ELI4 (Body)	SPEAG	QD OVA 001 BB	SAC	NCR	0 mo
Power Meter	Agilent	N1913A	SQR	04/29/2013	36 mo
Power Sensor	Agilent	E9300H	SQO	04/29/2013	36 mo
Robot Arm	Staeubli	TX60LSPEAG	SAA	NCR	0 mo
Robot Chasis and power Supply	Staeubli	N/A	SAJ	NCR	0 mo
Robot Controller	Staeubli	CS8C	SAI	NCR	0 mo
SAR Probe	SPEAG	EX3DV4	SAG	11/15/2013	12 mo

Note 1: The output of the signal generator / amplifier is verified with the calibrated power meter listed above.

MEASUREMENT UNCERTAINTY

MEASUREMENT UNCERTAINTY BUDGETS PER IEEE 1528:2003

300-3000 MHz Range

Uncertainty Component	Tolerance (+/- %)	Probability Distribution	Divisor	c _i (1g)	c _i (10g)	u _i (1g) (+/-%)	u _i (10g) (+/-%)	v _i
Measurement System								
Probe calibration (k=1)	5.5	normal	1	1	1	5.5	5.5	8
Axial isotropy	4.7	rectangular	1.732	0.707	0.707	1.9	1.9	8
Hemispherical isotropy	9.6	rectangular	1.732	0.707	0.707	3.9	3.9	8
Boundary effect	1.0	rectangular	1.732	1	1	0.6	0.6	8
Linearity	4.7	rectangular	1.732	1	1	2.7	2.7	8
System detection limits	1.0	rectangular	1.732	1	1	0.6	0.6	8
Readout electronics	0.3	normal	1	1	1	0.3	0.3	8
Response time	0.8	rectangular	1.732	1	1	0.5	0.5	8
ntegration time	2.6	rectangular	1.732	1	1	1.5	1.5	8
RF ambient conditions - noise	1.7	rectangular	1.732	1	1	1.0	1.0	8
RF Ambient Reflections	0.0	rectangular	1.732	1	1	0.0	0.0	8
Probe positioner mechanical tolerance	0.4	rectangular	1.732	1	1	0.2	0.2	8
Probe positioner with respect to phantom shell	2.9	rectangular	1.732	1	1	1.7	1.7	8
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	1.0	rectangular	1.732	1	1	0.6	0.6	8
Test Sample Related								
Device Positioning	2.9	normal	1	1	1	2.9	2.9	145
Device Holder	3.6	normal	1	1	1	3.6	3.6	5
Power Drift	5.0	rectangular	1.732	1	1	2.9	2.9	8
Phantom and tissue parameters								
Phantom Uncertainty - shell thickness tolerances	4.0	rectangular	1.732	1	1	2.3	2.3	∞
Liquid conductivity - deviation from target values	5.0	rectangular	1.732	0.64	0.43	1.8	1.2	8
Liquid conductivity - measurement uncertainty	6.5	normal	1	0.64	0.43	4.2	2.8	8
Liquid permittivity - deviation from target values	5.0	rectangular	1.732	0.6	0.49	1.7	1.4	8
Liquid permittivity - measurement uncertainty	3.2	normal	1	0.6	0.49	1.9	1.6	8
Combined Standard Uncertainty			RSS			11.2	10.6	387
Expanded Measurement Uncertainty (95% Co	nfidence/		normal (-2)		22.5	21.2	

Probe Calibration

Please see attached calibration data.

Equipment ID: SAG

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

С

S

Client Nort

Northwest EMC

Certificate No: EX3-3746_Nov13

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3746				
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes				
Calibration date:	November 15, 2013				
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.					
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.					
Calibration Equipment used (M&TE critical for calibration)					

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	4-Sep-13 (No. DAE4-660_Sep13)	Sep-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	110
			USA
Approved by:	Katja Pokovic	Technical Manager	1011
			nor
			Issued: November 16, 2013
This calibration certificate	shall not be reproduced except in full	without written approval of the lal	boratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1. "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, v, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). • NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x, y, z = NORMx, y, z * frequency_response$ (see Frequency Response Chart). This linearization is . implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, v.z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW • signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal • characteristics
- Ax, v, z; Bx, v, z; Cx, v, z; Dx, v, z; VRx, v, z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer • Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:3746

