

SAR TEST REPORT

Product Name 300Mbps Mini Wireless N USB Adapter

Model RNX-N300UB

FCC ID W6RRNX-N300UB

Client Rosewill Inc.

Manufacturer Rosewill Inc.

Date of issue May 13, 2015

TA Technology (Shanghai) Co., Ltd.

Report No.: RXA1504-0047SAR01R2 Page 2 of 61

GENERAL SUMMARY

	FCC 47CFR §2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices
	ANSI C95.1, 1992: Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.(IEEE Std C95.1-1991)
	IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
Reference Standard(s)	KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03: SAR Measurement Requirements for 100 MHz to 6 GHz
	KDB 447498 D02 SAR Procedures for Dongle Xmtr v02: SAR Measurement Procedures for USB Dongle Transmitters.
	KDB 447498 D01 Mobile Portable RF Exposure v05r02: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
	KDB 248227 D01 802.11 Wi-Fi SAR v02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS
Conclusion	This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards for the tested bands only.
	General Judgment: Pass
Comment	The test result only responds to the measured sample.

Director

SAR Manager

Liang Ye

SAR Engineer

TABLE OF CONTENT

1. General Information	4
1.1. Notes of the Test Report	4
1.2. Testing Laboratory	4
1.3. Applicant Information	5
1.4. Manufacturer Information	
1.5. Information of EUT	6
1.6. The Maximum Reported SAR _{1q} Values	
1.7. Test Date	
2. SAR Measurements System Configuration	7
2.1. SAR Measurement Set-up	
2.2. DASY5 E-field Probe System	8
2.2.1. EX3DV4 Probe Specification	
2.2.2. E-field Probe Calibration	
2.3. Other Test Equipment	9
2.3.1. Device Holder for Transmitters	
2.3.2. Phantom	10
2.4. Scanning Procedure	10
2.5. Data Storage and Evaluation	
2.5.1. Data Storage	
2.5.2. Data Evaluation by SEMCAD	12
3. Laboratory Environment	
4. Tissue-equivalent Liquid	
4.1. Tissue-equivalent Liquid Ingredients	
4.2. Tissue-equivalent Liquid Properties	
5. System Check	16
5.1. Description of System Check	
5.2. System Check Results	17
6. Operational Conditions during Test	18
6.1. General Description of Test Procedures	
6.2. Test Positions	20
6.3. Picture of Host Product	21
7. Test Results	22
7.1. Conducted Power Results	22
7.2. SAR Test Results	28
7.2.1. WiFi	28
8. Measurement Uncertainty	29
9. Main Test Instruments	30
ANNEX A: Test Layout	
ANNEX B: System Check Results	
ANNEX C: Graph Results	
ANNEX D: Probe Calibration Certificate	
ANNEX E: D2450V2 Dipole Calibration Certificate	46
ANNEX F: DAE4 Calibration Certificate	54
ANNEX G: The EUT Appearances and Test Configuration	59

Report No.: RXA1504-0047SAR01R2 Page 4 of 61

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L2264.

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. The sample undergoing test was selected by the Client. This report only refers to the item that has undergone the test.

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of **TA Technology (Shanghai) Co., Ltd.**

If the electronic report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

Report No.: RXA1504-0047SAR01R2 Page 5 of 61

1.3. Applicant Information

Company: Rosewill Inc.

Address: 17708 Rowland Street, City of Industry, CA 91748, USA

1.4. Manufacturer Information

Company: Rosewill Inc.

Address: 17708 Rowland Street, City of Industry, CA 91748, USA

Report No.: RXA1504-0047SAR01R2 Page 6 of 61

1.5. Information of EUT

General Information

Device Type:	Portable Device				
Exposure Category:	Uncontrolled Environment /Genera	Uncontrolled Environment /General Population			
State of Sample:	Prototype Unit				
SN:	1				
Hardware Version:	1				
Software Version:	1				
Antenna Type:	Internal Antenna				
Device Operating Configurations					
Test Mode(s):	802.11b/g/n HT20/HT40;				
	Mode	Tx (MHz)			
Test Frequency Range(s):	802.11b/g/n HT20	2412 ~ 2462MHz			
	802.11n HT40 2422 ~ 2452MHz				
Used Host Products:	sed Host Products: IBM T61				

The EUT has two WIFI antennas that can be used for Tx/Rx. Only antenna A can work for 802.11b/g, The two antennas can MIMO work (Multi-input Multi-output) for 802.11n. 802.11n can only work in MIMO.

1.6. The Maximum Reported SAR_{1g} Values

Body SAR Configuration

				Limit SAR _{1g} 1.6 W/kg		
Mode	Test Position	Channel /Frequency(MHz)	Separation distance	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)	
(802.11b)	Test Position 2/ Front side	6/2437	5 mm	0.575	0.719	

1.7. Test Date

The variant model test performed on May 7, 2015.

Report No.: RXA1504-0047SAR01R2 Page 7 of 61

2. SAR Measurements System Configuration

2.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.
 The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

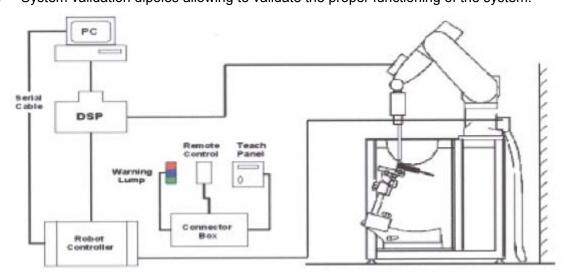


Figure 1. SAR Lab Test Measurement Set-up

Report No.: RXA1504-0047SAR01R2 Page 8 of 61

2.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

2.2.1. EX3DV4 Probe Specification

Construction Symmetrical design with triangular core

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe axis)

± 0.5 dB in tissue material (rotation normal

to probe axis)

Dynamic Range 10 μ W/g to > 100 mW/g Linearity:

 \pm 0.2dB (noise: typically < 1 μ W/g)

Dimensions Overall length: 330 mm (Tip: 20 mm) Tip

diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers:

1 mm

Application High precision dosimetric

measurements in any exposure

testing for frequencies up to 6 GHz

scenario (e.g., very strong gradient fields). Only probe which enables compliance

with precision of better 30%.

Figure 2.EX3DV4 E-field Probe

Figure 3. EX3DV4 E-field probe

Report No.: RXA1504-0047SAR01R2 Page 9 of 61

2.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

2.3. Other Test Equipment

2.3.1. Device Holder for Transmitters

Construction: Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.) It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin SAM, ELI4 and SAM v6.0 Phantoms.

