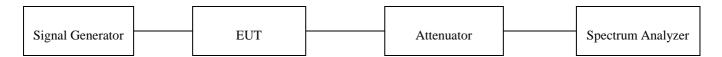


8. BAND EDGE MEASUREMENT


8.1 Operating environment

Temperature : $20 \, ^{\circ}\text{C}$ Relative humidity : $51 \, \% \, \text{R.H.}$

8.2 Test set-up for conducted measurement

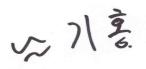
The RF signal from the signal generator(s) was injected to the EUT and the amplified RF signal at the output of the EUT was connected to the spectrum analyzer. The test was performed at three frequencies (low, middle, and high channels) at each band using all applicable modulation.

The resolution bandwidth and video bandwidth of the spectrum analyzer was set according to the regulation and sufficient scans were taken to show any out of band emissions.

8.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
□-	E4432B	HP	Signal Generator	US38440950	June 10, 2011 (1Y)
■ -	SMJ100A	R/S	Signal Generator	101038	Feb. 01, 2012 (1Y)
■ -	FSP	R/S	Spectrum Analyzer	100017	Mar. 15, 2011 (1Y)
□-	8564E	HP	Spectrum Analyzer	3650A00756	Jun. 10, 2011 (1Y)
□-	FSV30	R/S	Spectrum Analyzer	101372	Aug. 29, 2011 (1Y)
■ -	67-30-43	Aeroflex Weinschel	Power Attenuator	CA5760	Nov. 30, 2011 (1Y)

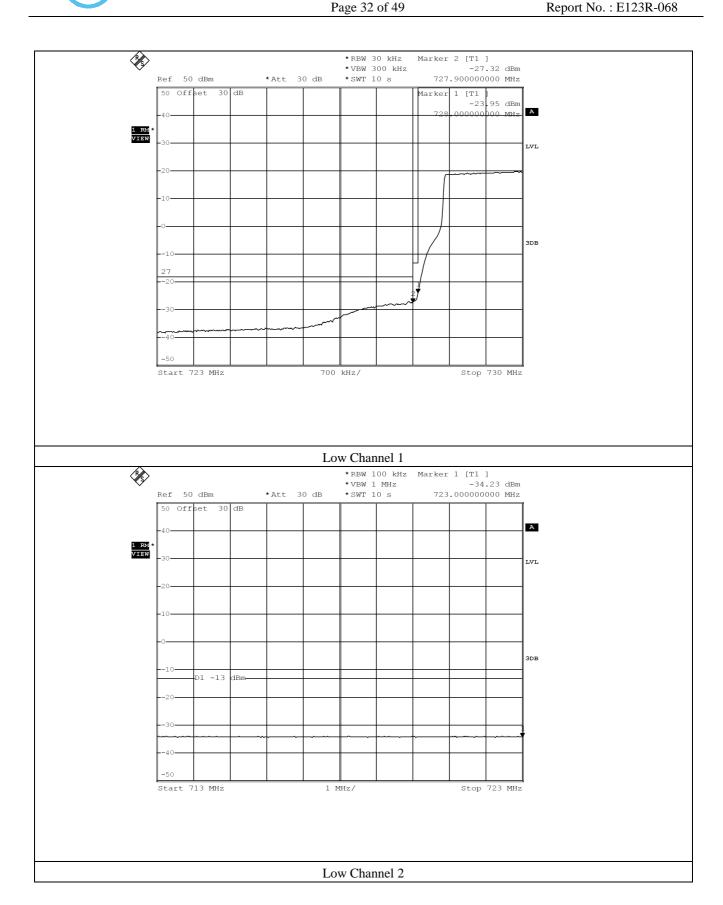
All test equipment used is calibrated on a regular basis.

