

Date : 2017-10-06 No. : HM170913			Page 1 of 26
Applicant:	Gatekeeper Syster 36/F, Tower 2, Tin Hong Kong	n (HK) Ltd. mes Square, 1 Matheson Street,	Causeway Bay,
Manufacturer:	Gatekeeper Syster 36/F, Tower 2, Tin Hong Kong	n (HK) Ltd. mes Square, 1 Matheson Street,	Causeway Bay,
Description of Sample(s):	Product: Brand Name: Model Number: FCC ID:	Long Range Transmitter 2 Gatekeeper Systems D-9670A W3Z-D9670A	
Date Sample(s) Received:	2017-08-22		
Date Tested:	2017-09-04 to 201	7-09-06	
Investigation Requested:	with FCC 47CFR	[agnetic Interference measurem [Codes of Federal Regulations] 3 for FCC Certification.	
Conclusion(s):	Federal Communi Regulations Part 1	oduct <u>COMPLIED</u> with the requ cations Commission [FCC] Rul 5. The tests were performed ir cribed above and on Section 2.2	les and accordance with

Remark(s):

CHEUNG Chi, Kenneth Authorized Signatory ElectroMagnetic Compatibility Department For and on behalf of The Hong Kong Standards and Testing Centre Ltd.

Date : 2017-10-06 No. : HM170913

Page 2 of 26

CON	TENT:	
	Cover Content	Page 1 of 26 Page 2 of 26
<u>1.0</u>	<u>General Details</u>	
1.1	Equipment Under Test [EUT] Description of EUT operation	Page 3 of 26
1.2	Description of EUT Operation	
1.3	Date of Order	Page 3 of 26
1.4	Submitted Sample	Page 3 of 26
1.5	Test Duration	Page 3 of 26
1.6	Country of Origin	Page 3 of 26
<u>2.0</u>	Technical Details	
2.1	Investigations Requested	Page 4 of 26
2.2	Test Standards and Results Summary	Page 4 of 26
<u>3.0</u>	Test Results	
3.1	Emission	Page 5-20 of 26
	<u>Appendix A</u>	
	List of Measurement Equipment	Page 21 of 26
	Appendix B	
	Photographs	Page 22-26 of 26

The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-06

No. : HM170913

Page 3 of 26

<u>1.0</u> General Details

1.1 Equipment Under Test [EUT] Description of Sample(s)

Product:	Long Range Transmitter 2
Manufacturer:	Gatekeeper System (HK) Ltd.
	36/F, Tower 2, Times Square, 1 Matheson Street, Causeway Bay, Hong
	Kong
Brand Name:	Gatekeeper Systems
Model Number:	D-9670A
Rating:	3.3Vd.c
	The AC Adaptor used for the tests was provided by the applicant with the
	following details: Model KTP505-03315U-V1 Input: 100-240Va.c. 50-
	60Hz. 0.19 MAX Output: 3.3Vd.c. 1.5A 4.95W MAX

1.2 Description of EUT Operation

The Equipment Under Test (EUT) is a Long Range Transmitter 2 of Gatekeeper System (HK) Ltd., which is 2.4GHz transceiver.

The D-9670A Operational mode transmissions are modulated at 500kbps MSK (Minimum Shift Keying), with a deviation of 19 kHz (Carson's rule bandwidth about 80 kHz). The EUT will transmit RF signal after receive a 20kbps FSK RF signal from companion devices. The EUT was tested under test mode which was set in maximum output power (RF output Power 9 = 0 dBm) and transmit continuously.

1.3 Date of Order

2017-08-22

1.4 Submitted Sample(s):

1 Sample

1.5 Test Duration

2017-09-04 to 2017-09-06

1.6 Country of Origin

China

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2017-10-06

No. : HM170913

Page 4 of 26

<u>2.0</u> <u>Technical Details</u>

2.1 Investigations Requested

Perform Electromagnetic Interference measurements in accordance with FCC 47CFR [Codes of Federal Regulations] Part 15: 2016 Regulations and ANSI C63.10:2013 for FCC Certification.

2.2 Test Standards and Results Summary Tables

EMISSION Results Summary								
Test Condition	Test Requirement	Test Method	Class /	Test l	Result			
			Severity	Pass	Fail			
Field Strength of Fundamental & Harmonics Emissions	FCC 47CFR 15.249	ANSI C63.10:2013	N/A	\boxtimes				
AC power-line conducted emissions	FCC 47CFR 15.207	ANSI C63.10:2013	N/A	\boxtimes				
Radiated Emissions	FCC 47CFR 15.209	ANSI C63.10:2013	N/A	\square				

Note: N/A - Not Applicable

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Date : 2017-10-06 No. : HM170913 Page 5 of 26

- 3.0 Test Results
- 3.1 Emission
- 3.1.1 Field Strength of Fundamental & Harmonics Emissions

Test Requirement:	FCC 47CFR 15.249
Test Method:	ANSI C63.10:2013
Test Date:	2017-09-04
Mode of Operation:	On Mode