Material: POM, Acrylic glass, Foam

Report No.: RXA1504-0047SAR01R2 Page 10 of 61

2.3.2. Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2±0.1 mm Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W) Aailable Special



Figure 4 Generic Twin Phantom

2.4. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing is set according to FCC KDB Publication 865664. During scan the distance of the probe to the

Report No.: RXA1504-0047SAR01R2 Page 11 of 61

phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation.

 A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Table 1: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01

Frequency	Maximum Area Scan Resolution (mm) $(\Delta \mathbf{x}_{\text{area}}, \Delta \mathbf{y}_{\text{area}})$	Maximum Zoom Scan Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Maximum Zoom Scan Spatial Resolution (mm) $\Delta z_{zoom}(n)$	Minimum Zoom Scan Volume (mm) (x,y,z)
≤ 2 GHz	≤ 15	≤ 8	≤ 5	≥ 30
2-3 GHz	≤ 12	≤ 5	≤ 5	≥ 30
3-4 GHz	≤ 12	≤ 5	≤ 4	≥ 28
4-5 GHz	≤ 10	≤ 4	≤ 3	≥ 25
5-6 GHz	≤ 10	≤ 4	≤ 2	≥ 22

Report No.: RXA1504-0047SAR01R2 Page 12 of 61

2.5. Data Storage and Evaluation

2.5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, a_{i0} , a_{i1} , a_{i2}

Conversion factor ConvF_i
 Diode compression point Dcp_i

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for

Report No.: RXA1504-0047SAR01R2 Page 13 of 61

peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot})^2 \cdot \sigma / (\rho \cdot 1000)$$

with **SAR** = local specific absorption rate in mW/g

Report No.: RXA1504-0047SAR01R2 Page 14 of 61

 $\boldsymbol{E_{tot}}$ = total field strength in V/m

= conductivity in [mho/m] or

[Siemens/m]

= equivalent tissue density in

g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

3. Laboratory Environment

Table 2: The Requirements of the Ambient Conditions

Temperature	Min. = 18°C, Max. = 25 °C			
Relative humidity	Min. = 30%, Max. = 70%			
Ground system resistance	< 0.5 Ω			
Ambient noise is checked and found very low and in compliance with requirement of standards.				

Reflection of surrounding objects is minimized and in compliance with requirement of standards.

Report No.: RXA1504-0047SAR01R2 Page 15 of 61

4. Tissue-equivalent Liquid

4.1. Tissue-equivalent Liquid Ingredients

The liquid is consisted of water, salt, Glycol, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The table 3 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB 865664 D01.

Table 3: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body) 2450MHz		
Water	73.2		
Glycol	26.7		
Salt	0.1		
Dielectric Parameters Target Value	f=2450MHz ε=52.70 σ=1.95		

4.2. Tissue-equivalent Liquid Properties

Table 4: Dielectric Performance of Tissue Simulating Liquid

Francis	Toot Data	Temp Temp		Measured Dielectric Parameters		Target Dielectric Parameters		Limit (Within ±5%)	
Frequency	Test Date	C	٤ _r	σ(s/m)	٤r	σ(s/m)	Dev ε _r (%)	Dev σ(%)	
2450MHz (body)	2015-5-7	21.5	52.1	1.99	52.7	1.95	-1.14	2.05	

Report No.: RXA1504-0047SAR01R2 Page 16 of 61

5. System Check

5.1. Description of System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 6 and table 7.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

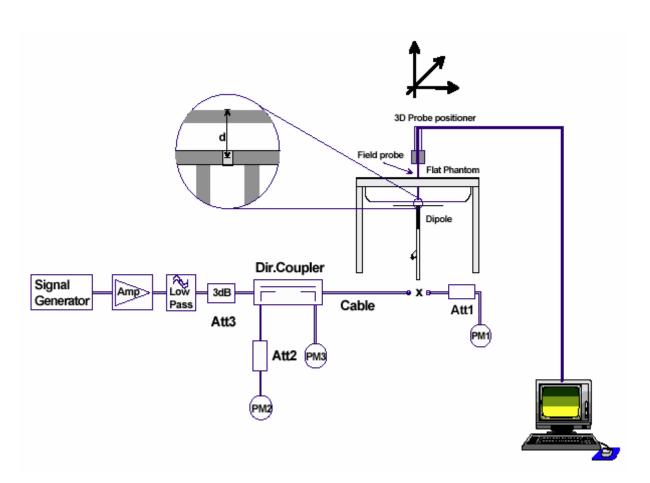


Figure 5. System Check Set-up

Report No.: RXA1504-0047SAR01R2 Page 17 of 61

5.2. System Check Results

Table 5: System Check in Body Tissue Simulating Liquid

Frequency	Test Date	Dielectric Parameters		250mW Measured SAR _{1g}	1W Normalized SAR _{1g}	1W Target SAR _{1g}	Limit (±10%
		ε _r	σ(s/m)		(W/kg)		Deviation)
2450MHz	2015-5-7	52.1	1.99	13.20	52.80	52.40	0.76

Note: 1. The graph results see ANNEX B.

2. Target Values used derive from the calibration certificate.

Report No.: RXA1504-0047SAR01R2 Page 18 of 61

6. Operational Conditions during Test

6.1. General Description of Test Procedures

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial test position(s)* by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The *initial test position(s)* is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the *reported* SAR for the *initial test position* is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the *initial* test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - → For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - ♦ When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the *initial test position* and subsequent test positions, when the *reported* SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the *reported* SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.

To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position.

Report No.: RXA1504-0047SAR01R2 Page 19 of 61

Measurement Variability

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Report No.: RXA1504-0047SAR01R2 Page 20 of 61

6.2. Test Positions

The measurements were performed in combination with a host product (IBM T61). IBM T61 laptop has horizontal USB slot and vertical USB slot.

A test distance of 5mm or less, according to KDB 447498 D02, should be considered for the orientation that can satisfy such requirements.