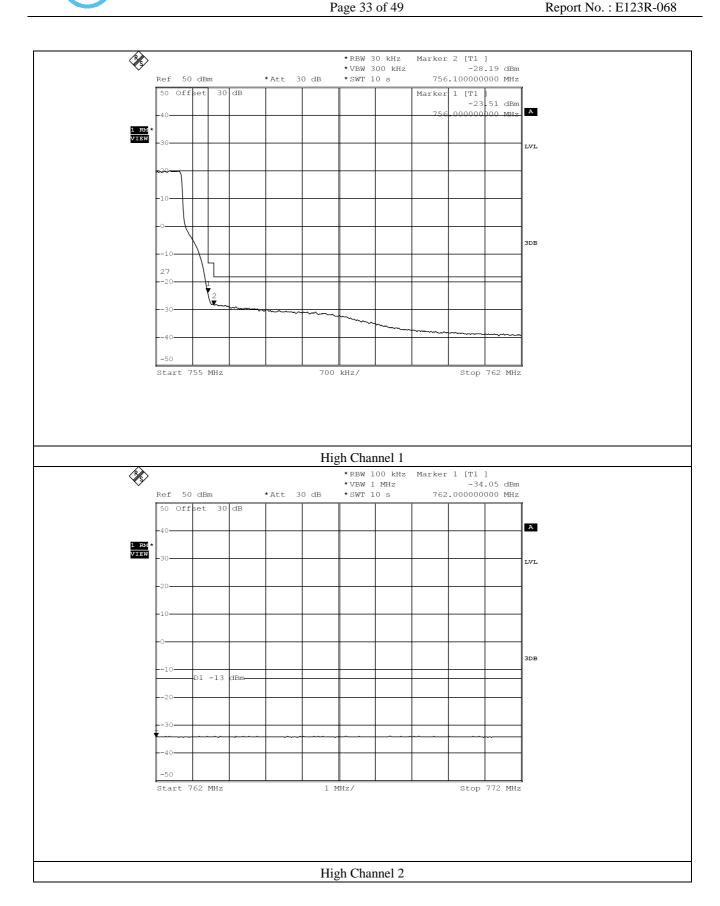


8.4 Test data for §27.53 (c)(5)

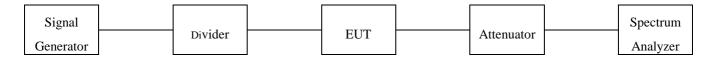
-. Test Date : February 16, 2012

-. Result : PASSED


Channel	Measured Frequency (MHz)	Measured Value (dBm)	Cable Loss (dB)	Total (dBm)	Limit (dBm)	Margin (dB)
	728.000	-23.95	0.67	-23.28	-13.00	-10.28
Low	727.900	-27.32	0.67	-26.65	-18.22	-8.43
	723.000	-34.23	0.67	-33.56	-13.00	-20.56
	756.000	-23.51	0.67	-22.84	-13.00	-9.84
High	756.100	-28.19	0.67	-27.52	-18.22	-9.30
	762.000	-34.05	0.67	-33.38	-13.00	-20.38


Tested by: Ki-Hong, Nam / Senior Engineer

9. INTERMODULATION TEST


9.1 Operating environment

Temperature : 20 °C Relative humidity : 52 %R.H.

9.2 Test set-up

The RF signal from the signal generator(s) was injected to the EUT and the amplified RF signal at the output of the EUT was connected to the spectrum analyzer. The test was performed at three frequencies (low, middle, and high channels) at each band using all applicable modulation.

Three input signals are equal in level and were sent to the input of the EUT.

9.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
■-	E4432B	HP	Signal Generator	US38440950	June 10, 2011 (1Y)
■-	SMJ100A	R/S	Signal Generator	101038	Feb. 01, 2012 (1Y)
■-	83650L	HP	Swept CW Generator	3844A00415	Jun. 10, 2012 (1Y)
□-	FSP	R/S	Spectrum Analyzer	100017	Mar. 15, 2011 (1Y)
□-	8564E	HP	Spectrum Analyzer	3650A00756	Jun. 10, 2011 (1Y)
■-	FSV30	R/S	Spectrum Analyzer	101372	Aug. 29, 2011 (1Y)
-	67-30-43	Aeroflex Weinschel	Power Attenuator	CA5760	Nov. 30, 2011 (1Y)

All test equipment used is calibrated on a regular basis.

