

Measurement of RF Interference from a Model BIGBELLR Transmitter

For : Inclusion Solutions

6909 N Western Ave Chicago, IL 60645

P.O. No. : Verbal

Date Tested : February 27, 2009 and March 27, 2009

Test Personnel: Mark E. Longinotti

Specification : FCC "Code of Federal Regulations" Title 47

Part 15, Subpart C : Industry Canada RSS-210

: Industry Canada RSS-GEN

MARK E. LONGINOTTI

Test Report By :

Mark E. Longinotti

Witnessed by

Phil Aseltime 3XA Wireless, Inc.

Approved By

Raymond J. Klouda Registered Professional Engineer of Illinois - 44894

Raymond J Klouda,

TABLE OF CONTENTS DESCRIPTION OF CONTENTS

PARAGRAPH		DESCRIPTION OF CONTENTS	PAGE NO.
1	INTRODUCTION		
•			
	•		
		nd Exclusions	
		cation	
2	,		
3	TEST ITEM SETUD AND OF	ERATION	
J			
	•		
		t	
	•		
	· · · · · · · · · · · · · · · · · · ·		
	•		
4		NSTRUMENTATION	
_			
		nty	
5			
J		missions	
		surements	
		surements	
		S	
		easurements	
		edsurements	
	•		
			<u> </u>
6			
6		nesses	
7		tem	
8			
9			

REVISION HISTORY

Revision	Date	Description
_	March 30, 2009	Initial release

Measurement of RF Emissions from a BIGBELLR Transmitter

1 INTRODUCTION

1.1 Scope of Tests

This document represents the results of the series of radio interference measurements performed on a BIGBELLR Transmitter, Serial No. None Assigned, (hereinafter referred to as the test item). The test item was designed to transmit at approximately 315MHz using an internal antenna. The test item was manufactured and submitted for testing by Inclusion Solutions located in Chicago, IL.

1.2 Purpose

The test series was performed to determine if the test item meets the conducted and radiated RF emission requirements of the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart C, Section 15.207 and 15.231 for Intentional Radiators and the Industry Canada Radio Standards Specification RSS-Gen Section 7.2.2 and RSS-210 Section 2.6. Testing was performed in accordance with ANSI C63.4-2003.

1.3 Deviations, Additions and Exclusions

There were no deviations, additions to, or exclusions from the test specification during this test series.

1.4 EMC Laboratory Identification

This series of tests was performed by Elite Electronic Engineering Incorporated of Downers Grove, Illinois. The laboratory is accredited by the National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP). NVLAP Lab Code: 100278-0.

1.5 Laboratory Conditions

The temperature at the time of the test was 23°C and the relative humidity was 22%.

2 APPLICABLE DOCUMENTS

The following documents of the exact issue designated form part of this document to the extent specified herein:

- Federal Communications Commission "Code of Federal Regulations", Title 47, Part 15, Subpart C. dated 1 October 2008
- ANSI C63.4-2003, "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"
- Industry Canada RSS-210, Issue 7, June 2007, "Spectrum Management and Telecommunications Radio Standards Specification, Low-power License-exempt radio communication devices (All Frequency Bands): Category I Equipment"
- Industry Canada RSS-GEN, Issue 2, June 2007, "Spectrum Management and Telecommunications Radio Standards Specification, General Requirements and Information for the Certification of radio communication equipment"

3 TEST ITEM SETUP AND OPERATION

3.1 General Description

The test item is a BIGBELLR Transmitter. A block diagram of the test item setup is shown as Figure 1.

3.1.1 Power Input

The test item was powered with 6VDC from 2 internal CR2032 batteries.

3.1.2 Peripheral Equipment

The test item was submitted for testing with no peripheral equipment.

3.1.3 Interconnect Cables

The test item was submitted for testing with no interconnect cables.

3.1.4 Grounding

The test item was not grounded during testing.

3.2 Operational Mode

For all tests the test item was placed on an 80cm high non-conductive stand. The test item was energized and programmed so that once the transmit button was pushed it will transmit continuously.

