

FCC / ISED REPORT

Certification

Applicant Name: SOLiD, Inc.

Address:

10, 9th Floor, SOLiD Space, Pangyoyeok-ro 220, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, South Korea

Date of Issue: July 6, 2018 Location: HCT CO., LTD., 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA Report No.: HCT-RF-1806-FI007-R1

ISED Registration No.: 5944A-5

FCC ID: ISED: APPLICANT:	W6UHM1900PR 9354A-HM1900PR SOLiD, Inc.
FCC/ ISED Model:	MRDU_1900P
EUT Type:	ALLIANCE_5W
Frequency Ranges:	1 930 ~ 1 995 MHz (Downlink)
Conducted Output Power:	5 W (37 dBm, Downlink)
Date of Test:	June 07, 2018 ~ June 25, 2018
FCC Rule Part(s):	CFR 47 Part 2, Part 24
ISED Rules(s):	RSS-Gen (Issue 5, April 2018), RSS-131 (Issue 3, May 2017)
	RSS-133 (Issue 6, January 2013)

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC / ISED Rules under normal use and maintenance.

Report prepared by : Kyung Soo Kang Engineer of Telecommunication testing center

Approved by : Jong Seok Lee Manager of Telecommunication testing center

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

<u>Version</u>

TEST REPORT NO.	DATE	DESCRIPTION	
HCT-RF-1806-FI007	June 27, 2018	- First Approval Report	
HCT-RF-1806-FI007-R1	July 6, 2018	 Fixed the test plots with higher resolution. Revised the spurious emissions test plots. 	

Table of Contents

1. GENERAL INFORMATION
1.1. APPLICANT INFORMATION
1.2. PRODUCT INFORMATION
1.3. TEST INFORMATION
2. FACILITIES AND ACCREDITATIONS
2.1. FACILITIES
2.2. EQUIPMENT
3. TEST SPECIFICATIONS
3.1. STANDARDS
3.2. MODE OF OPERATION DURING THE TEST7
3.3. MAXIMUM MEASUREMENTUNCERTAINTY
3.4. STANDARDS ENVIRONMENTAL TEST CONDITIONS
4. TEST EQUIPMENT
5. RF OUTPUT POWER11
6. OCCUPIED BANDWIDTH
7. INPUT VERSUS OUTPUT SPECTRUM
8. OUT OF BAND REJECTION & MEAN OUTPUT POWER AND ZONE ENHANCER GAIN
9. SPURIOUS AND HARMONIC EMISSION AT ANTENNA TERMINAL
10. RADIATED SPURIOUS EMISSIONS
11. FREQUENCY STABILITY OVER TEMPERATURE AND VOLTAGE VARIATIONS
12. APPENDIX A_EUT AND TEST SETUP PHOTO

1. GENERAL INFORMATION

1.1. APPLICANT INFORMATION

Company Name	SOLiD, Inc.
Company Address	10, 9th Floor, SOLiD Space, Pangyoyeok-ro 220, Bundang-gu,
Company Address	Seongnam-si, Gyeonggi-do, 463-400, South Korea

1.2. PRODUCT INFORMATION

ЕИТ Туре	ALLIANCE_5W
Power Supply	120VAC, 50Hz / DC -48V
Frequency Range	1 930 MHz ~1 995 MHz (Downlink)
Tx Output Power	5 W (37 dBm, Downlink)
Supporting Technologies	GSM, CDMA, WCDMA, LTE 5 MHz , LTE 10 MHz, LTE 20 MHz
Antenna Specification	Manufacturer does not provide an antenna.

1.3. TEST INFORMATION

FCC Rule Parts	CFR 47 Part 2, Part 24			
ISED Rule Parts	RSS-Gen (Issue 4, November 2014), RSS-131 (Issue 3, May 2017), RSS-133 (Issue 6, January 2013)			
Measurement standards	ANSI/TIA-603-E-2016, KDB 971168 D01 v03, KDB 935210 D05 v01r02, RSS-Gen, RSS-131, RSS-133			
Place of Test	HCT CO., LTD. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA (ISED Registration Number : 5944A-5)			

2. FACILITIES AND ACCREDITATIONS

2.1. FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated July 07, 2015 (Registration Number: 90661).

2.2. EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

3. TEST SPECIFICATIONS

3.1. STANDARDS

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 2, Part 24, RSS-Gen, RSS-131, RSS-133.