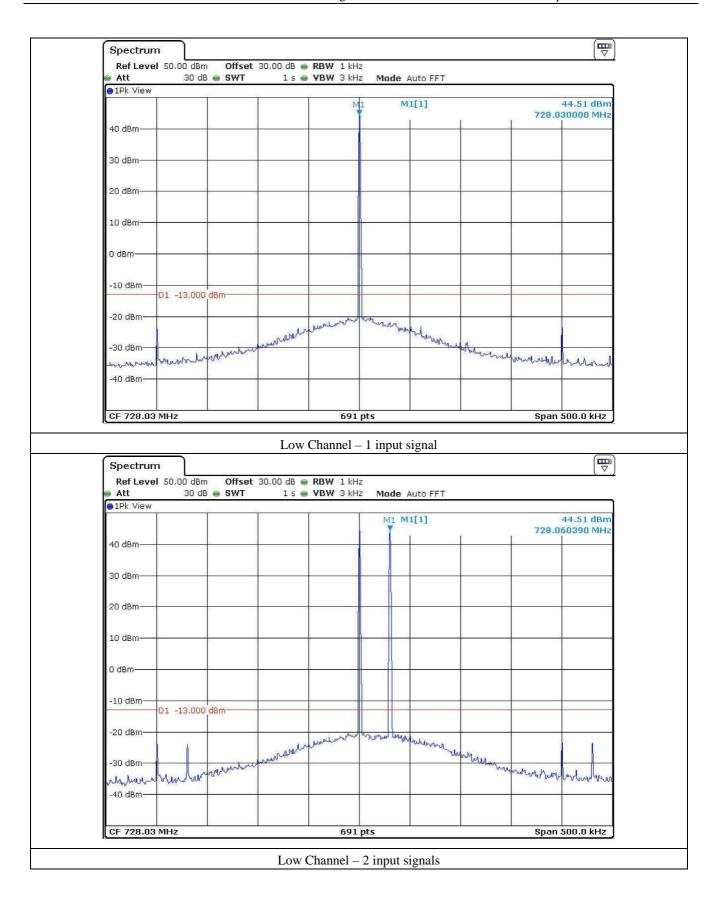
9.4 Test data

9.3.1 Test Result for peak power

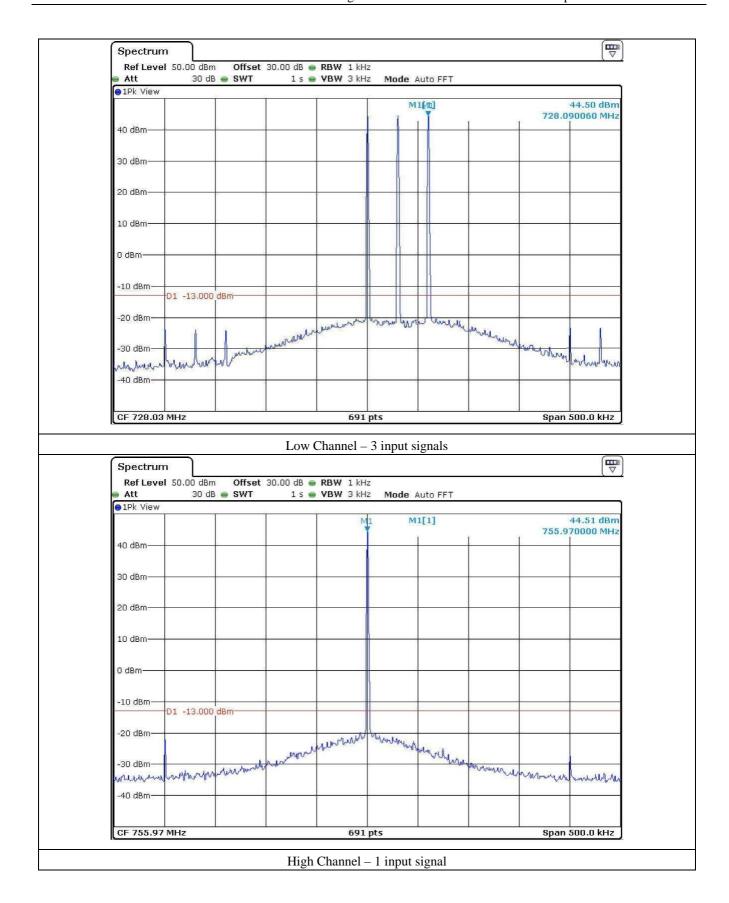
-. Test Date : February 17, 2012

-. Test Result : Pass

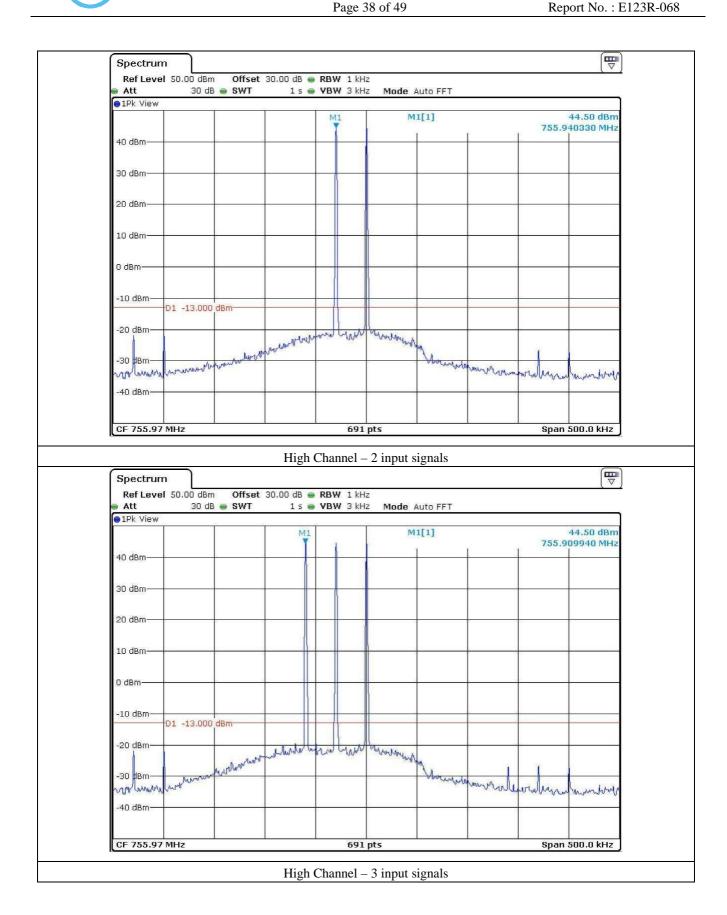
-. Modulation : No-Modulation


Frequency (MHz)	Number of Input Channel	Input Power (dBm)	Output Power (dBm)
728.030	1	-9.90	44.51
728.030 & 728.060	2	-9.90	44.51
728.030 & 728.06 & 728.09	3	-9.80	44.50
755.970	1	-9.80	44.51
755.970 & 755.940	2	-9.80	44.50
755.970 & 755.940 & 755.910	3	-9.90	44.50

