

Engineering Test Report No. 2302152-02			
Report Date	May 28,2024		
Manufacturer Name	Inclusion Solutions		
Manufacturer Address	2000 Greenleaf St., Suite 3 Evanston, IL 60202		
Test Item Name Model No.	BIGBELL Gen. 2 BB2-ASSY-T		
Date Received	May 3, 2024		
Test Dates	May 3 – 7, 2024		
Specification	FCC "Code of Federal Regulations" Titl	e 47 Part 15, Subpart C, Section 15.231(b)	
Test Facility	Elite Electronic Engineering, Inc. 1516 Centre Circle, Downers Grove, IL 60515	FCC Reg. Number: 269750 IC Reg. Number: 2987A CAB Identifier: US0107	
Signature	Tylar Joylyk		
Tested by	Tylar Jozefczyk		
Signature	Raymond J Klouda,		
Approved by	Raymond J. Klouda, Registered Professional Engineer of Illinois – 44894		
PO Number	PO-000294		

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.231 test specification. The data presented in this test report pertains to the EUT on the test dates specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification. This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Table of Contents

1.	Report Revision History	3
2.	Introduction	
2.1.	Scope of Tests	4
2.2.	Purpose	4
2.3.	Identification of the EUT	4
3.	Power Input	4
4.	Grounding	4
5.	Support Equipment	4
6.	Interconnect Leads	4
7.	Modifications Made to the EUT	4
8.	Modes of Operation	4
9.	Test Specifications	5
10.	Test Plan	
11.	Deviation, Additions to, or Exclusions from Test Specifications	
12.	Laboratory Conditions	5
13.	Summary	5
14.	Sample Calculations	
15.	Statement of Conformity	
16.	Certification	
17.	Photographs of EUT	7
18.	Equipment List	8
19.	Block Diagram of Test Setup	
20.	Periodic Operation	
21.	Duty Cycle Factor	
22.	Occupied Bandwidth – 20dB	
23.	Radiated Emissions	
24.	Scope of Accreditation	24

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

1. Report Revision History

Revision	Date	Description
_	31 MAY 2024	Initial Release of Engineering Test Report No. 2302152-02

2. Introduction

2.1. Scope of Tests

This document presents the results of a series of RF emissions tests that were performed on the Inclusion Solutions BIGBELL Gen. 2 (hereinafter referred to as the Equipment Under Test (EUT)). The EUT was manufactured and submitted for testing by Inclusion Solutions located in Evanston, IL.

2.2. Purpose

The test series was performed to determine if the EUT meets the RF emission requirements of the FCC "Code of Federal Regulations" Title 47, Chapter I, Subchapter A, §15.231

Testing was performed in accordance with ANSI C63.10-2013.

2.3. Identification of the EUT

The EUT was identified as follows and was used throughout the test series:

EUT Identification		
Product Description	BIGBELL Gen. 2	
Model/Part No.	BB2-ASSY-T	
Serial No.	N/A	
Size of EUT	5.5" x 3" x 2"	
Software/Firmware Version	r979 2024-Mar-13	
Band of Operation	315 MHz	
Modulation Type	OOK	
Antenna Type	Bent Coil Spring	
Antenna Gain (dBi) 1	N/A	
Emission Classification	5K00P1D	
FCC ID Number	FCC ID: W5S-315BB2TX	

3. Power Input

The EUT was powered from four (4) AA batteries.

4. Grounding

The EUT was not connected to ground.

5. Support Equipment

No support equipment was used during the tests.

6. Interconnect Leads

No interconnect leads were used during the tests.

7. Modifications Made to the EUT

No modifications were made to the EUT during the testing.

8. Modes of Operation

The EUT and all peripheral equipment were energized. The unit was programmed to transmit in one of the following modes:

Mode	Description
Tx	The EUT was powered on and set to transmit at 315MHz continuously.
Short Tx	The EUT was powered on and set to transmit at 315MHz for a short period.

9. Test Specifications

The tests were performed to selected portions of, and in accordance with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.231 test specifications:

- Federal Communications Commission "Code of Federal Regulations", Title 47, Chapter I, Subchapter A, Part 15, Subpart C, Section 231 – "Periodic operation in the band 40.66–40.70 MHz and above 70 MHz"
- ANSI C63.10-2013 "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"

10. Test Plan

No test plan was provided. Instructions were provided by personnel from Inclusion Solutions and used in conjunction with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.231 and ANSI C63.10-2013 specifications.

11. Deviation, Additions to, or Exclusions from Test Specifications

There were no deviations, additions to, or exclusions from the test specifications during this test series.

12. Laboratory Conditions

The ambient parameters of the laboratory during testing were as follows:

Ambient Parameters	Value	
Temperature	22.1°C	
Relative Humidity	50%	
Atmospheric Pressure	996.94mb	

13. Summary

The following EMC tests were performed and the results are shown below:

Test Description	Requirements	Test Method	Results
Periodic Operation	FCC 15.231	ANSI C63.10:2013	Conforms
Duty Cycle Factor	FCC 15.231	ANSI C63.10:2013	Conforms
Occupied Bandwidth – 20dB	FCC 15.231	ANSI C63.10:2013	Conforms
Radiated Emissions	FCC 15.231	ANSI C63.10:2013	Conforms

14. Sample Calculations

For Radiated Emissions:

