FCC ID:W6RRNX-AC750RT page 11-1

11. MAXIMUM PERMISSIBLE EXPOSURE

11.1.Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

(B) Limits for General Population / Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density	Averaging
Range (MHz)	Strength (E)	Strength (H)	$(S) (mW/cm^2)$	Time E ² , H ²
	(V/m)	(A/m)		or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

FCC ID:W6RRNX-AC750RT page 11-2

11.2. MPE Calculation Method

$$E(V/m) = \sqrt{30 \times P \times G}$$

Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

11.3. Calculated Result and Limit

For 5GHz UNII Band:

Antenna Type: PCB Antenna

Conducted Power for IEEE 802.11n VHT40: 16.09dBm

Antenna	Antenna	Average	Output	Power	Limit of	Test
Gain (dBi)	Gain	Power		Density (S)	Power	Result
	(numeric)	(dBm)	(mW)	(mW/cm²)	Density (S)	
					(mW/cm ²)	
3	2.00	16.09	40.64	0.01617	1	Complies

For 5GHz ISM Band:

Antenna Type: Dipole Antenna

Conducted Power for IEEE 802.11a: 24.49 dBm

Antenna	Antenna	Average	Output	Power	Limit of	Test
Gain (dBi)	Gain	Power		Density (S)	Power	Result
	(numeric)	(dBm)	(mW)	(mW/cm²)	Density (S)	
					(mW/cm ²)	
3	2.00	24.49	281.19	0.11188	1	Complies

FCC ID: W6RRNX-AC750RT page 11-3

For 2.4GHz Band:

Antenna Type: Dipole Antenna

Conducted Power for IEEE 802.11g 26.68dBm

Antenna	Antenna	Average	Output	Power	Limit of	Test
Gain (dBi)	Gain	Power		Density (S)	Power	Result
	(numeric)	(dBm)	(mW)	(mW/cm ²)	Density (S)	
					(mW/cm²)	
2	1.58	26.68	465.59	0.14635	1	Complies

CONCULSION:

Both of the WLAN 2.4GHz Band and WLAN 5GHz Band can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.11188 / 1 + 0.14635 / 1 = 0.25823, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.