



**DATE: 17 March 2009** 

# I.T.L. (PRODUCT TESTING) LTD. FCC Radio Test Report for VUANCE Ltd.

**Equipment under test:** 

**Pure RF Tag** 

**PRF-PT** 

Written by: Dludhur

D. Shidlowsky, Documentation

Approved by:

A. Sharabi, Test Engineer

Approved by:

I. Raz, EMC Laboratory Manager

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd.

This report relates only to items tested.





# Measurement/Technical Report for VUANCE Ltd.

# Pure RF Tag

#### PRF-PT

FCC ID: W5P-PRF-PT-0900

This report concerns: Original Grant: x

Class I change: Class II change:

Equipment type: Part 15 Security/Remote Control Transmitter

47CFR15 Section 15231 (a-d)

Measurement procedure used is ANSI C63.4-2003.

Application for Certification Applicant for this device:

prepared by: (different from "prepared by")

Ishaishou Raz Zeev Lavi

ITL (Product Testing) Ltd. VUANCE Ltd. Kfar Bin Nun 1 Ha'maalit St. D.N. Shimshon 99780 Qadima 60920

Israel Israel

e-mail Sraz@itl.co.il Tel: +972-9-889-0800

Fax: +972-9-889-0820 e-mail: Zeev@vuance.com



# **TABLE OF CONTENTS**

| 1.  | GENERAL            | _ INFORMATION                                                               | 4  |
|-----|--------------------|-----------------------------------------------------------------------------|----|
|     | 1.1                | Administrative Information                                                  |    |
|     | 1.2                | List of Accreditations                                                      |    |
|     | 1.3<br>1.4         | Product Description                                                         |    |
|     | 1.4                | Test Methodology                                                            |    |
|     | 1.6                | Test Facility Measurement Uncertainty                                       |    |
| 2.  |                    | Г LABELING                                                                  |    |
|     |                    |                                                                             |    |
| 3.  |                    | TEST CONFIGURATION                                                          |    |
|     | 3.1<br>3.2         | JustificationEUT Exercise Software                                          |    |
|     | 3.3                | Special Accessories                                                         |    |
|     | 3.4                | Equipment Modifications                                                     |    |
|     | 3.5                | Configuration of Tested System                                              |    |
| 4.  | RADIATE            | D MEASUREMENT TEST SET-UP PHOTO                                             | 10 |
| 5.  |                    | E FACTOR CALCULATION                                                        |    |
| ٥.  | 5.1                | Test Instrumentation Used                                                   |    |
| c   | DEDIODIO           | OPERATION                                                                   |    |
| 6.  | 6.1                | Specification                                                               |    |
|     | 6.2                | Requirements                                                                |    |
|     | 6.3                | Results                                                                     |    |
| 7.  | FIFI D ST          | RENGTH OF FUNDAMENTAL                                                       | 17 |
|     | 7.1                | Test Specification                                                          |    |
|     | 7.2                | Test Procedure                                                              |    |
|     | 7.3                | Measured Data                                                               |    |
|     | 7.4                | Test Instrumentation Used, Field Strength of Fundamental                    | 21 |
| 8.  | RADIATE            | D EMISSION, 9 KHZ – 30 MHZ                                                  | 22 |
|     | 8.1                | Test Specification                                                          |    |
|     | 8.2                | Test Procedure                                                              |    |
|     | 8.3                | Measured Data                                                               | 22 |
|     | 8.4<br>8.5         | Test Instrumentation Used, Radiated Measurements Field Strength Calculation |    |
| _   |                    | -                                                                           |    |
| 9.  | <b>SPURIOU</b> 9.1 | S RADIATED EMISSION Test Specification                                      |    |
|     | 9.1                | Test Procedure                                                              |    |
|     | 9.3                | Test Data                                                                   |    |
|     | 9.4                | Test Instrumentation Used, Radiated Measurements                            |    |
| 10. | BANDWID            | OTH                                                                         | 29 |
|     | 10.1               | Test procedure                                                              |    |
|     | 10.2               | Results table                                                               | 31 |
|     | 10.3               | Test Equipment Used                                                         | 32 |
| 11. | 11. APPEI          | NDIX A - CORRECTION FACTORS                                                 | 33 |
|     | 11.1               | Correction factors for CABLE                                                |    |
|     | 11.2               | Correction factors for CABLE                                                |    |
|     |                    | Correction factors for CABLE                                                |    |
|     |                    | Correction factors for LOG PERIODIC ANTENNA                                 |    |
|     |                    | Correction factors for BICONICAL ANTENNA                                    |    |
|     |                    | Correction factors for ACTIVE LOOP ANTENNA                                  |    |



### 1. General Information

#### 1.1 Administrative Information

Manufacturer: VUANCE Ltd.

Manufacturer's Address: 1 Ha'maalit St.

Qadima 60920

Israel

Tel: +972-9-889-0800 Fax: +972-9-889-8020

Manufacturer's Representative: Zeev Lavi

Equipment Under Test (E.U.T): Pure RF Tag

Equipment Model No.: PRF-PT

Equipment Serial No.: Not Designated

Date of Receipt of E.U.T: 15.02.09

Start of Test: 15.02.09

End of Test: 16.02.09

Test Laboratory Location: I.T.L (Product Testing) Ltd.

