FCC PART 15.247

TEST REPORT

For

Rosewill Inc.

Wireless N Adapter

Model No.: RNX-MININ1

Prepared for	: Rosewill Inc.
Address	: 17708 Rowland St. City Of Industry, CA91748, United States
Prepared by	: SHENZHEN LCS CERTIFICATION SERVICES INC.
Address	: Xingyuan Industrial Park, Tongda Road, Bao'an Blvd,
	Bao'an District, Shenzhen, Guangdong, China

Report Number	: LLCS1104050341F
Date of Test	: April 06, 2011 – April 26, 2011
Date of Report	: April 26, 2011

TABLE OF CONTENTS

1. TEST RESULT CERTIFICATION	3
2. GENERAL INFORMATION	4
2.1. PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) 2 2.2. OBJECTIVE 2 2.3. RELATED SUBMITTAL(S)/GRANT(S) 2 2.4. TEST METHODOLOGY 2 2.5. FACILITIES 2 2.6. EXTERNAL I/O CABLE 2 2.7. LABORATORY ACCREDITATIONS AND LISTINGS 2	4 4 4 5 5 5
3. SYSTEM TEST CONFIGURATION	6
3.1. JUSTIFICATION	6 6 6 6 6
4. SUMMARY OF TEST RESULTS	7
5. TEST RESULT 5.1. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT 5.2. POWER SPECTRAL DENSITY MEASUREMENT 12 5.3. 6 DB SPECTRUM BANDWIDTH MEASUREMENT 12 12 5.4. RADIATED EMISSIONS MEASUREMENT 3 5.5. BAND EDGE EMISSIONS MEASUREMENT 44 5.6. ANTENNA REQUIREMENTS 44	8 8 5 3 1 0 7
6. LIST OF MEASURING EQUIPMENTS 44	8

1. TEST RESULT CERTIFICATION

Applicant	:	Rosewill Inc.
Manufacturer	:	Shenzhen AEE Technology Co., Ltd.
EUT	:	Wireless N Adapter
Trade Mark	:	Rosewill
Model No.	:	RNX-MININ1
Serial Number	:	N/A
Test Rule Part(s)	:	47 CRR FCC Part Subpart C §15.247
Date of Test	:	April 06, 2011 – April 26, 2011

APPLICABLE STANDARDS

STANDARD	TESTRESULT	
FCC PART 15.247 (2010)	No non-compliance noted	

SHENZHEN LCS CERTIFICATION SERVICES INC. as requested by the applicant to evaluate the EMC performance of the product Sample received on April 06, 2010 would like to declare that the tested sample has been evaluated And found to be in compliance with the tested rule parts. The data recorded as well as the test Configuration specified is true and accurate for showing the sample's EMC nature.

Compiled by:

Li

Bobo Li/ File administrators

Supervised by:

Nto Goo

Vito/ Technique principal

Approved by:

Gravins liang

Gavin Liang/ Manager

2. GENERAL INFORMATION

2.1. Product Description for Equipment Under Test (EUT)

Applicant	:	Rosewill Inc.
Address		17708 Rowland St. City Of Industry, CA91748, United States
Manufacturer	:	Catch-Tec., Inc
Address		7F, No.173, Jian 8th Rd., Zhonghe Dis., New Taipei City, 23585, Taiwn
EUT	:	Wireless N Adapter
Trade Mark	:	Rosewill
Model No.	:	RNX-MININ1
Serial Number	:	N/A
Input Voltage	:	DC 5V
EUT Description	:	18mm L x 6.0mm W x 14cm H
File Number	:	LCS1104050341F
Date of Test	:	April 06, 2011 – April 26, 2011

2.2. Objective

This Type approval report is prepared on behalf of Shenzhen Rosewill Inc. in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communication Commissions rules. The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209 and 15.247 rules.

2.3. Related Submittal(s)/Grant(s)

No Related Submittals.

2.4. Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and SHENZHEN LCS CERTIFICATION SERVICES INC. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

2.5. Facilities

All measurement facilities used to collect the measurement data are located at Xingyuan Industrial Park, Tongda Road, Bao'an Blvd, Bao'an District, Shenzhen, Guangdong, China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

2.6. External I/O Cable

N/A

2.7. Laboratory Accreditations And Listings

Site Description

EMC Lab.

: CNAS-Lab Code: L4595

SHENZHEN LCS CERTIFICATION SERVICES INC. has been assessed and proved to be in compliance with CNAS-CL01: 2006 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

FCC-Registration No.: 752021

Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration No. August 20, 2010.

- Name of Firm : SHENZHEN LCS CERTIFICATION SERVICES INC
- Site Location : Xingyuan Industrial Park, Tongda Road, Bao'an Blvd, Bao'an District, Shenzhen, Guangdong, China

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a typical fashion (as normally used by a typical user).

3.2. EUT Exercise Software

N/A

3.3. Special Accessories

The special accessories were supplied by SHENZHEN LCS CERTIFICATION SERVICES INC.

3.4. Block Diagram/Schematics

Please refer to the report

3.5. Equipment Modifications

SHENZHEN LCS CERTIFICATION SERVICES INC has not done any modification on the EUT.

