Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 64 of 117 # Conducted Spurious Emissions (150 kHz – 30 MHz) [CDMA Downlink Low] # [CDMA Downlink Middle] F-01P-02-014 (Rev.00) HCT CO., LTD Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 65 of 117 #### [CDMA Downlink High] #### [EVDO Downlink Low] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 66 of 117 #### [EVDO Downlink Middle] # [EVDO Downlink High] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 67 of 117 #### [WCDMA Downlink Low] #### [WCDMA Downlink Middle] F-01P-02-014 (Rev.00) HCT CO., LTD FCC ID: W6UNH850IC / IC: 9354A-NH850IC Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 68 of 117 #### [WCDMA Downlink High] #### [GSM Downlink Low] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 69 of 117 #### [GSM Downlink Middle] # [GSM Downlink High] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 70 of 117 #### [EDGE Downlink Low] #### [EDGE Downlink Middle] F-01P-02-014 (Rev.00) HCT CO., LTD FCC ID: W6UNH850IC / IC: 9354A-NH850IC Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 71 of 117 #### [EDGE Downlink High] #### [LTE Downlink 5MHz Low] F-01P-02-014 (Rev.00) HCT CO., LTD FCC ID: W6UNH850IC / IC: 9354A-NH850IC Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 72 of 117 #### [LTE Downlink 5MHz Middle] #### [LTE Downlink 5MHz High] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 73 of 117 # Conducted Spurious Emissions (30 MHz – 1 GHz) # [CDMA Downlink Low] #### [CDMA Downlink Middle] F-01P-02-014 (Rev.00) HCT CO., LTD Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 74 of 117 #### [CDMA Downlink High] # [EVDO Downlink Low] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 75 of 117 #### [EVDO Downlink Middle] #### [EVDO Downlink High] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 76 of 117 #### [WCDMA Downlink Low] #### [WCDMA Downlink Middle] F-01P-02-014 (Rev.00) HCT CO., LTD FCC ID: W6UNH850IC / IC: 9354A-NH850IC Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 77 of 117 #### [WCDMA Downlink High] #### [GSM Downlink Low] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 78 of 117 #### [GSM Downlink Middle] #### [GSM Downlink High] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 79 of 117 #### [EDGE Downlink Low] #### [EDGE Downlink Middle] F-01P-02-014 (Rev.00) HCT CO., LTD FCC ID: W6UNH850IC / IC: 9354A-NH850IC Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 80 of 117 # [EDGE Downlink High] #### [LTE Downlink 5MHz Low] F-01P-02-014 (Rev.00) HCT CO., LTD Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 81 of 117 #### [LTE Downlink 5MHz Middle] # [LTE Downlink 5MHz High] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 82 of 117 # Conducted Spurious Emissions (1 GHz –12.75 GHz) # [CDMA Downlink Low] #### [CDMA Downlink Middle] F-01P-02-014 (Rev.00) HCT CO., LTD Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 83 of 117 #### [CDMA Downlink High] # [EVDO Downlink Low] F-01P-02-014 (Rev.00) HCT CO., LTD Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 84 of 117 #### [EVDO Downlink Middle] #### [EVDO Downlink High] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 85 of 117 #### [WCDMA Downlink Low] #### [WCDMA Downlink Middle] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 86 of 117 #### [WCDMA Downlink High] #### [GSM Downlink Low] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 87 of 117 #### [GSM Downlink Middle] # [GSM Downlink High] F-01P-02-014 (Rev.00) HCT CO., LTD Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 88 of 117 # [EDGE Downlink Low] # [EDGE Downlink Middle] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 89 of 117 # [EDGE Downlink High] #### [LTE Downlink 5MHz Low] F-01P-02-014 (Rev.00) HCT CO., LTD FCC ID: W6UNH850IC / IC: 9354A-NH850IC Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 90 of 117 #### [LTE Downlink 5MHz Middle] #### [LTE Downlink 5MHz High] F-01P-02-014 (Rev.00) HCT CO., LTD Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 91 of 117 # Multi channel Enhancer Plots of Spurious Emission for IC Conducted Spurious Emissions (9 kHz – 150 kHz) # [Downlink Low] #### [Downlink Middle] F-01P-02-014 (Rev.00) HCT CO., LTD Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 92 of 117 # [Downlink High] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 93 of 117 # Conducted Spurious Emissions (150 kHz – 30 MHz) [Downlink Low] #### [Downlink Middle] F-01P-02-014 (Rev.00) HCT CO., LTD Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 94 of 117 # [Downlink High] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 95 of 117 #### Conducted Spurious Emissions (30 MHz - 1 GHz) #### [Downlink Low] #### [Downlink Middle] F-01P-02-014 (Rev.00) HCT CO., LTD Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 96 of 117 # [Downlink High] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 97 of 117 # Conducted Spurious Emissions (1 GHz -12.75 GHz) #### [Downlink Low] #### [Downlink