3.3 Test Item Modifications

No modifications were required for compliance to the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart C, Section 15.207 and Section 15.231 for Intentional Radiators and the Industry Canada Radio Standards Specification RSS-Gen Section 7.2.2 and RSS-210 Section 2.6

4 TEST FACILITY AND TEST INSTRUMENTATION

4.1 Shielded Enclosure

All tests were performed in a 32ft. x 20ft. x 18ft. hybrid ferrite-tile/anechoic absorber lined test chamber. With the exception of the floor, the reflective surfaces of the shielded chamber are lined with ferrite tiles on the walls and ceiling. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4-2003 for site attenuation.

4.2 Test Instrumentation

The test instrumentation and auxiliary equipment used during the tests are listed in Table 9-1.

4.3 Calibration Traceability

Test equipment is maintained and calibrated on a regular basis. All calibrations are traceable to the National Institute of Standards and Technology (NIST).

4.4 Measurement Uncertainty

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system.

The measurement uncertainty for these tests is presented below:

Conducted Emission Measurements

Combined Standard Uncertainty	1.07	-1.07
Expanded Uncertainty (95% confidence)	2.1	-2.1

Radiated Emission Measurements						
Combined Standard Uncertainty	2.26	-2.18				
Expanded Uncertainty (95% confidence)	4.5	-4.4				

5 TEST PROCEDURES

5.1 Powerline Conducted Emissions

Since the test item was powered by internal batteries, no conducted emissions tests are required.

5.2 Duty Cycle Factor Measurements

5.2.1 Procedures

The duty cycle factor is used to convert peak detected readings to average readings. This factor is computed from the time domain trace of the pulse modulation signal.

With the transmitter set up to transmit for maximum pulse density, the time domain trace is displayed on the spectrum analyzer. This trace is obtained by tuning center frequency to the transmitter frequency and then setting a zero span width with 10msec/div. The amplitude settings are adjusted so that the on/off transitions clear the 4th division from the bottom of the display. The markers are set at the beginning and end of a word period. If the word period exceeds 100 msec the word period is set to 100 msec. The on-time and off-time are then measured. The on-time is total time signal level exceeds the 4th division. Off-time is time under for the word period. The duty cycle is then computed as the (On-time/ word period) where the word period = (On-time + Off-time).

5.2.2 Results

The plot of the duty cycle is shown on data page 13. The duty cycle factor was computed to be -3.35dB.

5.3 Radiated Measurements

5.3.1 Requirements

The test item must comply with the requirements of FCC "Code of Federal Regulations Title 47", Part 15, Subpart C, Section 15.231 for Intentional Radiators and the Industry Canada Radio Standards Specification RSS-210 Section 2.6.

Paragraph 15.231(b) of the FCC "Code of Federal Regulations" and Table 4 of the Industy Canada Radio Standards Specification RSS-210 have the following radiated emission limits:

Fundamental	Fundamental				
Frequency	Field Intensity	Harmonics and			
MHz	uV/m @ 3 meters	Spurious @ 3 meters			
260 to 470	3 750 to 12 500*	375 to 1 250*			

* - Linear Interpolation

For 314.93MHz, the limit at the fundamental is 6038.8uV/m @ 3m and the limit on the harmonics is 603.9uV/m @ 3m.

In addition, emissions appearing in the Restricted Bands of Operation listed in paragraph 15.205(a) shall not exceed the general requirements shown in paragraph 15.209.

5.3.2 Procedures

Radiated measurements were performed in a 32ft. x 20ft. x 14ft. high shielded enclosure. The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.

A preliminary radiated emissions test was performed to determine the emission characteristics of the test item. For the preliminary test, a broadband measuring antenna was positioned at a 3 meter distance from the test item. The entire frequency range from 30MHz to 4.0GHz was investigated using a peak detector function. The data was then processed by the computer to calculate equivalent field intensity.

The final open field emission tests were then manually performed over the frequency range of 30MHz to 4000MHz. Between 30MHz and 1000MHz, a tuned dipole antenna was used as the pick-up device. A broadband double ridged waveguide antenna was used as the pick-up device for all frequencies above 1GHz. All significant broadband and narrowband signals were measured and recorded. The peak detected levels were converted to average levels using a duty cycle factor which was computed from the pulse train.