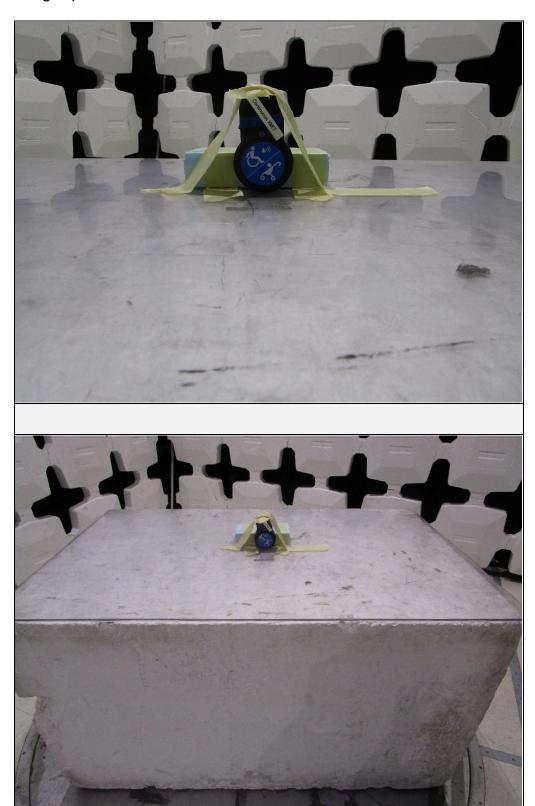
The resultant field strength (FS) is a summation in decibels (dB) of the receiver meter reading (MTR), the antenna correction factor (AF), and the cable loss factor (CF). If an external preamplifier is used, the total is reduced by its gain (-PA). If a distance correction (DC) is required, it is added to the total.

Formula 1: FS $(dB\mu V/m) = MTR (dB\mu V) + AF (dB/m) + CF (dB) + (-PA (dB)) + DC (dB)$

To convert the Field Strength $dB\mu V/m$ term to $\mu V/m$, the $dB\mu V/m$ is first divided by 20. The Base 10 AntiLog is taken of this quotient. The result is the Field Strength value in $\mu V/m$ terms.

Formula 2: FS (μ V/m) = AntiLog [(FS (dB μ V/m))/20]

15. Statement of Conformity

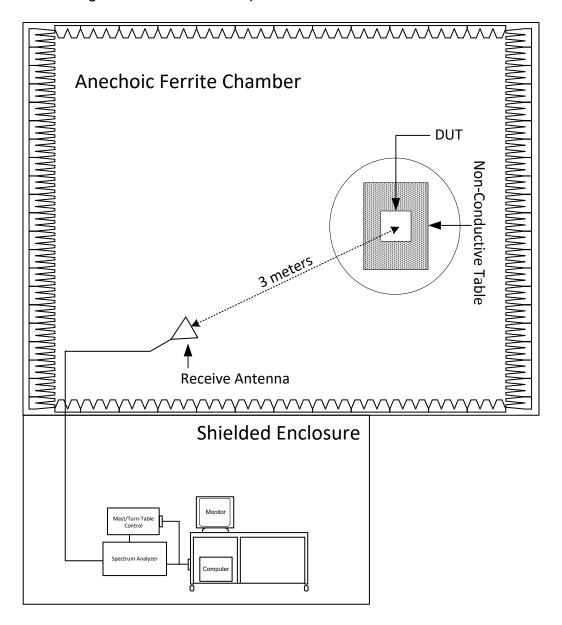

The Inclusion Solutions BIGBELL Gen. 2 (Model No. BB2-ASSY-T) did fully conform to the selected requirements of FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.231.

16. Certification

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.231 test specification. The data presented in this test report pertains to the EUT on the test date specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification.

17. Photographs of EUT

18. **Equipment List**


Eq ID	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Due Date
NTA3	BILOG ANTENNA	TESEQ	6112D	32853	25-1000MHz	11/17/2022	11/17/2024
PHA0	MAGNETIC FIELD PROBE	ELECTRO-METRICS	EM-6882	134	22-230MHZ	NOTE 1	
RBG2	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	101591	2HZ-44GHZ	4/10/2023	6/10/2024
RBG4	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	103007	2HZ-44GHZ	3/16/2024	3/16/2025

N/A: Not Applicable I/O: Initial Only CNR: Calibration Not Required

NOTE 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

19. Block Diagram of Test Setup

Radiated Measurements Test Setup

20. Periodic Operation

EUT Information		
Manufacturer	Inclusion Solutions	
Product	BIGBELL Gen. 2	
Model No.	BB2-ASSY-T	
Serial No.	N/A	
Mode	Tx	

Test Site Information	
Setup Format	Tabletop
Type of Test Site	Elite Test Bench
Test Site Used	N/A
Type of Antennas Used	Loop (or equivalent)
Note	N/A

Measurement Uncertainty	
	Expanded
Measurement Type	Measurement
	Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test	4.3
site) (30 MHz – 1000 MHz)	4.3

Requirements

Per §15.231(a), a manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

A transmitter activated automatically shall cease transmission within 5 seconds after activation.

Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

Transmission of set-up information for security systems may exceed said transmission duration limits, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.

Procedure

The spectrum analyzer was set up to display the time domain trace. The EUT was set to transmit normally. The spectrum analyzer was then used to record the amount of time that the EUT remained active following activation.