Calibrated:

Manufactured: March 26, 2010 November 15, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.49	0.47	0.50	± 10.1 %
DCP (mV) ^B	95.1	96.8	99.8	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	x	0.0	0.0	1.0	0.00	116.0	±2.5 %
		Y	0.0	0.0	1.0		114.4	
		Z	0.0	0.0	1.0		115.3	
10061- CAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	4.27	70.6	19.0	3.60	112.0	±0.7 %
		Y	3.46	70.3	19.5		146.7	
		Z	6.51	80.9	23.9		110.8	
10069- CAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	12.35	71.0	23.8	10.56	123.7	±3.8 %
		Y	10.65	68.7	22.9		104.8	
		Z	11.98	70.7	23.7		121.3	
10077- CAA	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	11.38	70.4	23.8	11.00	105.9	±3.5 %
		Y	10.68	71.0	24.7		131.5	
		Z	11.00	70.1	23.8		103.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

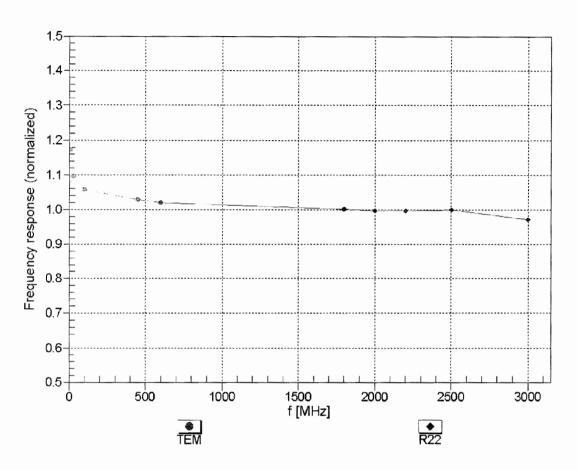
	Ŭ							
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
2450	39.2	1.80	6.74	6.74	6.74	0.49	0.93	± 12.0 %
2550	39.1	1.91	6.51	6.51	6.51	0.52	0.93	± 12.0 %
5200	36.0	4.66	4.92	4.92	4.92	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.69	4.69	4.69	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.60	4.60	4.60	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.30	4.30	4.30	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.37	4.37	4.37	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

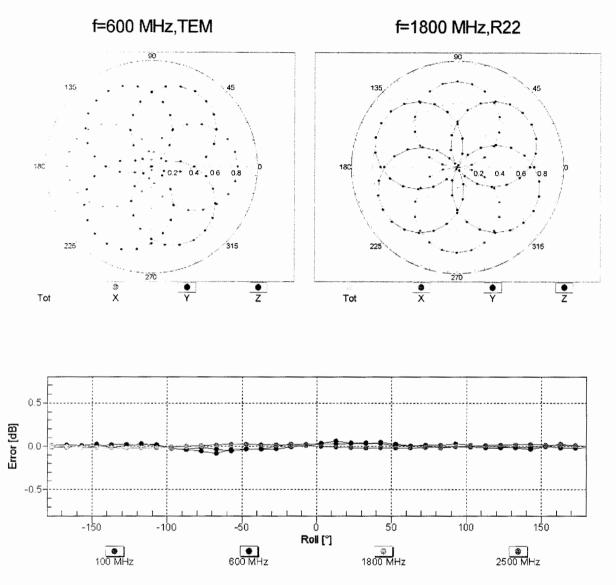
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