To ensure that maximum or worst case, emission levels were measured, the following steps were taken:

- 1) The test item was rotated so that all of its sides were exposed to the receiving antenna.
- 2) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
- 3) The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.
- 4) For hand-held or body-worn devices, the test item was rotated through three orthogonal axes to determine which orientation produces the highest emission relative to the limit.

5.3.3 Results

The preliminary plots, with the test item transmitting at 315MHz, are presented on data pages 14 through 17. The plots are presented for a reference only, and are not used to determine compliance.

The final open area radiated levels, with the test item transmitting at 315MHz, are presented on data page 18. As can be seen from the data, all emissions measured from the test item were within the specification limits. The emissions level closet to the limit (worst case) occurred at 314.93MHz. The emissions level at this frequency was 2.0dB within the limit. See data page 18 for details. Photographs of the test configuration which yielded the highest, or worst case, radiated emission levels are shown on Figure 2 and Figure 3.

5.4 Occupied Bandwidth Measurements

5.4.1 Requirement

In accordance with paragraph 15.231(c) of the FCC "Code of Federal Regulations", all emissions within 20dB of the peak amplitude level of the center frequency are required to be within a band less than 0.25% of the center frequency wide.

5.4.2 Procedures

The test item was placed on an 80cm high non-conductive stand. The unit was set to transmit continuously. With an antenna positioned nearby, occupied bandwidth emissions were displayed on the spectrum analyzer. The resolution bandwidth was set to 30 kHz and span was set to 2 MHz. The frequency spectrum near the fundamental was plotted.

5.4.3 Results

The plot of the emissions near the fundamental frequency is presented on data page 19. As can be seen from this data page, the transmitter met the occupied bandwidth requirements. The 99% bandwidth was determined to be 201kHz.

6 OTHER TEST CONDITIONS

6.1 Test Personnel and Witnesses

All tests were performed by qualified personnel from Elite Electronic Engineering Incorporated. The test series was witnessed by 3XA Wireless, Inc. personnel.

6.2 Disposition of the Test Item

The test item and all associated equipment were returned to 3XA Wireless, Inc. upon completion of the tests.

7 CONCLUSIONS

It was determined that the Inclusion Solutions Transmitter, Part No. BIGBELLR, Serial No. None Assigned, did fully meet the conducted and radiated emission requirements of the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart C, Section 15.207 and Section 15.231 for Intentional Radiators, when tested per ANSI C63.4-2003.

It was determined that the Inclusion Solutions Transmitter, Part No. BIGBELLR, Serial No. None Assigned, did fully meet the conducted and radiated emission requirements of the Industry Canada Radio Standards Specification RSS-Gen Section 7.2.2 and RSS-210 Section 2.6 when tested per ANSI C63.4-2003.

8 CERTIFICATION

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the test specifications.

The data presented in this test report pertains to the test item at the test date as operated by 3AX Wireless, Inc. personnel. Any electrical or mechanical modification made to the test item subsequent to the specified test date will serve to invalidate the data and void this certification.

This report must not be used to claim product endorsement by NVLAP or any agency of the US Government.

9 EQUIPMENT LIST

Table 9-1 Equipment List

Eq ID	Oper	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Due Date
APK2		PREAMPLIFIER	AGILENT TECHNOLOGIES	8449B	3008A01595	1-26.5GHZ	3/26/2008	3/26/2009
CDS2		COMPUTER	GATEWAY	MFATXPNT NMZ 500L	0028483108	1.8GHZ	N/A	
CMA1		Controllers	EMCO	2090	9701-1213		N/A	
NDP0		TUNED DIPOLE ANTENNA	EMCO	3121C-DB3	311	140-400MHZ	3/12/2009	3/12/2010
NDQ0		TUNED DIPOLE ANTENNA	EMCO	3121C-DB4	311	400-1000MHZ	3/12/2009	3/12/2010
NTA1		BILOG ANTENNA	CHASE EMC LTD.	BILOG CBL6112	2054	0.03-2GHZ	9/2/2008	9/2/2009
NWH0		RIDGED WAVE GUIDE	TENSOR	4105	2081	1-12.4GHZ	10/25/2008	10/25/2009
RAC0		SPECTRUM ANALYZER	HEWLETT PACKARD	85660B	2449A01117	100HZ-22GHZ	8/21/2008	8/21/2009
RACE		RF PRESELECTOR	HEWLETT PACKARD	85685A	3010A01194	20HZ-2GHZ	8/20/2008	8/20/2009
XZG2		ATTENUATOR/SWITCH DRIVER	HEWLETT PACKARD	11713A	2223A01751		N/A	