Kfar Bin Nun, ISRAEL 99780

Test Specifications: FCC Part 15 Sub-part C



#### 1.2 List of Accreditations

The EMC laboratory of I.T.L. is accredited by the following bodies:

- 1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
- 2. The Federal Communications Commission (FCC) (U.S.A.), Registration No. 90715.
- 3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
- 4. The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) (Japan), Registration Numbers: C-1350, R-1285.
- 5. Industry Canada (Canada), IC File No.: 46405-4025; Site No. IC 4025B-1.
- 6. TUV Product Services, England, ASLLAS No. 97201.
- 7. Nemko (Norway), Authorization No. ELA 207.

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.



#### 1.3 Product Description

A PureRF Tag is VUANCE's RFID tag. RFID stands for Radio Frequency Identification. A PureRF RFID tag is a microchip combined with an antenna in a compact package. The packaging is structured to allow the PureRF tag to be attached to an object to be tracked. It can be attached to or incorporated into a product, animal, or person for the purpose of identification and location detection using radio waves. The PureRF tags can be detected from varying distances and beyond the line of sight of a PureRF Receiver.

After a PureRF tag is activated by a PureRF Initializer it randomly and continually broadcasts a signal identifying itself that is picked up by one or more PureRF Receivers that spread out at site.

A tag can broadcast a variety of types of PureRF messages which are picked up by the Receivers, which sends them to a third party server, system or any security application for analysis, identification, alarm and monitoring. These messages are broadcasted by the tag repeatedly at the intervals that the customer defines, such as:

• **Idle Mode Messages:** The tag sends random broadcasts to indicate its location and that it is functional.



#### NOTE:

The location of a tag can be determined according to the Receiver(s) that pick up the strongest signal.

- **Movement Messages:** The tag sends random broadcasts to indicate that it is in motion (being moved).
- **Tamper Messages:** The tag sends random broadcasts to indicate that its tamper switch has been triggered.

A Personnel Tag is a small transmitter that can work in two parallel modes:

Transmit in short random durations and remains in a sleep state until activated.

In the short random durations transition the administrator will determined the transmission pace.

In activator mode the Tag receives a signal from the Activator, the Tag wakes up and emits a different radio signal.

The Personnel Tag can be mounted to Personnel for effective protection and monitoring.

#### 1.4 Test Methodology

Radiated testing was performed according to the procedures in ANSI C63.4: 2003. Radiated testing was performed at an antenna to EUT distance of 3 meters.



#### 1.5 Test Facility

The radiated emissions tests were performed at I.T.L.'s testing facility at Kfar Bin-Nun, Israel. This site is a FCC listed test laboratory (FCC Registration No. 90715, date of listing August 22, 2006).

I.T.L.'s EMC Laboratory is also accredited by A2LA, certificate No. 1152.01.

#### 1.6 Measurement Uncertainty

#### **Radiated Emission**

The Open Site complies with the  $\pm 4$  dB Normalized Site Attenuation requirements of ANSI C63.4-2003. In accordance with Paragraph 5.4.6.1 of this standard, this tolerance includes instrumentation calibration errors, measurement technique errors, and errors due to site anomalies.



# 2. Product Labeling

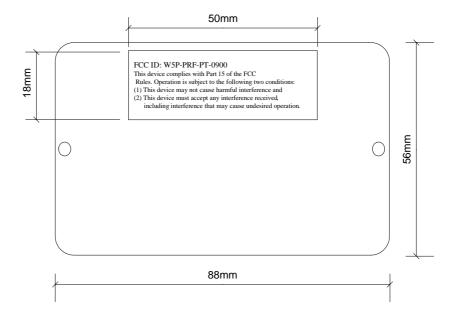



Illustration of the TAG rear side

Figure 1. FCC Label and Location



# 3. System Test Configuration

#### 3.1 Justification

Radiated emission screening was performed in 3 orthogonal orientations. The worst case orientation was the vertical position.

The E.U.T. was operated in normal operation mode.

#### 3.2 EUT Exercise Software

The E.U.T. was operated using internal tag firmware version v1.0.0.

#### 3.3 Special Accessories

No special accessories were needed.

#### 3.4 Equipment Modifications

No modifications were needed in order to achieve compliance

#### 3.5 Configuration of Tested System

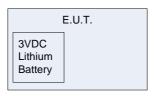



Figure 2. Configuration of Tested System



# 4. Radiated Measurement Test Set-up Photo



Figure 3. Radiated Emission Test



## 5. Average Factor Calculation

- 1. Transmission pulse duration = 26usec (Customer declaration)
- 2. Transmission pulse period = 52usec (Customer declaration)
- 3. Burst duration = 6.5msec
- 4. Time between bursts = 805msec , >100ms
- 5. Average Factor =  $20 \log \left[ \frac{\text{Pulse duration}}{\text{Pulse period}} \times \frac{\text{burst duration}}{100 \text{msec}} \times \text{Num of burst within } 100 \text{msec} \right]$