Tested by: Ki-Hong, Nam / Senior Engineer


Page 36 of 49 Report No. : E123R-068

ONETECH



Page 39 of 49 Report No. : E123R-068

9.3.2 Test Result for Spurious emission

-. Test Date : February 17, 2012

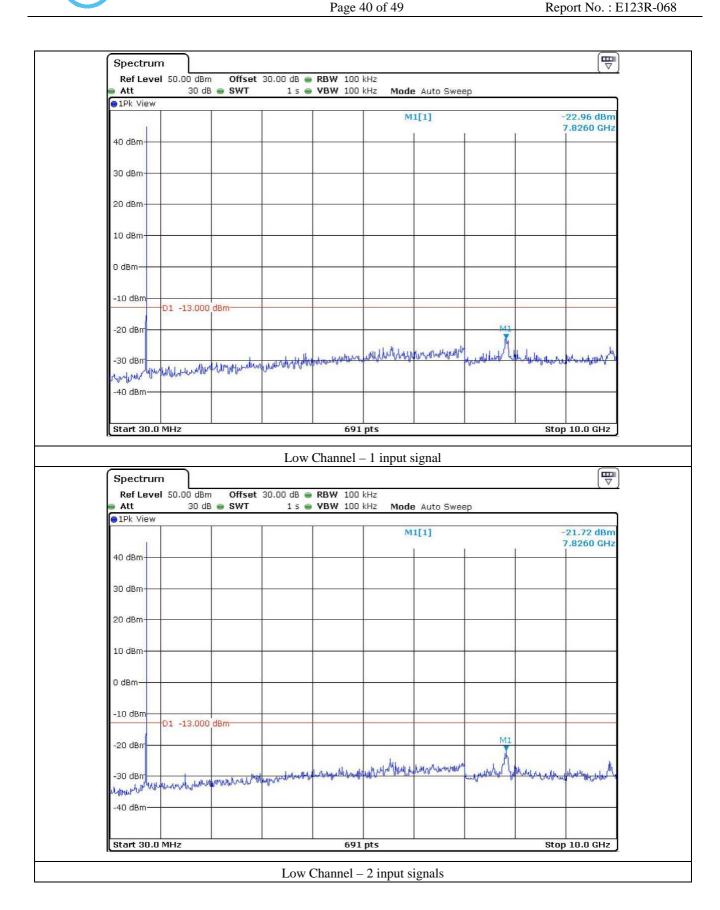
-. Test Result : Pass

-. Modulation : No-Modulation

Frequency (MHz)	Number of Input Channel	Measured Value	Result
728.030	1		
728.030 & 728.060	2	< -13 dBm	Pass
728.030 & 728.06 & 728.09	3		
755.970	1		
755.970 & 755.940	2	< -13 dBm	Pass
755.970 & 755.940 & 755.910	3		

