RF Exposure Evaluation Declaration

Product Name	: Tire Pressure Monitoring System
Model No.	: W408
FCC ID.	: W55TIAFM1B2

Applicant : Oro Technology Co., LTD

Address : 3F, No.32-1, 24th Road, Industrial Park, Taichung 408, Taiwan

Date of Receipt :	2012/08/23	
Issued Date :	2013/06/19	
Report No. :	128447R-RF-US-Exp	
Report Version:	V1.0	
BC-MRA	Testing Laboratory 1313	

The declaration results relate only to the samples calculated.

The declaration shall not be reproduced except in full without the written approval of QuieTek Corporation.

1. **RF Exposure Evaluation**

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

Frequency Range	Electric Field	Magnetic Field	Power Density Average Time			
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)		
(A) Limits for Occupational/ Control Exposures						
300-1500			F/300 6			
1500-100,000			5	6		
(B) Limits for General Population/ Uncontrolled Exposures						
300-1500			F/1500 6			
1500-100,000			1 30			

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

F= Frequency in MHz

Friis Formula Friis transmission formula: Pd = (Pout*G)/(4*pi*r2)

Where
Pd = power density in mW/cm2
Pout = output power to antenna in mW
G = gain of antenna in linear scale
Pi = 3.1416
R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18° C and 78°_{\circ} RH.

1.3. Test Result of RF Exposure Evaluation

Product	Tire Pressure Monitoring System	
Test Mode	Mode 1: Transmit	
Test Condition	RF Exposure Evaluation	

Antenna Gain

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 0dBi or 1 in linear scale.

Output Power into Antenna & RF Exposure Evaluation Distance:

Channel	Channel Frequency	Output Power to Antenna	Power Density at R = 20 cm
	(MHz)	(mW)	(mW/cm ²)
01	433.92	0.0371	0.00001

The power density Pd (4th column) at a distance of 20 cm calculated from the Friis transmission formula is far below the limit of 0.29 mW/cm² in 433.92MHz.