Description	Reference (FCC)	Reference (ISED)	Results
Conducted RF Output Power	§2.1046, §24.232	RSS-133, Section 6.4 SRSP-510, Section 5.1	Compliant
Occupied Bandwidth	§2.1049	RSS-Gen, Section 6.6	Compliant
Input-versus-output Spectrum	-	RSS-131 Section 5.2.2	Compliant
Out of Band Rejection & Mean Output Power and Zone Enhancer Gain	KDB 935210 D05 v01r02	RSS-131, Section 5.2.1 RSS-131 Section 5.2.3	Compliant
Spurious Emissions at Antenna Terminals	§2.1051, §24.238	RSS-133, Section 6.5	Compliant
Radiated Spurious Emissions	§2.1053, §24.238	RSS-Gen, Section 7.1.2 RSS-133, Section 6.6	Compliant
Frequency Stability	§2.1055, §24.235	RSS-131, Section 5.2.4 RSS-133, Section 6.3	Compliant

3.2. MODE OF OPERATION DURING THE TEST

The EUT was operated in a manner representative of the typical usage of the equipment.

During all testing, system components were manipulated within the confines of typical usage to maximize each emission.

The device does not supply antenna(s) with the system, so the dummy loads were connected to the RF output ports for radiated spurious emission testing.

* Note: This EUT is supported power supply both of AC and DC. Test results are only attached worst cases.

* The tests results in plots are already including the actual value of loss for the attenuator and cable combination. Please check correction factors below table.

Freq(MHz) Factor(dB)			
30	29.974		
100	28.716		
200	29.477		
300	29.021		
400	29.329		
500	29.394		
600	29.453		
700	29.416		
800	29.526		
900	29.670		
1000	30.733		
2000	31.134		
3000	31.878		
4000	31.237		
5000	31.713		
6000	31.926		
7000	32.680		
8000	32.899		
9000	33.680		
10000	34.067		
11000	34.955		
12000	35.598		
13000	36.484		
14000	36.994		

Correction Factor

Report No.: HCT-RF-1806-FI007-R1

15000	37.540		
16000	40.661		
17000	40.540		
18000	42.312		
19000	40.782		
20000	41.434		
21000	42.086		
22000	42.738		
23000	43.390		
24000	44.042		
25000	44.695		

3.3. MAXIMUM MEASUREMENTUNCERTAINTY

The value of the measurement uncertainty for the measurement of each parameter.

Coverage factor k = 2, Confidence levels of 95 %

Description	Condition	Uncertainty	
Conducted RF Output Power	-	± 0.72 dB	
Occupied Bandwidth		± 52 kHz	
Input-versus-output Spectrum	OBW ≤ 20 MHz		
Out of Band Rejection & Mean Output Power and Zone Enhancer Gain	Gain 20 dB bandwidth	± 0.89 dB ± 0.58 MHz	
Transmitter unwanted emissions	-	± 1.08 dB	
Radiated Spurious Emissions	f ≤ 1 GHz f > 1 GHz	± 4.80 dB ± 6.07 dB	
Frequency Stability	-	± 1.22 x 10 ⁻⁶	

3.4. STANDARDS ENVIRONMENTAL TEST CONDITIONS

Temperature :	+ 15 °C to + 35 °C
Relative humidity:	30 % to 60 %
Air pressure	860 mbar to 1 060 mbar