3.6. Block Diagram of Test Setup

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Certification Services Inc. Page 6 of 48

4. SUMMARY OF TEST RESULTS

Applied Standard: 47 CFR FCC Part 15 Subpart C					
FCC Rules	Description of Test	Result			
§15.247(b)(3)	Maximum Conducted Output Power	Compliant			
§15.247(e)	Power Spectral Density	Compliant			
15.247(a)(2)	6dB Spectrum Bandwidth	Compliant			
§15.247(d)	Radiated Emissions	Compliant			
§15.247(d)	Band Edge Emissions	Compliant			
§15.203	Antenna Requirements	Compliant			
§15.247(i)§2.1093§1.1307	RF Exposure	Compliant			

Test Items	Uncertainty	Remark
Maximum Conducted Output Power	\pm 0.8dB	Confidence levels of 95%
Power Spectral Density	\pm 0.5dB	Confidence levels of 95%
6dB Spectrum Bandwidth	\pm 8.5 $ imes$ 10	Confidence levels of 95%
Radiated Emissions (9kHz~30MHz)	\pm 0.8dB	Confidence levels of 95%
Radiated Emissions (30MHz~1000MHz)	\pm 1.9dB	Confidence levels of 95%
Radiated / Band Edge Emissions (1GHz~18GHz)	\pm 1.9dB	Confidence levels of 95%
Radiated Emissions (18GHz~40GHz)	\pm 1.9dB	Confidence levels of 95%
Temperature	±0.7℃	Confidence levels of 95%
Humidity	±3.2%	Confidence levels of 95%
DC / AC Power Source	±1.4%	Confidence levels of 95%

5. TEST RESULT

5.1. Maximum Conducted Output Power Measurement

5.1.1. Limit

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceed 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

5.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RB	1000 kHz
VB	3000 kHz
Detector	RMS
Trace	RMS
Sweep Time	Auto

5.1.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Test was performed in accordance with Measurement of Digital Transmission Systems Operating under Section 15.247.
- 5.1.4. Test Setup Layout

5.1.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.1.6. Test Result of Maximum Conducted Output Power

Temperature 25°C		Humidity	60%	
Test Engineer	Vito Cao	Configurations	802.11b,g,n	

802.11b

СН	Freq. (MHz)	Read PK (dBm)	Cable loss (dB)	ANT. loss (dB)	Conducted Power (dBm)	Max. Limit (dBm)	Result
1	2412	11.31	0.1	0	11.41	30	Complies
6	2437	12.22	0.1	0	12.32	30	Complies
11	2462	12.12	0.1	0	12.22	30	Complies

802.11g

СН	Freq. (MHz)	Read PK (dBm)	Cable loss (dB)	ANT. loss (dB)	Conducted Power (dBm)	Max. Limit (dBm)	Result
1	2412	10.96	0.1	0	11.06	30	Complies
6	2437	10.86	0.1	0	10.96	30	Complies
11	2462	10.66	0.1	0	10.76	30	Complies

802.11n

СН	Freq. (MHz)	Read PK (dBm)	Cable loss (dB)	ANT. loss (dB)	Conducted Power (dBm)	Max. Limit (dBm)	Result
1	2412	10.12	0.1	0	10.22	30	Complies
6	2437	10.52	0.1	0	10.62	30	Complies
11	2462	10.42	0.1	0	10.52	30	Complies

Note: Result= Read + Cable loss + Antenna Loss

802.11b, low channel,output power

Date: 22.APR.2011

802.11b (CH1)

802.11b (CH 6)

FCC ID: W6RRNX-MiniN1 SHENZHEN LCS CERTIFICATION SERVICES INC.

Date: 22.APR.2011

802.11b (CH 11)

802.11g (CH 1)

802.11g (CH 11)

802.11n, middle channel,output power

Date: 22.APR.2011

802.11n (CH 6)

FCC ID: W6RRNX-MiniN1 SHENZHEN LCS CERTIFICATION SERVICES INC.

802.11n, high channel,output power

Date: 22.APR.2011

802.11n (CH 11)

5.2. Power Spectral Density Measurement

5.2.1. Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	30MHz
RB	3 kHz
VB	30 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	10s

5

- 5.2.3. Test Procedures
 - 1. The transmitter output (antenna port) was connected to the spectrum analyser.
 - 2. Set RBW of spectrum analyzer to 3kHz and VBW to 30kHz. Set Detector to Peak, Trace to Max Hold.
 - 3. Mark the frequency with maximum peak power as the center of the display of the spectrum.
 - 4. Set the span to 1.5MHz and the sweep time to 500s and record the maximum peak value.

5.2.4. Test Setup Layout

5.2.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.2.6. Test Result of Power Spectral Density

Temperature	25 ℃	Humidity	60%
Test Engineer	Vito Cao	Configurations	802.11b,g,n

802.11b

Channel	Frequency	Power Density (dBm)	Max. Limit (dBm)	Result
1	2412	0.84	8	Complies
6	2437	-0.68	8	Complies
11	2462	2.37	8	Complies

802.11g

Channel	Frequency	Power Density (dBm)	Max. Limit (dBm)	Result
1	2412	-3.58	8	Complies
6	2437	1.64	8	Complies
11	2462	1.63	8	Complies

802.11n

Channel	Frequency	Power Density (dBm)	Max. Limit (dBm)	Result
1	2412	-0.64	8	Complies
6	2437	1.65	8	Complies
11	2462	1.62	8	Complies

802.11b, low channel power density Date: 22.APR.2011

802.11g, middle channel power density Date: 22.APR.2011

802.11g, low channel power density Date: 22.ARP.2011

Date: 22.ARP.2011

Date: 22.ARP.2011

802.11n, high channel power density Date: 22.ARP.2011

5.3. 6 dB Spectrum Bandwidth Measurement

5.3.1. Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

5.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> 6dB Bandwidth
RB	100kHz
VB	100kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5

- .3.3. Test Procedures
 - 1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
 - 2. The resolution bandwidth of 100 kHz and the video bandwidth of 100 kHz were used.
 - 3. Measured the spectrum width with power higher than 6dB below carrier.