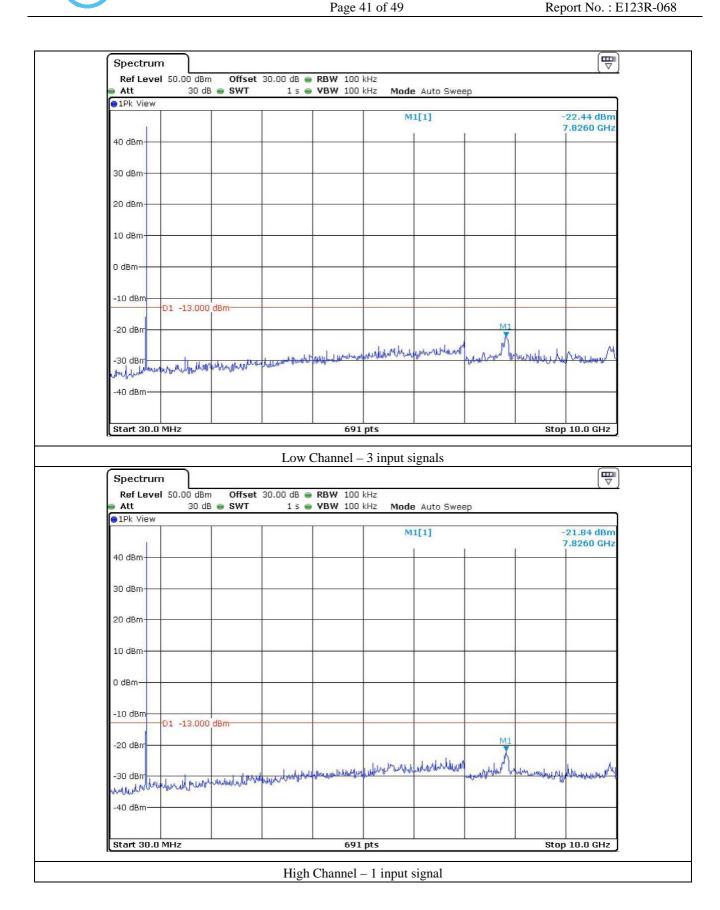
Remark: Intermodulation products must be attenuated below the rated power of the EUT at least 43 + 10log (Pw), equivalent to -13 dBm. Please refer to test data hereinafter.