4. TEST EQUIPMENT

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Agilent	N9020A / Spectrum Analyzer	09/15/2017	Annual	MY46471250
Agilent	N5128A / Signal Generator	03/05/2018	Annual	MY50141649
Agilent	N5128A / Signal Generator	02/17/2018	Annual	MY46240523
Weinschel	WA67-30-33/ Fixed Attenuator	09/14/2017	Annual	WA67-30-33-2
Agilent	11636A / Power Divider	08/01/2017	Annual	09109
κικυςυι	CBL06185030 / DC Power Supply	02/27/2018	Annual	RE001149
DEAYOUNG ENT	DFSS60 / AC Power Supply	04/05/2018	Annual	1003030-1
NANGYEUL CO., LTD.	NY-THR18750 / Temperature and Humidity Chamber	10/21/2017	Annual	NY-2009012201A
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
Innco system	MA4640/800-XP-EP / Antenna Position Tower	N/A	N/A	N/A
Emco	2090 / Controller	N/A	N/A	060520
Ets	Turn Table	N/A	N/A	N/A
Rohde & Schwarz	Loop Antenna	04/19/2017	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	04/06/2017	Biennial	760
Schwarzbeck	BBHA 9120D / Horn Antenna	06/30/2017	Biennial	9120D-1300
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	04/25/2017	Biennial	BBHA9170124
Rohde & Schwarz	FSP / Spectrum Analyzer	09/21/2017	Annual	836650/016
Wainwright Instruments	WHKX10-900-1000-15000-40SS	07/21/2017	Annual	5
Wainwright Instruments	WHKX10-2700-3000-18000-40SS / High Pass Filter	08/01/2017	Annual	4
CERNEX	CBLU1183540 / Power Amplifier	01/03/2018	Annual	24613
CERNEX	CBL06185030 / Power Amplifier	01/03/2018	Annual	24615
CERNEX	CBL18265035 / Power Amplifier	01/10/2018	Annual	22966

5. RF OUTPUT POWER

FCC Rules

Test Requirements:

§ 2.1046 Measurements required: RF power output:

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in § 2.1033(c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

(b) For single sideband, independent sideband, and single channel, controlled carrier radio telephone transmitters, the procedure specified in paragraph (a) of this section shall be employed and, in addition, the transmitter shall be modulated during the test as specified and as applicable in § 2.1046 (b) (1-5). In all tests, the input level of the modulating signal shall be such as to develop rated peak envelope power or carrier power, as appropriate, for the transmitter.

(c) For measurements conducted pursuant to paragraphs (a) and (b) of this section, all calculations and methods used by the applicant for determining carrier power or peak envelope power, as appropriate, on the basis of measured power in the radio frequency load attached to the transmitter output terminals shall be shown. Under the test conditions specified, no components of the emission spectrum shall exceed the limits specified in the applicable rule parts as necessary for meeting occupied bandwidth or emission limitations.

§ 24.232 Power and antenna height limits.

(a)(1) Base stations with an emission bandwidth of 1 MHz or less are limited to 1640 watts equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT, except as described in paragraph (b) below.

(2) Base stations with an emission bandwidth greater than 1 MHz are limited to 1640 watts/MHz equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT, except as described in paragraph (b) below.

(3) Base station antenna heights may exceed 300 meters HAAT with a corresponding reduction in power; see Tables 1 and 2 of this section.

(4) The service area boundary limit and microwave protection criteria specified in §§24.236 and 24.237 apply.

Table 1—Reduced Power for Base Station Antenna Heights Over 300 Meters, With Emission Bandwidth of 1 MHz or Less

HAAT in meters	Maximum EIRP watts
≤300	1640

≤500	1070
≤1000	490
≤1500	270
≤2000	160

Table 2—Reduced Power for Base Station Antenna Heights Over 300 Meters, With Emission

Bandwidth Greater Than 1 MHz

	Maximum EIRP		
HAAT in meters	watts/MHz		
≤300	1640		
≤500	1070		
≤1000	490		
≤1500	270		
≤2000	160		

(b)(1) Base stations that are located in counties with population densities of 100 persons or fewer per square mile, based upon the most recently available population statistics from the Bureau of the Census, with an emission bandwidth of 1 MHz or less are limited to 3280 watts equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT.

(2) Base stations that are located in counties with population densities of 100 persons or fewer per square mile, based upon the most recently available population statistics from the Bureau of the Census, with an emission bandwidth greater than 1 MHz are limited to 3280 watts/MHz equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT.