5.3.4. Test Setup Layout

5.3.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.3.6. Test Result of 6dB Spectrum Bandwidth

Temperature	25 ℃	Humidity	60%
Test Engineer	Vito Cao	Configurations	802.11b,g,n

802.11b

Channel	Frequency	6dB Bandwidth (MHz)	Min. Limit (kHz)	Result
1	2412	12.5	500	Complies
6	2437	12.3	500	Complies
11	2462	12.2	500	Complies

802.11g

Channel	Frequency	6dB Bandwidth (MHz)	Min. Limit (kHz)	Result
1	2412	16.6	500	Complies
6	2437	16.6	500	Complies
11	2462	16.6	500	Complies

802.11n

Channel	Frequency	6dB Bandwidth (MHz)	Min. Limit (kHz)	Result
1	2412	16.9	500	Complies
6	2437	16.9	500	Complies
11	2462	16.9	500	Complies

Date: 22.ARP.2011

802.11b, middle channel, 6dB bandwidth

Date: 22.ARP.2011

802.11b, high channel, 6dB bandwidth Date: 22.ARP.2011

802.11g, low channel, 6dB bandwidth

Date: 22.ARP.2011

802.11g, middle channel, 6dB bandwidth Date: 22.ARP.2011

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Certification Services Inc. Page 27 of 48

802.11g, high channel, 6dB bandwidth Date: 22.ARP.2011

802.11n, middle channel, 6dB bandwidth Date: 22.ARP.2011

FCC ID: W6RRNX-MiniN1 SHENZHEN LCS CERTIFICATION SERVICES INC.

^{802.11}n, high channel, 6dB bandwidth

Date: 22.ARP.2011 11:32:21

5.4. Radiated Emissions Measurement

5.4.1. Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies(MHz)	Field Strength(micorvolts/meter)	Measurement Distance(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

5.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1000KHz / 1000KHz for peak

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

5.4.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to

determine the position of the highest radiation.

- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 m to 4 m) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

5.4.4. Test Setup Layout

For radiated emissions below 30MHz

Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = $20 \log (\text{specific distanc } [3m] / \text{test distance } [1.5m]) (dB);$ Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

5.4.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.4.6. Results of Radiated Emissions (9kHz~30MHz)

Temperature	25 ℃	Humidity	60%
Test Engineer	Vito Cao	Configurations	802.11b,g,n

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

5.4.7. Results of Radiated Emissions (30MHz~1GHz)

Temperature	Temperature 25°C		60%		
Test Engineer	Vito Cao	Configurations	802.11b,g,n		

Shenzhen LCS Certification Services Inc. Add: Xingyuan Industrial Park,Tongda Road,Bao'an Blvd., Bao'an District,Shenzhen, Guangdong, China Tel: 0755-82591330 E-mail: webmaster@LCS-cert.com Fax: 0755-82591332 Http: www.LCS-cert.com

1	62.98	11.51	1.41	57.57	38.76	31.73	40.00	-8.27	QP	
2	156.10	8.51	2.27	59.88	38.80	31.86	43.50	-11.64	QP	
3	239.52	12.07	2.80	62.45	38.72	38.60	46.00	-7.40	QP	
4	396.66	14.98	3.76	52.94	38.41	33.27	46.00	-12.73	QP	
5	455.83	15.58	4.08	50.01	38.29	31.38	46.00	-14.62	QP	
6	647.89	18.62	4.98	50.04	38.02	35.62	46.00	-10.38	QP	
										_

Note: 1. All readings are Quasi-peak values.

2. Emission Level= Antenna Factor + Cable Loss + Meter Reading

Shen	zhen LCS Certificat:	ion Services Inc.
Add:	Xingyuan Industria	l Park,Tongda Road,Bao'an Blvd.,
	Bao'an District,She	enzhen, Guangdong, China
Tel:	0755-82591330	E-mail: webmaster@LCS-cert.com
Fax:	0755-82591332	Http: www.LCS-cert.com

		0.07 10	an	aba.	0.2	0.000,00	aba.,			
1	106.63	12.56	1.88	54.63	38.80	30.27	43.50	-13.23	QP	
2	186.17	10.22	2.44	59.05	38.80	32.91	43.50	-10.59	QP	
3	239.52	12.07	2.80	57.51	38.72	33.66	46.00	-12.34	QP	
4	348.16	14.25	3.49	53.17	38.50	32.41	46.00	-13.59	QP	
5	528.58	17.11	4.37	50.31	38.14	33.65	46.00	-12.35	QP	
6	612.00	18.49	4.83	53.31	38.01	38.62	46.00	-7.38	QP	

Note: 1. All readings are Quasi-peak values.

2. Emission Level= Antenna Factor + Cable Loss + Meter Reading

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

5.4.8. Results for Radiated Emissions (1GHz~10th Harmonic)

802.11b

Channel 1

	Freq	Level	Over Limit	Readi Level	Antenna Factor	Preamp Factor	Cable Loss	Ant Pos	Table Pos	Remark	Pol/Phase
	MHz	dBuV/m	dB	dBuV	dB/m	dB	dB	cm	deg	-	<u> </u>
1	4824.120	47.33	-26.67	45.37	33.06	35.04	3.94	181	169	PEAK	HORIZONTAL
2 19	4824.230	38.67	-15.33	36.71	33.06	35.04	3.94	181	169	AVERAGE	HORI ZONTAL
			Over	Read	Antenna	Preamp	Cable	Ant	Table		
	Freq	Level	Limit	Level	Factor	Factor	Loss	Pos	Pos	Remark	Pol/Phase
	MHz	dBuV/m	dB	dBuV	dB/m	dB	dB	cm	deg		<u>1942</u>
1	4824.150	47.89	-26.11	45.94	33.06	35.04	3.94	100	173	PEAK	VERTICAL
2 @	4824.250	44.66	-9.34	42.70	33.06	35.04	3.94	100	173	AVERAGE	VERTICAL

Channel 6

	Freq	Level	Over Limit	Limit Line	Read) Level	intenna Factor	Cable Loss	Preamp Factor	Remark	Ant Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBu∛	dB/m	dB	dB			<u> </u>
1	4874.240	34.35	-19.65	54.00	32.39	33.16	3.96	35.15	AVERAGE	150	HORIZONTAL
2	4874.540	44.32	-29.68	74.00	42.35	33.16	3.96	35.15	PEAK	150	HORI ZONTAL
			Over	Limit	Read	Antenna	Cable	Preamp		Ant	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV		dB	dB			
1	4874.100	46.24	-27.76	74.00	44.27	33.16	3.96	35.15	PEAK	100	VERTICAL
2	4874.220	40.11	-13.89	54.00	38.14	33.16	3.96	35.15	AVERAGE	100	VERTICAL