I/O: Initial Only N/A: Not Applicable

Note 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

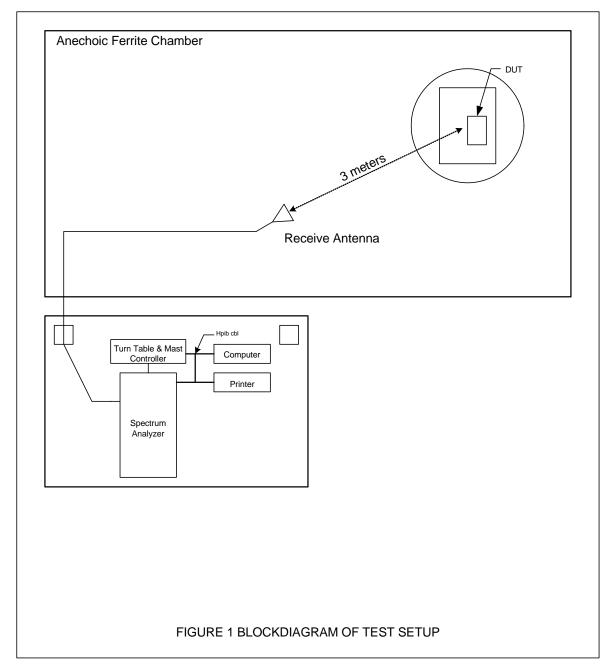
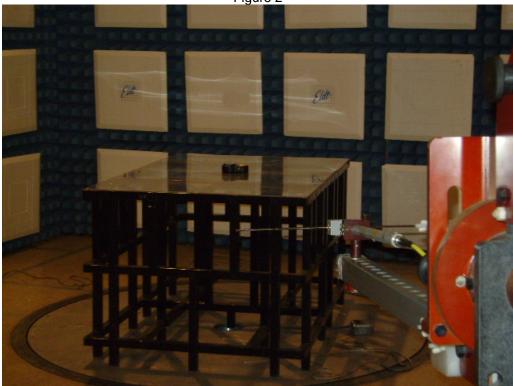
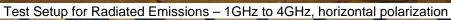
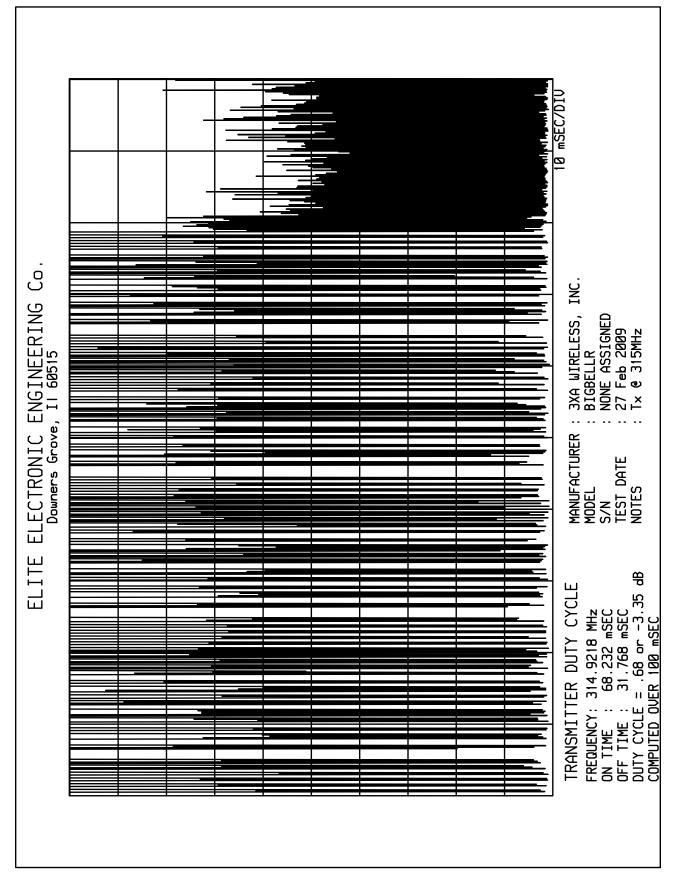
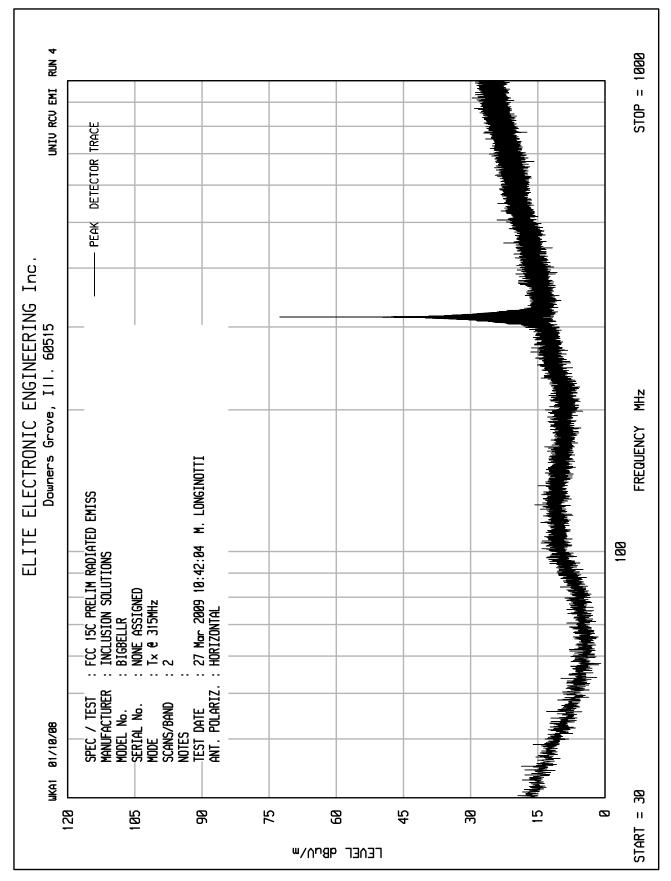