(3) Base station antenna heights may exceed 300 meters HAAT with a corresponding reduction in power; *see* Tables 3 and 4 of this section.

(4) The service area boundary limit and microwave protection criteria specified in §§24.236 and 24.237 apply.

(5) Operation under this paragraph (b) at power limits greater than permitted under paragraph (a) of this section must be coordinated in advance with all broadband PCS licensees authorized to operate on adjacent frequency blocks within 120 kilometers (75 miles) of the base station and is limited to base stations located more than 120 kilometers (75 miles) from the Canadian border and more than 75 kilometers (45 miles) from the Mexican border.

Table 3—Reduced Power for Base Station Antenna Heights Over 300 Meters, With Emission

HAAT in meters	Maximum EIRP watts
≤300	3280
≤500	2140

Bandwidth of 1 MHz or Less

≤1000	980
≤1500	540
≤2000	320

Table 4—Reduced Power for Base Station Antenna Heights Over 300 Meters, With Emission

	Maximum EIRP	
HAAT in meters	watts/MHz	
≤300	3280	
≤500	2140	
≤1000	980	
≤1500	540	
≤2000	320	

Bandwidth Greater Than 1 MHz

(c) Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

(d) Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

(e) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, *etc.*, so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

ISED Rules

Test Requirements:

RSS-133

6. Transmitter and Receiver Standard Specifications

6.4 Transmitter Output Power and Equivalent Isotropically Radiated Power

The equivalent isotropically radiated power (e.i.r.p.) for transmitters shall not exceed the limits given in SRSP-510.

In addition, the transmitter's peak-to-average power ratio (PAPR) shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.

SRSP-510

5.1 Radiated Power and Antenna Height Limits

5.1.1 Base Stations

For base stations with channel bandwidth equal to or less than 1 MHz, the maximum equivalent isotropically radiated power (e.i.r.p.) is limited to 3280 watts with an antenna height above average terrain (HAAT) up to 300 metres. Base stations operating in urban areasFootnote 4 are limited to a maximum allowable e.i.r.p. of 1640 watts. Base station antenna heights above average terrain may exceed 300 metres with a corresponding reduction in e.i.r.p. according to the following table:

Base Stations			
HAAT (in metres)	Maximum e.i.r.p. (watts)		
≤ 300	3280 or 1640		
≤ 500	1070		
≤1000	490		
≤1500	270		
≤2000	160		

For base stations with a channel bandwidth greater than 1 MHz, the maximum e.i.r.p. is limited to 3280 watts/MHz e.i.r.p. (i.e., no more than 3280 watts e.i.r.p. in any 1 MHz band segment) with an antenna height above average terrain (HAAT) up to 300 metres. Fixed or base stations operating in urban areas are limited to a maximum allowable e.i.r.p. of 1640 watts/MHz e.i.r.p. Base station antenna heights above average terrain may exceed 300 metres with a corresponding reduction in e.i.r.p. according to the following table:

Base Stations	
HAAT (in metres)	Maximum e.i.r.p. (watts per MHz)
≤ 300	3280 or 1640
≤ 500	1070
≤1000	490
≤1500	270
≤2000	160

Base stations transmitting in the lower sub-band shall comply with the power limits set forth in section 5.1.2, i.e. the same as mobile stations.

The service area boundary limit specified in section 6 applies.

Test Procedures:

Measurements were in accordance with the test methods section 3.5.2 of KDB 935210 D05 v01r02.

a) Connect a signal generator to the input of the EUT.

b) Configure to generate the AWGN (broadband) test signal.