Channel 11

	Freq		Over Limit	Limit Line	Readi Level	Antenna Factor	Cable Loss	Preamp Factor	Remark	Ant Pos	Pol/Phase
	lOKz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	
1	4924.240	32.82	-21.18	54.00	30.71	33.26	3.98	35.14	AVERAGE	148	HORIZONTAL
2	4924.480	40.82	-33.18	74.00	38.71	33.26	3.98	35.14	PERK	148	HORI ZONTAL

Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pol/Phase
Mz	dBuV/n	dB	dBuV/m	dBu∛	dB/n	dB	dB			
49-24.920	43.76	-30.24	74.00	41.66	33.26	3.98	35.14	PEAK	100	VERTICAL
4924.220	38.79	-15.21	54.00	36.68	33.26	3.98	35.14	AVERAGE	100	VERTICAL
	Freq 104z 49:24.920 49:24.220	Freq Level MHz dBuV/m 49-24.920 43.76 49-24.220 38.79	Freq Level Limit MHz dBuV/m dB 49.24.920 43.76 -30.24 4924.220 38.79 -15.21	Freq Level Limit Line MHz dBuV/m dB dBuV/m 49-24.920 43.76 -30.24 74.00 4924.220 38.79 -15.21 54.00	Freq Level Limit Line Level MHz dBuV/n dB dBuV/n dBuV 49.24.920 43.76 -30.24 74.00 41.66 4924.220 38.79 -15.21 54.00 36.68	Bit Bit <td>Bit Bit Bit<td>Freq Level Limit Line Level Factor Loss Factor MHz dBuV/m dB dBuV/m dBuV/m dB/m dB dB 49:24.920 43.76 -30.24 74.00 41.66 33.26 3.98 35.14 49:24.220 38.79 -15.21 54.00 36.68 33.26 3.98 35.14</td><td>Ereq Level Limit Line Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dBuV dB/m dB dB dB 49:24.920 43.76 -30.24 74.00 41.66 33.26 3.98 35.14 PERK 49:24.220 38.79 -15.21 54.00 36.68 33.26 3.98 35.14 AVERAGE</td><td>Bit Limit Line Level Factor Loss Factor Remark Pos MHz dBuV/m dB dBuV/m dB/m dB dB cm cm 49:24.920 43.76 -30.24 74.00 41.66 33.26 3.98 35.14 PEAK 100 49:24.220 38.79 -15.21 54.00 36.68 33.26 3.98 35.14 AVERAGE 100</td></td>	Bit Bit <td>Freq Level Limit Line Level Factor Loss Factor MHz dBuV/m dB dBuV/m dBuV/m dB/m dB dB 49:24.920 43.76 -30.24 74.00 41.66 33.26 3.98 35.14 49:24.220 38.79 -15.21 54.00 36.68 33.26 3.98 35.14</td> <td>Ereq Level Limit Line Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dBuV dB/m dB dB dB 49:24.920 43.76 -30.24 74.00 41.66 33.26 3.98 35.14 PERK 49:24.220 38.79 -15.21 54.00 36.68 33.26 3.98 35.14 AVERAGE</td> <td>Bit Limit Line Level Factor Loss Factor Remark Pos MHz dBuV/m dB dBuV/m dB/m dB dB cm cm 49:24.920 43.76 -30.24 74.00 41.66 33.26 3.98 35.14 PEAK 100 49:24.220 38.79 -15.21 54.00 36.68 33.26 3.98 35.14 AVERAGE 100</td>	Freq Level Limit Line Level Factor Loss Factor MHz dBuV/m dB dBuV/m dBuV/m dB/m dB dB 49:24.920 43.76 -30.24 74.00 41.66 33.26 3.98 35.14 49:24.220 38.79 -15.21 54.00 36.68 33.26 3.98 35.14	Ereq Level Limit Line Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dBuV dB/m dB dB dB 49:24.920 43.76 -30.24 74.00 41.66 33.26 3.98 35.14 PERK 49:24.220 38.79 -15.21 54.00 36.68 33.26 3.98 35.14 AVERAGE	Bit Limit Line Level Factor Loss Factor Remark Pos MHz dBuV/m dB dBuV/m dB/m dB dB cm cm 49:24.920 43.76 -30.24 74.00 41.66 33.26 3.98 35.14 PEAK 100 49:24.220 38.79 -15.21 54.00 36.68 33.26 3.98 35.14 AVERAGE 100

802.11g

Channel 1

			Over	ReadA	ntenna	Preamp	Cable	Ant	Table		
	Freq	Level	Limit	Level	Factor	Factor	Loss	Pos	Pos	Remark	Pol/Phase
	MHz	dBuV/m	dB	dBuV	dB/m	dB	dB	cm -	deg		
1	4827.750	45.01	-28.99	43.05	33.06	35.04	3.94	100	361	PERK	HORI ZONTAL
2	4827.960	31.34	-22.66	29.38	33.06	35.04	3.94	100	361	AVERAGE	HORI ZONTAL
			Over	Read	Antenna	Preamp	Cable	Ant	Table		
	Freq	Level	Limit	Level	Factor	Factor	Loss	Pos	Pos	s Remark	Pol/Phase
	MHz	dBuV/m	dB	dBuV	dB/n	n dB	dB	cm	deg		
10	4826.850	33.07	-20.93	31.11	. 33.06	35.04	3.94	100	17	AVERAGE	VERTICAL
2	4829.900	47.48	-26.52	45.51	33.06	35.04	3.95	100	173	PEAK	VERTICAL

Channel 6

			Over	Limit	Read	intenna	Cable	Preamp		Ant	10000
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBu∛	dB/m	dB	dB	· · · · ·		
1	4869.180	29.72	-24.28	54.00	27.79	33.12	3.96	35.15	AVERAGE	100	HORIZONTAL
2	4872.000	38.81	-35.19	74.00	36.84	33.16	3.96	35.15	PEAK	100	HORIZONTAL
			Over	Limit	Read	Antenna	Cable	Preamp	R	Ant	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dI		can	
1	4870.960	29.66	-24.34	54.00	27.69	33.16	3.96	35.15	AVERAGE	100	VERTICAL
2	4871.480	43.62	-30.38	74.00	41.65	33.16	3.96	35.15	PEAK	100	VERTICAL

