

A D T

FCC TEST REPORT

REPORT NO. : RF980902L08C

MODEL NO. : M721

FCC ID: W5EM721

RECEIVED : Apr. 08, 2011

TESTED : Apr. 08, 2011

ISSUED : Apr. 27, 2011

APPLICANT : Apacer Technology Inc

ADDRESS : 3F, No.83, Kur Wong Rd., Aspire Park, Lung Tan Hsiang, Tao Yuan Hsien, Taiwan

ISSUED BY : Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

LAB ADDRESS : No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang, Taipei Hsien 244, Taiwan, R.O.C.

TEST LOCATION : No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 26 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product, certification, approval or endorsement by TAF or any government agency. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

A D T

Table of Contents

RELEASE CONTROL RECORD	3
1. CERTIFICATION	4
2. SUMMARY OF TEST RESULTS	5
2.1 MEASUREMENT UNCERTAINTY	5
3. GENERAL INFORMATION.....	6
3.1 GENERAL DESCRIPTION OF EUT.....	6
3.2 DESCRIPTION OF TEST MODES.....	7
3.2.1 CONFIGURATION OF SYSTEM UNDER TEST	7
3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	8
3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS	9
3.4 DESCRIPTION OF SUPPORT UNITS	9
4. TEST TYPES AND RESULTS	10
4.1 RADIATED EMISSION MEASUREMENT	10
4.1.1 LIMITS OF RADIATED EMISSION MEASUREMENT.....	10
4.1.2 TEST INSTRUMENTS	11
4.1.3 TEST PROCEDURES	12
4.1.4 DEVIATION FROM TEST STANDARD	12
4.1.5 TEST SETUP	13
4.1.6 EUT OPERATING CONDITIONS	13
4.1.7 TEST RESULTS	14
4.2 BAND EDGES MEASUREMENT	21
4.2.1 LIMITS OF BAND EDGES MEASUREMENT	21
4.2.2 TEST INSTRUMENTS	21
4.2.3 TEST PROCEDURE	21
4.2.4 DEVIATION FROM TEST STANDARD	21
4.2.5 EUT OPERATING CONDITION	21
4.2.6 TEST RESULTS	22
5. PHOTOGRAPHS OF THE TEST CONFIGURATION.....	24
6. INFORMATION ON THE TESTING LABORATORIES	25
7. APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB.....	26

A D T

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
Original release	NA	Apr. 27, 2011

A D T

1. CERTIFICATION

PRODUCT: Apacer Blue Engine Mouse

MODEL NO.: M721

BRAND: Apacer

APPLICANT: Apacer Technology Inc

TESTED: Apr. 08, 2011

TEST SAMPLE: ENGINEERING SAMPLE

STANDARDS: FCC Part 15, Subpart C (Section 15.249)

ANSI C63.4-2003

ANSI C63.10-2009

The above equipment (model: M721) have been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY : Ivy Lin, **DATE:** Apr. 27, 2011

Ivy Lin / Specialist

APPROVED BY : Gary Chang, **DATE:** Apr. 27, 2011

Gary Chang / Assistant Manager

A D T

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C (Section 15.249)			
STANDARD PARAGRAPH	TEST TYPE	RESULT	REMARK
15.207	Conducted Emission Test	NA	Power supply is 3Vdc from batteries.
15.209	Radiated Emission Test		
15.249	Band Edge Measurement		Meet the requirement of limit.
15.249 (d)	Limit: 50dB less than the peak value of fundamental frequency or meet radiated emission limit in section 15.209	PASS	Minimum passing margin is -11.2dB at 4810.00MHz.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	150kHz~30MHz	2.44 dB
Radiated emissions	30MHz ~ 200MHz	3.34 dB
	200MHz ~1000MHz	3.35 dB
	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

A D T

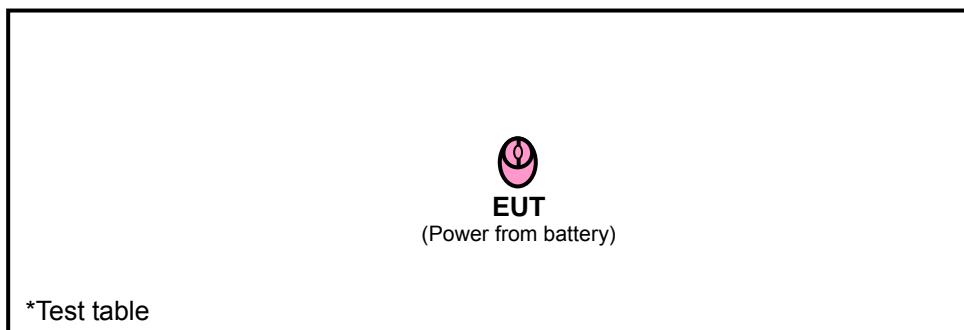
3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	Apacer Blue Engine Mouse
MODEL NO.	M721
FCC ID	W5EM721
POWER SUPPLY	3Vdc from batteries (1.5V AAA x 2)
MODULATION TYPE	GFSK
DATA RATE	1M bit/sec.
OPERATING FREQUENCY	2405 ~ 2476MHz
NUMBER OF CHANNEL	64
ANTENNA TYPE	Copper trace antenna with -9.57dBi
DATA CABLE	NA
I/O PORT	NA
ACCESSORY DEVICES	NA