For each channel, the EUT is tested at the following 4 test positions:

- Test Position 1: The EUT is connected to the portable computer with horizontal USB slot. The back side of the EUT towards the bottom of the flat phantom. The distance from back side of the EUT to the bottom of the flat phantom is 5mm. (ANNEX L Picture 5)
- Test Position 2: The EUT is connected to the portable computer through a 19 cm USB cable.
 The front side of the EUT towards the bottom of the flat phantom. The distance from front side of the EUT to the bottom of the flat phantom is 5mm. (ANNEX L Picture 6)
- Test Position 3: The EUT is connected to the portable computer through a 19 cm USB cable.
 The left side of the EUT towards the bottom of the flat phantom. The distance from left side of the EUT to the bottom of the flat phantom is 5mm. (ANNEX L Picture 7)
- Test Position 4: The EUT is connected to the portable computer with vertical USB slot. The right side of the EUT towards the bottom of the flat phantom. The distance from right side of the EUT to the bottom of the flat phantom is 5mm. (ANNEX L Picture 8)

Report No.: RXA1504-0047SAR01R2 Page 21 of 61

6.3. Picture of Host Product

During the test, IBM T61 laptop was used as an assistant to help to setup communication. (See Picture 1)

Picture 1-a: IBM T61 Close

Picture 1-b: IBM T61 Open

Picture 1-c: IBM T61 with horizontal USB slot

Picture 1-d: IBM T61 with Vertical USB slot

a 19 cm USB cable

Picture 1: Computer as a test assistant

Report No.: RXA1504-0047SAR01R2 Page 22 of 61

7. Test Results

7.1. Conducted Power Results

Table 6: Conducted Power Measurement Results
Antenna A

Mode	Channel	Data rate	AV Power (dBm)
		1 Mbps	16.88
	1	2 Mbps	16.76
	1	5.5 Mbps	16.63
		11 Mbps	16.59
		1 Mbps	17.03
441-		2 Mbps	16.92
11b	6	5.5 Mbps	16.84
		11 Mbps	16.81
		1 Mbps	16.94
	44	2 Mbps	16.82
	11	5.5 Mbps	16.73
		11 Mbps	16.65
		6 Mbps	16.20
		9 Mbps	15.85
		12 Mbps	15.61
	4	18 Mbps	15.22
	1	24 Mbps	15.07
		36 Mbps	14.91
		48 Mbps	14.84
		54 Mbps	14.35
11g		6 Mbps	18.96
		9 Mbps	18.90
		12 Mbps	18.83
		18 Mbps	18.78
	6	24 Mbps	18.73
		36 Mbps	18.67
		48 Mbps	18.61
		54 Mbps	18.53
	11	6 Mbps	14.26

Report No.: RXA1504-0047SAR01R2 Page 23 of 61

		9 Mbps	14.17
		12 Mbps	14.11
		18 Mbps	14.04
		24 Mbps	14.00
		36 Mbps	13.95
		48 Mbps	13.88
		54 Mbps	13.82
		MCS 8	14.62
		MCS 9	14.38
		MCS 10	14.16
	4	MCS 11	13.94
	1	MCS 12	13.82
		MCS 13	13.67
		MCS 14	13.49
		MCS 15	13.23
		MCS 8	18.90
		MCS 9	18.83
		MCS 10	18.77
44 ~ LITOO	6	MCS 11	18.66
11n HT20	6	MCS 12	18.63
		MCS 13	18.58
		MCS 14	18.53
		MCS 15	18.43
		MCS 8	10.89
		MCS 9	10.84
		MCS 10	10.75
	44	MCS 11	10.7
	11	MCS 12	10.66
		MCS 13	10.61
		MCS 14	10.53
		MCS 15	10.47
		MCS 8	14.10
44 11740	0	MCS 9	14.02
11n HT40	3	MCS 10	13.96
		MCS 11	13.91
		•	

Report No.: RXA1504-0047SAR01R2 Page 24 of 61

		MCS 12	13.84
		MCS 13	13.82
		MCS 14	13.76
		MCS 15	13.70
		MCS 8	18.51
		MCS 9	18.46
		MCS 10	18.40
		MCS 11	18.37
	6	MCS 12	18.32
		MCS 13	18.28
		MCS 14	18.23
		MCS 15	18.17
		MCS 8	10.87
		MCS 9	10.79
		MCS 10	10.72
	0	MCS 11	10.63
	9	MCS 12	10.56
		MCS 13	10.50
		MCS 14	10.47
		MCS 15	10.35

Report No.: RXA1504-0047SAR01R2 Page 25 of 61

Antenna B

Mode	Channel	Data rate	AV Power (dBm)	
		MCS 8	14.77	
		MCS 9	14.53	
		MCS 10	14.31	
	4	MCS 11	14.07	
	1	MCS 12	13.86	
		MCS 13	14.77 14.53 14.31 14.07	
		MCS 14	14.77 14.53 14.07 13.86 13.62 13.48 13.32 18.97 18.91 18.84 18.79 18.72 18.66 18.59 18.52 12.06 12.02 11.89 11.84 11.7 11.63 14.97 14.88 14.81 14.72 14.68 14.63	
		MCS 15	13.32	
		MCS 8	18.97	
		MCS 9	18.91	
		MCS 10	18.84	
44 - LITOO		MCS 11	18.79	
11n HT20	6	MCS 12	18.72	
		MCS 13	18.66	
		MCS 14	18.59	
		MCS 15	18.52	
		MCS 8	12.06	
		MCS 9	12.02	
		MCS 10	12.02 11.95	
	44	MCS 11	11.89	
	11	MCS 12	11.84	
		MCS 13	11.76	
		MCS 14	11.7	
		MCS 15	11.63	
		MCS 8	14.97	
		MCS 9	14.88	
		MCS 10	14.81	
11 n LIT 40	2	MCS 11	14.77	
11n HT40	3	MCS 12	14.72	
		MCS 13	14.68	
		MCS 14	14.63	
		MCS 15	14.61	

Report No.: RXA1504-0047SAR01R2 Page 26 of 61

		MCS 8	19.07
		MCS 9	19.01
		MCS 10	18.92
	6	MCS 11	18.80
	0	MCS 12	18.75
		MCS 13	18.69
		MCS 14	18.61
		MCS 15	18.55
		MCS 8	12.15
		MCS 9	12.08
		MCS 10	12.01
		MCS 11	11.97
	9	MCS 12	11.92
		MCS 13	11.86
		MCS 14	11.77
		MCS 15	11.70

MIMO

		MCS 8	17.71	
		MCS 9	17.47	
		MCS 10	17.25	
	1	MCS 11	17.01	
	l	MCS 12	16.85	
		MCS 13	16.65	
		MCS 14	16.50	
		MCS 15	16.28	
11n HT20		MCS 15 MCS 8 MCS 9 MCS 10	21.95	
			21.88 21.81	
	6	MCS 11	21.74	
	0	MCS 12	21.69	
		MCS 13	21.63	
	MCS 14	21.57		
		MCS 15	21.48	
	11	MCS 8	14.52	