Figure 2

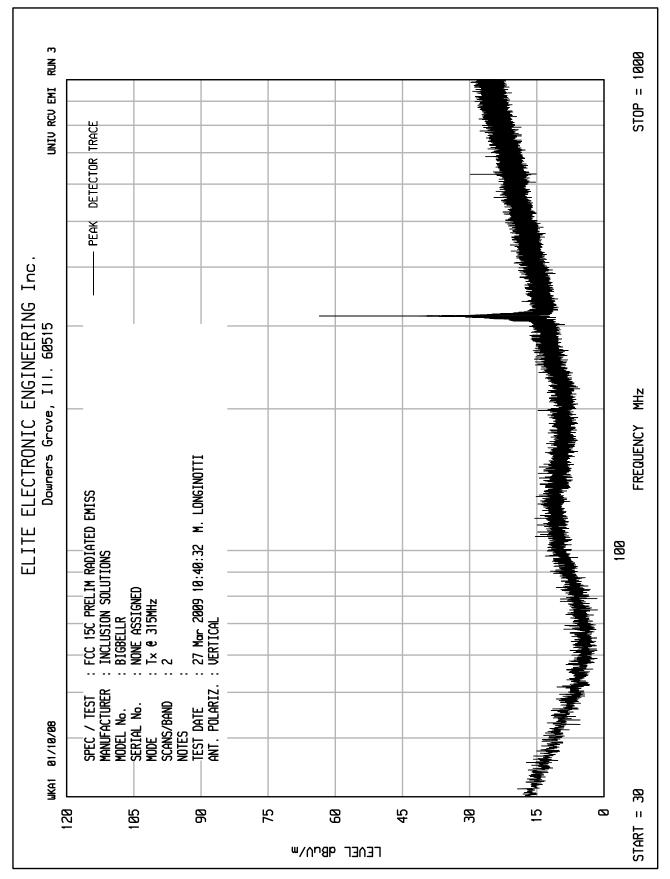

Test Setup for Radiated Emissions – 315MHz, horizontal polarization

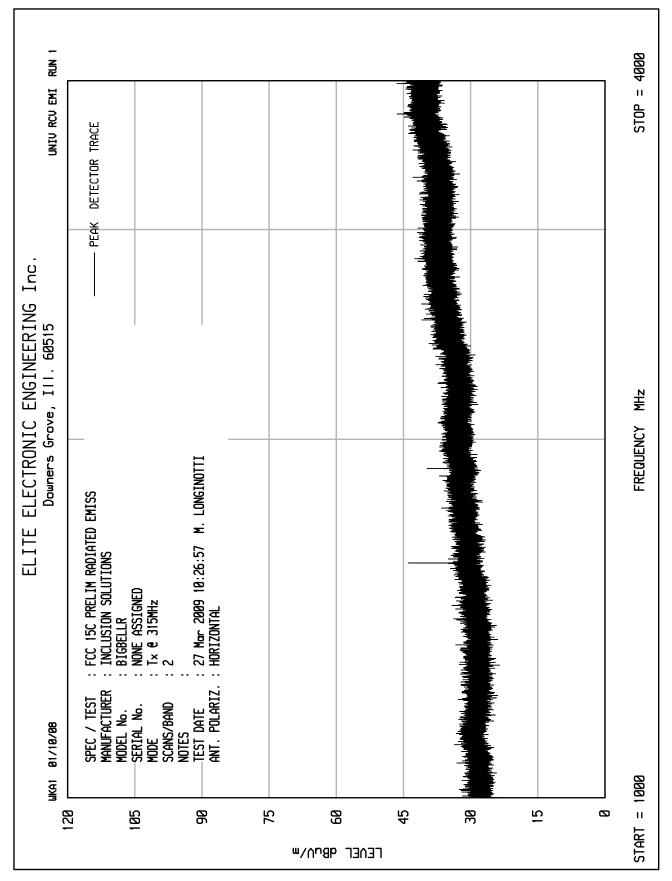
Test Setup for Radiated Emissions – 315MHz, vertical polarization