NOTE:

1. The EUT has transmitter and receiver functions.
2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.


A D T

3.2 DESCRIPTION OF TEST MODES

64 channels are provided to this EUT:

FREQUENCY GROUP 1		FREQUENCY GROUP 2	
FREQ. (MHz)		FREQ. (MHz)	
2407	2442	2405	2443
2408	2447	2406	2444
2412	2451	2409	2446
2414	2452	2410	2448
2417	2457	2411	2449
2420	2458	2413	2453
2421	2459	2415	2455
2422	2460	2416	2456
2427	2461	2418	2462
2428	2465	2419	2463
2431	2468	2423	2464
2435	2469	2425	2466
2436	2472	2429	2467
2437	2473	2430	2470
2438	2475	2432	2471
2439	2476	2434	2474

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

A D T

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT CONFIGURE MODE	APPLICABLE TO				DESCRIPTION
	RE \geq 1G	RE $<$ 1G	PLC	BM	
-	✓	✓	NOTE	✓	-

Where **PLC**: Power Line Conducted Emission

RE $<$ 1G: Radiated Emission below 1GHz

RE \geq 1G: Radiated Emission above 1GHz

BM: Bandedge Measurement

NOTE: No need to concern of Conducted Emission due to the EUT is powered by battery.

RADIATED EMISSION TEST (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations axis and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	OPERATING FREQUENCY RANGE (MHz)	TEST FREQUENCY (MHz)	MODULATION TYPE
-	2405 ~ 2476	2405, 2439, 2476	GFSK

RADIATED EMISSION TEST (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations axis and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	OPERATING FREQUENCY RANGE (MHz)	TEST FREQUENCY (MHz)	MODULATION TYPE
-	2405 ~ 2476	2476	GFSK

BANDEdge MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations axis and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	OPERATING FREQUENCY RANGE (MHz)	TEST FREQUENCY (MHz)	MODULATION TYPE
-	2405 ~ 2476	2405, 2476	GFSK

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE \geq 1G	22deg. C, 61%RH, 1015 hPa	3Vdc	Brad Wu
RE<1G	22deg. C, 61%RH, 1015 hPa	3Vdc	Brad Wu
BM	22deg. C, 61%RH, 1015 hPa	3Vdc	Brad Wu

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (Section 15.249)

ANSI C63.4-2003

ANSI C63.10-2009

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit.

4. TEST TYPES AND RESULTS

4.1 RADIATED EMISSION MEASUREMENT

4.1.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209, 15.249 as following:

15.209 Limit		
Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

15.249 Limit		
Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)
902 ~ 928 MHz	50	500
2400 ~ 2483.5 MHz	50	500
5725 ~ 5875 MHz	50	500
24 ~ 24.25 GHz	250	2500

NOTE:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

A D T

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESIB7	100212	Jul. 22, 2010	Jul. 21, 2011
Spectrum Analyzer Agilent	E4446A	MY48250266	Aug. 11, 2010	Aug. 10, 2011
BILOG Antenna SCHWARZBECK	VULB9168	9168-160	Apr. 13, 2011	Apr. 12, 2012
HORN Antenna SCHWARZBECK	9120D	9120D-405	Feb. 08, 2011	Feb. 07, 2012
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170243	Dec. 27, 2010	Dec. 26, 2011
Preamplifier Agilent	8447D	2944A10633	Nov. 02, 2010	Nov. 01, 2011
Preamplifier Agilent	8449B	3008A01964	Nov. 02, 2010	Nov. 01, 2011
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	238141/4	May 14, 2010	May 13, 2011
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	12738/6	May 14, 2010	May 13, 2011
Software ADT.	ADT_Radiated_ V7.6.15.9.2	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	013303	NA	NA
Antenna Tower Controller inn-co GmbH	CO2000	017303	NA	NA
Turn Table ADT.	TT100.	TT93021703	NA	NA
Turn Table Controller ADT.	SC100.	SC93021703	NA	NA