	Test Details
Manufacturer	Inclusion Solutions
EUT	BIGBELL Gen. 2
Model No.	BB2-ASSY-T
Serial No.	N/A
Mode	Short Tx
Frequency Tested	315MHz
Result	Operation Time = 80ms = 0.08s
Notes	

21. Duty Cycle Factor

EUT Information	
Manufacturer	Inclusion Solutions
Product	BIGBELL Gen. 2
Model No.	BB2-ASSY-T
Serial No.	N/A
Mode	Tx

Test Setup Details		
Setup Format	Tabletop	
Measurement Method	Radiated	
Type of Test Site	Elite Test Bench	
Type of Antennas Used	Loop (or equivalent)	
Notes	None	

Measurement Uncertainty	
	Expanded
Measurement Type	Measurement
	Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3

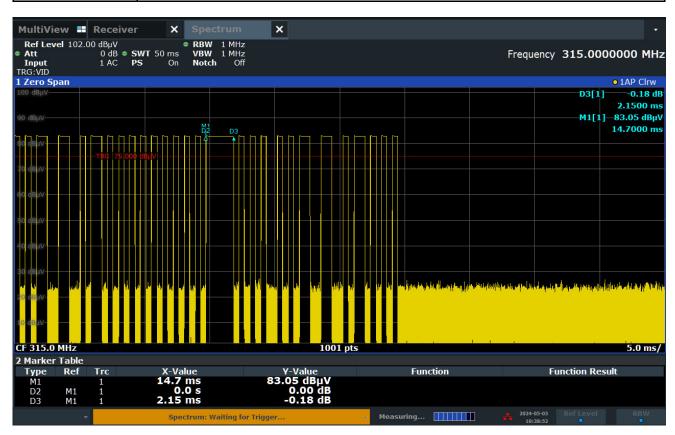
Procedure

The duty cycle factor is used to convert peak detected readings to average readings. This factor is computed from the time domain trace of the pulse modulation signal.

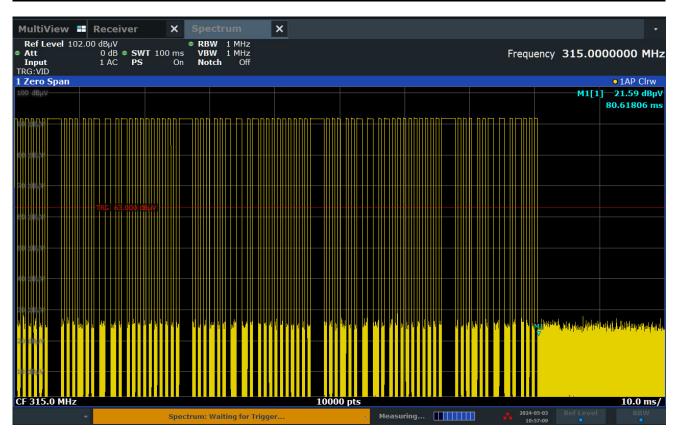
- 1) The EUT was set up to transmit for maximum pulse density, with the time domain trace displayed on the spectrum analyzer.
- 2) The pulse width was measured and a plot of this measurement was recorded.
- 3) Next, the number of pulses in the word period was measured and a plot was recorded.
- 4) Finally, the length of the word period was measured and a third plot was recorded. If the word period exceeded 100msec, the word period was limited to 100msec.
- 5) The duty cycle is then computed as $\left(\frac{On \, Time}{Word \, Period}\right)$, where $Word \, Period = (On \, Time + Off \, Time)$.



Test Details		
Manufacturer	Inclusion Solutions	
EUT	BIGBELL Gen. 2	
Model No.	BB2-ASSY-T	
Serial No.	N/A	
Mode	Tx	
Frequency Tested	315MHz	
Result	On Time = 0.4ms	
Notes		



Test Details		
Manufacturer	Inclusion Solutions	
EUT	BIGBELL Gen. 2	
Model No.	BB2-ASSY-T	
Serial No.	N/A	
Mode	Tx	
Frequency Tested	315MHz	
Result	On Time = 0.85ms	
Notes		



	Test Details
Manufacturer	Inclusion Solutions
EUT	BIGBELL Gen. 2
Model No.	BB2-ASSY-T
Serial No.	N/A
Mode	Tx
Frequency Tested	315MHz
Result	On Time = 2.15ms
Notes	

Test Details	
Manufacturer	Inclusion Solutions
EUT	BIGBELL Gen. 2
Model No.	BB2-ASSY-T
Serial No.	N/A
Mode	Tx
Frequency Tested	315MHz
Result	Duty Cycle = -7.37dB
Notes	Duty Cycle Factor Calculation: $60 \times 0.4 \text{ms} = 24 \text{ms}$ $12 \times 0.5 \text{ms} = 10.2 \text{ms}$ $4 \times 2.15 \text{ms} = 8.6 \text{ms}$ 24 ms + 10.2 ms + 8.6 ms = 42.8 ms Duty Cycle Factor = $20 \log \left(\frac{42.8 \text{ms}}{100 \text{ms}}\right) = -7.37 dB$

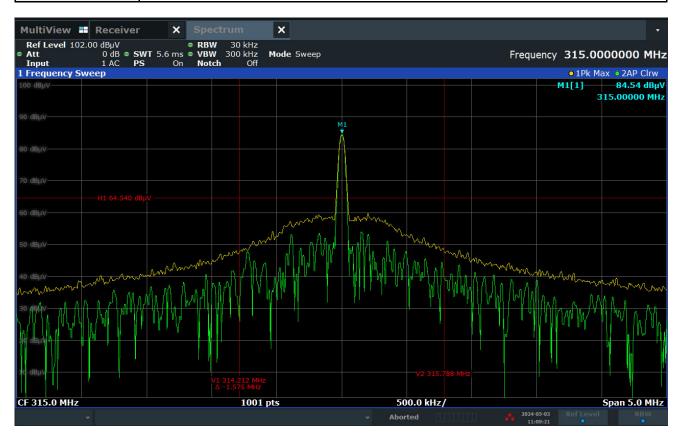
22. Occupied Bandwidth - 20dB

EUT Information	
Manufacturer	Inclusion Solutions
Product	BIGBELL Gen. 2
Model No.	BB2-ASSY-T
Serial No.	N/A
Mode	Tx

Test Setup Details		
Setup Format	Tabletop	
Measurement Method	Radiated	
Type of Test Site	Tabletop	
Test Site Used	N/A	
Type of Antenna Used	Loop (or equivalent)	
Notes		

Measurement Uncertainty	
	Expanded
Measurement Type	Measurement
	Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3

Requirement


The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz. For devices operating above 900MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20dB down from the modulated carrier.