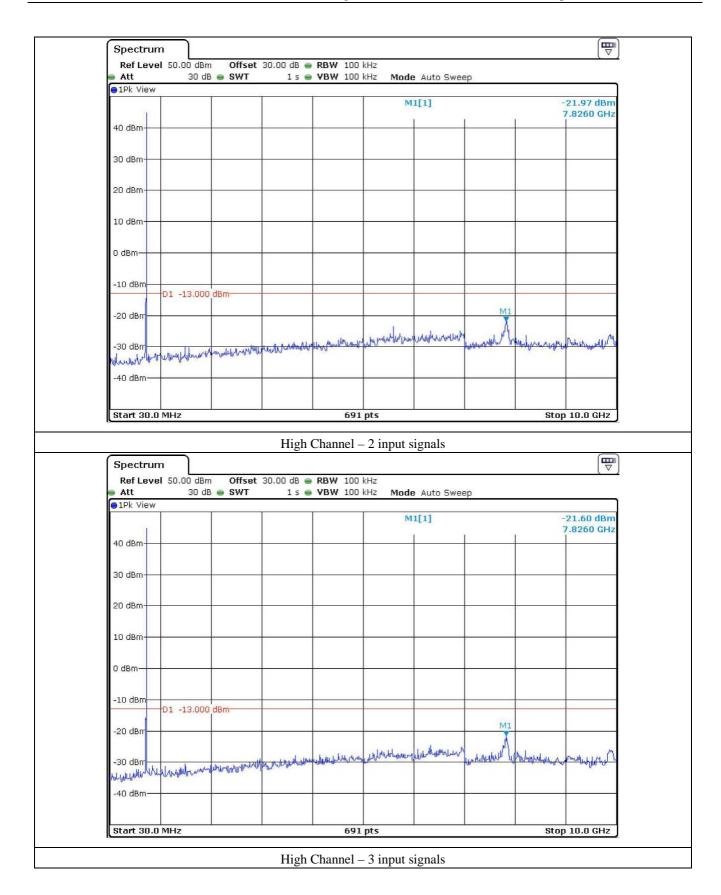
公门意

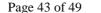

Tested by: Ki-Hong, Nam / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)







Page 42 of 49 Report No. : E123R-068

10. FIELD STRENGTH OF SPURIOUS RADIATION

10.1 Operating environment

Temperature : 8 °C

Relative humidity : 42 % R.H.

10.2 Test set-up

The radiated emissions measurements were on the 3 m, open-field test site. The EUT and other support equipment were placed on a non-conductive turntable above the ground plane. The interconnecting cables from outside test site were inserted into ferrite clamps at the point where the cables reach the turntable.

The frequency spectrum from 30 MHz to up to 10th harmonic of the fundamental frequency was scanned and emission levels maximized at each frequency recorded. The system was rotated 360°, and the antenna was varied in height between 1.0 m and 4.0 m in order to determine the maximum emission levels. The test was performed by placing the EUT on 3-orthogonal axis. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

The maximum radiated emission was recorded and used as reference for the effective radiated power measurement. The EUT was then replaced by a tuned dipole antenna or Horn antenna and was oriented for vertical polarization and then the length was adjusted to correspond to the frequency of the transmitter. The substitution antenna was connected to a signal generator with a coaxial cable. The receiving antenna height was raised and lowered again through the specified range of height until maximum signal level is detected by the measuring receiver. The signal to the substitution antenna was adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the EUT radiated power measured, corrected for the change of input attenuation setting of the measuring receiver. The signal generator level was recorded and corrected by the power loss in the cable between the signal generator and substitution antenna and further corrected for the gain of the dipole antenna or horn antenna used relative to an ideal tuned dipole antenna. The measurement was repeated with the test antenna and the substitution antenna oriented for horizontal polarization. The measure of the effective radiated power is the larger of the two levels recorded.

10.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
□ -	ESVD	Rohde & Schwarz	EMI Test Receiver	838453/018	Oct. 20, 2011 (1Y)
□-	8564E	Hewlett-Packard	Spectrum Analyzer	3650A00756	Jun. 10, 2011 (1Y)
■ -	83051A	Agilent	Preamplifier	3950M00201	Jun. 11, 2011 (1Y)
□ -	E4432B	Hewlett-Packard	Signal Generator	US38440950	Jun. 10, 2011 (1Y)
□ -	83650L	Hewlett-Packard	Signal Generator	3844A00415	Jun. 10, 2011 (1Y)
■ -	BBHA9120D	Schwarzbeck	Horn Antenna	BBHA9120D294	Aug. 23, 2011 (2Y)
■ -	BBHA9120D	Schwarzbeck	Horn Antenna	BBHA9120D295	Aug. 23, 2011 (2Y)
■ -	BBHA9170	Schwarzbeck	Horn Antenna	BBHA9170179	Aug. 23, 2011 (2Y)
■ -	SMJ100A	R/S	Signal Generator	101038	Feb. 01, 2012 (1Y)
□-	FSP	R/S	Spectrum Analyzer	100017	Mar. 16, 2011 (1Y)
■ -	FSV30	R/S	Spectrum Analyzer	101372	Aug. 29, 2011 (1Y)

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

10.4 Test data

-. Test Date : February 17, 2012

-. Resolution bandwidth : 120 kHz (below 1 GHz), 1 MHz (above 1 GHz)
 -. Video bandwidth : 300 kHz (below 1 GHz), 3 MHz (above 1 GHz)