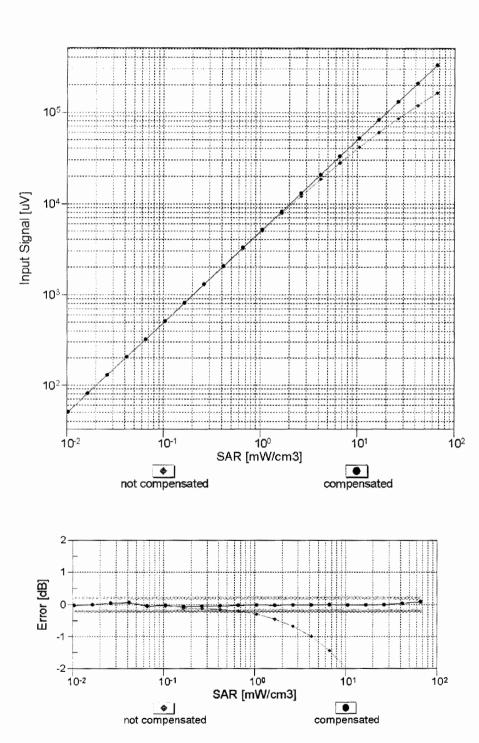

					-			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
2450	52.7	1.95	7.03	7.03	7.03	0.80	0.57	± 12.0 %
2550	52.6	2.09	6.78	6.78	6.78	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.25	4.25	4.25	0.45	1.90	± 13.1 %
5300	48.9	5.42	4.04	4.04	4.04	0.45	1.90	± 13.1 %
5500	48.6	5.65	3.95	3.95	3.95	0.45	1.90	± 13.1 %
5600	48.5	5.77	3.78	3.78	3.78	0.45	1.90	± 13.1 %
5800	48.2	6.00	4.16	4.16	4.16	0.45	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

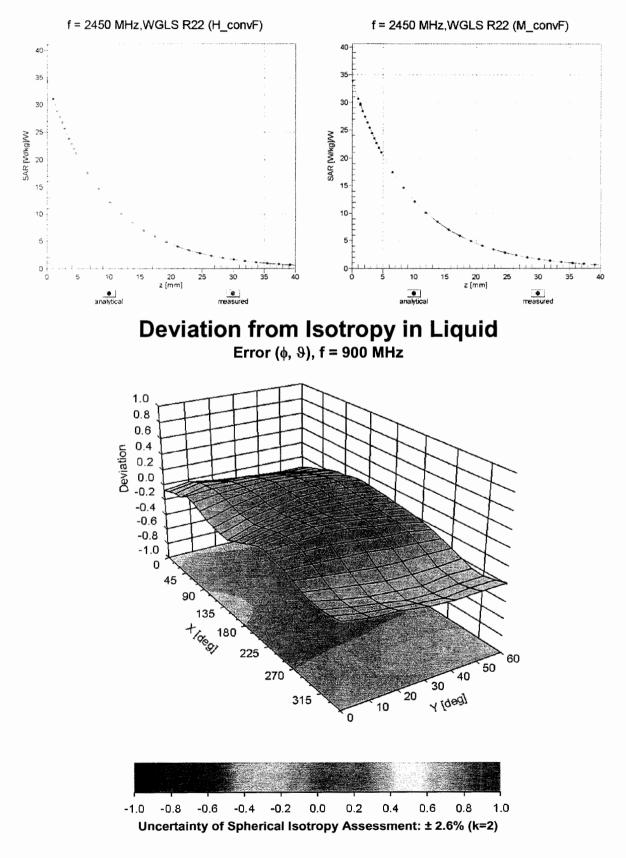
^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-137.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

DIPOLE CALIBRATION

Dipole Calibration

Key points:

- 1. Dipoles need to be sent to the manufacturer for calibration every 3 years.
- 2. For those years where they are not sent to the manufacturer the following two parameters are verified annually:
 - a. The return-loss. If it deviates by more than 20% from the calibration data or does not meet the required -20 dB return-loss specification, then it fails the verification and must be sent to the manufacturer for repair and calibration.
 - b. The real and imaginary parts of the impedance. If it deviates by more than 5 Ω from the calibration data, then it fails the verification and must be sent to the manufacturer for repair and calibration.

The return loss and complex impedance were verified to meet the FCC's criteria within one year of the manufacturer's calibration. The calibration data is used for the SAR system verification. The verification data shows that the dipole characteristics have not changed and the calibration data continues to be valid.

Please see attached calibration and verification data.