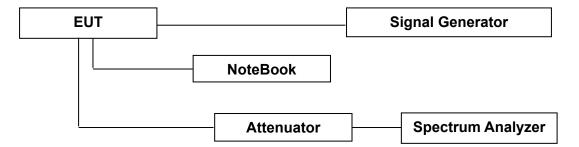
c) The frequency of the signal generator shall be set to the frequency of (f0) as determined from 3.3.

d) Connect a spectrum analyzer or power meter to the output of the EUT using appropriate attenuation as necessary.

e) Set the signal generator output power to a level that produces an EUT output level that is just below the AGC threshold (see 3.2), but not more than 0.5 dB below.

f) Measure the output power of the EUT and record (Power measurement with a spectrum analyzer).

g) Remove the EUT from the measurement setup and using the same signal generator settings, repeat the power measurement on the input signal to the EUT and record as input power.


h) Repeat the procedure with the narrowband test signal.

i) Repeat the procedure for both test signals with input signal amplitude set to 3 dB above the AGC threshold level.

j) Repeat for all frequency bands authorized for use by the EUT.

Power measurement Method:

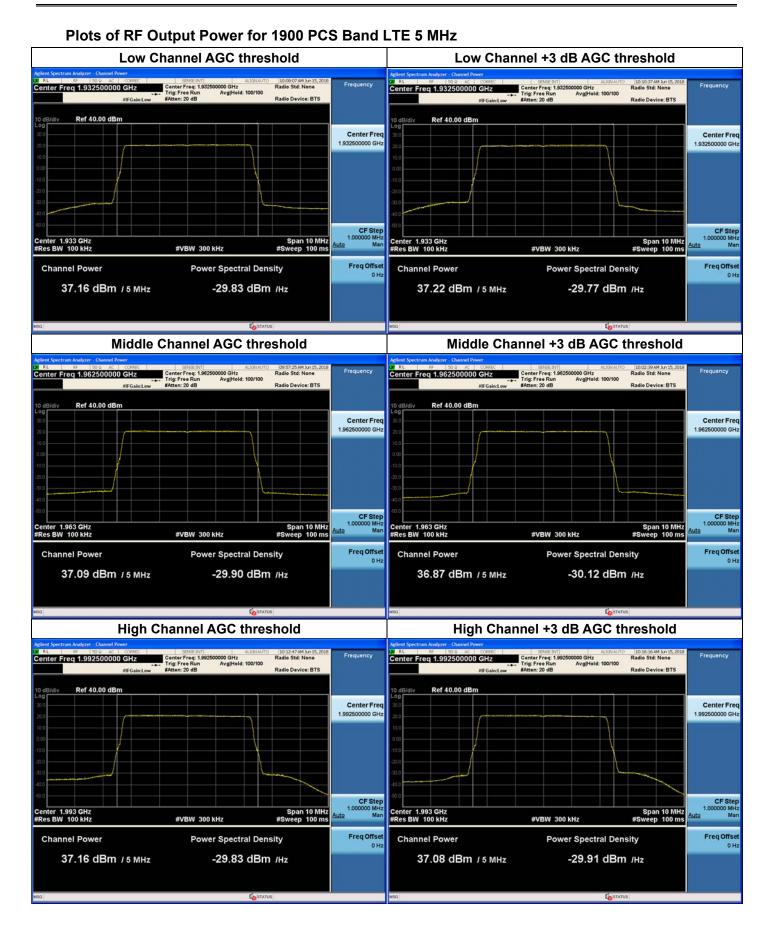
Guidance for performing input/output power measurements using a spectrum or signal analyzer is provided in 5.2 of KDB Publication 971168 D01 v03r01.