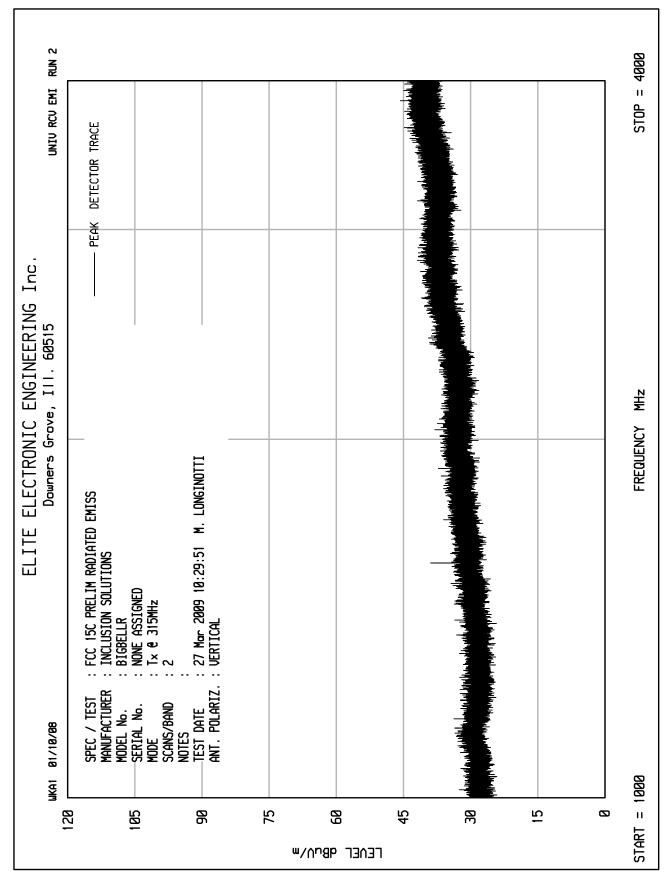




Test Setup for Radiated Emissions – 1GHz to 4GHz, vertical Polarization





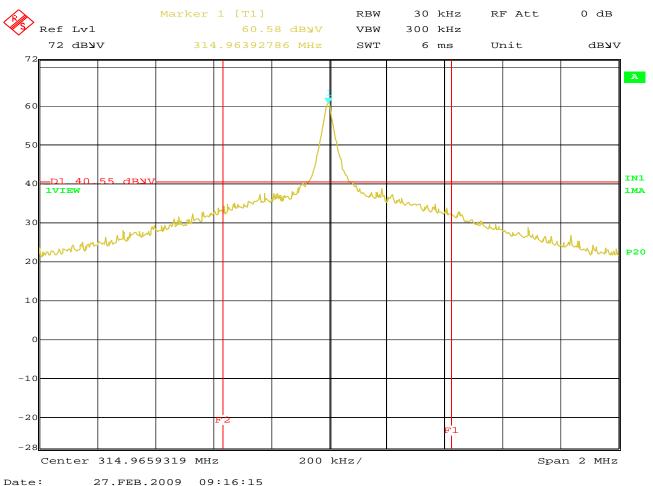


ETR No. DATA PAGE

SPECIFICATION: FCC PART 15C TRANSMITTER OPEN FIELD DATA

MANUFACTURER : INCLUSION SOLUTIONS

MODEL : BIGBELLR : NONE ASSIGNED S/N TEST DATE : 27 Mar 2009
NOTES : Tx @ 315MHz
TEST ANTENNA : ROBERTS DIPOLE & DRWG ANTENNAS


FREQUENCY MHz	ANT POL	MTR RDG dBuV	CBL FAC dB	ANT FAC dB	DUTY CYCLE dB	TOTAL dBuV/m @3m	TOTAL uV/m @3m	LIMIT NO uV/m @3m	OTES
314.93	Н	56.8	1.5	18.7	-3.4	73.6	4800.8	6038.8	
314.93	V	45.7	1.5	18.7	-3.4	62.5	1337.6	6038.8	
629.87	H	5.8 AMB	2.1	24.9	-3.4	29.5	29.7	603.9	
629.87	V	8.3	2.1	24.9	-3.4	32.0	39.6	603.9	
944.80	V	8.4 AMB	2.5	28.3	-3.4	35.9	62.1	603.9	
944.80	H	11.6	2.5	28.3	-3.4	39.1	89.7	603.9	
1259.74	V	15.8 AMB	2.8	25.6	-3.4	40.9	110.8	603.9	
1259.74	H	16.5 AMB	2.8	25.6	-3.4	41.6	119.6	603.9	
1574.70	H	21.3	3.2	26.4	-3.4	47.5	236.5	500.0	*