Channel 11

			Over	Limit	Read	Antenna	Cable	Preamp		Ant	
	Freq	Level	Limit dB	Line	Level	Factor	Loss	Factor	Remark	Pos	Pol/Phase
	IOKz	dBuV/m		dBuV/m	dBuV	dB/m	dB	dB	. <u> </u>		
1	4924.060	42.78	-31.22	74.00	40.67	33.26	3.98	35.14	PERK	100	HORIZONTAL
2	4924.760	29.64	-24.36	54.00	27.53	33.26	3.98	35.14	AVERAGE	100	HORI ZONTAL

	Freq	Level	Over Limit	Limit Line	Readi Level	Antenna Factor	Cable Loss	Preamp Factor	Remark	Ant Pos	Pol/Phase
	IOKz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	
1	4925.340	43.23	-30.77	74.00	41.12	33.26	3.98	35.14	PEAK	100	VERTICAL
2	4925.000	29.53	-24.47	54.00	27.43	33.26	3.98	35.14	AVERAGE	100	VERTICAL

802.11n

Channel 1

			Over	Limit	ReadA	intenna	Cable	Preamp		Ant	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	
1	4825.200	42.85	-31.15	74.00	41.02	33.06	3.94	35.16	PEAK	100	HORIZONTAL
2	4825.950	29.86	-24.14	54.00	28.04	33.06	3.94	35.16	AVERAGE	100	HORI ZONTAL
			Over	Limit	Read	Antenna	Cable	Pream	,	An	t
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	r Remark	Po	s Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	di	di di	8		
1	4826.360	29.64	-24.36	54.00	27.82	33.06	3.94	35.1	5 AVERAGE	10	0 VERTICAL
2	4826.380	44.09	-29.91	74.00	42.26	33.06	3.94	35.1	5 PERK	10	0 VERTICAL

Channel 6

		Over	Limit	Read	Antenna	Cable	Preamp		Ant	
Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pol/Phase
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	<u>.</u>
4872.390	29.57	-24.43	54.00	27.60	33.16	3.96	35.15	AVERAGE	100	HORIZONTAL
4873.620	43.46	-30.54	74.00	41.49	33.16	3.96	35.15	PEAK	100	HORIZONTAL
		Over	Limit	Read	Antenna	Cable	Preamp		Ant	
Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pol/Phase
MHz	dBu∀/m	dB	dBuV/m	dBu∛	dB/m	dB	dB	5 <u>.</u>	cm	· · · · · ·
4872.070	43.41	-30.59	74.00	41.45	33.16	3.96	35.15	PEAK	100	VERTICAL
4873.220	30.26	-23.74	54.00	28.29	33.16	3.96	35.15	AVERAGE	100	VERTICAL
	Freq MHz 4872.390 4873.620 Freq MHz 4872.070 4873.220	Freq Level MHz dBuV/m 4872.390 29.57 4873.620 43.46 Freq Level MHz dBuV/m 4872.070 43.41 4873.220 30.26	Over Freq Level Limit MHz dBuV/m dB 4872.390 29.57 -24.43 4873.620 43.46 -30.54 Over Ereq Level Limit MHz dBuV/m dB 4873.620 43.46 4873.620 43.46 -30.54 Over Ereq Level Limit Over MHz dBuV/m dB 4872.070 43.41 -30.59 4873.220 30.26 -23.74 -23.74	Over Limit Freq Level Limit Line MHz dBuV/m dB dBuV/m 4872.390 29.57 -24.43 54.00 4873.620 43.46 -30.54 74.00 Freq Level Over Limit Freq Level Limit Line MHz dBuV/m dB dBuV/m 4872.070 43.41 -30.59 74.00 4873.220 30.26 -23.74 54.00	Over Limit Reading Freq Level Limit Line Level MHz dBuV/m dB dBuV/m dBuV 4872.390 29.57 -24.43 54.00 27.60 4873.620 43.46 -30.54 74.00 41.49 Freq Level Limit Line Level MHz dBuV/m Over Limit Reading Freq Level Limit Line Level MHz dBuV/m dB dBuV/m dBuV 4872.070 43.41 -30.59 74.00 41.45 4873.220 30.26 -23.74 54.00 28.29	Over Limit ReadAntenna Freq Level Limit Line Level Factor MHz dBuV/m dB dBuV/m dBuV/m dBuV dB/m 4872.390 29.57 -24.43 54.00 27.60 33.16 4873.620 43.46 -30.54 74.00 41.49 33.16 Freq Level Limit Limit ReadAntenna Freq Level Limit Line Level MHz dBuV/m dB dBuV/m dBuV dB/m 4872.070 43.41 -30.59 74.00 41.45 33.16 4873.220 30.26 -23.74 54.00 28.29 33.16	Over Limit ReadAntenna Cable Freq Level Limit Line Level Factor Loss MHz dBuV/m dB dBuV/m dBuV/m dBuV dB/m dB 4872.390 29.57 -24.43 54.00 27.60 33.16 3.96 4873.620 43.46 -30.54 74.00 41.49 33.16 3.96 Freq Level Limit Limit ReadAntenna Cable Freq Level Limit Line Level Factor Loss MHz dBuV/m dB dBuV/m dBuV Base Loss MHz dBuV/m dB dBuV/m dBuV dB Loss MHz dBuV/m dB dBuV/m dBuV dB 33.16 3.96 4872.070 43.41 -30.59 74.00 41.45 33.16 3.96 4873.220 30.26 -23.74 54.00 28.29 </td <td>Over FreqLimit LevelReadButenna LimitCable Preamp LossFactorMHzdBuV/mdBdBuV/mdBuVdB/mdBdB4872.39029.57-24.4354.0027.6033.163.9635.154873.62043.46-30.5474.0041.4933.163.9635.15FreqLevelLimitReadButenna LimitCablePreamp LossFactorMHzdBuV/mdBdBdBuV/mdBuVdB/mdBdB4872.07043.41-30.5974.0041.4533.163.9635.154873.22030.26-23.7454.0028.2933.163.9635.15</td> <td>Over FreqLimit LevelReadAntenna LevelCable FactorPreamp LossMHzdBuV/mdBdBuV/mdBuVdB/mdBdB4872.39029.57-24.4354.0027.6033.163.9635.15AVERAGE4873.62043.46-30.5474.0041.4933.163.9635.15PERKFreqLevelLimitLimitReadAntenna LevelCablePreamp LossFactorRemarkMHzdBuV/mdBdBuV/mdBuVdB/mdBdBdB4872.07043.41-30.5974.0041.4533.163.9635.15PEAK4873.22030.26-23.7454.0028.2933.163.9635.15PEAK</td> <td>Over FreqLimit LimitReadAntenna LevelCable Preamp LossPreamp FactorAnt PosMHzdBuV/mdBdBuV/mdB dBuV/mdB dBcm4872.39029.57-24.4354.0027.6033.163.9635.15AVERAGE1004873.62043.46-30.5474.0041.4933.163.9635.15PERK100FreqLevelLimitReadAntenna Level FactorCablePreamp LossAnt PosFreqLevelLimitLineLevel FactorCablePreamp LossAnt PosMHzdBuV/mdBdBuV/mdBuVdB/mdBcm4872.07043.41-30.5974.0041.4533.163.9635.15PERK100 43.964873.22030.26-23.7454.0028.2933.163.9635.15PERK100 100</td>	Over FreqLimit LevelReadButenna LimitCable Preamp LossFactorMHzdBuV/mdBdBuV/mdBuVdB/mdBdB4872.39029.57-24.4354.0027.6033.163.9635.154873.62043.46-30.5474.0041.4933.163.9635.15FreqLevelLimitReadButenna LimitCablePreamp LossFactorMHzdBuV/mdBdBdBuV/mdBuVdB/mdBdB4872.07043.41-30.5974.0041.4533.163.9635.154873.22030.26-23.7454.0028.2933.163.9635.15	Over FreqLimit LevelReadAntenna LevelCable FactorPreamp LossMHzdBuV/mdBdBuV/mdBuVdB/mdBdB4872.39029.57-24.4354.0027.6033.163.9635.15AVERAGE4873.62043.46-30.5474.0041.4933.163.9635.15PERKFreqLevelLimitLimitReadAntenna LevelCablePreamp LossFactorRemarkMHzdBuV/mdBdBuV/mdBuVdB/mdBdBdB4872.07043.41-30.5974.0041.4533.163.9635.15PEAK4873.22030.26-23.7454.0028.2933.163.9635.15PEAK	Over FreqLimit LimitReadAntenna LevelCable Preamp LossPreamp FactorAnt PosMHzdBuV/mdBdBuV/mdB dBuV/mdB dBcm4872.39029.57-24.4354.0027.6033.163.9635.15AVERAGE1004873.62043.46-30.5474.0041.4933.163.9635.15PERK100FreqLevelLimitReadAntenna Level FactorCablePreamp LossAnt PosFreqLevelLimitLineLevel FactorCablePreamp LossAnt PosMHzdBuV/mdBdBuV/mdBuVdB/mdBcm4872.07043.41-30.5974.0041.4533.163.9635.15PERK100 43.964873.22030.26-23.7454.0028.2933.163.9635.15PERK100 100