Report No.: RXA1504-0047SAR01R2 Page 27 of 61

		1		
		MCS 9	14.48	
		MCS 10	14.40	
		MCS 11	14.35	
		MCS 12	14.30	
		MCS 13	14.24	
		MCS 14	14.16	
		MCS 15	14.10	
		MCS 8	17.57	
		MCS 9	17.48	
		MCS 10	17.42	
	0	MCS 11	17.37	
	3	MCS 10 MCS 11 MCS 12 MCS 13 MCS 14 MCS 15 MCS 8 MCS 9 MCS 10	17.31	
		MCS 13	17.28	
		MCS 14 MCS 15 MCS 8	17.23	
			17.19	
		MCS 8	21.81	
			21.75	
		MCS 10	14.40 14.35 14.30 14.24 14.16 14.10 17.57 17.48 17.42 17.37 17.31 17.28 17.23 17.19 21.81	
44 - 11740	0	MCS 11	21.60	
11n HT40	6	MCS 10 MCS 11 MCS 12 MCS 13 MCS 14 MCS 15 MCS 8 MCS 9 MCS 10 MCS 11 MCS 12 MCS 13 MCS 14 MCS 15 MCS 8 MCS 9 MCS 10 MCS 11 MCS 15 MCS 8 MCS 9 MCS 10 MCS 11 MCS 11 MCS 11 MCS 12 MCS 11 MCS 12 MCS 13 MCS 14 MCS 15 MCS 14 MCS 15 MCS 14 MCS 15 MCS 14 MCS 15 MCS 11 MCS 15 MCS 11 MCS 11 MCS 11 MCS 11 MCS 11	21.55	
		MCS 13	21.50	
		MCS 11 MCS 12 MCS 13 MCS 14 MCS 15 MCS 8 MCS 9 MCS 10 MCS 11 MCS 12 MCS 13 MCS 14 MCS 15 MCS 8 MCS 9 MCS 10 MCS 11 MCS 15 MCS 8 MCS 9 MCS 10 MCS 11 MCS 11 MCS 12 MCS 11 MCS 12 MCS 13 MCS 14 MCS 15 MCS 14 MCS 15 MCS 11 MCS 12 MCS 13 MCS 14 MCS 15 MCS 14 MCS 15 MCS 14 MCS 15 MCS 11 MCS 15 MCS 11 MCS 15 MCS 11 MCS 11	21.43	
		MCS 15	21.37	
		MCS 8	14.57	
		MCS 9	14.50	
		MCS 10	14.42	
	2	MCS 11	14.36	
	9	MCS 12	14.30	
		MCS 13	14.24	
		MCS 14	14.18	
		MCS 15	14.09	

Report No.: RXA1504-0047SAR01R2 Page 28 of 61

7.2. SAR Test Results

7.2.1. WiFi

Table 7: SAR Values

Channel		onnel/		Maximum		Avec Coon	Limit of SAR 1.6 W/kg			
Test Position	Channel/ Frequency (MHz)	Mode	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Area Scan Max. SAR (W/kg)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
	Test Position of Body antenna A (Distance 5mm)									
Test Position 1	6/2437	DSSS	1:1	18	17.03	0.625	0.567	1.25	0.709	1
Test Position 2	6/2437	DSSS	1:1	18	17.03	0.658	0.575	1.25	0.719	Figure 7
Test Position 3	6/2437	DSSS	1:1	18	17.03	0.073	1	/	/	1
Test Position 4	6/2437	DSSS	1:1	18	17.03	0.308	1	/	/	1
	802.11n MIMO									
Test Position 2	6/2437	OFDM	1:1	22	21.81	1	0.304	1.045	0.318	Figure 8

Note: 1. Highest reported SAR is \leq 0.4 W/kg. Therefore, further SAR measurements within this exposure condition are not required. Highest reported SAR is > 0.4 W/kg. Due to the highest reported SAR for this test position, other test positions in Head exposure condition were evaluated until a SAR \leq 0.8 W/kg was reported.

Table 8: SAR Test Reduction Procedure

Mode	Test Position	Channel/ Frequency (MHz)	The highest reported SAR of DSSS mode	DSSS mode tune up limit (dBm)	OFDM mode tune up limit (dBm)	Scaling Factor	The adjusted SAR
802.11g	Back Side	6/2437	0.719	18	19	1.25	0.899
(Antenna 1)	Dack Side	0/2437	0.719	10	19	1.25	0.099
802.11n	Back Side	6/2437	0.719	18	19	1.25	0.899
(Antenna 1)	Dack Side	0/2437	0.719	10	19	1.20	0.699
802.11n	Back Side	6/2437	0.494	18	19	1.25	0.618
(Antenna 2)	Dack Side	0/2437	0.494	10	19	1.23	0.016

Output Power and SAR is not required for 802.11g/n HT20 channels when the highest *reported* SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

^{3.}Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg.

Report No.: RXA1504-0047SAR01R2 Page 29 of 61

8. Measurement Uncertainty

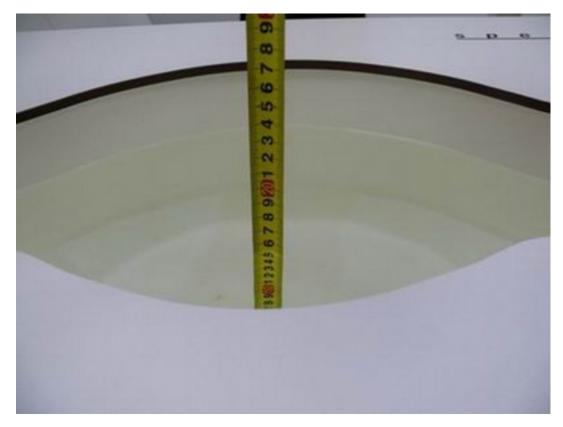
The measured SAR were <1.5 W/kg for all frequency bands, therefore per KDB Publication 865664 D01v01r03, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2003 is not required in SAR reports

Report No.: RXA1504-0047SAR01R2 Page 30 of 61

9. Main Test Instruments

Table 9: List of Main Instruments

No.	Name	Type	Serial	Calibration	Expiration	Valid
NO.	Name	Type	Number	Date	Time	Period
01	Network analyzer	E5071B	MY42404014	2014-05-26	2015-05-25	1 year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calil	bration Reques	ted
03	Power meter	Agilent E4417A	GB41291714	2015-03-08	2016-03-07	1 year
04	Power sensor	Agilent N8481H	MY50350004	2014-09-24	2015-09-23	1 year
05	Power sensor	E9327A	US40441622	2014-07-17	2015-07-16	1 year
06	Signal Generator	HP 8341B	2730A00804	2014-12-17	2015-12-16	1 year
07	Dual directional coupler	777D	50146	2015-03-15	2016-03-14	1 year
80	Amplifier	IXA-020	0401	No Calil	bration Reques	ted
09	E-field Probe	EX3DV4	3677	2015-01-30	2016-01-29	1 year
10	DAE	DAE4	1291	2014-11-14	2015-11-13	1 year
11	Validation Kit 2450MHz	D2450V2	786	2014-09-01	2017-08-31	3 years
12	Temperature Probe	JM222	AA1009129	2015-03-08	2016-03-07	1 year
13	Hygrothermograph	WS-1	64591	2014-09-25	2015-09-24	1 year