Average Factor = 
$$20 \log \left[ \frac{26}{52} \times \frac{6.5}{100} \times 1 \right] = -29.7 dB$$



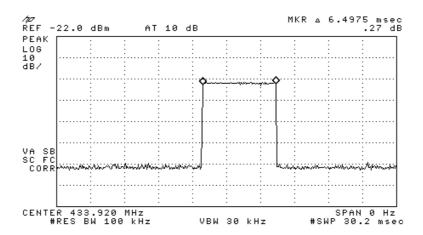



Figure 4. Burst duration = 6.5msec

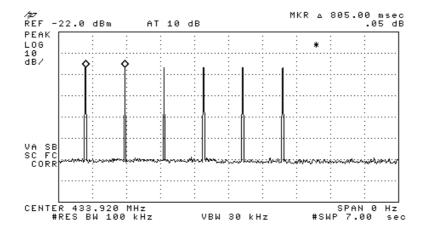



Figure 5. Time between bursts = 805msec , >100ms



#### 5.1 Test Instrumentation Used

| Instrument                 | Manufacturer | Model       | Serial Number | Calibration       | Period |
|----------------------------|--------------|-------------|---------------|-------------------|--------|
| Spectrum<br>Analyzer       | HP           | 8592L       | 3826A01204    | March 5, 2008     | 1 Year |
| Antenna<br>Bioconical      | ARA          | BCD 235/B   | 1041          | March 23, 2008    | 1 year |
| Antenna<br>Log Periodic    | ARA          | LPD-2010/A  | 1038          | November 06, 2008 | 1 year |
| Antenna-Log<br>Periodic    | A.H.System   | SAS-200/511 | 253           | January 29, 2009  | 2 year |
| Antenna Mast               | ARA          | AAM-4A      | 1001          | N/A               | N/A    |
| Turntable                  | ARA          | ART-1001/4  | 1001          | N/A               | N/A    |
| Mast & Table<br>Controller | ARA          | ACU-2/5     | 1001          | N/A               | N/A    |



# 6. Periodic Operation

#### 6.1 Specification

F.C.C., Part 15, Subpart C, Section 15.231(a)

#### 6.2 Requirements

| Requirement                                                                                                                                                             | Rationale                          | Verdict  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------|
| Continuous transmissions are not permitted.                                                                                                                             | Customer declaration               | Complies |
| A manually operated transmitter shall be deactivated within not more than 5 seconds after releasing the switch.                                                         | See plot in Figure 6.              | Complies |
| An automatically operated transmitter shall cease operation within 5 seconds after activation.                                                                          | See plot in Figure 7.              | Complies |
| Periodic transmissions at regular predetermined intervals are not permitted.                                                                                            | Customer declaration               | Complies |
| Polling or supervised transmissions to determine system integrity of transmitter used in security or safety applications shall not exceed more than 2 seconds per hour. | See plots in Figure 8 to Figure 9. | Complies |

| JUDGEMENT: | Passed |
|------------|--------|

Results

The EUT met the FCC Part 15, Subpart C, Section 15.231(a) specification requirements.

TEST PERSONNEL:

Tester Signature: Date: 23.03.09

Typed/Printed Name: A. Sharabi

6.3



# **Periodic Operation**

E.U.T Description Pure RF TagType PRF-PTSerial Number: Not Designated

Specification: F.C.C., Part 15, Subpart C, 15.231(a)

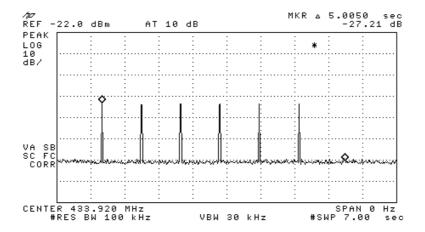



Figure 6. Manual transmission less than 5 sec

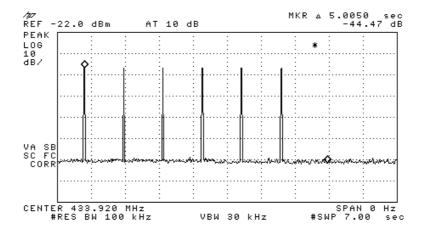



Figure 7. Automatic transmission less than 5 sec (Represent Motion detection, Activator and Tamper)



# **Periodic Operation**

E.U.T Description Pure RF Tag
Type PRF-PT

Serial Number: Not Designated

Specification: F.C.C., Part 15, Subpart C, 15.231(a)

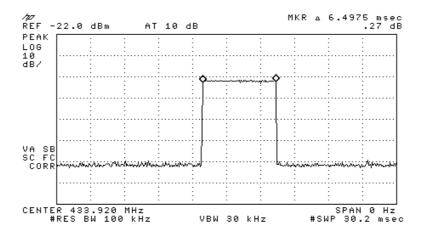



Figure 8. System Integrity signal (6.5msec total of "ON+OFF" Time, 3.3msec "ON" time)



Figure 9. Time between 2 supervision signals (3.3 milliseconds X 500= 1.65 seconds < 2sec)



### 7. Field Strength of Fundamental

#### 7.1 Test Specification

F.C.C., Part 15, Subpart C, Section 15.231(b)

#### 7.2 Test Procedure

The E.U.T. operation mode and test set-up are as described in Section 3.