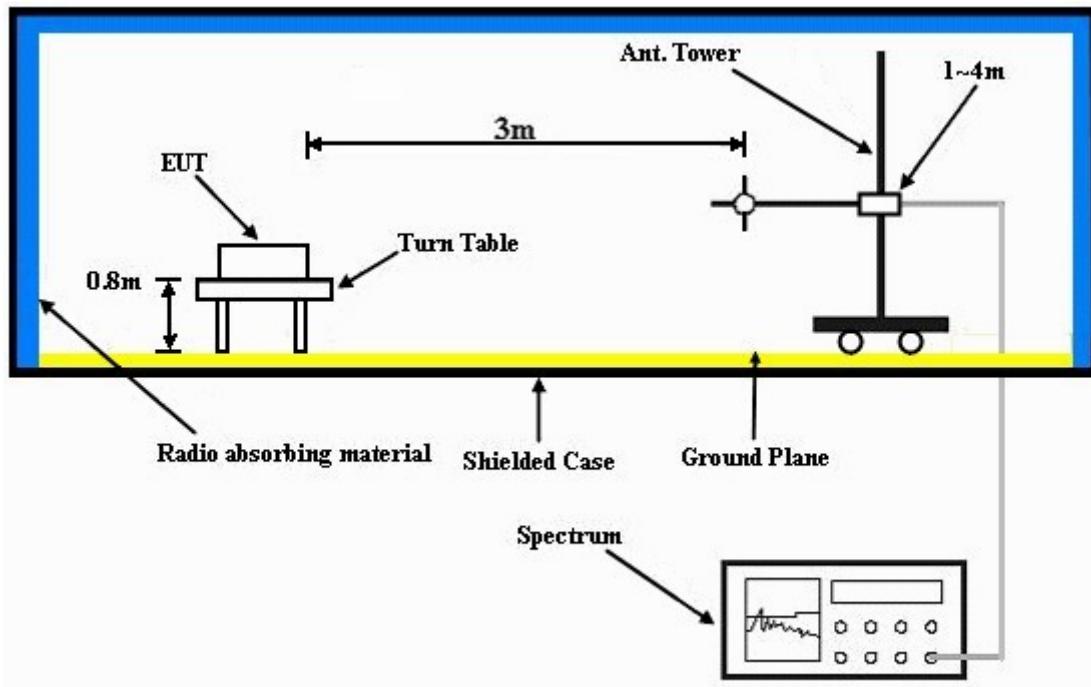
NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 3.
3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
4. The FCC Site Registration No. is 988962.
5. The IC Site Registration No. is IC 7450F-3.

A D T

4.1.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.


NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
3. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT OPERATING CONDITIONS

- Placed the EUT on the testing table.
- Set the EUT under transmitting condition.

4.1.7 TEST RESULTS

ABOVE 1GHz DATA

EUT TEST CONDITION		MEASUREMENT DETAIL		
TEST FREQUENCY		2405MHz		FREQUENCY RANGE 1 ~ 25GHz
INPUT POWER		3Vdc		DETECTOR FUNCTION Peak (PK) Average (AV)
ENVIRONMENTAL CONDITIONS		22deg. C, 61%RH 1015 hPa		TESTED BY Brad Wu

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2319.00	45.6 PK	74.0	-28.4	1.20 H	210	15.60	30.00
2	2319.00	29.4 AV	54.0	-24.6	1.20 H	210	-0.60	30.00
3	2390.00	38.2 PK	74.0	-35.8	1.11 H	191	7.90	30.30
4	2390.00	24.3 AV	54.0	-29.7	1.11 H	191	-6.00	30.30
5	2398.00	47.4 PK	74.0	-26.6	1.11 H	191	17.10	30.30
6	2398.00	25.0 AV	54.0	-29.0	1.11 H	191	-5.30	30.30
7	2400.00	52.3 PK	74.0	-21.7	1.11 H	191	22.00	30.30
8	2400.00	8.8 AV	54.0	-45.2	1.11 H	191	-21.50	30.30
9	*2405.00	82.9 PK	114.0	-31.1	1.11 H	191	52.60	30.30
10	*2405.00	39.4 AV	94.0	-54.6	1.11 H	191	9.10	30.30
11	4810.00	62.4 PK	74.0	-11.6	1.02 H	223	26.20	36.20
12	4810.00	18.9 AV	54.0	-35.1	1.02 H	223	-17.30	36.20

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
3. The other emission levels were very low against the limit.
4. Margin value = Emission level – Limit value.
5. “*”: Fundamental frequency
6. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula:

$$20 \log (\text{Duty cycle}) = 20 \log (0.335 * 2\text{ms} / 100 \text{ ms}) = -43.5 \text{ dB}$$
Please see page 19 for plotted duty.