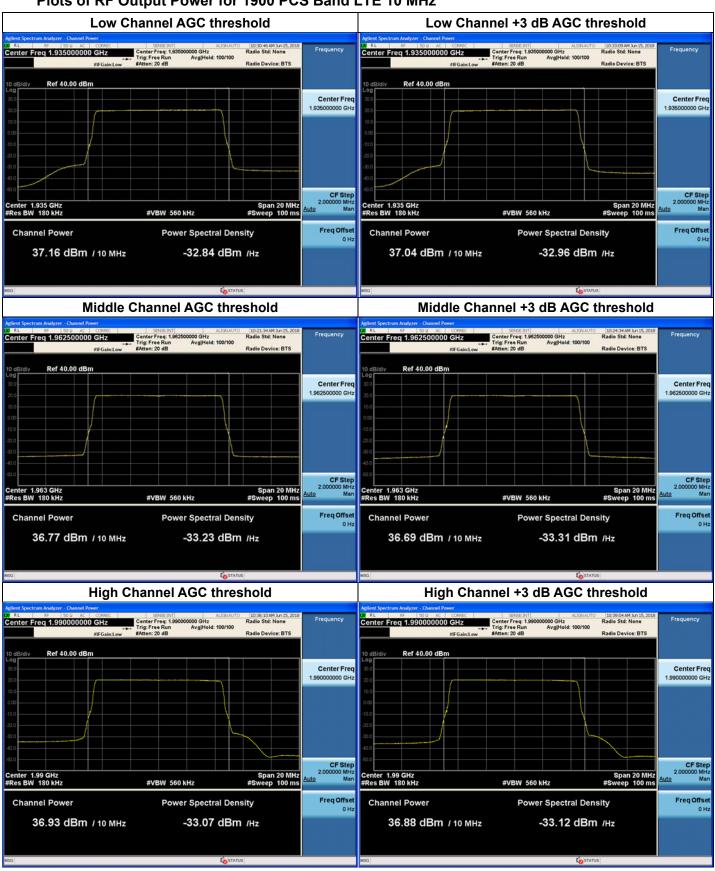
Block Diagram 1. RF Power Output Test Setup

Test Results:

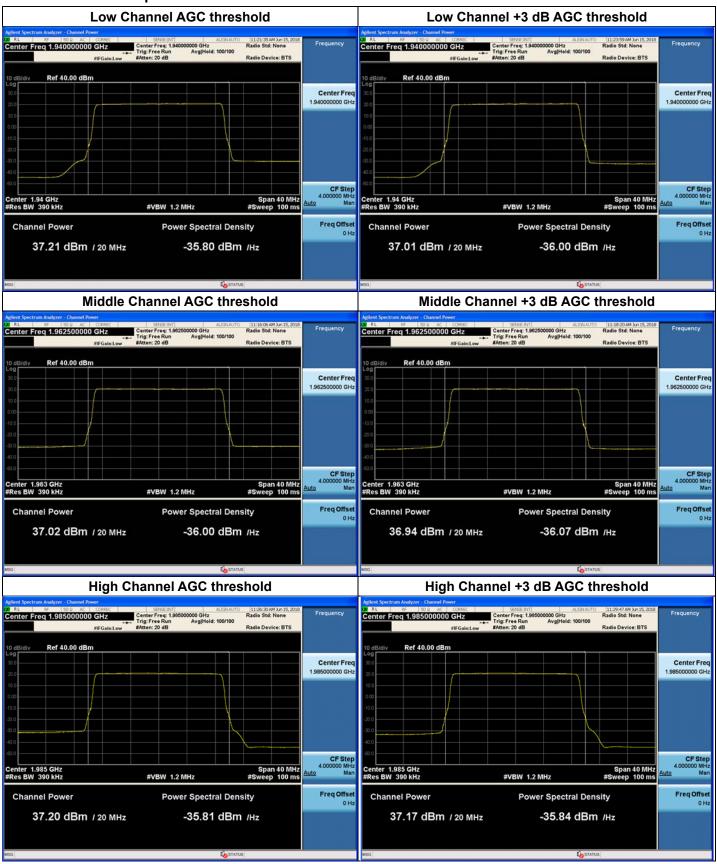
Input Signal	Input Level	Maximum Amp Gain
1900 PCS Band	-20 dBm	57 dB