The E.U.T. was placed on a non-conductive table, 0.8 meters above the O.A.T.S. ground plane.

The EMI receiver was set to the E.U.T. Fundamental Frequency (433.92MHz) and Peak Detection.

The turntable and antenna mast were adjusted for maximum level reading on the EMI receiver.

The measurement was performed for vertical and horizontal polarizations of the test antenna.

The average result is:

Peak Level( $dB\mu V/m$ ) + E.U.T. Duty Cycle Factor, in 100msec time window (dB)

#### 7.3 Measured Data

JUDGEMENT: Passed by 30.0 dB

The EUT met the FCC Part 15, Subpart C, Section 15.231(b) specification requirements.

The details of the highest emissions are given in Figure 10 to Figure 12.

**TEST PERSONNEL:** 

Tester Signature: \_\_\_\_\_\_ Date: 23.03.09

Typed/Printed Name: A. Sharabi



### Field Strength of Fundamental

E.U.T Description Pure RF Tag

Type PRF-PT

Serial Number: Not Designated

Specification: F.C.C., Part 15, Subpart C, 15.231(b)

Antenna Polarization: Horizontal/Vertical

Test Distance: 3 meters Detector: Peak

| Freq.  | Pol. | Peak<br>Reading          | Average<br>Factor | AVG<br>Result | AVG<br>Specification     | Margin |
|--------|------|--------------------------|-------------------|---------------|--------------------------|--------|
| (MHz)  | V/H  | $\left(dB\mu V/m\right)$ | (dB)              | $(dB\mu V/m)$ | $\left(dB\mu V/m\right)$ | (dB)   |
| 433.87 | Н    | 80.51                    | -29.7             | 50.81         | 80.83                    | -30.02 |
| 433.87 | V    | 79.10                    | -29.7             | 49.4          | 80.83                    | -31.43 |

Figure 10. Field Strength of Fundamental. Antenna Polarization: HORIZONTAL/VERTICAL.

Detector: Peak

#### Notes:

- 1. Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.
- 2. "Peak Reading" (dBµV/m) included the "Correction Factors".
- 3. "Correction Factors" (dB) = Test Antenna Correction Factor(dB) + Cable Loss.
- 4. "Average Factor = 20 log [(burst duration/100msec)\*Num of burst within 100msec)]= 20 log [ (2/100)\*1)]= -29.7
- 5. "Average Result" ( $dB\mu V/m$ )=Peak Amp. ( $dB\mu V/m$ )+D.C.F. (dB)



# **Field Strength of Fundamental**

E.U.T Description Pure RF Tag

Type PRF-PT

Serial Number: Not Designated

Specification: F.C.C., Part 15, Subpart C, 15.231(b)

Antenna Polarization: Horizontal

Test Distance: 3 meters Detectors: Peak, Quasi-peak, Average

🍻 14:18:37 FEB 11, 2009

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 433.879 MHz BØ.51 dBµV/m

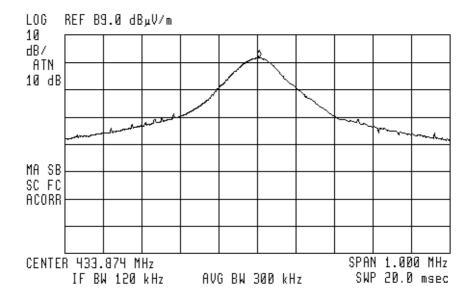



Figure 11. Field Strength of Fundamental. Antenna Polarization: HORIZONTAL.

Detectors: Peak, Quasi-peak, Average



# **Field Strength of Fundamental**

E.U.T Description Pure RF Tag
Type PRF-PT

Serial Number: Not Designated

Specification: F.C.C., Part 15, Subpart C, 15.231(b)

Antenna Polarization: Vertical

Test Distance: 3 meters Detectors: Peak, Quasi-peak, Average

🍻 14:31:44 FEB 11, 2009

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 433.871 MHz 79.10 dBµV/m




Figure 12. Field Strength of Fundamental. Antenna Polarization: VERTICAL. Detectors: Peak, Quasi-peak, Average



#### 7.4 Test Instrumentation Used, Field Strength of Fundamental

| Instrument                 | Manufacturer | Model         | Serial Number | Calibration       | Period |
|----------------------------|--------------|---------------|---------------|-------------------|--------|
| EMI Receiver               | НР           | 85422E        | 3906A00276    | November 17, 2008 | 1 year |
| RF Section                 | НР           | 85420E        | 3705A00248    | November 16, 2008 | 1 year |
| Antenna<br>Log Periodic    | ARA          | LPD-2010/A    | 1038          | November 06, 2008 | 1 year |
| Antenna Mast               | ARA          | AAM-4A        | 1001          | N/A               | N/A    |
| Turntable                  | ARA          | ART-1001/4    | 1001          | N/A               | N/A    |
| Mast & Table<br>Controller | ARA          | ACU-2/5       | 1001          | N/A               | N/A    |
| Printer                    | HP           | LaserJet 2200 | JPKGC19982    | N/A               | N/A    |



### 8. Radiated Emission, 9 kHz – 30 MHz

#### 8.1 Test Specification

9 kHz-30 MHz, FCC, Part 15, Subpart C, Section 209

#### 8.2 Test Procedure

The E.U.T. operation mode and test set-up are as described in Section 3.