A D T

EUT TEST CONDITION		MEASUREMENT DETAIL	
TEST FREQUENCY	2405MHz	FREQUENCY RANGE	1 ~ 25GHz
INPUT POWER	3Vdc	DETECTOR FUNCTION	Peak (PK) Average (AV)
ENVIRONMENTAL CONDITIONS	22deg. C, 61%RH 1015 hPa	TESTED BY	Brad Wu

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2319.00	44.3 PK	74.0	-29.7	1.06 V	135	14.30	30.00
2	2319.00	28.1 AV	54.0	-25.9	1.06 V	135	-1.90	30.00
3	2390.00	37.6 PK	74.0	-36.4	1.00 V	263	7.30	30.30
4	2390.00	24.0 AV	54.0	-30.0	1.00 V	263	-6.30	30.30
5	2398.00	42.3 PK	74.0	-31.7	1.00 V	263	12.00	30.30
6	2398.00	22.5 AV	54.0	-31.5	1.00 V	263	-7.80	30.30
7	2400.00	43.7 PK	74.0	-30.3	1.00 V	263	13.40	30.30
8	2400.00	0.2 AV	54.0	-53.8	1.00 V	263	-30.10	30.30
9	*2405.00	74.3 PK	114.0	-39.7	1.00 V	263	44.00	30.30
10	*2405.00	30.8 AV	94.0	-63.2	1.00 V	263	0.50	30.30
11	4810.00	62.8 PK	74.0	-11.2	1.09 V	224	26.60	36.20
12	4810.00	19.3 AV	54.0	-34.7	1.09 V	224	-16.90	36.20

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
3. The other emission levels were very low against the limit.
4. Margin value = Emission level – Limit value.
5. “*”: Fundamental frequency
6. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula:
20 log (Duty cycle) = 20 log (0.335 *2ms / 100 ms) = -43.5 dB
Please see page 19 for plotted duty.

A D T

EUT TEST CONDITION		MEASUREMENT DETAIL		
TEST FREQUENCY		2439MHz		FREQUENCY RANGE 1 ~ 25GHz
INPUT POWER		3Vdc		DETECTOR FUNCTION Peak (PK) Average (AV)
ENVIRONMENTAL CONDITIONS		22deg. C, 61%RH 1015 hPa		TESTED BY Brad Wu

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2439.00	83.9 PK	114.0	-30.1	1.09 H	185	53.50	30.40
2	*2439.00	40.4 AV	94.0	-53.6	1.09 H	185	10.00	30.40
3	4878.00	59.4 PK	74.0	-14.6	1.05 H	338	23.20	36.20
4	4878.00	15.9 AV	54.0	-38.1	1.05 H	338	-20.30	36.20
5	7317.00	54.2 PK	74.0	-19.8	1.00 H	156	12.00	42.20
6	7317.00	10.7 AV	54.0	-43.3	1.00 H	156	-31.50	42.20
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2439.00	75.0 PK	114.0	-39.0	1.01 V	265	44.60	30.40
2	*2439.00	31.5 AV	94.0	-62.5	1.01 V	265	1.10	30.40
3	4878.00	60.8 PK	74.0	-13.2	1.08 V	225	24.60	36.20
4	4878.00	17.3 AV	54.0	-36.7	1.08 V	225	-18.90	36.20
5	7317.00	54.7 PK	74.0	-19.3	1.10 V	24	12.50	42.20
6	7317.00	11.2 AV	54.0	-42.8	1.10 V	24	-31.00	42.20

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
 3. The other emission levels were very low against the limit.
 4. Margin value = Emission level – Limit value.
 5. “*”: Fundamental frequency
 6. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula:
 $20 \log (\text{Duty cycle}) = 20 \log (0.335 * 2\text{ms} / 100 \text{ ms}) = -43.5 \text{ dB}$
 Please see page 19 for plotted duty.

EUT TEST CONDITION		MEASUREMENT DETAIL	
TEST FREQUENCY	2476MHz	FREQUENCY RANGE	1 ~ 25GHz
INPUT POWER	3Vdc	DETECTOR FUNCTION	Peak (PK) Average (AV)
ENVIRONMENTAL CONDITIONS	22deg. C, 61%RH 1015 hPa	TESTED BY	Brad Wu