Channel 11

	Freq	Level	Over Limit	Limit Line	Readi Level	Intenna Factor	Cable Loss	Preamp Factor	Remark	Ant Pos	Pol/Phase
	Mz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB			
1	4924.220	42.96	-31.04	74.00	40.85	33.26	3.98	35.14	PEAK	100	HORIZONTAL
2	4924.820	29.50	-24.50	54.00	27.40	33.26	3.98	35.14	AVERAGE	100	HORI ZONTAL

	Freq	Level	Over Limit	Limit Line	Readi Level	Antenna Factor	Cable Loss	Preamp Factor	Remark	Ant Pos	Pol/Phase
	M	dBuV/n	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	
1	4924.860	43.68	-30.32	74.00	41.57	33.26	3.98	35.14	PERK	100	VERTICAL
2	4924. 740	29.43	-24.57	54.00	27.33	33.26	3.98	35.14	AVERAGE	100	VERTICAL

5.5. Band Edge Emissions Measurement

5.5.1. Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies(MHz)	Field Strength(micorvolts/meter)	Measurement Distance(meters)			
0.009~0.490	2400/F(KHz)	300			
0.490~1.705	24000/F(KHz)	30			
1.705~30.0	30	30			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

5.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	100 KHz /100 KHz for Peak

5.5.3. Test Procedures

- 1. The test procedure is the same as section 5.4.3, only the frequency range investigated is limited to 100MHz around bandedges.
- 2. In case the emission is fail due to the used RB/VB is too wide, marker-delta method of FCC Public Notice DA00-705 will be followed.

5.5.4. Test Setup Layout

This test setup layout is the same as that shown in section 5.4.4.