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in Figure 3.1.

The frequency range 9 kHz-30 MHz was scanned.

The emissions were measured using a computerized EMI receiver complying to CISPR 16 requirements. The specification limits and applicable correction factors are loaded to the receiver via a 3.5" floppy disk.

In the frequency range 9 kHz-30MHz, the loop antenna was rotated on its vertical axis. The antenna height (center of loop) was 1 meter at a distance of 10 meters.

The E.U.T. was operated at the frequency of 433.92 MHz. This frequency was measured using a peak detector.

#### 8.3 Measured Data

| JUDGEMENT:   | Passed |
|--------------|--------|
| JUJUTEJNEJNI | Passed |

Typed/Printed Name: A. Sharabi

The EUT was tested and it met the requirements of the FCC Part 15, Subpart C, specification.

The signals in the band 9 kHz - 30 MHz were below the spectrum analyzer noise level, at least 20 dB below the specification limit.

TEST PERSONNEL:

Tester Signature: \_\_\_\_\_ Date: 23.03.09



### 8.4 Test Instrumentation Used, Radiated Measurements

| Instrument                 | Manufacturer | Model      | Serial Number | Calibration       | Period |
|----------------------------|--------------|------------|---------------|-------------------|--------|
| EMI Receiver               | НР           | 85422E     | 3906A00276    | November 17, 2008 | 1 year |
| RF Section                 | НР           | 85420E     | 3705A00248    | November 16, 2008 | 1 year |
| Active Loop<br>Antenna     | EMCO         | 6502       | 9506-2950     | October 15, 2008  | 1 year |
| Antenna Mast               | ARA          | AAM-4A     | 1001          | N/A               | N/A    |
| Turntable                  | ARA          | ART-1001/4 | 1001          | N/A               | N/A    |
| Mast & Table<br>Controller | ARA          | ACU-2/5    | 1001          | N/A               | N/A    |



#### 8.5 Field Strength Calculation

The field strength is calculated directly by the EMI Receiver software, and a "Correction Factors" data disk, using the following equation:

$$FS = RA + AF + CF$$

FS: Field Strength [dBµv/m]

RA: Receiver Amplitude [dBµv]

AF: Receiving Antenna Correction Factor [dB/m]

CF: Cable Attenuation Factor [dB]

No external pre-amplifiers are used.



### 9. Spurious Radiated Emission

#### 9.1 Test Specification

30 - 4500 MHz, F.C.C., Part 15, Subpart C

#### 9.2 Test Procedure

The E.U.T. operation mode and test set-up are as described in Section 3. See Section 3.1 Justification of the System Test Configuration concerning the E.U.T. orientation for this test.

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in Figure 2. The signals from the list of the highest emissions were verified and the list was updated accordingly.

The levels of the emissions within the frequency ranges of the restricted bands (Section 15.205 of FCC Part 15) were compared to the limits of the table in Section 15.209 (a), General Requirements.

The emissions were measured using a computerized EMI receiver complying to CISPR 16 requirements. The specification limits and applicable correction factors are loaded to the receiver via a 3.5" floppy disk.

In the frequency range 2.9 - 4.5 GHz, a spectrum analyzer including a low noise amplifier was used. The test distance was 3 meters. During peak measurements, the I.F. bandwidth was 1 MHz, and video bandwidth 3 MHz. During average measurements, the I.F. bandwidth was 1 MHz and video bandwidth was 100 Hz.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization. Verification of the E.U.T emissions was based on the following methods: turning the E.U.T on and off; using a frequency span less than 10 MHz; observation of the signal level during turntable rotation. (Background noise is not affected by the rotation of the E.U.T.)

The emissions were measured at a distance of 3 meters.



|     |      | _       |
|-----|------|---------|
| 9,3 | Test | D-4-    |
| 4   | 1001 | I ISITS |
|     |      |         |

JUDGEMENT: Passed by 34.0 dB

The EUT met the requirements of the F.C.C. Part 15, Subpart C, specification.

The margin between the emission level and the specification limit was 34.0 dB in the worst case at the frequency of 2169.43 MHz, horizontal polarization.

TEST PERSONNEL:

Tester Signature: Date: 23.03.09

Typed/Printed Name: A. Sharabi



#### **Radiated Emission**

E.U.T Description Pure RF Tag
Type PRF-PT

Serial Number: Not Designated

Specification: FCC Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical Frequency range: 30 MHz to 300 MHz

Antenna: 3 meters distance Detectors: Peak, Quasi-peak

| Frequency | Peak<br>Reading | Avg<br>Factor | Avg<br>Result | Antenna<br>Polarity | Avg<br>Specification | Margin |
|-----------|-----------------|---------------|---------------|---------------------|----------------------|--------|
| (MHz)     | $(dB\mu V/m)$   | (dB)          | $(dB\mu V/m)$ | (H/V)               | $(dB\mu V/m)$        | (dB)   |
| 867.87    | 38.31           | -29.7         | 8.61          | Н                   | 60.83                | -52.22 |
| 1301.80   | 47.87           | -29.7         | 18.17         | Н                   | 60.83                | -42.66 |
| 1736.16   | 54.14           | -29.7         | 24.44         | Н                   | 60.83                | -36.39 |
| 2169.43   | 56.53           | -29.7         | 26.83         | Н                   | 60.83                | -34.00 |

Figure 13. Radiated Emission. Antenna Polarization: VERTICAL.