Procedure

- 1) The EUT was set to transmit continuously.
- 2) With an antenna positioned nearby, occupied bandwidth emissions were displayed on the receiver.
- 3) The resolution bandwidth was set to 30kHz and span was set to 2MHz.
- 4) A screen capture was taken of the frequency spectrum near the carrier using a screen dump function on the receiver.

Test Details		
Manufacturer	Inclusion Solutions	
EUT	BIGBELL Gen. 2	
Model No.	BB2-ASSY-T	
Serial No.	N/A	
Mode	Tx	
Frequency Tested	315MHz	
Notes		

23. Radiated Emissions

EUT Information	
Manufacturer	Inclusion Solutions
Product	BIGBELL Gen. 2
Model No.	BB2-ASSY-T
Serial No.	N/A
Mode	Tx

Test Setup Details			
Setup Format	Tabletop		
Type of Test Site	Semi-Anechoic Chamber		
Test Site Used	R29F		
Type of Antonnoo Hood	Below 1GHz: Bilog (or equivalent)		
Type of Antennas Used	Above 1GHz: Double-Ridged Waveguide (or equivalent)		
Notes	N/A		

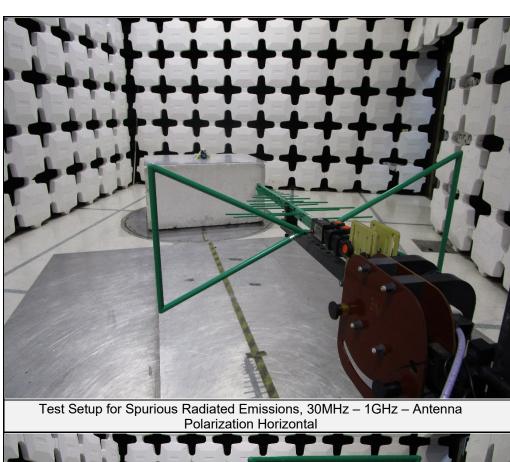
Measurement Uncertainty			
Measurement Type	Expanded Measurement Uncertainty		
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3		
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1		

Requirement
The EUT must comply with the requirements of §15.231(b) and FCC §15.205.

FCC §15.231(b) Field Strength Emissions					
Fundamental Frequency (MHZ)	Field Strength of Fundamental (μV/m)	Field Strength of Spurious Emissions (µV/m)			
40.66 – 40.70	2250	225			
70 – 130	1250	125			
130 – 174	1250 ¹ to 3750	125 ¹ to 375			
174 – 260	3750	375			
260 – 470	3750 ¹ to 12500	375¹ to 1250			
Above 470	12500	1250			
Note 1: Linear interpolations					

Procedure

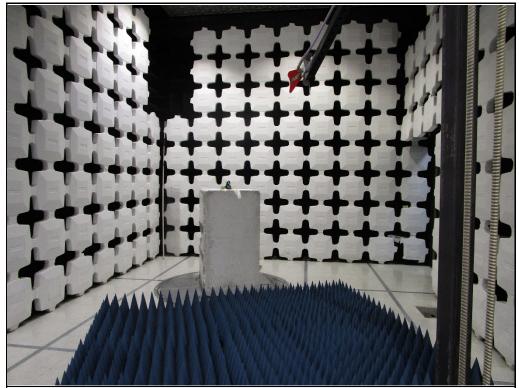
All tests were performed in a 32ft. x 20ft. x 18ft. hybrid ferrite-tile/anechoic absorber lined test chamber. The walls and ceiling of the shielded chamber are lined with ferrite tiles. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4-2014 for site attenuation.

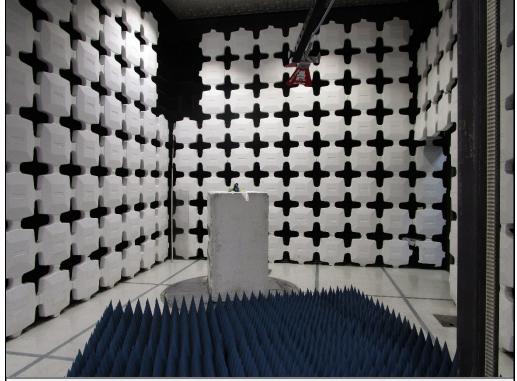

The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.

A preliminary radiated emissions test was performed to determine the emission characteristics of the EUT. For the preliminary test, a broadband measuring antenna was positioned at a 3 meter distance from the EUT. The entire frequency range from 30MHz to 4GHz was investigated using a peak detector function.

The final emission tests were then manually performed over the frequency range of 30MHz to 4GHz.

- 1) Between 30MHz and 1GHz, a bi-log antenna was used as the pick-up device. The EUT was placed on an 80cm high non-conductive stand.
- 2) A peak detector with a resolution bandwidth of 100kHz was used on the spectrum analyzer.
- 3) Above 1GHz, a broadband double ridged waveguide antenna was used as the pick-up device. The EUT was placed on a 150cm high non-conductive stand.
- 4) A peak detector with a resolution bandwidth of 1MHz was used on the spectrum analyzer.
- 5) The peak detected levels were converted to average levels using a duty cycle factor which was computed from the pulse train
- 6) To ensure that maximum or worst case, emission levels were measured, the following steps were taken:
 - i) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
 - iv) In instances where it was necessary to use a shortened cable between the measuring antenna and the spectrum analyzer, the measuring antenna was not raised or lowered to ensure maximized readings. Instead, the EUT was rotated through all axis to ensure the maximum readings were recorded for the EUT.