***END OF REPORT ***

Report No.: RXA1504-0047SAR01R2 Page 31 of 61

ANNEX A: Test Layout

Picture 2: Specific Absorption Rate Test Layout

Picture 3: Liquid depth in the flat Phantom (2450 MHz, 15.2cm depth)

Report No.: RXA1504-0047SAR01R2 Page 32 of 61

ANNEX B: System Check Results

System Performance Check at 2450 MHz Body TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Date: 5/7/2015

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.99 \text{ mho/m}$; $\epsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.42, 7.42, 7.42); Calibrated: 1/30/2015;

Electronics: DAE4 Sn1291; Calibrated: 11/14/2014

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 17.3 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.4 V/m; Power Drift = -0.093 dB

Peak SAR (extrapolated) = 26.1 W/kg

SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.27 mW/g Maximum value of SAR (measured) = 14.4 mW/g

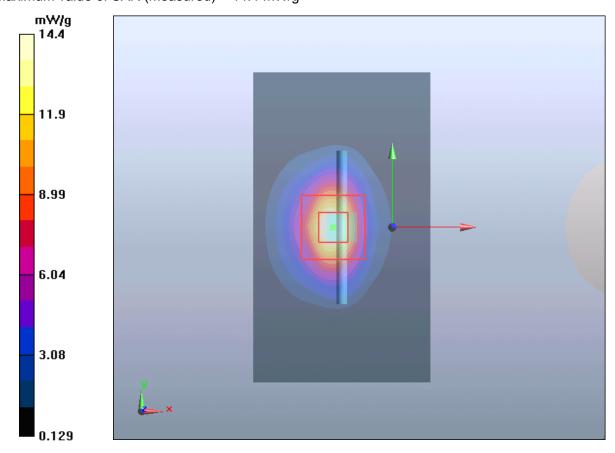


Figure 6 System Performance Check 2450MHz 250mW

Report No.: RXA1504-0047SAR01R2 Page 33 of 61

ANNEX C: Graph Results

Antenna A 802.11b Test Position 2 Middle

Date: 5/7/2015

Communication System: UID 0, 802.11b (0); Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.977$ S/m; $\epsilon_r = 52.177$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.42, 7.42, 7.42); Calibrated: 1/30/2015;

Electronics: DAE4 Sn1291; Calibrated: 11/14/2014

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Front Side 5mm/Middle/Area Scan (51x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.806 W/kg

Front Side 5mm/Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.73 V/m; Power Drift = -0.127 dB

Peak SAR (extrapolated) = 1.19 W/kg

SAR(1 g) = 0.575 W/kg; SAR(10 g) = 0.264 W/kg

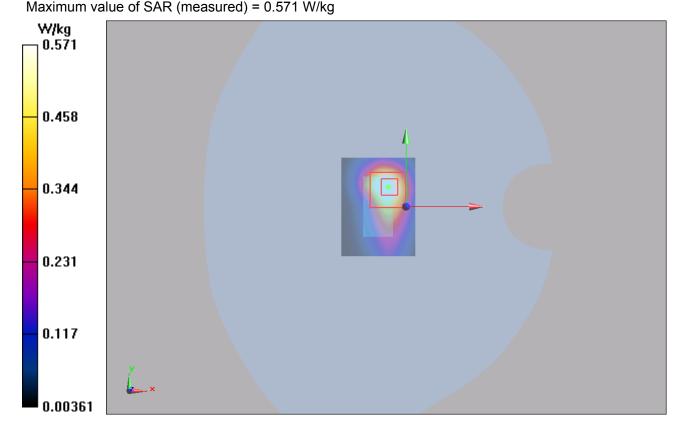


Figure 7 802.11b Test Position 2 Channel 6

Report No.: RXA1504-0047SAR01R2 Page 34 of 61

Antenna A and B 802.11n HT40 Test Position 2 Middle

Date/Time: 5/7/2015

Communication System: UID 0, 802.11n HT40 (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.977$ S/m; $\epsilon_r = 52.177$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.42, 7.42, 7.42); Calibrated: 1/30/2015;

Electronics: DAE4 Sn1291; Calibrated: 11/14/2014

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Front Side 5mm/Middle/Area Scan (51x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.466 W/kg

Front Side 5mm/Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.47 V/m; Power Drift = -0.118 dB

Peak SAR (extrapolated) = 0.632 W/kg

SAR(1 g) = 0.304 W/kg; SAR(10 g) = 0.145 W/kg Maximum value of SAR (measured) = 0.305 W/kg

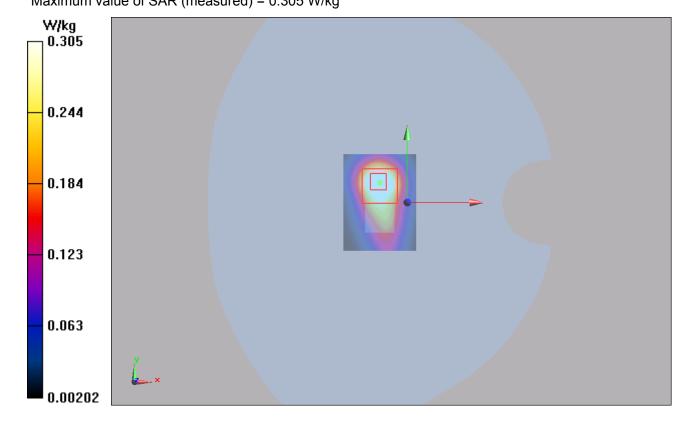


Figure 8 802.11n Test Position 2 Channel 6

Report No.: RXA1504-0047SAR01R2 Page 35 of 61

ANNEX D: Probe Calibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Client

TA-ShangHai

Certificate No: Z15-97010

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3677

Calibration Procedure(s)

FD-Z11-2-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

January 30, 2015

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) © and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Power sensor NRP-Z91	101547	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Power sensor NRP-Z91	101548	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Reference10dBAttenuator	18N50W-10dB	13-Mar-14(TMC,No.JZ14-1103)	Mar-16
Reference20dBAttenuator	18N50W-20dB	13-Mar-14(TMC,No.JZ14-1104)	Mar-16
Reference Probe EX3DV4	SN 3617	28-Aug-14(SPEAG,No.EX3-3617_Aug14)	Aug-15
DAE4	SN 777	17-Sep-14 (SPEAG, DAE4-777_Sep14)	Sep -15
Secondary Standards SignalGeneratorMG3700A	ID# 6201052605	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145)	Scheduled Calibration Jun-15
Network Analyzer E5071C	MY46110673	15-Feb-14 (TMC, No.JZ14-781)	Feb-15
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	DAY 5
Reviewed by:	Qi Dianyuan	SAR Project Leader	3031
Approved by:	Lu Bingsong	Deputy Director of the laboratory	harh
		Issued: Janua	rv 31 2015