Detectors: Peak, Quasi-peak

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

*Note:* 



#### 9.4 Test Instrumentation Used, Radiated Measurements

| Instrument                 | Manufacturer     | Model                | Serial Number | Calibration       | Period |
|----------------------------|------------------|----------------------|---------------|-------------------|--------|
| EMI Receiver               | НР               | 85422E               | 3906A00276    | November 17, 2008 | 1 year |
| RF Section                 | НР               | 85420E               | 3705A00248    | November 16, 2008 | 1 year |
| Low Noise<br>Amplifier     | DBS<br>MICROWAVE | LNA-DBS-<br>0411N313 | 013           | November 3, 2008  | 1 Year |
| Spectrum<br>Analyzer       | HP               | 8592L                | 3826A01204    | March 5, 2008     | 1 Year |
| Antenna<br>Bioconical      | ARA              | BCD 235/B            | 1041          | March 23, 2008    | 1 year |
| Antenna<br>Log Periodic    | ARA              | LPD-2010/A           | 1038          | November 06, 2008 | 1 year |
| Antenna-Log<br>Periodic    | A.H.System       | SAS-200/511          | 253           | January 29, 2009  | 2 year |
| Antenna Mast               | ARA              | AAM-4A               | 1001          | N/A               | N/A    |
| Turntable                  | ARA              | ART-1001/4           | 1001          | N/A               | N/A    |
| Mast & Table<br>Controller | ARA              | ACU-2/5              | 1001          | N/A               | N/A    |
| Printer                    | HP               | LaserJet 2200        | JPKGC19982    | N/A               | N/A    |



#### 10. Bandwidth

#### 10.1 Test procedure

The transmitter unit operated with normal modulation. The spectrum analyzer was set to 30 kHz resolution BW and center frequency of the transmitter fundamental. The spectrum bandwidth of the transmitter unit was measured and recorded. The BW was measured at 20 dBc points.

The EUT was set up as shown in Figure 2, and its proper operation was checked. The transmitter occupied bandwidth was measured with the EMI receiver as frequency delta between reference points on the modulation envelope.

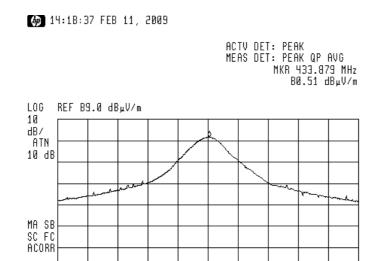



Figure 14

AVG BW 300 kHz

CENTER 433.874 MHz

IF BW 120 kHz

SPAN 1.000 MHz

SWP 20.0 msec



🌆 14:20:24 FEB 11, 2009

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 433.696 MHz 60.47 dBμV/m

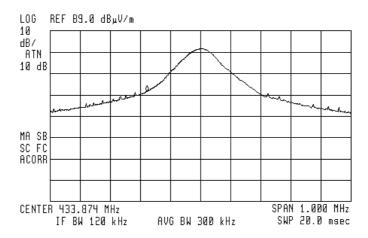



Figure 15 F<sub>Low</sub>

4 14:21:01 FEB 11, 2009

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 434.071 MHz 59.55 dBµV/m

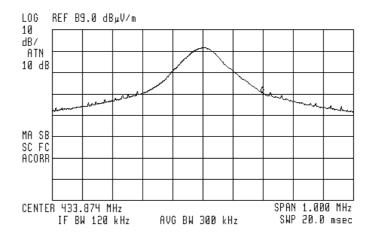



Figure 16 F<sub>High</sub>



#### 10.2 Results table

E.U.T Description: Pure RF Tag

Model: PRF-PT

Serial Number: Not Designated

Specification: F.C.C. Part 15, Subpart C: (15.231(c))

| Bandwidth | Specification | Margin |
|-----------|---------------|--------|
| Reading   | (1)           |        |
| (kHz)     | (kHz)         | (kHz)  |
| 375       | 1084.8        | -709.8 |

Figure 17 Bandwidth

JUDGEMENT: Passed by 709.8 kHz

**TEST PERSONNEL:** 

Tester Signature: Date: 23.03.09

Typed/Printed Name: A. Sharabi

(1) 0.25% of the E.U.T. fundamental frequency, Section 15.231(c).