Test Setup for Spurious Radiated Emissions, 30MHz – 1GHz – Antenna Polarization Vertical

Test Setup for Spurious Radiated Emissions, Above 1GHz – Antenna Polarization Horizontal

Test Setup for Spurious Radiated Emissions, Above 1GHz – Antenna Polarization Vertical

	Test Details
Manufacturer	Inclusion Solutions
EUT	BIGBELL Gen. 2
Model No.	BB2-ASSY-T
Serial No.	N/A
Mode	Tx
Frequency Tested	315MHz
Notes	Field Strength of the Fundamental Limit = 6041.67µV/m

Freq. (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Duty Cycle (dB)	Total (dBµV/m)	Total (µV/m)	Limit (µV/m)	Margin (dB)
315.000	Н	44.67		1.81	19.32	0.00	-7.37	58.43	834.68	6041.67	-17.19
315.000	V	61.49		1.81	19.32	0.00	-7.37	75.25	5787.92	6041.67	-0.37
630.000	Ι	10.56	Ambient	2.51	25.05	0.00	-7.37	30.75	34.47	604.17	-24.87
630.000	V	10.38	Ambient	2.51	25.05	0.00	-7.37	30.57	33.76	604.17	-25.05
945.000	Ι	11.71	Ambient	2.91	26.97	0.00	-7.37	34.22	51.42	604.17	-21.40
945.000	٧	11.36	Ambient	2.91	26.97	0.00	-7.37	33.87	49.38	604.17	-21.75
1260.000	Τ	11.52	Ambient	3.07	28.84	0.00	-7.37	36.06	63.50	604.17	-19.57
1260.000	٧	11.01	Ambient	3.07	28.84	0.00	-7.37	35.55	59.88	604.17	-20.08
1575.000	Τ	11.93	Ambient	3.18	28.67	0.00	-7.37	36.41	66.13	500.00	-17.57
1575.000	٧	13.66	Ambient	3.18	28.67	0.00	-7.37	38.14	80.71	500.00	-15.84
1890.000	Τ	11.92	Ambient	3.27	30.82	0.00	-7.37	38.64	85.50	604.17	-16.98
1890.000	٧	12.49	Ambient	3.27	30.82	0.00	-7.37	39.21	91.30	604.17	-16.41
2205.000	Τ	12.16	Ambient	3.34	32.09	0.00	-7.37	40.22	102.57	500.00	-13.76
2205.000	٧	13.07	Ambient	3.34	32.09	0.00	-7.37	41.13	113.90	500.00	-12.85
2520.000	Τ	13.54	Ambient	3.41	32.76	0.00	-7.37	42.33	130.84	604.17	-13.29
2520.000	٧	13.55	Ambient	3.41	32.76	0.00	-7.37	42.34	130.99	604.17	-13.28
2835.000	Τ	12.80	Ambient	3.88	32.64	0.00	-7.37	41.95	125.24	500.00	-12.02
2835.000	V	13.13	Ambient	3.88	32.64	0.00	-7.37	42.28	130.08	500.00	-11.69
3150.000	Н	13.52	Ambient	4.35	33.08	0.00	-7.37	43.58	150.99	604.17	-12.04
3150.000	V	13.89	Ambient	4.35	33.08	0.00	-7.37	43.95	157.56	604.17	-11.67

24. Scope of Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

ELITE ELECTRONIC ENGINEERING, INC.

1516 Centre Circle Downers Grove, IL 60515

Robert Bugielski (QA Manager) Phone: 630 495 9770 ext. 168

Email: rbugielski@elitetest.com

Craig Fanning (EMC Lab Manager) Phone: 630 495 9770 ext. 112

Email: cfanning@elitetest.com

Brandon Lugo (Automotive Team Leader) Phone: 630 495 9770 ext. 163

Email: blugo@elitetest.com

Richard King (FCC/Commercial Team Leader) Phone: 630 495 9770 ext. 123

Email: reking@elitetest.com Website: www.elitetest.com

ELECTRICAL

Valid To: June 30, 2025 Certificate Number: 1786.01

In recognition of the successful completion of the A2LA Accreditation Program evaluation process, accreditation is granted to this laboratory to perform the following <u>automotive electromagnetic compatibility and other electrical tests</u>:

Test Technology:	Test Method(s)1:
Transient Immunity (Max Voltage 60ViMax current 100A)	ISO 7637-2 (including emissions); ISO 7637-3; ISO 16750-2:2012, Sections 4.6.3 and 4.6.4;
(Max Vollage ouvillat Carrent 1002)	CS-11979, Section 6.4; CS.00054, Section 5.9;
	EMC-CS-2009.1 (CI220); FMC1278 (CI220, CI221, CI222);
	GMW 3097, Section 3.5; SAE J1113-11; SAE J1113-12;
	ECE Regulation 10.06 Annex 10
Electrostatic Discharge (ESD)	ISO 10605 (2001, 2008);
(Up to +/-25kV)	CS-11979 Section 7.0; CS.00054, Section 5.10;
	EMC-CS-2009.1 (CI 280); FMC1278 (CI280); SAE J1113-13; GMW 3097 Section 3.6
Conducted Emissions	CISPR 25 (2002, 2008), Sections 6.2 and 6.3;
	CISPR 25 (2016), Sections 6.3 and 6.4;
	CS-11979, Section 5.1; CS.00054, Sections 5.6.1 and 5.6.2; GMW 3097, Section 3.3.2;
	EMC-CS-2009.1 (CE 420); FMC1278 (CE420, CE421,
	CE 430, CE440)