Certificate No: Z15-97010

Page 1 of 11

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Report No.: RXA1504-0047SAR01R2 Page 36 of 61

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z15-97010

Report No.: RXA1504-0047SAR01R2 Page 37 of 61

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Probe EX3DV4

SN: 3677

Calibrated: January 30, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Report No.: RXA1504-0047SAR01R2 Page 38 of 61

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.41	0.46	0.40	±10.8%
DCP(mV) ⁸	101.9	102.0	104.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc E (k=2)
0 CW	Х	0.0	0.0	1.0	0.00	182.5	±2.3%	
		Y	0.0	0.0	1.0		198.5	
		Z	0.0	0.0	1.0		179.8	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Report No.: RXA1504-0047SAR01R2 Page 39 of 61

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3677

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.79	9.79	9.79	0.30	0.84	±12%
835	41.5	0.90	9.30	9.30	9.30	0.19	1.05	±12%
1750	40.1	1.37	8.02	8.02	8.02	0.21	1.14	±12%
1900	40.0	1.40	7.94	7.94	7.94	0.24	1.04	±12%
2450	39.2	1.80	7.22	7.22	7.22	0.65	0.68	±12%
2600	39.0	1.96	6.94	6.94	6.94	0.33	0.95	±12%
5200	36.0	4.66	5.55	5.55	5.55	0.42	1.18	±13%
5300	35.9	4.76	5.35	5.35	5.35	0.45	1.05	±13%
5600	35.5	5.07	5.05	5.05	5.05	0.42	1.26	±13%
5800	35.3	5.27	5.01	5.01	5.01	0.48	1.13	±13%

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies

between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Report No.: RXA1504-0047SAR01R2 Page 40 of 61

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

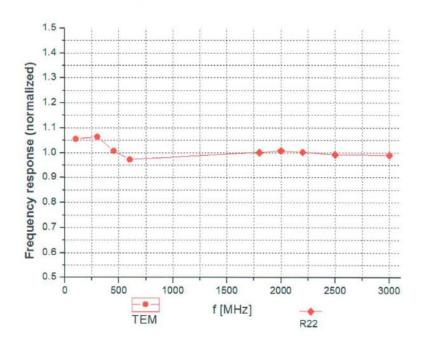
DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.53	9.53	9.53	0.15	1.46	±12%
835	55.2	0.97	9.45	9.45	9.45	0.17	1.35	±12%
1750	53.4	1.49	7.74	7.74	7.74	0.18	1.36	±12%
1900	53.3	1.52	7.57	7.57	7.57	0.18	1.31	±12%
2450	52.7	1.95	7.42	7.42	7.42	0.37	1.08	±12%
2600	52.5	2.16	7.29	7.29	7.29	0.40	0.97	±12%
5200	49.0	5.30	4.96	4.96	4.96	0.45	1.42	±13%
5300	48.9	5.42	4.76	4.76	4.76	0.46	1.48	±13%
5600	48.5	5.77	4.36	4.36	4.36	0.49	1.80	±13%
5800	48.2	6.00	4.45	4.45	4.45	0.50	1.20	±13%

^c Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is

restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

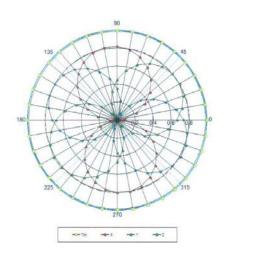

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

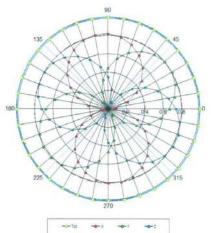
Report No.: RXA1504-0047SAR01R2 Page 41 of 61

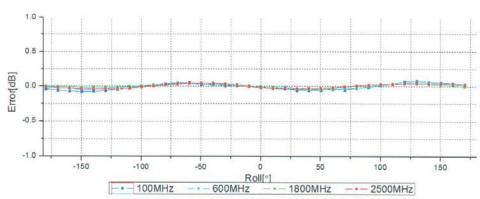
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

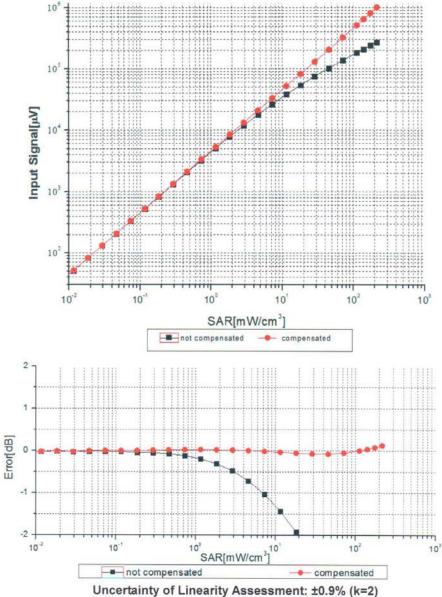

E-mail: cttl@chinattl.com


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn


Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22


Uncertainty of Axial Isotropy Assessment: ±0.9% (k=2)

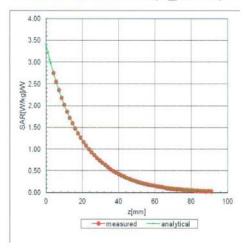
Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

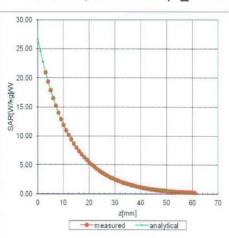
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

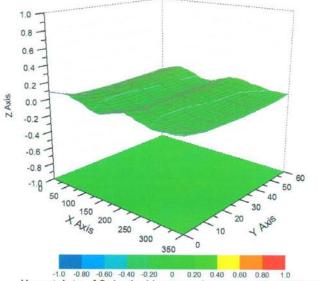
Certificate No: Z15-97010

Page 9 of 11




Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Conversion Factor Assessment


f=835 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±2.8% (K=2)

Certificate No: Z15-97010

Page 10 of 11

Report No.: RXA1504-0047SAR01R2 Page 45 of 61

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

Other Probe Parameters

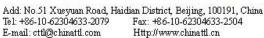
Sensor Arrangement	Triangular
Connector Angle (°)	116.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z15-97010

Page 46 of 61 Report No.: RXA1504-0047SAR01R2

ANNEX E: D2450V2 Dipole Calibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com