### 10.3 Test Equipment Used.

#### Bandwidth

| Instrument                 | Manufacturer | Model         | Serial Number | Calibration       | Period |
|----------------------------|--------------|---------------|---------------|-------------------|--------|
| EMI Receiver               | НР           | 85422E        | 3906A00276    | November 17, 2008 | 1 year |
| RF Section                 | НР           | 85420E        | 3705A00248    | November 16, 2008 | 1 year |
| Antenna<br>Log Periodic    | ARA          | LPD-2010/A    | 1038          | November 06, 2008 | 1 year |
| Antenna Mast               | ARA          | AAM-4A        | 1001          | N/A               | N/A    |
| Turntable                  | ARA          | ART-1001/4    | 1001          | N/A               | N/A    |
| Mast & Table<br>Controller | ARA          | ACU-2/5       | 1001          | N/A               | N/A    |
| Printer                    | НР           | LaserJet 2200 | JPKGC19982    | N/A               | N/A    |

Figure 18 Test Equipment Used



# 11. 11. APPENDIX A - CORRECTION FACTORS

#### 11.1 Correction factors for

**CABLE** 

from EMI receiver to test antenna at 3 meter range.

| FREQUENCY | CORRECTION FACTOR |
|-----------|-------------------|
| (MHz)     | (dB)              |
| 10.0      | 0.3               |
| 20.0      | 0.6               |
| 30.0      | 0.8               |
| 40.0      | 0.9               |
| 50.0      | 1.1               |
| 60.0      | 1.2               |
| 70.0      | 1.3               |
| 80.0      | 1.4               |
| 90.0      | 1.6               |
| 100.0     | 1.7               |
| 150.0     | 2.0               |
| 200.0     | 2.3               |
| 250.0     | 2.7               |
| 300.0     | 3.1               |
| 350.0     | 3.4               |
| 400.0     | 3.7               |
| 450.0     | 4.0               |
| 500.0     | 4.3               |
| 600.0     | 4.7               |
| 700.0     | 5.3               |
| 800.0     | 5.9               |
| 900.0     | 6.3               |
| 1000.0    | 6.7               |

| FREQUENCY                                      | CORRECTION FACTOR               |
|------------------------------------------------|---------------------------------|
| (MHz)                                          | (dB)                            |
| 1200.0<br>1400.0<br>1600.0<br>1800.0<br>2000.0 | 7.3<br>7.8<br>8.4<br>9.1<br>9.9 |
| 2300.0<br>2600.0                               | 11.2<br>12.2                    |
| 2900.0                                         | 13.0                            |

- 1. The cable type is RG-214.
- 2. The overall length of the cable is 27 meters.
- 3. The above data is located in file 27MO3MO.CBL on the disk marked "Radiated Emission Tests EMI Receiver".



#### 11.2 Correction factors for

#### CABLE

from EMI receiver to test antenna at 3 meter range.

| FREQUENCY | CORRECTION<br>FACTOR |
|-----------|----------------------|
| (GHz)     | (dB)                 |
| 1.0       | 1.2                  |
| 2.0       | 1.6                  |
| 3.0       | 2.0                  |
| 4.0       | 2.4                  |
| 5.0       | 3.0                  |
| 6.0       | 3.4                  |
| 7.0       | 3.8                  |
| 8.0       | 4.2                  |
| 9.0       | 4.6                  |
| 10.0      | 5.0                  |
| 12.0      | 5.8                  |

- 1. The cable type is RG-8.
- 2. The overall length of the cable is 10 meters.



#### 11.3 Correction factors for

from spectrum analyzer to test antenna above 2.9 GHz

| FREQUENCY | CORRECTION<br>FACTOR | FREQUENCY | CORRECTION FACTOR |
|-----------|----------------------|-----------|-------------------|
| (GHz)     | (dB)                 | (GHz)     | (dB)              |
| 1.0       | 1.9                  | 14.0      | 9.1               |
| 2.0       | 2.7                  | 15.0      | 9.5               |
| 3.0       | 3.5                  | 16.0      | 9.9               |
| 4.0       | 4.2                  | 17.0      | 10.2              |
| 5.0       | 4.9                  | 18.0      | 10.4              |
| 6.0       | 5.5                  | 19.0      | 10.7              |
| 7.0       | 6.0                  | 20.0      | 10.9              |
| 8.0       | 6.5                  | 21.0      | 11.2              |
| 9.0       | 7.0                  | 22.0      | 11.6              |
| 10.0      | 7.5                  | 23.0      | 11.9              |
| 11.0      | 7.9                  | 24.0      | 12.3              |
| 12.0      | 8.3                  | 25.0      | 12.6              |
| 13.0      | 8.7                  | 26.0      | 13.0              |

- 1. The cable type is SUCOFLEX 104 E manufactured by SUHNER.
- 2. The cable is used for measurements above 2.9 GHz.
- 3. The overall length of the cable is 10 meters.