(A2LA Cert. No. 1786.01) 08/15/2023

Page 1 of 9

5202 Presidents Court, Suite 220 | Frederick, MD 21703-8515 | Phone: 301 644 3248 | Fax: 240 454 9449 | www.A2LA.org

<u>Test Technology:</u> <u>Test Method(s)¹:</u>

Radiated Emissions Anechoic CISPR 25 (2002, 2008), Section 6.4;

(Up to 6GHz) CISPR 25 (2016), Section 6.5;

CS-11979, Section 5.3; CS.00054, Section 5.6.3;

GMW 3097, Section 3.3.1;

EMC-CS-2009.1 (RE 310); FMC1278 (RE310, RE320);

Vehicle Radiated Emissions CISPR 12; CISPR 36; ICES-002;

ECE Regulation 10.06 Annex 5

Bulk Current Injection (BCI) ISO 11452-4; CS-11979, Section 6.1; CS.00054, Section 5.8.1;

(1 to 400MHz 500mA) GMW 3097, Section 3.4.1; SAE J1113-4; EMC-CS-2009.1 (RI112); FMC1278 (RI112);

ECE Regulation 10.06 Annex 9

Radiated Immunity Anechoic ISO 11452-2;

(Up to 6GHz and 200V/m) CS-11979, Section 6.2; CS.00054, Section 5.8.2;

(Including Radar Pulse 600 V/m) GMW 3097, Section 3.4.2;

EMC-CS-2009.1 (RI114); FMC1278 (RI114); SAE J1113-21;

ECE Regulation 10.06 Annex 9

Radiated Immunity Magnetic Field ISO 11452-8; FMC 1278 (RI140)

 Radiated Immunity Reverb
 ISO/IEC 61000-4-21; GMW 3097, Section 3.4.3;

 (360MHz to 6GHz and 100V/m)
 EMC-CS-2009.1 (RI114); FMC1278 (RI114);

TO 11452 11

ISO 11452-11

Radiated Immunity ISO 11452-9;

(Portable Transmitters) EMC-CS-2009.1 (RI115); FMC1278 (RI115);

(Up to 6GHz and 20W) GMW 3097, Sec 3.4.4

Vehicle Radiated Immunity (ALSE) ISO 11451-2; ECE Regulation 10.06 Annex 6

Vehicle Product Specific EMC EN 14982; EN ISO 13309; ISO 13766; EN 50498;

Standards EC Regulation No. 2015/208; EN 55012

Electrical Loads ISO 16750-2

Stripline ISO 11452-5

Transverse Electromagnetic (TEM) ISO 11452-3

Cell

(A2LA Cert. No. 1786.01) 08/15/2023

Page 2 of 9

Test Technology: Test Method(s)1: Emissions Radiated and Conducted 47 CFR, FCC Part 15 B (using ANSI C63.4:2014); (3m Semi-anechoic chamber, 47 CFR, FCC Part 18 (using FCC MP-5:1986); up to 40 GHz) ICES-001; ICES-003; ICES-005; IEC/CISPR 11, Ed. 4.1 (2004-06); AS/NZS CISPR 11 (2004); IEC/CISPR 11 Ed 5 (2009-05) + A1 (2010); KN 11 (2008-5) with RRL Notice No. 2008-3 (May 20, 2008); CISPR 11; EN 55011; KS C 9811; CNS 13803 (1997, 2003); CISPR 14-1; EN 55014-1; AS/NZS CISPR 14.1; CISPR 16-2-1 (2008); CISPR 16-2-1; KS C 9814-1; KN 14-1; IEC/CISPR 22 (1997); EN 55022 (1998) + A1(2000); EN 55022 (1998) + A1(2000) + A2(2003); EN 55022 (2006); IEC/CISPR 22 (2008-09); AS/NZS CISPR 22 (2004); AS/NZS CISPR 22, 3rd Edition (2006); KN 22 (up to 6 GHz); CNS 13438 (up to 6 GHz); VCCI V-3 (up to 6 GHz); CISPR 32; EN 55032; KS C 9832; KN 32; ECE Regulation 10.06 Annex 7 (Broadband); ECE Regulation 10.06 Annex 8 (Narrowband); ECE Regulation 10.06 Annex 14 (Conducted) Cellular Radiated Spurious Emissions ETSI TS 151 010-1 GSM; 3GPP TS 51.010-1, Sec 12; ETSI TS 134 124 UMTS; 3GPP TS 34.124; ETSI TS 136 124 LTE; E-UTRA; 3GPP TS 36.124 Current Harmonics IEC 61000-3-2; IEC 61000-3-12; EN 61000-3-2; KN 61000-3-2; KS C 9610-3-2; ECE Regulation 10.06 Annex 11 Flicker and Fluctuations IEC 61000-3-3; IEC 61000-3-11; EN 61000-3-3; KN 61000-3-3; KS C 9610-3-3; ECE Regulation 10.06 Annex 12 Immunity Electrostatic Discharge IEC 61000-4-2, Ed. 1.2 (2001); IEC 61000-4-2 (1995) + A1(1998) + A2(2000); EN 61000-4-2 (1995); EN 61000-4-2 (2009-05); KN 61000-4-2 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-2; EN 61000-4-2; KN 61000-4-2; KS C 9610-4-2; IEEE C37.90.3 2001

IEC 61000-4-3 (1995) + A1(1998) + A2(2000);

IEC 61000-4-3, Ed. 3.0 (2006-02); IEC 61000-4-3, Ed. 3.2 (2010); KN 61000-4-3 (2008-5);

RRL Notice No. 2008 4 (May 20, 2008); IEC 61000-4-3; EN 61000-4-3; KN 61000-4-3;