5.5.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.5.6. Test Result of Band Edge and Fundamental Emissions

No. LCS1104050341F

Temperature	25 ℃	Humidity	60%
Test Engineer	Vito Cao	Configurations	802.11b

Channel 1

			Over	Read	Antenna	Preamp	Cable	Ant	Table		
	Freq	Level	Limit	Level	Factor	Factor	Loss	Pos	Pos	Remark	Pol/Phase
	MHz	dBuV/m	dB	dBuV	dB/m	dB	dB -	cm	deg		
10	2385.800	48.63	-5.37	17.74	28.17	0.00	2.71	128	153	AVERAGE	HORI ZONTAL
2 @	2386.000	59.32	-14.68	28.44	28.17	0.00	2.71	128	153	PEAK	HORIZONTAL
3 @	2409.400	101.64	47.64	70.70	28.21	0.00	2.73	128	153	AVERAGE	HORIZONTAL
4 @	2413.600	106.22	32.22	75.28	28.21	0.00	2.73	128	153	PEAK	HORI ZONTAL

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

	Freq	Level	Over Limit	Limit Line	Readi Level	Antenna Factor	Cable Loss	Preamp Factor	Remark	Ant Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	d₿u¥	dB/m	dB	dB	-		
1	2381.600	55.44	-18.56	74.00	24.59	28.13	2.71	0.00	PEAK	100	VERTICAL
2	2381.600	44.32	-9.68	54.00	13.47	28.13	2.71	0.00	AVERAGE	100	VERTICAL
3 over	2438.600	103.12	29.12	74.00	72.09	28.29	2.74	0.00	PEAK	100	VERTICAL
4 0	2439.800	98.56	44.56	54.00	67.53	28.29	2.74	0.00	AVERAGE	100	VERTICAL
5	2492.700	47.23	-6.77	54.00	16.05	28.41	2.77	0.00	AVERAGE	100	VERTICAL
6	2493.100	58.66	-15.34	74.00	27.47	28.41	2.77	0.00	PERK	100	VERTICAL

Item 3, 4 are the fundamental frequency at 2437MHz.

Channel 11

			Over	Limit	Read	Intenna	Cable	Preamp		Ant	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pol/Phase
)OIz	dBuV/m	dB	dBuV/n	dBu∛	dB/m	dB	dB		cn	<u></u>
1 over	2463.800	101.33	27.33	74.00	70.24	28.33	2.76	0.00	PERK	103	VERTICAL
2 8	2464.800	97.01	43.01	54.00	65.93	28.33	2.76	0.00	AVERAGE	103	VERTICAL
3	2487.900	60.82	-13.18	74.00	29.63	28.41	2.77	0.00	PEAK	103	VERTICAL
4 *	2488.300	52.62	-1.38	54.00	21.44	28.41	2.77	0.00	AVERAGE	103	VERTICAL

Item 1, 2 are the fundamental frequency at 2462 MHz.

No. LCS1104050341F

Temperature	25 ℃	Humidity	60%
Test Engineer	Vito Cao	Configurations	802.11g

Channel 1

			Over	Readi	Antenna	Preamp	Cable	Ant	Table		
	Freq	Level	Limit	Level	Factor	Factor	Loss	Pos	Pos	Remark	Pol/Phase
	MHz	dBuV/m	dB	dBuV	dB/m	dB	dB	cm	deg		
10	2390.000	63.13	-10.87	32.25	28.17	0.00	2.71	128	153	PEAK	HORIZONTAL
2 @	2390.000	48.58	-5.42	17.70	28.17	0.00	2.71	128	153	AVERAGE	HORI ZONTAL
3 @	2408.800	95.43	41.43	64.50	28.21	0.00	2.73	128	153	AVERAGE	HORI ZONTAL
4 @	2413.800	104.41	30.41	73.47	28.21	0.00	2.73	128	153	PEAK	HORI ZONTAL

Item 3, 4 are the fundamental frequency at 2412 MHz

Channel 6

	Freq	Level	Over Limit	Limit Line	Readi Level	Antenna Factor	Cable Loss	Preamp Factor	Remark	Ant Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBu∛	dB/m	dB	dB	u <u>n</u>	cm	
1	2384.200	55.14	-18.86	74.00	24.25	28.17	2.71	0.00	PEAK	101	VERTICAL
2	2384.200	44.60	-9.40	54.00	13.72	28.17	2.71	0.00	AVERAGE	101	VERTICAL
3 over	2435.800	91.12	37.12	54.00	60.09	28.29	2.74	0.00	AVERAGE	101	VERTICAL
4 over	2441.000	101.10	27.10	74.00	70.07	28.29	2.74	0.00	PEAK	101	VERTICAL
5	2489.800	59.22	-14.78	74.00	28.04	28.41	2.77	0.00	PEAK	101	VERTICAL
6	2489.900	47.99	-6.01	54.00	16.81	28.41	2.77	0.00	AVERAGE	101	VERTICAL

Item 3, 4 are the fundamental frequency at 2437MHz.

Channel 11

			Over	Limit	Read	Antenna	Cable	Preamp		Ant	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pol/Phase
	Mz	dBuV/m	dB	dBuV/n	dBu∛	dB/n	dB	dB		cn	
1 over	2468.800	99.49	25.49	74.00	68.36	28.37	2.76	0.00	PERK	101	VERTICAL
2 over	2469.400	92.56	38.56	54.00	61.43	28.37	2.76	0.00	AVERAGE	101	VERTICAL
3	2483.500	47.89	-6.11	54.00	16.74	28.37	2.77	0.00	AVERAGE	101	VERTICAL
4	2483.700	65.91	-8.09	74.00	34.77	28.37	2.77	0.00	PERK	101	VERTICAL

Item 1, 2 are the fundamental frequency at 2462 MHz.

No. LCS1104050341F

Temperature	25 ℃	Humidity	60%
Test Engineer	Vito Cao	Configurations	802.11n

Channel 1

				Over	Limit	Read	Antenna	Cable	Preamp		Ant	
		Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pol/Phase
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	<u>.</u>	cm	
1	*	2389.800	69.85	-4.15	74.00	38.97	28.17	2.71	0.00	PEAK	100	HORIZONTAL
2	*	2390.000	48.04	-5.96	54.00	17.16	28.17	2.71	0.00	AVERAGE	100	HORI ZONTAL
3	over	2410.000	101.37	27.37	74.00	70.43	28.21	2.73	0.00	PEAK	100	HORI ZONTAL
4	over	2413.800	90.64	36.64	54.00	59.70	28.21	2.73	0.00	AVERAGE	100	HORIZONTAL

Item 3, 4 are the fundamental frequency at 2412 MHz

Channel 6

	Freq	Level	Over Limit	Limit Line	Readi Level	intenna Factor	Cable Loss	Preamp Factor	Remark	Ant Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	
1	2380.200	55.61	-18.39	74.00	24.77	28.13	2.71	0.00	PEAK	100	VERTICAL
2	2385.000	42.94	-11.06	54.00	12.06	28.17	2.71	0.00	AVERAGE	100	VERTICAL
3 over	2440.200	89.42	35.42	54.00	58.39	28.29	2.74	0.00	AVERAGE	100	VERTICAL
4 over	2440.200	100.27	26.27	74.00	69.24	28.29	2.74	0.00	PEAK	100	VERTICAL
5 *	2489.100	48.21	-5.79	54.00	17.02	28.41	2.77	0.00	AVERAGE	100	VERTICAL
6	2489.400	59.61	-14.39	74.00	28.42	28.41	2.77	0.00	PEAK	100	VERTICAL

Item 3, 4 are the fundamental frequency at 2437MHz.