-. Frequency range : 1 GHz ~ 10 GHz

-. Measurement distance : 3 m

-. Result : <u>PASSED BY -48.25 dB at 136.80 MHz</u>

Frequency •		Generator Reading (dBm)	Ant. Gain (dBi)	Ant. Pol. (H/V)	Cable Loss (dB)	Total (dBm)	Limit (dBm)	Margin (dB)	
	722.00	76.50	7.09	1.07	Н	2.22	4.83	-	-
Low	733.00	78.10	8.93	1.07	V	3.33	6.67	-	-
		76.30	6.90		Н		4.60	-	-
Middle	743.00	78.20	9.07	1.03	V	3.33	6.77	-	-
	752.00	76.60	7.20		Н		4.85	-	-
High		78.40	9.25	0.98	V	3.33	6.90	-	-
38	8.00	29.50	-64.50	1.22	V	2.21	-65.49	-13.00	-52.49
42	2.83	28.17	-64.83	1.53	V	0.85	-62.45	-13.00	-49.45
13	6.80	35.17	-65.17	2.57	Н	1.35	-61.25	-13.00	-48.25
163.86		32.50	-66.00	2.92	Н	1.22	-61.86	-13.00	-48.86

Other frequencies have margin more than 20 dB.

Tabulated test data for Restricted Band

Remark: "H": Horizontal, "V": Vertical

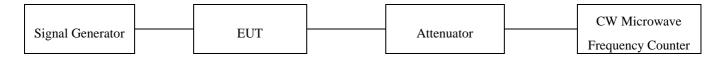
Report No. : E123R-068

Tested by: Ki-Hong, Nam / Senior Engineer

EMC-003 (Rev.2)

It should not be reproduced except in full, without the written approval of ONETECH.

11. FREQUENCY STABILITY WITH TEMPERATURE VARIATION


11.1 Operating environment

Temperature : $20 \, ^{\circ}\text{C}$ Relative humidity : $52 \, \% \, \text{R.H.}$

11.2 Test set-up

The RF signal from the signal generator(s) was injected to the EUT and the amplified RF signal at the output of the EUT was connected to the CW Microwave Frequency Counter. The test was performed at Middle channel at each band using all applicable unmodulation.

Turn EUT off and set chamber temperature to -30 °C and then allow sufficient time (approximately 20 min to 30 min after chamber reach the assigned temperature) for EUT to stabilize. Turn on the EUT and measure the EUT operating frequency and then turn off the EUT after the measurement. The temperature in the chamber was raised 10 °C step from -30 °C to +50 °C. Repeat above method for frequency measurements every 10 °C step and then record all measured frequencies on each temperature step.

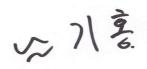
11.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
□-	E4432B	HP	Signal Generator	US38440950	June 10, 2011 (1Y)
■ -	SMJ100A	R/S	Signal Generator	101038	Feb. 01, 2012 (1Y)
□-	FSP	R/S	Spectrum Analyzer	100017	Mar. 15, 2011 (1Y)
□-	8564E	HP	Spectrum Analyzer	3650A00756	Jun. 10, 2011 (1Y)
□-	FSV30	R/S	Spectrum Analyzer	101372	Aug. 29, 2011 (1Y)
■-	53152A	R/S	CW Microwave Frequency Counter	US39270295	Dec. 30, 2011 (1Y)
■-	67-30-43	Aeroflex Weinschel	Power Attenuator	CA5760	Nov. 30, 2011 (1Y)
■ -	SSE-43CI-A	Samkun Tech	Chamber	060712	Jun. 11, 2011(1Y)

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)



11.4 Test data

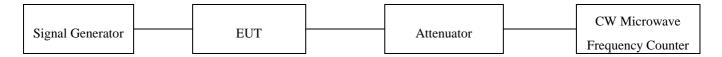
-. Test Date : February 16 ~ 17, 2012

-. Result : PASSED

Temperature (*C)	Input Freq. (Hz)	Measured Freq. (Hz)	Result (PPM)	Limit
-30		742 000 001	0.001 3	
-20		742 000 001	0.001 3	
-10		742 000 002	0.002 7	
0		742 000 001	0.001 3	Within the
10	742 000 000	742 000 002	0.002 7	Authorized
20		742 000 001	0.001 3	Frequency block
30		742 000 001	0.001 3	
40		742 000 002	0.002 7	
50		742 000 001	0.001 3	

Tested by: Ki-Hong, Nam / Senior Engineer

12. FREQUENCY STABILITY WITH VOLTAGE VARIATION


12.1 Operating environment

Temperature : $23 \, ^{\circ}\text{C}$ Relative humidity : $50 \, \% \, \text{R.H.}$

12.2 Test set-up

The RF signal from the signal generator(s) was injected to the EUT and the amplified RF signal at the output of the EUT was connected to the CW Microwave Frequency Counter. The test was performed at Middle channel at each band using all applicable unmodulation.