KS C 9610-4-3; IEEE C37.90.2 2004

(A2LA Cert. No. 1786.01) 08/15/2023

Radiated Immunity

1 Dogs 3 of

Test Technology:	Test Method(s)1:
Immunity (cont'd)	
Electrical Fast Transient/Burst	EC 61000-4-4, Ed. 2.0 (2004-07); EC 61000-4-4, Ed. 2.1 (2011); EC 61000-4-4 (1995) + A1(2000) + A2(2001); KN 61000-4-4 (2008-5); RRL Notice No. 2008-5 (May 20, 2008); EC 61000-4-4; EN 61000-4-4; KN 61000-4-4; KS C 9610-4-4; ECE Regulation 10.06 Annex 15
Surge	IEC 61000-4-5 (1995) + A1(2000); IEC 61000-4-5, Ed 1.1 (2005-11); EN 61000-4-5 (1995) + A1(2001); KN 61000-4-5 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-5; EN 61000-4-5; KN 61000-4-5; KS C 9610-4-5; IEEE C37.90.1 2012; IEEE STD C62.41.2 2002; ECE Regulation 10.06 Annex 16
Conducted Immunity	IEC 61000-4-6 (1996) + A1(2000); IEC 61000-4-6, Ed 2.0 (2006-05); IEC 61000-4-6 Ed. 3.0 (2008); KN 61000-4-6 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); EN 61000-4-6 (1996) + A1(2001); IEC 61000-4-6; EN 61000-4-6, KN 61000-4-6; KS C 9610-4-6
Power Frequency Magnetic Field Immunity (Down to 3 A/m)	EC 61000-4-8 (1993) + A1(2000); EC 61000-4-8 (2009); EN 61000-4-8 (1994) + A1(2000); KN 61000-4-8 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); EC 61000-4-8; EN 61000-4-8; KN 61000-4-8; KS C 9610-4-8
Voltage Dips, Short Interrupts, and Line Voltage Variations	EC 61000-4-11, Ed. 2 (2004-03); KN 61000-4-11 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); EC 61000-4-11; EN 61000-4-11; KN 61000-4-11; KS C 9610-4-11
Ring Wave	IEC 61000-4-12, Ed. 2 (2006-09); EN 61000-4-12:2006; IEC 61000-4-12; EN 61000-4-12; KN 61000-4-12; IEEE STD C62.41.2 2002

(A2LA Cert. No. 1786.01) 08/15/2023

Page 4 of

Test Technology:

(A2LA Cert. No. 1786.01) 08/15/2023

Generic and Product Specific EMC IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1; Standards KS C 9610-6-1; IEC/EN 61000-6-2; AS/NZS 61000-6-2; KN 61000-6-2; KS C 9610-6-2; IEC/EN 61000-6-3; AS/NZS 61000-6-3; KN 61000-6-3; KS C 9610-6-3; IEC/EN 61000-6-4; AS/NZS 61000-6-4; KN 61000-6-4; KS C 9610-6-4; EN 50130-4; EN 61326-1; EN 50121-3-2; EN 12895; EN 50270; EN 50491-1; EN 50491-2; EN 50491-3; EN 55015; EN 60730-1; EN 60945; IEC 60533; EN 61326-2-6; EN 61800-3; IEC/CISPR 14-2; EN 55014-2; AS/NZS CISPR 14.2; KN 14-2; KS C 9814-2; IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24; IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20 European Radio Test Standards ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 113-1; ETSI EN 300 113-2; ETSI EN 300 220-1; ETSI EN 300 220-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 330-1; ETSI EN 300 330-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 422-2; ETSI EN 300 328; ETSI EN 301 893; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 908-2; ETSI EN 908-13; ETSI EN 303 413; ETSI EN 302 502; EN 303 340; EN 303 345-2; EN 303 345-3; EN 303 345-4 Canadian Radio Tests RSS-102 measurement (RF Exposure Evaluation); RSS-102 measurement (Nerve Stimulation); SPR-002; RSS-111; RSS-112; RSS-117; RSS-119; RSS-123; RSS-125; RSS-127; RSS-130; RSS-131; RSS-132; RSS-133; RSS-134; RSS-135; RSS-137; RSS-139; RSS-140; RSS-141; RSS-142; RSS-170; RSS-181; RSS-182; RSS-191; RSS-192; RSS-194; RSS-195; RSS-196; RSS-197; RSS-199; RSS-210; RSS-211; RSS-213; RSS-215; RSS-216; RSS-220; RSS-222; RSS-236; RSS-238; RSS-243; RSS-244; RSS-247; RSS-248; RSS-251; RSS-252; RSS-287; RSS-288; RSS-310; RSS-GEN Mexico Radio Tests IFT-008-2015; NOM-208-SCFI-2016 Japan Radio Tests Radio Law No. 131, Ordinance of MPT No. 37, 1981, MIC Notification No. 88:2004, Table No. 22-11; ARIB STD-T66, Regulation 18 Taiwan Radio Tests LP-0002 (July 15, 2020)

Test Method(s)1:

Test Technology: Test Method(s)¹:

Australia/New Zealand Radio Tests AS/NZS 4268; Radiocommunications (Short Range Devices)
Standard (2014)

Hong Kong Radio Tests

HKCA 1039 Issue 6;
HKCA 1042;
HKCA 1033 Issue 7;

HKCA 1061; HKCA 1008; HKCA 1043; HKCA 1057; HKCA 1073

Korean Radio Test Standards KN 301 489-1; KN 301 489-3; KN 301 489-9;

KN 301 489-17; KN 301 489-52; KS X 3124; KS X 3125;

KS X 3130; KS X 3126; KS X 3129

Vietnam Radio Test Standards QCVN 47:2015/BTTTT; QCVN 54:2020/BTTTT;