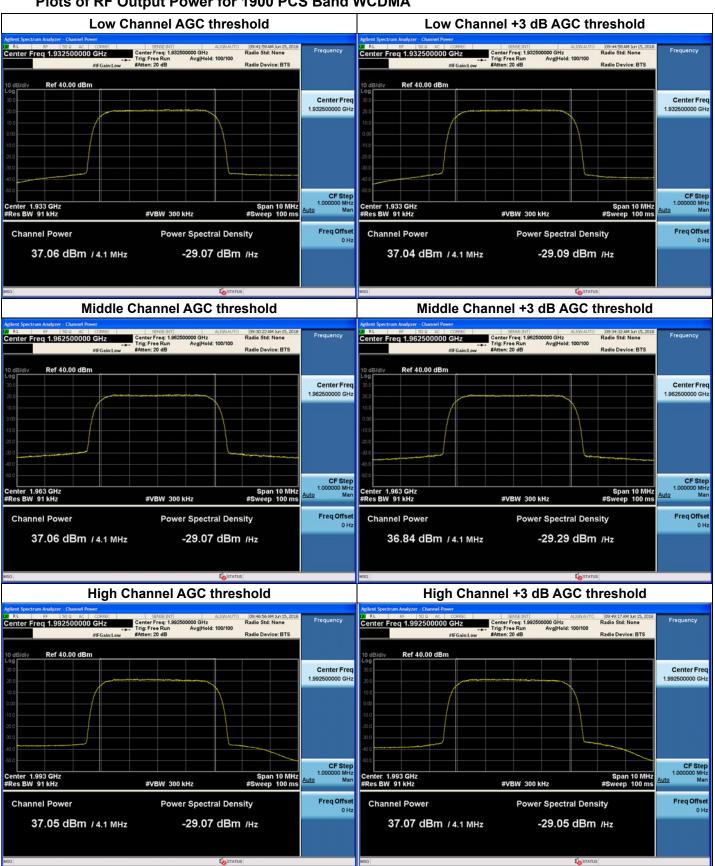
*Note: Due to EUT's ALC function (Auto Level Control), even if input signal is increased, The same output power is transmit.


[Downlink_1900 PCS Band]


1900 PCS Band	Channel (MHz)	Output Power		
		(MHz)	(dBm)	(W)
LTE 5 MHz AGC threshold	Low	1932.50	37.16	5.200
	Middle	1962.50	37.09	5.117
	High	1992.50	37.16	5.200
	Low	1932.50	37.22	5.272
LTE 5 MHz +3 dB above the AGC threshold	Middle	1962.50	36.87	4.864
	High	1992.50	37.08	5.105
	Low	1935.00	37.16	5.200
LTE 10 MHz AGC threshold	Middle	1962.50	36.77	4.753
	High	1990.00	36.93	4.932
	Low	1935.00	37.04	5.058
LTE 10 MHz +3 dB above the AGC threshold	Middle	1962.50	36.69	4.667
	High	1990.00	36.88	4.875
LTE 20 MHz AGC threshold	Low	1940.00	37.21	5.260
	Middle	1962.50	37.02	5.035
	High	1985.00	37.2	5.248
	Low	1940.00	37.01	5.023
LTE 20 MHz +3 dB above the AGC threshold	Middle	1962.50	36.94	4.943
	High	1985.00	37.17	5.212

1900 PCS Band	Oleanad	hannel (MHz)	Output Power	
	Channel		(dBm)	(W)
WCDMA AGC threshold	Low	1932.50	37.06	5.082
	Middle	1962.50	37.06	5.082
	High	1992.50	37.05	5.070
	Low	1932.50	37.04	5.058
WCDMA +3 dB above the AGC threshold	Middle	1962.50	36.84	4.831
	High	1992.50	37.07	5.093
	Low	1931.25	37.02	5.035
CDMA AGC threshold	Middle	1962.50	37.1	5.129
	High	1993.75	37.16	5.200
	Low	1931.25	37.06	5.082
CDMA +3 dB above the AGC threshold	Middle	1962.50	37.14	5.176
	High	1993.75	37.08	5.110
GSM AGC threshold	Low	1930.20	37.06	5.082
	Middle	1962.50	36.82	4.808
	High	1994.80	37.19	5.236
	Low	1930.20	37.02	5.035
GSM +3 dB above the AGC threshold	Middle	1962.50	36.78	4.764
	High	1994.80	37.17	5.212


*Note: We have done CDMA and 1xEVDO / GSM and EDGE modulation test in technology. Test results are only attached worst cases.



Plots of RF Output Power for 1900 PCS Band LTE 10 MHz

Plots of RF Output Power for 1900 PCS Band WCDMA