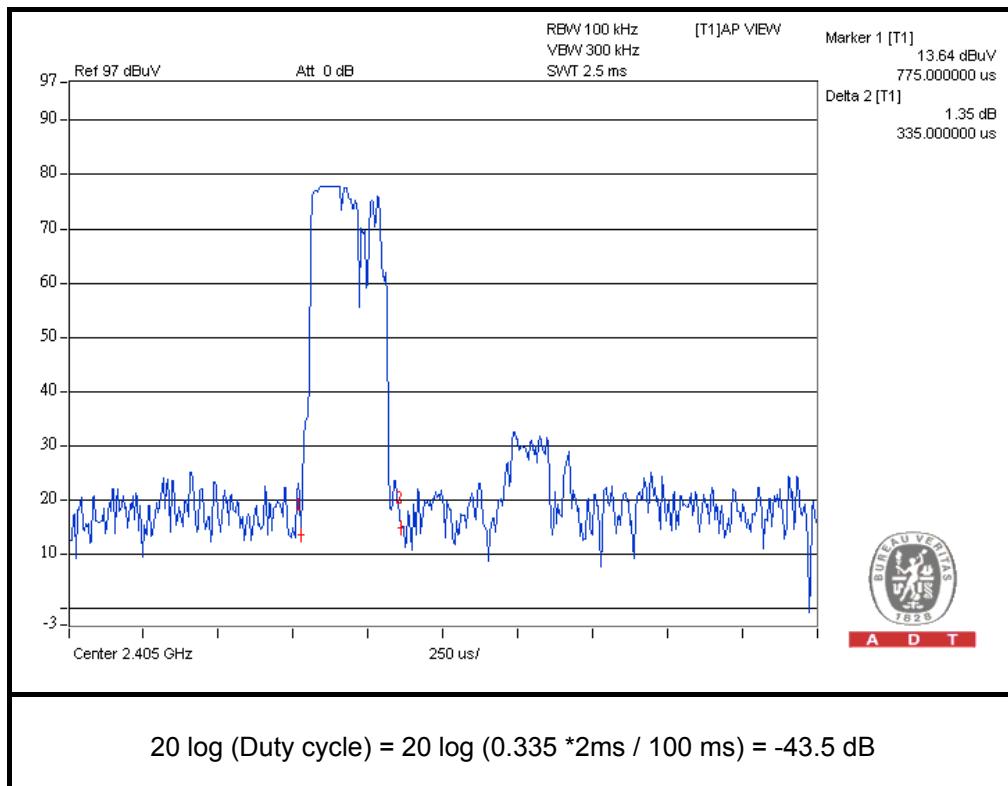
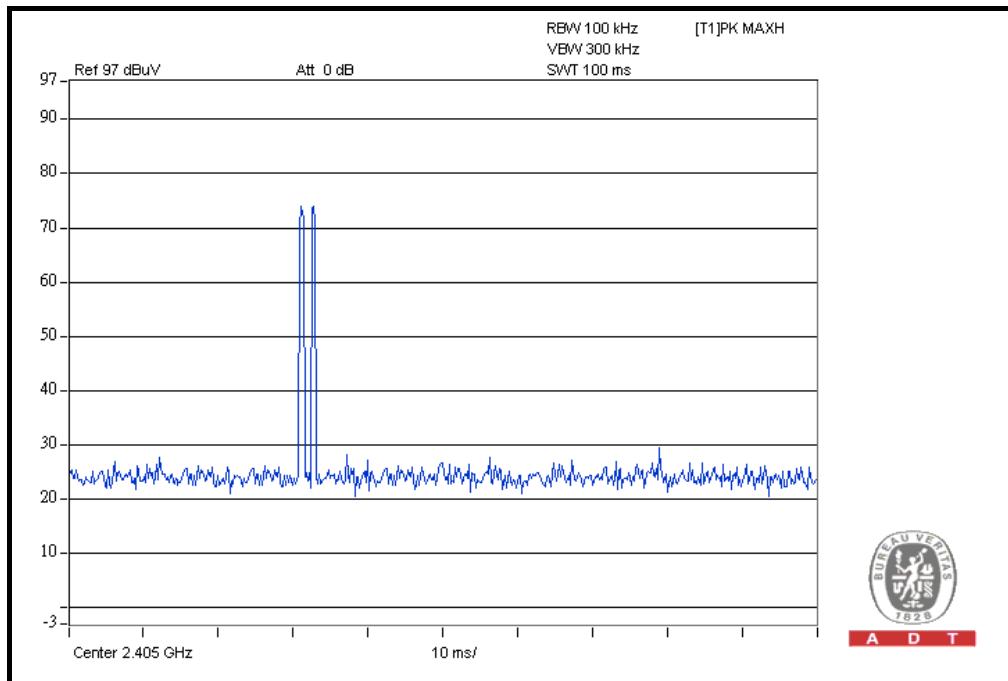
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2476.00	84.8 PK	114.0	-29.2	1.08 H	183	54.20	30.60
2	*2476.00	41.3 AV	94.0	-52.7	1.08 H	183	10.70	30.60
3	2483.50	53.4 PK	74.0	-20.6	1.08 H	183	22.80	30.60
4	2483.50	9.9 AV	54.0	-44.1	1.08 H	183	-20.70	30.60
5	2485.50	55.1 PK	74.0	-18.9	1.08 H	183	24.50	30.60
6	2485.50	26.1 AV	54.0	-27.9	1.08 H	183	-4.50	30.60
7	2568.00	59.3 PK	74.0	-14.7	1.08 H	99	28.40	30.90
8	2568.00	31.2 AV	54.0	-22.8	1.08 H	99	0.30	30.90
9	4952.00	58.8 PK	74.0	-15.2	1.04 H	340	22.40	36.40
10	4952.00	15.3 AV	54.0	-38.7	1.04 H	340	-21.10	36.40