QCVN 55:2011/BTTTT; QCVN 65:2013/BTTTT; QCVN 73:2013/BTTTT; QCVN 74:2020/BTTTT; QCVN 112:2017/BTTTT; QCVN 117:2020//BTTTT

Vietnam EMC Test Standards QCVN 18:2014/BTTTT; QCVN 86:2019/BTTTT;

QCVN 96:2015/BTTTT; QCVN 118:2018/BTTTT

Unlicensed Radio Frequency Devices

(3 Meter Semi-Anechoic Room)

47 CFR FCC Part 15C, 15D, 15E, 15F, 15G, 15H (using ANSI C63.10:2013, ANSI C63.17:2013 and ECC VDB 905463 D02 (402))

FCC KDB 905462 D02 (v02))

Licensed Radio Service Equipment 47 CFR FCC Parts 20, 22, 24, 25, 27, 30, 73, 74, 80, 87,

90, 95, 96, 97, 101 (using ANSI/TIA-603-E, TIA-102.CAAA-E, ANSI C63.26:2015)

OIA (Over the Air) Performance

GSM, GPRS, EGPRS UMTS (W-CDMA) LTE including CAT M1 A-GPS for UMTS/GSM LTS A-GPS, A-GLONASS, SIB8/SIB16

Large Device/Laptop/Tablet Testing Integrated Device Testing

WiFi 802.11 a/b/g/n/a

CTIA Test Plan for Wireless Device Over-the-Air

Performance (Method for Measurement for Radiated Power

and Receiver Performance) V3.8.2;

CTIA Test Plan for RF Performance Evaluation of WiFi

Mobile Converged Devices V2.1.0

(A2LA Cert. No. 1786.01) 08/15/2023

Page 6 of

<u>Test Technology:</u> <u>Test Method(s)¹:</u>

Electrical Measurements and Simulation

FAA AC 150/5345-10H;
FAA AC 150/5345-43J;
FAA AC 150/5345-44K;
FAA AC 150/5345-46E;
FAA AC 150/5345-47C;
FAA EB 67D

Power Factor / Efficiency / Crest Factor (Power to 30kW)

Resistance $(1m\Omega \text{ to } 4000M\Omega)$

Surge

(Up to 10 kV / 5 kA) (Combination Wave and Ring Wave)

On the following products and materials:

Telecommunications Terminal Equipment (TTE), Radio Equipment, Network Equipment, Information Technology Equipment (ITE), Automotive Electronic Equipment, Automotive Hybrid Electronic Devices, Maritime Navigation and Radio Communication Equipment and Systems, Vehicles, Boats and Internal Combustion Engine Driven Devices, Automotive, Aviation, and General Lighting Products, Medical Electrical Equipment, Motors, Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment, Household Appliances, Electric Tools, Low-voltage Switchgear and Control gear, Programmable Controllers, Electrical Equipment for Measurement, Control and Laboratory Use, Base Materials, Power and Data Transmission Cables and Connectors

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.12

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Unintentional Radiators</u> Part 15B	ANSI C63.4:2014	40000
Industrial, Scientific, and Medical Equipment Part 18	FCC MP-5 (February 1986)	40000
Intentional Radiators Part 15C	ANSI C63.10:2013	40000

(A2LA Cert. No. 1786.01) 08/15/2023

Dogo Zaf

¹ When the date, edition, version, etc. is not identified in the scope of accreditation, laboratories may use the version that immediately precedes the current version for a period of one year from the date of publication of the standard measurement method, per part C., Section 1 of A2LA R101 - General Requirements-Accreditation of ISO-IEC 17025 Laboratories.

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A. 1^2

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
Unlicensed Personal Communication		(·/
Systems Devices Part 15D	ANSI C63 17:2013	40000
2027 80 00 8000	11101 003.11.2013	10000
U-NII without DFS Intentional Radiators Part 15E	ANSI C63.10:2013	40000
<u>U-NII</u> with DFS Intentional Radiators Part 15E	FCC KDB 905462 D02 (v02)	40000
<u>UWB Intentional Radiators</u> Part 15F	ANSI C63.10:2013	40000
BPL Intentional Radiators Part 15G	ANSI C63.10:2013	40000
White Space Device Intentional Radiators Part 15H	ANSI C63.10:2013	40000
Commercial Mobile Services (FCC Licensed		
Radio Service Equipment) Parts 22 (cellular), 24, 25 (below 3 GHz), and 27	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
General Mobile Radio Services (FCC Licensed Radio Service Equipment)		
Parts 22 (non-cellular), 90 (below 3 GHz), 95, 97, and 101 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
Citizens Broadband Radio Services (FCC		
Licensed Radio Service Equipment)		
Part 96	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
Maritime and Aviation Radio Services		
Parts 80 and 87	ANSI/TIA-603-E; ANSI C63.26:2015	40000
Microwave and Millimeter Bands Radio		
Services Parts 25, 30, 74, 90 (above 3 GHz), 97 (above 3 GHz), and 101	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000

(A2LA Cert. No. 1786.01) 08/15/2023

Page 8 of 9

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1 2

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
Broadcast Radio Services Parts 73 and 74 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
Signal Boosters Part 20 (Wideband Consumer Signal Boosters, Provider-specific signal boosters, and Industrial Signal Boosters) Section 90.219	ANSI C63.26:2015	40000

 $^{^2}$ Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (https://apps.fcc.gov/oetcf/eas/) for a listing of FCC approved laboratories.

(A2LA Cert. No. 1786.01) 08/15/2023

Page 9 of

Accredited Laboratory

A2LA has accredited

ELITE ELECTRONIC ENGINEERING INC.

Downers Grove, IL

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 15th day of August 2023.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 1786.01 Valid to June 30, 2025

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.