NWEMC Equipment ID: ADL

NORTHWEST				C	alihrati	on Cer	ificate	& Rone	ort				
EMC					andrau		incate	a nept	511				03/27/02dmt
	Device	Dipole Anten	na		SPEAG	SAR2450							
Equi	pment Code:										Cal Date:	111413	
											Temperature:	23C	
	Customer:	Northwest EM	IC			Tester:	Varuzhan Ko	charyan			Humidity:	40%	
Ce	ertificate No.:	ADL	111413			Power:	N/A				Job Site:	EV10	
TEST SPECIF	ICATIONS			-	0		-		1				
5	Specification:	Northwest EM	AC	Year:				Method:	FCC KDB 86	5664, Section	3.2.2		
TEST PARAM	ETERS												
Dev	ice Received	In Tolerance:	Yes				n Frequency :						
						uipment Used							
Item:			Analyzer		Identifier:	NAJ	Model:		Agilent E5061		Calibrat		3/24/2011
Item:			ermination		Identifier:	NAHA	Model:	Ag	ilent 85032-60	017	Calibrat		5/6/2013
Item:			tenuator		Identifier:	RCD	Model:		SA6021-10			ion Date	4/15/2013
Item:		Head			Identifier:	SAL	Model:		Head Solution		Calibrat		9/23/2013
Item:			/ TSL		Identifier:	SAM	Model:		Body Solution	1	Calibrat	Ion Date	9/23/2013
COMMENTS,	OPINIONS and	INTERPRET	ATIONS										
Measurement	Uncertainty												
			Probability	Distribution	Impeda	ince (dB)	Return L	.oss (dB)					٦
Expanded un confidence =	certainty U (le 95%)	vel of	norma	ıl (k=2)	TBD		TE	BD					
	,												
	FROM TEST S	TANDARD											
None													
RESULTS Pass													
Fd55													
This me	asureme	nt was a	calibrati	on verific	ation. (Ir	nstrument	paramet	ers are v	vithin tole	erances.)			
										,,			
		<u> </u>								19	Margani	m	
Qan	Am	Tolm	-							i winza	nkoravije		
											-		_
Approve	ea By						Ι DATA ATTA	THED			Tested By		
						CALIDRATIU	DATA ATTAC	JILL D					

		Verification Data	
EUT	Dipole Antenna		
Model	SAR2450	Antenna Parameters with Head TSL	
S/N	ADL	Impedance 50.26 +j5.77 49.71+6.52	
Manufacturer	SPEAG	Return Loss -28.7 dB	
Date	111413		
		Antenna Parameters with Body TSL	
Temperature	23C	Impedance, Ohms 49.82+j2.87	
Humidity	40%	Return Loss, dB -27.5 dB	1
. iainaity			
Operator	Varuzhan Kocharyan		
oporato	t al d_lait i toollai yali		

Dipole Calibration

Performed by SPEAG (the manufacturer)

ADL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Northwest EMC

Certificate No: D2450V2-855_Dec11

CALIBRATION CERTIFICATE

Object	D2450V2 - SN: 8	55	
Calibration procedure(s)	QA CAL-05.v8	dure for dipole validation kits abo	
	Calibration proces	dure for upple valuation kits abo	
Calibration date:	December 09, 20	11	
		onal standards, which realize the physical un robability are given on the following pages ar	
All calibrations have been conduc	ted in the closed laborator	y facility: environment temperature (22 ± 3)°	C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Technician	0
Calibrated by:	DIFFICE INSV	Laboratory recrimician	D. Rice
Approved by:	Katja Pokovic	Technical Manager	D. Hier Selly
		full without written approval of the laboratory	Issued: December 9, 2011

Report No. WARN0052

51/58

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage C

Servizio svizzero di taratura

S **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions". Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole . positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna . connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the . nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

	· · · · · · · · · · · · · · · · · · ·	
DASY Version	DASY5	V52.8.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.9 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.38 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.3 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.7 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.02 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.7 mW / g ± 16.5 % (k=2)

Report No. WARN0052

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω + 4.5 jΩ	
Return Loss	- 25.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.4 Ω + 5.3 jΩ
Return Loss	- 25.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.157 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