Client TA(Shange	hai)	Certificate No: Z14-97075	
CALIBRATION C	ERTIFICATE	1860年1870年18	
Object	D2450V2	- SN: 786	
Calibration Dancadons(a)			
Calibration Procedure(s)	TMC-OS-	E-02-194	
	Calibration	n procedure for dipole validation kits	
Calibration date:	Septembe	er 1, 2014	
given on the following page All calibrations have been and humidity<70%. Calibration Equipment used	es and are part of the conducted in the	losed laboratory facility: environment tempera	ature(22±3)°
Primary Standards			d Calibratio
Power Meter NRVD	102083	11-Sep-13 (TMC, No.JZ13-443)	Sep-14
Power sensor NRV-Z5	100595	11-Sep-13 (TMC, No. JZ13-443) 5- Sep-13 (SPEAG, No.ES3-3149 Sep13)	Sep -14
Reference Probe ES3DV3 DAE3	SN 3149 SN 536	23-Jan-14 (SPEAG, DAE3-536 Jan14)	Sep-14 Jan -15
Signal Generator E4438		13-Nov-13 (TMC, No.JZ13-394)	Nov-14
Network Analyzer E8362B		19-Oct-13 (TMC, No.JZ13-278)	Oct-14
	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	经到
Reviewed by:	Qi Dianyuan	SAR Project Leader	R
Approved by: Lu Bingsong		Deputy Director of the laboratory	ur Tz
This calibration certificate s	hall not be reproduc	Issued: Septemb ced except in full without written approval of th	

Page 1 of 8 Certificate No: Z14-97075

Report No.: RXA1504-0047SAR01R2 Page 47 of 61

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms
 oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the
 dipole positioned under the liquid filled phantom. The impedance stated is transformed
 from the measurement at the SMA connector to the feed point. The Return Loss
 ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate
 the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z14-97075 Page 2 of 8

Report No.: RXA1504-0047SAR01R2 Page 48 of 61

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ±1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.2 ±6 %	1.84 mho/m ±6 %
Head TSL temperature change during test	<1.0 °C	£2000:	122

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	52.5 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.20 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	24.8 mW/g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0±0.2) °C	51.3±6 %	2.00 mho/m±6 %
Body TSL temperature change during test	<1.0 °C	02222	0222

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.3 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	52.4 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.20 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	24.6 mW/g ± 20.4 % (k=2)

Certificate No: Z14-97075 Page 3 of 8

Report No.: RXA1504-0047SAR01R2 Page 49 of 61

E-mail: cttl@chinattl.com Http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.1Ω- 0.57jΩ
Return Loss	- 23.6dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	56.0Ω+3.31jΩ
Return Loss	- 23.7dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.192 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Marine or the second	The second secon
Manufactured by	SPEAG

Certificate No: Z14-97075 Page 4 of 8

Report No.: RXA1504-0047SAR01R2 Page 50 of 61

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Date: 01.09.2014

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ S/m; $s_r = 40.2$; $\rho = 1000$ kg/m³

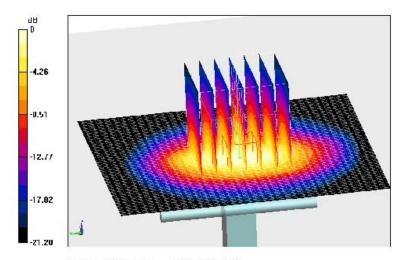
Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(4.48, 4.48, 4.48); Calibrated: 2013-09-05;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

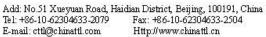

dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.583 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 26.6 W/kg

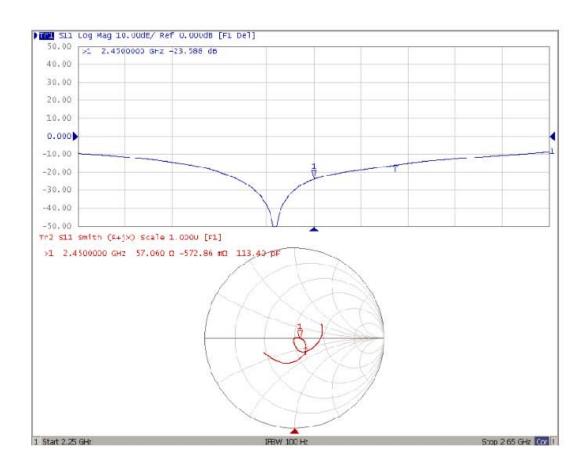
 $\mathrm{SAR}(1~\mathrm{g}) = 13.2~\mathrm{W/kg};~\mathrm{SAR}(10~\mathrm{g}) = 6.2~\mathrm{W/kg}$

Maximum value of SAR (measured) = 17.3 W/kg



0 dB = 17.3 W/kg = 12.38 dBW/kg

Certificate No: Z14-97075 Page 5 of 8


Report No.: RXA1504-0047SAR01R2 Page 51 of 61

Impedance Measurement Plot for Head TSL

Certificate No: Z14-97075 Page 6 of 8

Report No.: RXA1504-0047SAR01R2 Page 52 of 61

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Date: 01.09.2014

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.988 S/m; ϵ_r = 51.25; ρ = 1000 kg/m³

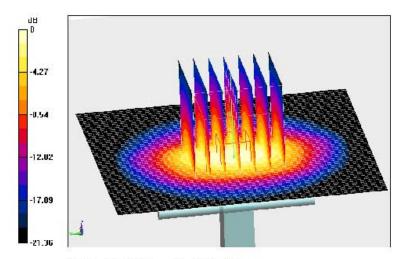
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(4.21, 4.21, 4.21); Calibrated: 2013-09-03;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/2
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

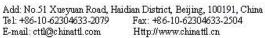

dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.120 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 27.8 W/kg

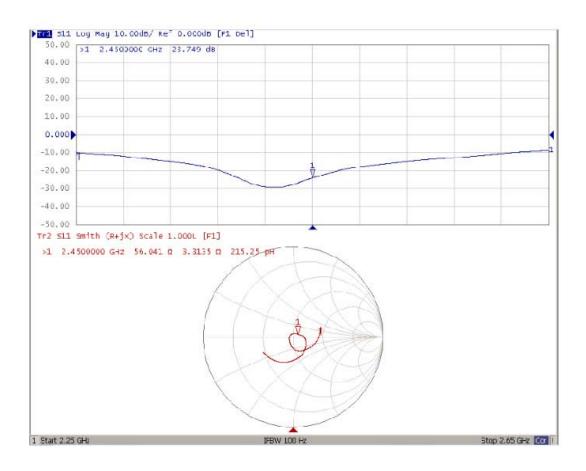
SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (measured) = 17.7 W/kg



0 dB = 17.7 W/kg = 12.48 dBW/kg

Certificate No: Z14-97075 Page 7 of 8


Report No.: RXA1504-0047SAR01R2 Page 53 of 61

Impedance Measurement Plot for Body TSL

Certificate No: Z14-97075 Page 8 of 8

Page 54 of 61 Report No.: RXA1504-0047SAR01R2

ANNEX F: DAE4 Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

TA-Shanghai (Auden)