The RF output port of the EUT was connected to the input of the spectrum analyzer. The signal generator was set to center frequency for each band with an un-modulated signal. The voltage of EUT set to 115 % of the nominal value and then was reduced to 85 % of nominal voltage. The output frequency was recorded at each step.

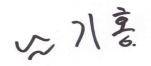
12.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
□-	E4432B	HP	Signal Generator	US38440950	June 10, 2011 (1Y)
■ -	SMJ100A	R/S	Signal Generator	101038	Feb. 01, 2012 (1Y)
□-	FSP	R/S	Spectrum Analyzer	100017	Mar. 15, 2011 (1Y)
□-	8564E	HP	Spectrum Analyzer	3650A00756	Jun. 10, 2011 (1Y)
□-	FSV30	R/S	Spectrum Analyzer	101372	Aug. 29, 2011 (1Y)
■ -	53152A	R/S	CW Microwave Frequency Counter	US39270295	Dec. 30, 2011 (1Y)
■ -	DH-60	Dea Kwang Elec.	Slidacs	N/A	Sep 03, 2011 (1Y)
■-	67-30-43	Aeroflex Weinschel	Power Attenuator	CA5760	Nov. 30, 2011 (1Y)

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)


Page 48 of 49 Report No. : E123R-068

12.3 Test data

-. Test Date : February 16 ~ 17, 2012

-. Result : PASSED

Voltage (Vac)	Input Freq. (Hz)	Measured Freq. (Hz)	Result (PPM)	Limit
138 (115 %)		742 000 002	0.002 7	Within the
120 (100 %)	742 000 000	742 000 001	0.001 3	Authorized
102 (85 %)		742 000 001	0.001 3	Frequency block

Tested by: Ki-Hong, Nam / Senior Engineer

Report No.: E123R-068

13. MAXIMUM PERMISSIBLE EXPOSURE

13.1 RF Exposure Calculation

According to the FCC rule 1.1310 table 1B, the limit for the maximum permissible RF exposure for an uncontrolled environment is f/1500 mW/cm² (=0.485) for the frequency range between 300 MHz and 1500 MHz.

The electric field generated for a 1mW/cm²exposure is calculated as follows:

$$E = \sqrt{(30 * P * G)} / d$$
, and $S = E^2 / Z = E^2 / 377$, because $1 \text{mW} / \text{cm}^2 = 10 \text{W} / \text{m}^2$

Where

S = Power density in mW/cm², Z = Impedance of free space, 377Ω

E = Electric filed strength in Volts/m, G = Numeric antenna gain, and d = distance in meter

Combing equations and rearranging the terms to express the distance as a function of the remaining variable

$$d = \sqrt{(30*P*G)/(3770*S)}$$

Changing to units of mW and cm, using P(mW) = P(W) / 1000, d(cm) = 100 * d(m)

$$d = 0.282 * \sqrt{(P*G)/S}$$

Where

d = distance in cm, P = Power in mW, G = Numeric antenna gain, and S = Power density in mW/cm²

13.2 Calculated MPE Safe Distance and Density

According to above equation, the following result was obtained.

Peak Output Power		Antenna	ı Gain	Safe Distance	Power Density (mW/cm²)	FCC Limit
(dBm)	(mW)	Log	Linear	(cm)	@ 100 cm Separation	(mW/cm²)
44.50	28 183.8	2.0	1.58	85.45	0.35	0.485

According to above table, safe distance, D = $0.282 * \sqrt{(28\ 183.8 * 1.58) / 0.485} = 85.45 \text{ cm}$.

For getting power density at 20 cm separation in above table, following formula was used.

$$S = P * G / (4\pi * R^2) = 1000 * 1.58 / (4 * 3.14 * 100^2) = 0.35$$

Where:

S = Power Density,

P = Power input to the external antenna (Output power from the EUT antenna port (dBm) - cable loss (dB)),

G = Gain of Transmit Antenna (linear gain), R = Distance from Transmitting Antenna

Note: End users and installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF exposure compliance, because the applicant does not provide an antenna for sale with the EUT.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)