Channel 11

				Over	Limit	Read	Intenna	Cable	Preamp		Ant	
		Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pol/Phase
		Mrz	dBuV/m	dB	dBuV/m	dBu∛	dB/n	dB	dB		cm	
10		2465.200	93.10	39.10	54.00	62.02	28.33	2.76	0.00	AVERAGE	100	VERTICAL
2 07	er	2465.400	104.20	30.20	74.00	73.12	28.33	2.76	0.00	PERK	100	VERTICAL
3		2483.900	47.15	-6.85	54.00	16.01	28.37	2.77	0.00	AVERAGE	100	VERTICAL
4		2485.700	65.76	-8.24	74.00	34.58	28.41	2.77	0.00	PERK	100	VERTICAL

Item 1, 2 are the fundamental frequency at 2462 MHz.

802.11b out of bandedge, left

802.11b out of bandedge, right Date: 23.APR.2011

^{802.11}g, out of bandedge, left Date: 23.APR.2011

802.11g, out of bandedge, right Date: 23.APR.2011

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Certification Services Inc. Page 45 of 48

802.11n out of bandedge, left

Date: 23.APR.2011

802.11n out of bandedge, right Date: 23.APR.2011

Frequency	Data Rate	Delta Value	Limit	Ref	Result
(MHz)	(Mbps)	(dBc)	(dBc)	Plot	
			802.11b		
2397.12	11	28.35	20	PLOT1	PASS
2488.10	11	36.22	20	PLOT2	PASS
		5	802.11g		
2399.68	54	28.25	20	PLOT3	PASS
2484.00	54	35.58	20	PLOT4	PASS
		5	802.11n		
2398.36	150	27.47	20	PLOT5	PASS
2485.92	150	35.29	20	PLOT6	PASS

Band edge:

5.6. Antenna Requirements

5.6.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.6.2. Antenna Connector Construction

The EUT has a component antenna, which, in accordance to the above sections, is considered sufficient to comply with the provisions of these sections. Please see EUT photo for details.

5.6.3. Result: Compliance.

6. LIST OF MEASURING EQUIPMENTS

Instrument	Manufactur er	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	May 23,2011	Conduction (CO04-HY)
LISN	MESS Tec	NNB-2/16Z	99079	9KHz-30MHz	May 23,2011	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3819/2NM	9703-1839	9KHz-30MHz	May 23,2011	Conduction (CO04-HY)
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9KHz-30MHz	May 23,2011	Conduction (CO04-HY)
ISN	SCHAFFNER	ISN ST08	21653	9KHz-30MHz	May 23,2011	Conduction (CO04-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30M-1GHz 3m	May 23,2011	Radiation (03CH03-HY)
Amplifier	SCHAFFNER	COA9231A	18667	9kHz-2GHzz	May 23,2011	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3008A02120	1GHz-26.5GHz	May 23,2011	Radiation (03CH03-HY)
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5GHz-40GHz	May 23,2011	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP30	100023	9k-30GHz	May 23,2011	Radiation (03CH03-HY)
Loop Antenna	R&S	HFH2-Z2	860004/001	9k-30MHz	May 23,2011	Radiation (03CH03-HY)
By-log Antenna	SCHAFFNER	CBL 6112D	22237	30MHz-1GHz	May 23,2011	Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6741	1GHz-18GHz	May 23,2011	Radiation (03CH03-HY)
Horn Antenna	SCHWARZBEC K	BBHA9170	BBHA9170154	15GHz-40GHz	May 23,2011	Radiation (03CH03-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz-1GHz	May 23,2011	Radiation (03CH03-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz-40GHz	May 23,2011	Radiation (03CH03-HY)
Spectrum Meter	R&S	FSP 30	100023	9kHz-30GHz	May 23,2011	Conducted (TH01-HY)
Power Meter	R&S	NRVS	100444	DC-40GHz	May 23,2011	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z51	100458	DC-30GHz	May 23,2011	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z32	10057	30MHz-6GHz	May 23,2011	Conducted (TH01-HY)
AC Power Source	HPC	HPA-500E	HPA-9100024	AC 0~300V	May 23,2011	Conducted (TH01-HY)
DC power Soure	GW	GPC-6030D	C671845	DC 1V-60V	May 23,2011	Conducted (TH01-HY)
Temp. and Humidigy Chamber	Giant Force	GTH-225-20-S	MAB0103-00	N/A	May 23,2011	Conducted (TH01-HY)
RF CABLE-1m	JYE Bao	RG142	CB034-1m	20MHz-7GHz	May 23,2011	Conducted (TH01-HY)
RF CABLE-2m	JYE Bao	RG142	CB)35-2m	20MHz-1GHz	May 23,2011	Conducted (TH01-HY)
Vector signal Generator	R&S	SMU200A	102098	100kHz~6GHz	May 23,2011	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	10016	10MHz~4oGHa	May 23,2011	Conducted (TH01-HY)
Oscilloscope	Tektonix	TDS380	B016197	400MHz/2GRS	May 23,2011	Conducted (TH01-HY)

-----THE END OF REPORT-----

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Certification Services Inc. Page 48 of 48