Middle] F-01P-02-014 (Rev.00) HCT CO., LTD Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 98 of 117 # [Downlink High] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 99 of 117 # Intermodulation Spurious Emissions for FCC # [CDMA Downlink Low] #### [CDMA Downlink High] F-01P-02-014 (Rev.00) HCT CO., LTD FCC ID: W6UNH850IC / IC: 9354A-NH850IC Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 100 of 117 ## [EVDO Downlink Low] ## [EVDO Downlink High] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 101 of 117 ## [WCDMA Downlink Low] ## [WCDMA Downlink High] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 102 of 117 ## [GSM Downlink Low] ## [GSM Downlink High] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 103 of 117 ## [EDGE Downlink Low] ## [EDGE Downlink High] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 104 of 117 ## [LTE Downlink 5MHz Low] ## [LTE Downlink 5MHz High] F-01P-02-014 (Rev.00) HCT CO., LTD Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 105 of 117 ## Single channel Enhancer Band Edge ## [CDMA Downlink Low] #### [CDMA Downlink High] F-01P-02-014 (Rev.00) HCT CO., LTD Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 106 of 117 ## [EVDO Downlink Low] ## [EVDO Downlink High] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 107 of 117 #### [WCDMA Downlink Low] #### [WCDMA Downlink High] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 108 of 117 ## [GSM Downlink Low] ## [GSM Downlink High] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 109 of 117 ## [EDGE Downlink Low] ## [EDGE Downlink High] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 110 of 117 ## [LTE Downlink 5MHz Low] ## [LTE Downlink 5MHz High] Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 111 of 117 ## Multi channel Enhancer Band Edge for IC ## [Downlink Low] #### [Downlink High] F-01P-02-014 (Rev.00) HCT CO., LTD FCC ID: W6UNH850IC / IC: 9354A-NH850IC Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 112 of 117 ## 10. RADIATED SPURIOUS EMISSIONS Test Requirement(s): § 2.1053 Measurements required: Field strength of spurious radiation. - § 2.1053 (a) Measurements shall be made to detect spurious emissions that may be Radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of § 2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required with the measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from half-wave dipole antennas. - § 2.1053 (b): The measurements specified in paragraph (a) of this section shall be made for the following equipment: - (1) Those in which the spurious emissions are required to be 60 dB or more below the mean power of the transmitter. - (2) All equipment operating on frequencies higher than 25 MHz. - **(3)** All equipment where the antenna is an integral part of, and attached directly to The transmitter. - **(4)** Other types of equipment as required, when deemed necessary by the Commission. - **Test Procedures:** As required by 47 CFR 2.1053, *field strength of radiated spurious*measurements were made in accordance with the procedures of ANSI/TIA-603-C-2004 "Land Mobile FM or PM Communications Equipment Measurement and Performance Standards". Radiated emission measurements were performed inside a 3 meter semi-anechoic chamber. The EUT was set at a distance of 3m from the receiving antenna. The EUT's RF ports were F-01P-02-014 (Rev.00) HCT CO., LTD Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 113 of 117 terminated to 50ohm load. The EUT was set to transmit at the low, mid and high channels of the transmitter frequency range at its maximum power level. The EUT was rotated about 360 and the receiving antenna scanned from 1-3m in order to capture the maximum emission. A calibrated antenna source was positioned in place of the EUT and the previously recorded signal was duplicated. The maximum EIRP of the emission was calculated by adding the forward power to the calibrated source plus its appropriate gain value. These steps were carried, out with the receiving antenna in both vertical and horizontal polarization. Harmonic emissions up to the 10th or 40GHz, whichever was the lesser, were investigated. ## . # **Radiated Spurious Emissions Test Setup** Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 114 of 117 ## **Test Result:** Note. Input signal is the CW signal. # [Downlink] | Voltage
supplied to
EUT | Tx
Freq.(MHz) | | Substitute | Ant. Gain | | | ERP | Margin | |-------------------------------|------------------|------------|------------|-----------|------|------|--------|--------| | | | Freq.(MHz) | Level | (dBd) | C.L | Pol. | (dBm) | (dB) | | | | | [dBm] | | | | | | | 120 Vac | 862.4 | 1776 | -32.25 | 7.94 | 5.24 | Н | -29.55 | 16.55 | | | | 2000 | -33.30 | 8.45 | 5.64 | Н | -30.49 | 17.49 | | | 878.0 | 1776 | -31.84 | 7.94 | 5.24 | Н | -29.14 | 16.14 | | | | 2000 | -33.08 | 8.45 | 5.64 | Н | -30.27 | 17.27 | | | 893.6 | 1776 | -32.11 | 7.94 | 5.24 | Н | -29.41 | 16.41 | | | | 2000 | -32.73 | 8.45 | 5.64 | Н | -29.92 | 16.92 | | Voltage