# 12.6 Correction factors for LOG PERIODIC ANTENNA Type LPD 2010/A at 3 and 10 meter ranges.

#### Distance of 3 meters

| FREQUENCY | <b>AFE</b> |
|-----------|------------|
| (MHz)     | (dB/m)     |
| 200.0     | 9.1        |
| 250.0     | 10.2       |
| 300.0     | 12.5       |
| 400.0     | 15.4       |
| 500.0     | 16.1       |
| 600.0     | 19.2       |
| 700.0     | 19.4       |
| 800.0     | 19.9       |
| 900.0     | 21.2       |
| 1000.0    | 23.5       |

#### Distance of 10 meters

| FREQUENCY | <b>AFE</b> |
|-----------|------------|
| (MHz)     | (dB/m)     |
| 200.0     | 9.0        |
| 250.0     | 10.1       |
| 300.0     | 11.8       |
| 400.0     | 15.3       |
| 500.0     | 15.6       |
| 600.0     | 18.7       |
| 700.0     | 19.1       |
| 800.0     | 20.2       |
| 900.0     | 21.1       |
| 1000.0    | 23.2       |

- 1. Antenna serial number is 1038.
- 2. The above lists are located in file number 38M3O.ANT for a 3 meter range, and file number 38M100.ANT for a 10 meter range.
- 3. The files mentioned above are located on the disk marked "Radiated Emission Test EMI Receiver".



#### 11.4 Correction factors for

# LOG PERIODIC ANTENNA Type SAS-200/511 at 3 meter range.

| FREQUENCY | <b>ANTENNA</b> |
|-----------|----------------|
|           | <b>FACTOR</b>  |
| (GHz)     | (dB)           |
| 1.0       | 24.9           |
| 1.5       | 27.8           |
| 2.0       | 29.9           |
| 2.5       | 31.2           |
| 3.0       | 32.8           |
| 3.5       | 33.6           |
| 4.0       | 34.3           |
| 4.5       | 35.2           |
| 5.0       | 36.2           |
| 5.5       | 36.7           |
| 6.0       | 37.2           |
| 6.5       | 38.1           |

| <b>FREQUENCY</b> | <b>ANTENNA</b> |
|------------------|----------------|
|                  | <b>FACTOR</b>  |
| (GHz)            | (dB)           |
| 7.0              | 38.6           |
| 7.5              | 39.2           |
| 8.0              | 39.9           |
| 8.5              | 40.4           |
| 9.0              | 40.8           |
| 9.5              | 41.1           |
| 10.0             | 41.7           |
| 10.5             | 42.4           |
| 11.0             | 42.5           |
| 11.5             | 43.1           |
| 12.0             | 43.4           |
| 12.5             | 44.4           |
| 13.0             | 44.6           |

- 1. Antenna serial number is 253.
- 2. The above lists are located in file number SAS3M0.ANT for a 3 meter range.
- 3. The files mentioned above are located on the disk marked "Antenna Factors".



#### 11.5 Correction factors for

# BICONICAL ANTENNA Type BCD-235/B, at 3 meter range

| FREQUENCY | AFE    |
|-----------|--------|
| (MHz)     | (dB/m) |
| 20.0      | 19.4   |
| 30.0      | 14.8   |
| 40.0      | 11.9   |
| 50.0      | 10.2   |
| 60.0      | 9.1    |
| 70.0      | 8.5    |
| 80.0      | 8.9    |
| 90.0      | 9.6    |
| 100.0     | 10.3   |
| 110.0     | 11.0   |
| 120.0     | 11.5   |
| 130.0     | 11.7   |
| 140.0     | 12.1   |
| 150.0     | 12.6   |
| 160.0     | 12.8   |
| 170.0     | 13.0   |
| 180.0     | 13.5   |
| 190.0     | 14.0   |
| 200.0     | 14.8   |
| 210.0     | 15.3   |
| 220.0     | 15.8   |
| 230.0     | 16.2   |
| 240.0     | 16.6   |
| 250.0     | 17.6   |
| 260.0     | 18.2   |
| 270.0     | 18.4   |
| 280.0     | 18.7   |
| 290.0     | 19.2   |
| 300.0     | 19.9   |
| 310       | 20.7   |
| 320       | 21.9   |
| 330       | 23.4   |
| 340       | 25.1   |
| 350       | 27.0   |
|           |        |

- 1. Antenna serial number is 1041.
- 2. The above list is located in file 19BC10M1.ANT on the disk marked "Radiated Emissions Tests EMI Receiver".



# 11.6 Correction factors for ACTIVE LOOP ANTENNA Model 6502 S/N 9506-2950

|           | Magnetic | Electric |
|-----------|----------|----------|
| FREQUENCY | Antenna  | Antenna  |
|           | Factor   | Factor   |
| (MHz)     | (dB)     | (dB)     |
| .009      | -35.1    | 16.4     |
| .010      | -35.7    | 15.8     |
| .020      | -38.5    | 13.0     |
| .050      | -39.6    | 11.9     |
| .075      | -39.8    | 11.8     |
| .100      | -40.0    | 11.6     |
| .150      | -40.0    | 11.5     |
| .250      | -40.0    | 11.6     |
| .500      | -40.0    | 11.5     |
| .750      | -40.1    | 11.5     |
| 1.000     | -39.9    | 11.7     |
| 2.000     | -39.5    | 12.0     |
| 3.000     | -39.4    | 12.1     |
| 4.000     | -39.7    | 11.9     |
| 5.000     | -39.7    | 11.8     |
| 10.000    | 40.2     | 11.3     |
| 15.000    | -40.7    | 10.8     |
| 20.000    | -40.5    | 11.0     |
| 25.000    | -41.3    | 10.2     |
| 30.000    | 42.3     | 9.2      |