Accreditation No.: SCS 108

S

C

S

Certificate No: DAE4-1291_Nov14

CALIBRATION CERTIFICATE

Object

DAE4 - SD 000 D04 BM - SN: 1291

Calibration procedure(s)

QA CAL-06.v28

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

November 14, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	03-Oct-14 (No:15573)	Oct-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	07-Jan-14 (in house check)	In house check: Jan-15
Calibrator Box V2.1	SE UMS 006 AA 1002	07-Jan-14 (in house check)	In house check: Jan-15

Function

Calibrated by:

Dominique Steffen

Technician

Approved by:

Fin Bomholt

Deputy Technical Manager

Issued: November 14, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1291_Nov14

Page 1 of 5

Report No.: RXA1504-0047SAR01R2 Page 55 of 61

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Report No.: RXA1504-0047SAR01R2 Page 56 of 61

DC Voltage Measurement

A/D - Converter Resolution nominal

Calibration Factors	X	Y	Z
High Range	402.613 ± 0.02% (k=2)	403.293 ± 0.02% (k=2)	403.205 ± 0.02% (k=2)
Low Range	3.97544 ± 1.50% (k=2)	3.93356 ± 1.50% (k=2)	3.99377 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	308.5 ° ± 1 °

Report No.: RXA1504-0047SAR01R2 Page 57 of 61

Appendix (Additional assessments outside the scope of SCS108)

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	200033.82	-3.10	-0.00
Channel X	+ Input	20004.15	-0.02	-0.00
Channel X	- Input	-20004.31	1.85	-0.01
Channel Y	+ Input	200033.24	-3.41	-0.00
Channel Y	+ Input	20003.47	-0.54	-0.00
Channel Y	- Input	-20006.08	0.19	-0.00
Channel Z	+ Input	200036.05	-0.73	-0.00
Channel Z	+ Input	20001.26	-2.68	-0.01
Channel Z	- Input	-20007.69	-1.47	0.01

Low Range		Reading (μV)	Difference (μV)	Error (%)
Channel X + I	nput	2000.57	-0.08	-0.00
Channel X + I	nput	200.57	-0.14	-0.07
Channel X - Ir	put	-199.31	-0.00	0.00
Channel Y + I	nput	1999.81	-0.79	-0.04
Channel Y + I	nput	200.05	-0.62	-0.31
Channel Y - Ir	put	-199.06	0.30	-0.15
Channel Z + I	nput	2001.14	0.56	0.03
Channel Z + I	nput	199.16	-1.42	-0.71
Channel Z - Ir	put	-200.73	-1.23	0.62

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	9.64	7.77
	- 200	-6.77	-8.44
Channel Y	200	13.71	13.30
	- 200	-14.01	-14.19
Channel Z	200	-16.88	-16.56
	- 200	13.70	13.86

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	3.91	-4.26
Channel Y	200	8.88	-	3.64
Channel Z	200	10.51	7.45	-

Certificate No: DAE4-1291_Nov14

Report No.: RXA1504-0047SAR01R2 Page 58 of 61

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16003	13374
Channel Y	15805	15470
Channel Z	16035	14317

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.37	-1.17	1.61	0.49
Channel Y	0.25	-0.91	1.56	0.48
Channel Z	-0.62	-1.83	0.60	0.47

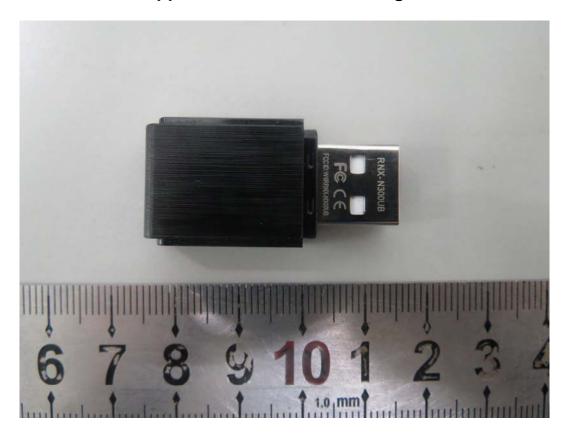
6. Input Offset Current

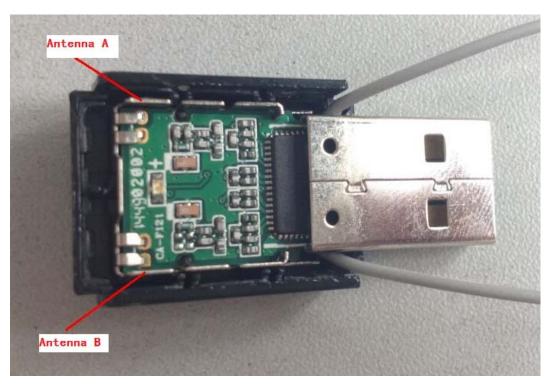
Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

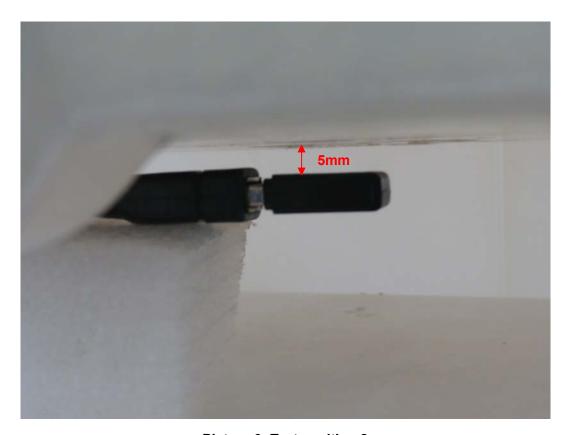

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

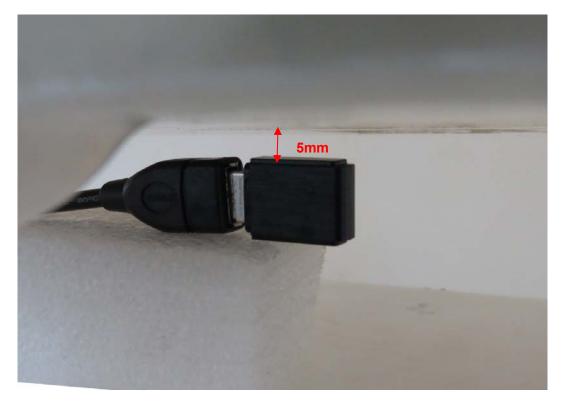

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Report No.: RXA1504-0047SAR01R2 Page 59 of 61

ANNEX G: The EUT Appearances and Test Configuration




Antenna
Picture 4: Constituents of the EUT

Picture 5: Test position 1

Picture 6: Test position 2

Picture 7: Test Position 3

Picture 8: Test Position 4