RF EXPOSURE REPORT

REPORT NO.: SA120302C25D R1
MODEL NO.: RNWD-N9003PCE
FCC ID: W6RRNWD-N9003PCE
RECEIVED: Mar. 20, 2012
TESTED: Mar. 20, 2012
ISSUED: Oct. 19, 2012

APPLICANT: Rosewill Inc.
ADDRESS: $\begin{aligned} & 17708 \text { Rowland Street, City of Industry, } \\ & \text { CA91748, USA }\end{aligned}$

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory

LAB ADDRESS: No. 81-1, Lu Liao Keng, 9th Ling,Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan, R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by any government agencies.

[^0]
TABLE OF CONTENTS

RELEASE CONTROL RECORD 3

1. CERTIFICATION 4
2. RF EXPOSURE LIMIT 5
3. MPE CALCULATION FORMULA 5
4. CLASSIFICATION 5
5. ANTENNA GAIN 5
6. CALCULATION RESULT OF MAXIMUM CONDUCTED POWER 6

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
SA120302C25D	Original release	Oct. 16, 2012
SA120302C25D R1	Modified the FCC ID.	Oct. 19, 2012

1. CERTIFICATION

PRODUCT: Dual Band Wireless PCIE Adapter
BRAND NAME: Rosewill
MODEL NO.: RNWD-N9003PCE
TEST SAMPLE: PROTOTYPE
APPLICANT: Rosewill Inc.
TESTED: Mar. 20, 2012
STANDARDS: FCC Part 2 (Section 2.1091)
FCC OET Bulletin 65, Supplement C (01-01)

IEEE C95.1

The above equipment (Model: RNWD-N9003PCE) has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation \& Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

APPROVED BY
 , DATE: Oct. 19, 2012
(May Chen, Deputy Manager)
2. RF EXPOSURE LIMIT

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

FREQUENCY RANGE (MHz)	ELECTRIC FIELD STRENGTH (V/m)	MAGNETIC FIELD STRENGTH (A/m)	POWER DENSITY $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	AVERAGE TIME (minutes)	
LIMITS FOR GENERAL POPULATION / UNCONTROLLED EXPOSURE					
$300-1500$	\ldots	\ldots	$F / 1500$	30	
$1500-100,000$	\ldots	\ldots	1.0	30	

$\mathrm{F}=$ Frequency in MHz

3. MPE CALCULATION FORMULA

$\mathrm{Pd}=\left(\right.$ Pout $\left.{ }^{*} \mathrm{G}\right) /\left(4^{\star} \mathrm{pi}^{\star} \mathrm{r}^{2}\right)$
where
$\mathrm{Pd}=$ power density in $\mathrm{mW} / \mathrm{cm}^{2}$
Pout = output power to antenna in mW
$\mathrm{G}=$ gain of antenna in linear scale
$\mathrm{pi}=3.1416$
$r=$ distance between observation point and center of the radiator in cm

4. CLASSIFICATION

The antenna of this product, under normal use condition, is at least 20 cm away from the body of the user. So, this device is classified as Mobile Device.

5. ANTENNA GAIN

The antennas provided to the EUT, please refer to the following table:

Transmitter Circuit	Antenna Type	Peak Gain (dBi)	Connecter Type
Chain (0)	Omni	2	SMA Reverse
Chain (1)	Omni	2	SMA Reverse
Chain (2)	Omni	2	SMA Reverse

6. CALCULATION RESULT OF MAXIMUM CONDUCTED POWER

For 15.247(2.4GHz):

802.11b:

FREQUENCY BAND $(\mathbf{M H z})$	MAX POWER $(\mathbf{m W})$	ANTENNA GAIN (dBi)	DISTANCE $(\mathbf{c m})$	POWER DENSITY $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	LIMIT $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$
$2412-2462$	231.149	6.77	20	0.219	1.00

Directional gain = gain of antenna element $+10 \log$ (\# of TX antenna elements)
Effective Legacy Gain $(\mathrm{dBi})=6.77$
802.11g:

FREQUENCY BAND $(\mathbf{M H z})$	MAX POWER $(\mathbf{m W})$	ANTENNA GAIN $(\mathbf{d B i})$	DISTANCE (cm)	POWER DENSITY $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	LIMIT $\left(\mathbf{m W} / \mathrm{cm}^{2}\right)$
$2412-2462$	688.102	6.77	20	0.651	1.00

Directional gain = gain of antenna element $+10 \log$ (\# of TX antenna elements)
Effective Legacy Gain (dBi)=6.77
802.11n (HT20):

FREQUENCY BAND (MHz)	MAX POWER $(\mathbf{m W})$	ANTENNA GAIN (dBi)	DISTANCE $(\mathbf{c m})$	POWER DENSITY $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	LIMIT $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$
$2412-2462$	527.839	2.00	20	0.166	1.00

802.11n (HT40):

FREQUENCY BAND $(\mathbf{M H z})$	MAX POWER $(\mathbf{m W})$	ANTENNA GAIN (dBi)	DISTANCE $(\mathbf{c m})$	POWER DENSITY $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	LIMIT $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$
$2422-2452$	219.005	2.00	20	0.069	1.00

For 15.247(5GHz):

802.11a:

FREQUENCY BAND $(\mathbf{M H z})$	MAX POWER $(\mathbf{m W})$	ANTENNA GAIN $(\mathbf{d B i})$	DISTANCE $(\mathbf{c m})$	POWER DENSITY $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	LIMIT $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$
$5745 \sim 5825$	155.431	6.77	20	0.147	1.00

Directional gain = gain of antenna element + 10 log (\# of TX antenna elements)
Effective Legacy Gain (dBi)=6.77
802.11n (HT20):

FREQUENCY BAND $(\mathbf{M H z})$	MAX POWER $(\mathbf{m W})$	ANTENNA GAIN $(\mathbf{d B i})$	DISTANCE $(\mathbf{c m})$	POWER DENSITY $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	LIMIT $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$
$5745 \sim 5825$	156.926	2.00	20	0.049	1.00

802.11n (HT40):

FREQUENCY BAND $(\mathbf{M H z})$	MAX POWER $(\mathbf{m W})$	ANTENNA GAIN $(\mathbf{d B i})$	DISTANCE $(\mathbf{c m})$	POWER DENSITY $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	LIMIT $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$
$5755 \sim 5795$	169.013	2.00	20	0.053	1.00

For 15.407(5GHz):
802.11a:

FREQUENCY BAND $(\mathbf{M H z})$	MAX POWER $(\mathbf{m W})$	ANTENNA GAIN $(\mathbf{d B i})$	DISTANCE $(\mathbf{c m})$	POWER DENSITY $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	LIMIT $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$
$5180 \sim 5320$	13.87	6.77	20	0.013	1.00

Directional gain = gain of antenna element + $10 \log$ (\# of TX antenna elements)
Effective Legacy Gain (dBi)=6.77
802.11n (HT20):

FREQUENCY BAND $(\mathbf{M H z})$	MAX POWER $(\mathbf{m W})$	ANTENNA GAIN $(\mathbf{d B i})$	DISTANCE $(\mathbf{c m})$	POWER DENSITY $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	LIMIT $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$
$5180 \sim 5320$	13.241	2.00	20	0.004	1.00

802.11n (HT40):

FREQUENCY BAND $(\mathbf{M H z})$	MAX POWER $(\mathbf{m W})$	ANTENNA GAIN $(\mathbf{d B i})$	DISTANCE $(\mathbf{c m})$	POWER DENSITY $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	LIMIT $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$
$5190 \sim 5310$	15.303	2.00	20	0.005	1.00

END ---

[^0]: This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification