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
3. The other emission levels were very low against the limit.
4. Margin value = Emission level – Limit value.
5. “*”: Fundamental frequency
6. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula:
$$20 \log (\text{Duty cycle}) = 20 \log (0.335 * 2\text{ms} / 100 \text{ ms}) = -43.5 \text{ dB}$$

Please see page 19 for plotted duty.

EUT TEST CONDITION		MEASUREMENT DETAIL	
TEST FREQUENCY	2476MHz	FREQUENCY RANGE	1 ~ 25GHz
INPUT POWER	3Vdc	DETECTOR FUNCTION	Peak (PK) Average (AV)
ENVIRONMENTAL CONDITIONS	22deg. C, 61%RH 1015 hPa	TESTED BY	Brad Wu



ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2476.00	75.8 PK	114.0	-38.2	1.00 V	266	45.20	30.60
2	*2476.00	32.3 AV	94.0	-61.7	1.00 V	266	1.70	30.60
3	2483.50	44.4 PK	74.0	-29.6	1.00 V	266	13.80	30.60
4	2483.50	0.9 AV	54.0	-53.1	1.00 V	266	-29.70	30.60
5	2485.50	49.4 PK	74.0	-24.6	1.00 V	266	18.80	30.60
6	2485.50	23.6 AV	54.0	-30.4	1.00 V	266	-7.00	30.60
7	2568.00	54.2 PK	74.0	-19.8	1.02 V	214	23.30	30.90
8	2568.00	29.2 AV	54.0	-24.8	1.02 V	214	-1.70	30.90
9	4952.00	54.1 PK	74.0	-19.9	1.08 V	30	17.70	36.40
10	4952.00	10.6 AV	54.0	-43.4	1.08 V	30	-25.80	36.40

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
3. The other emission levels were very low against the limit.
4. Margin value = Emission level – Limit value.
5. “*”: Fundamental frequency
6. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula:
$$20 \log (\text{Duty cycle}) = 20 \log (0.335 * 2\text{ms} / 100 \text{ ms}) = -43.5 \text{ dB}$$

Please see page 19 for plotted duty.

A D T

A D T

BELOW 1GHZ WORST-CASE DATA

EUT TEST CONDITION		MEASUREMENT DETAIL		
TEST FREQUENCY		2476MHz		FREQUENCY RANGE Below 1000MHz
INPUT POWER		3Vdc		DETECTOR FUNCTION Quasi-Peak
ENVIRONMENTAL CONDITIONS		22deg. C, 61%RH 1015 hPa		TESTED BY Brad Wu

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	37.68	19.7 QP	40.0	-20.3	2.00 H	55	6.20	13.50
2	96.01	14.6 QP	43.5	-28.9	2.00 H	262	5.00	9.60
3	160.17	14.0 QP	43.5	-29.5	2.00 H	349	-0.80	14.80
4	286.55	16.4 QP	46.0	-29.6	1.00 H	34	2.00	14.40
5	473.20	19.8 QP	46.0	-26.2	2.00 H	343	0.30	19.50
6	632.63	23.0 QP	46.0	-23.0	2.00 H	73	0.00	23.00

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	43.51	23.9 QP	40.0	-16.1	2.00 V	52	9.40	14.50
2	96.01	21.4 QP	43.5	-22.1	1.50 V	28	11.80	9.60
3	232.11	29.7 QP	46.0	-16.3	1.00 V	334	17.60	12.10
4	574.30	21.3 QP	46.0	-24.7	1.00 V	10	-0.60	21.90
5	692.90	23.7 QP	46.0	-22.3	2.00 V	256	-0.30	24.00
6	821.23	24.3 QP	46.0	-21.7	1.50 V	325	-1.30	25.60

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
3. The other emission levels were very low against the limit.
4. Margin value = Emission level – Limit value.

4.2 BAND EDGES MEASUREMENT

4.2.1 LIMITS OF BAND EDGES MEASUREMENT

Below –50dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUe DATE OF CALIBRATION
SPECTRUM ANALYZER R&S	FSP40	100040	Jul. 17, 2010	Jul. 16, 2011

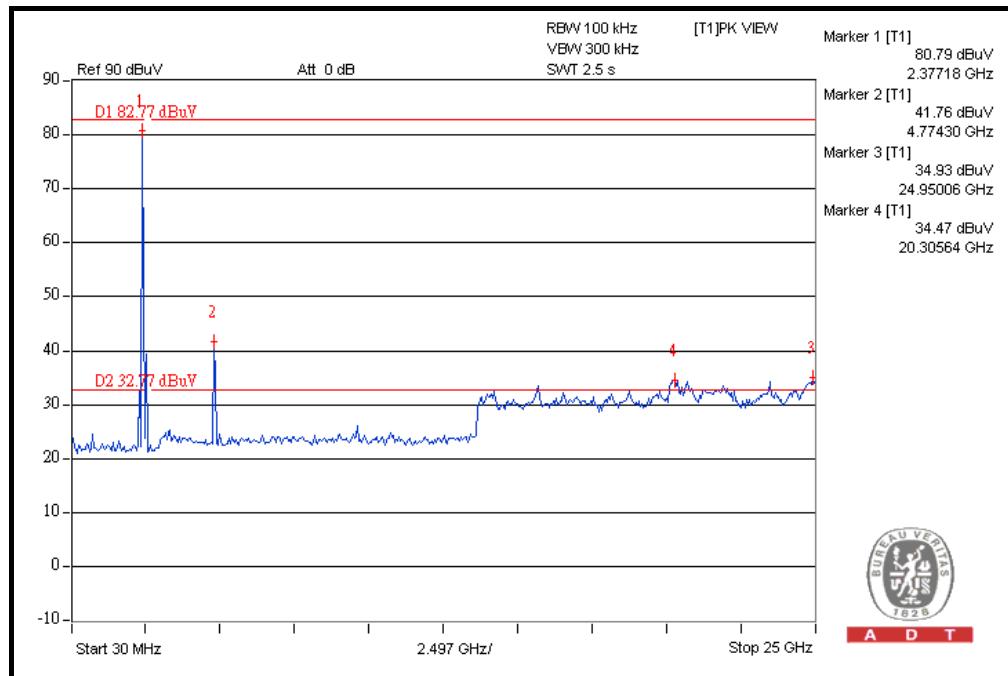
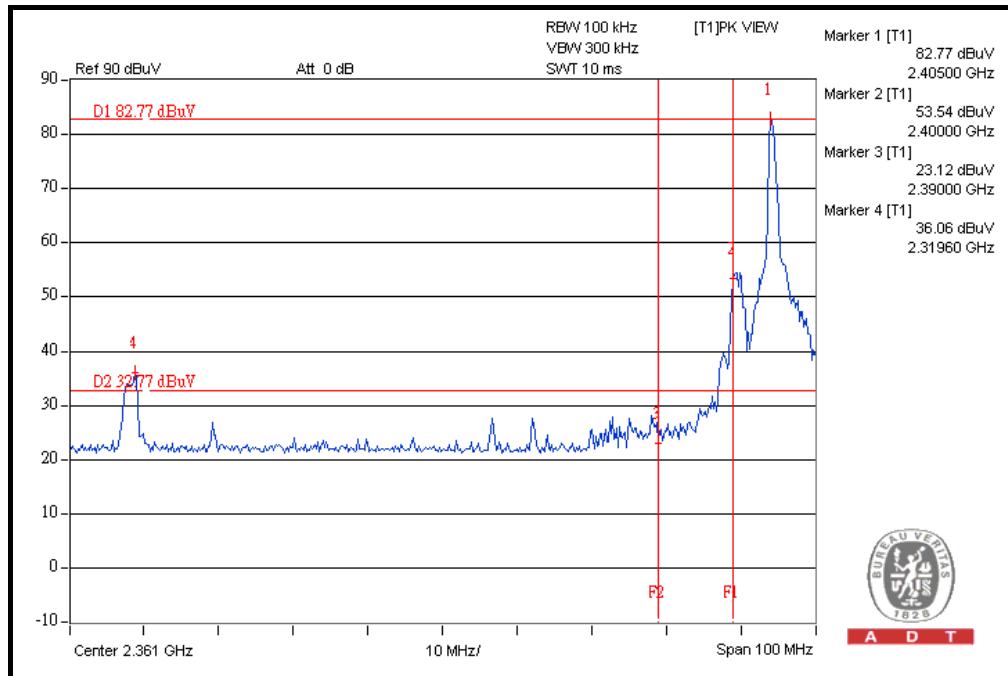
NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.2.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low loss cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