supplied to
EUT | Tx
Freq.(MHz) | | Substitute | Ant. Gain | | | ERP | Margin | |-------------------------------|------------------|------------|------------|-----------|------|------|--------|--------| | | | Freq.(MHz) | Level | (dBd) | C.L | Pol. | (dBm) | (dB) | | | | | [dBm] | | | | | | | -48 Vdc | 862.4 | 1776 | -32.42 | 7.94 | 5.24 | Н | -29.72 | 16.72 | | | | 2000 | -33.43 | 8.45 | 5.64 | Н | -30.62 | 17.62 | | | 878.0 | 1776 | -31.71 | 7.94 | 5.24 | Н | -29.01 | 16.01 | | | | 2000 | -46.10 | 8.45 | 5.64 | Н | -43.29 | 30.29 | | | 893.6 | 1776 | -32.04 | 7.94 | 5.24 | Н | -29.34 | 16.34 | | | | 2000 | -32.92 | 8.45 | 5.64 | Н | -30.11 | 17.11 | F-01P-02-014 (Rev.00) HCT CO., LTD Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 115 of 117 # 11. FREQUENCY STABILITY OVER TEMPERATURE AND VOLTAGE VARIATIONS #### **FCC Rules** Test Requirement(s): §2.1055(a)(1), § 90.213 ## **Test Procedures:** As required by 47 CFR 2.1055, *Frequency Stability measurements* were made at the RF output terminals using a Spectrum Analyzer. The EUT was placed in the Environmental Chamber. A CW signal was injected into the EUT at the appropriate RF level. The frequency counter option on the Spectrum Analyzer was used to measure frequency deviations. The frequency drift was investigated for every 10 °C increment until the unit is stabilized then recorded the reading in tabular format with the temperature range of -30 to 50 °C. Voltage supplied to EUT is 120 Vac & -48 Vdc, reference temperature was done at 20°C. The voltage was varied by ± 15 % of nominal #### **Test Setup:** ## **Test Results:** The E.U.T was found in compliance for Frequency Stability and Voltage Test F-01P-02-014 (Rev.00) HCT CO., LTD Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 116 of 117 #### **IC Rules** #### Test Requirement(s): RSS-131 6.5 A band translator is essentially a repeater station and should introduce as little frequency error as possible. The frequency stability should therefore meet the objectives of the overall land mobile or cellular service for which it serves. Better frequency stability than the minimum standard cited below will therefore be required in some cases. The frequency stability shall be within 1.5 parts per million (0.00015%). #### Test Procedures: RSS-131 4.5 In addition, the local oscillator frequency stability of the band translator shall be reported. Frequency stability is a measure of the frequency drift due to temperature and supply voltage variations, with reference to the frequency measured at +20 °C and rated supply voltage. The following temperature and supply voltage ranges apply: - (a) at 10 degree intervals of temperatures between -30 °C and +50 °C, and at the manufacturer's rated-supply voltage; and - (b) at +20 °C temperature and 15% supply voltage variations. F-01P-02-014 (Rev.00) HCT CO., LTD Report No.: HCT-R-1411-F013-1 MODEL: N20-HRDU-850IC Page 117 of 117 # **Frequency Stability and Voltage Test Results** **Reference:** 120 Vac at 20°C **Freq.** = 881.5 MHz | Voltage | Temp. | Frequency | Frequency | Deviation | ppm | | |---------|----------|--------------|------------|-----------|--------|--| | (%) | (℃) | (Hz) | Error (Hz) | (Hz) | | | | | +20(Ref) | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | | | -30 | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | | | -20 | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | | | -10 | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | | 100% | 0 | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | | | +10 | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | | | +30 | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | | | +40 | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | | | +50 | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | | 115% | +20 | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | | 85% | +20 | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | **Reference:** -48 Vdc at 20°C **Freq.** = 881.5 MHz | Voltage | Temp. | Frequency | Frequency | Deviation | ppm | | |---------|----------|--------------|------------|-----------|--------|--| | (%) | (℃) | (Hz) | Error (Hz) | (Hz) | | | | | +20(Ref) | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | | | -30 | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | | | -20 | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | | 100% | -10 | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | | | 0 | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | | | +10 | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | | | +30 | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | | | +40 | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | | | +50 | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | | 115% | +20 | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | | 85% | +20 | 881500000. 0 | 0.0 | 0.0 | 0.0000 | | F-01P-02-014 (Rev.00)