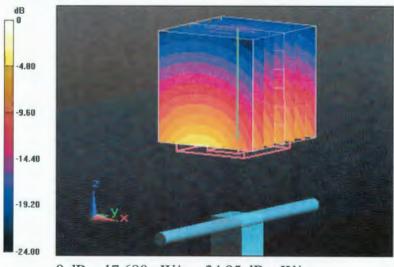
Manufactured by	SPEAG
Manufactured on	November 10, 2009

DASY5 Validation Report for Head TSL

Date: 09.12.2011

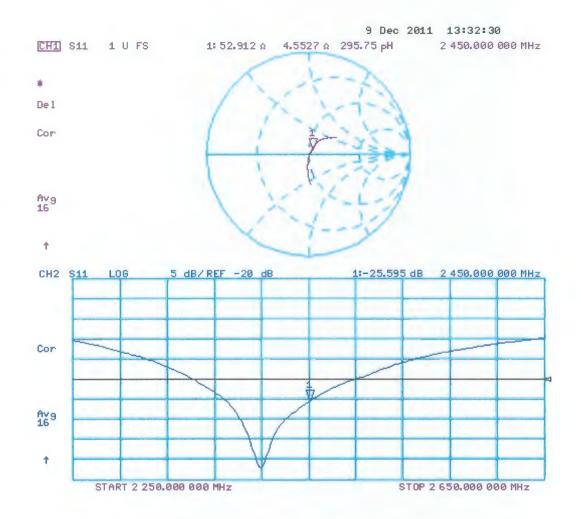
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 855


Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.87 mho/m; ϵ_r = 39.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 100.7 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 28.3310 SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.38 mW/g Maximum value of SAR (measured) = 17.684 mW/g

0 dB = 17.680 mW/g = 24.95 dB mW/g

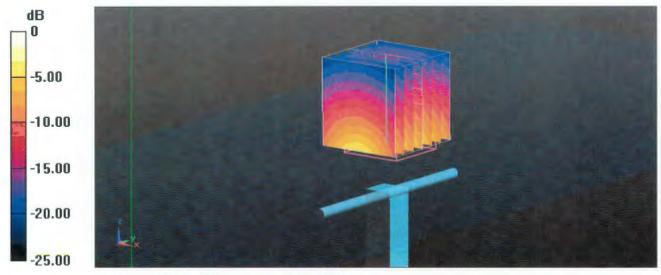
Report No. WARN0052

DASY5 Validation Report for Body TSL

Date: 08.12.2011

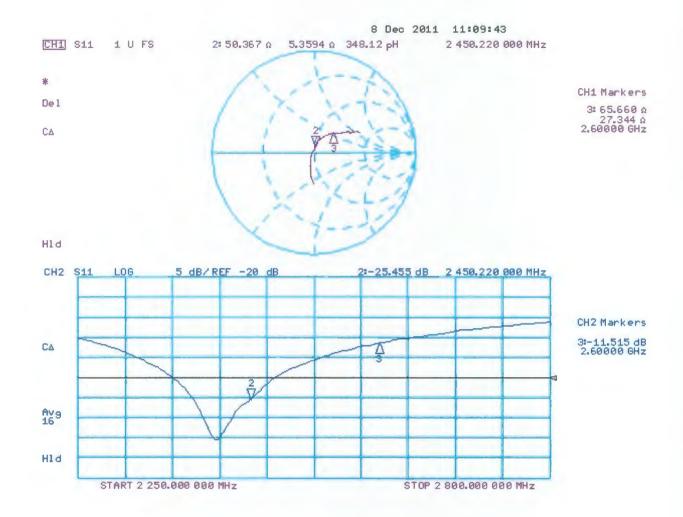
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 855


Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.04 mho/m; ϵ_r = 50.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 95.074 V/m; Power Drift = -0.0092 dB Peak SAR (extrapolated) = 27.0840 SAR(1 g) = 13 mW/g; SAR(10 g) = 6.02 mW/g Maximum value of SAR (measured) = 17.188 mW/g

0 dB = 17.190 mW/g = 24.71 dB mW/g

Impedance Measurement Plot for Body TSL