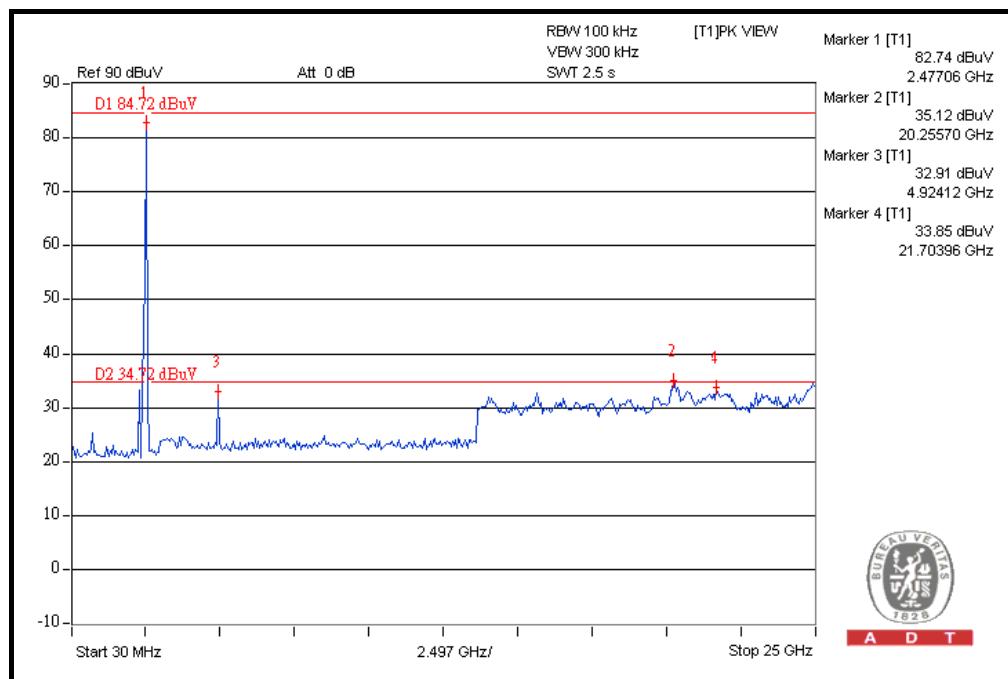
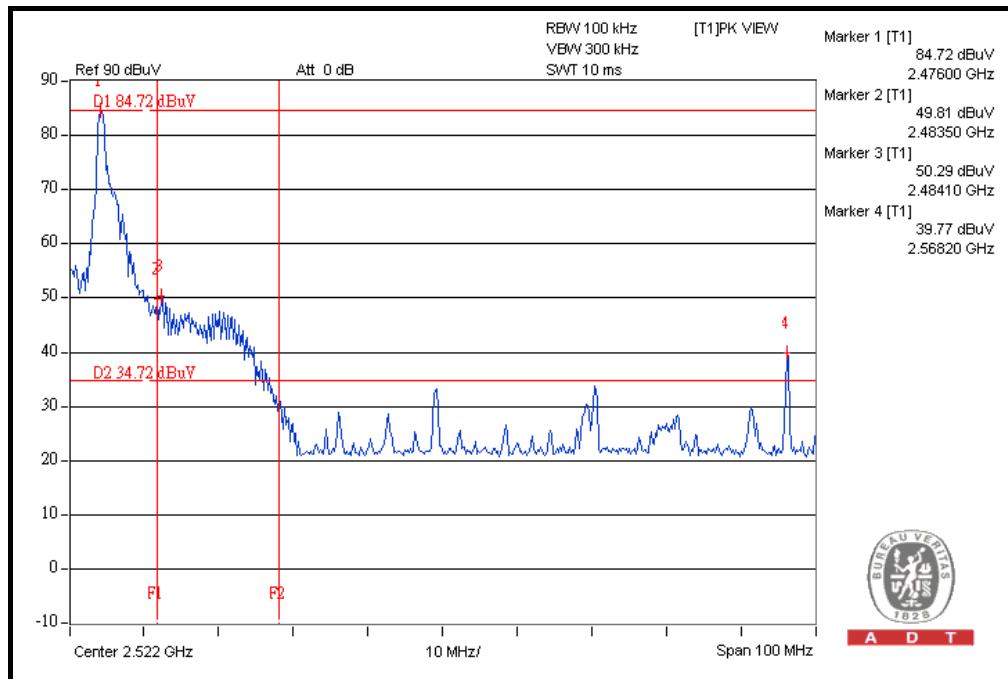
The spectrum plots are attached on the following pages.

4.2.4 DEVIATION FROM TEST STANDARD



No deviation.

4.2.5 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest and highest channel frequencies individually.



4.2.6 TEST RESULTS

The spectrum plots are attached on the following images. D1 line indicates the highest level, and D2 line indicates the 50dB offset below D1. It shows compliance with the requirement in part 15.249 (d).

A D T

A D T

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

A D T

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5.phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:

Tel: 886-2-26052180

Fax: 886-2-26051924

Hsin Chu EMC/RF Lab:

Tel: 886-3-5935343

Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab:

Tel: 886-3-3183232

Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

A D T

7. APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END---