1574.70	V	21.6	3.2	26.4	-3.4	47.8	244.8	500.0	*
1889.60	V	17.2 AMB	3.4	27.8	-3.4	45.0	178.5	603.9	
1889.60	H	19.7	3.4	27.8	-3.4	47.5	238.1	603.9	
2204.50	H	16.0 AMB	3.8	28.8	-3.4	45.2	181.6	500.0	*
2204.50	V	15.5 AMB	3.8	28.8	-3.4	44.7	171.5	500.0	*
2519.50	V	17.0 AMB	4.1	29.6	-3.4	47.4	233.5	603.9	
2519.50	H	17.4 AMB	4.1	29.6	-3.4	47.8	244.5	603.9	
2834.60	V	14.4	4.5	30.9	-3.4	46.4	208.4	500.0	*
2834.60	H	17.5	4.5	30.9	-3.4	49.5	297.8	500.0	*
3149.30	H	10.5 AMB	4.7	31.8	-3.4	43.7	153.7	603.9	
3149.30	V	10.2 AMB	4.7	31.8	-3.4	43.4	148.5	603.9	

MARK E. LONGINOTTI checked by: ____

M. LONGINOTTI

^{*} DENOTES A FREQUENCY CONFLICT WITH RESTRICTED BANDS

FCC 15.231 20dB bandwidth

MANUFACTURER : Inclusion Solutions

TEST ITEM : Transmitter

MODEL NUMBER : BIGBELLR

TEST MODE : Tx @ 315MHz

NOTES : Display line D1 represents the 20dB down point. Display lines F1 and F2 represent

the 0.25% span from the center frequency