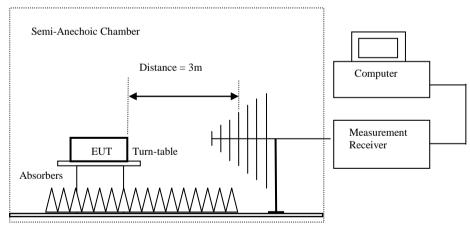
Test Method:

For emission measurements at or below 1 GHz, the sample was placed 0.8m above the ground plane of semianechoic Chamber*. For emission measurements above 1 GHz, the sample was placed 1.5m above the ground plane of semi-anechoic Chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. In the frequency range of 9kHz to 30MHz, The center of the loop antenna shall be 1 meter above the ground and rotated loop axis for maximum reading. The emissions worst-case are shown in Test Results of the following pages.

Remark: 3 orthogonal axis apply to hand-held device only.

*: Semi-anechoic chamber located on the G/F of The Hong Kong Standards and Testing Centre Ltd. with a metal ground plane filed with the FCC pursuant to section 2.948 of the FCC rules, with Designation Number: HK0001.

Page 6 of 26


No. : HM170913

Date : 2017-10-06

Spectrum Ana	alyzer	Setting:	

9KHz – 30MHz (Pk & Av)	RBW:	10kHz
	VBW:	30kHz
	Sweep:	Auto
	Span:	Fully capture the emissions being measured
	Trace:	Max. hold
30MHz – 1GHz (QP)	RBW:	120kHz
	VBW:	120kHz
	Sweep:	Auto
	Span:	Fully capture the emissions being measured
	Trace:	Max. hold
Above 1GHz (Pk & Av)	RBW:	3MHz
	VBW:	3MHz
	Sweep:	
	Span:	Fully capture the emissions being measured
	Trace:	Max. hold

Test Setup:

Ground Plane

Absorbers placed on top of the ground plane are for measurements above 1000MHz only.

Date : 2017-10-06 No. : HM170913 Page 7 of 26

Limits for Field Strength of Fundamental & Harmonics Emissions [FCC 47CFR 15.249]:

Fundamental frequency [MHz]	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902-928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

Result of TX mode (Lowest Channel), (Above 1GHz): Pass

Field Strength of Fundamental and Harmonics Emissions								
	Peak Value							
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field		
	Level @3m	Factor	Strength	Strength		Polarity		
MHz	dBµV/m	$dB\mu V/m$	dBµV/m	$\mu V/m$	μV/m			
2403.2	55.7	27.9	83.6	15,135.6	500,000	Vertical		
* 4806.4	16.3	32.1	48.4	263.0	5,000	Vertical		
7209.5	3.1	38.6	41.7	121.6	5,000	Vertical		
9612.8					5,000	Vertical		
* 12016.0					5,000	Vertical		
14419.2	5,000 Vertical							
16822.4	16822.4Emissions detected are more than5,000Vertical					Vertical		
* 19225.6	5.6 20 dB below the FCC Limits 5,000					Vertical		
21628.8	5,000							
24032.0					5,000	Vertical		

Field Strength of Fundamental and Harmonics Emissions							
Average Value							
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field	
	Level @3m	Factor	Strength	Strength		Polarity	
MHz	$dB\mu V/m$	dBµV/m	dBµV/m	$\mu V/m$	μV/m		
2403.2	36.5	27.9	64.4	1,659.6	50,000	Vertical	
* 4806.4	2.1	32.1	34.2	51.3	500	Vertical	
7209.5	-1.0	38.6	37.6	75.9	500	Vertical	
9612.8					500	Vertical	
* 12016.0					500	Vertical	
14419.2					500	Vertical	
16822.4	16822.4Emissions detected are more than500Vertica					Vertical	
* 19225.6	9225.6 20 dB below the FCC Limits 500 Ver					Vertical	
21628.8	500 Vertical						
24032.0	500 Vertical						

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 8 of 26

Date : 2017-10-06 No. : HM170913

Result of TX mode (Middle Channel), (Above 1GHz): Pass

Field Strength of Fundamental and Harmonics Emissions								
	Peak Value							
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field		
	Level @3m	Factor	Strength	Strength		Polarity		
MHz	dBµV/m	dBµV/m	dBµV/m	$\mu V/m$	$\mu V/m$			
2441.2	55.8	27.9	83.7	15,310.9	500,000	Vertical		
* 4882.3	16.3	32.1	48.4	263.0	5,000	Vertical		
* 7323.5	3.1	38.6	41.7	121.6	5,000	Vertical		
9764.8					5,000	Vertical		
* 12206.0					5,000	Vertical		
14647.2					5,000	Vertical		
17088.4	17088.4 Emissions detected are more than 5,000 Vertical					Vertical		
* 19529.6	.6 20 dB below the FCC Limits 5,000					Vertical		
21970.8]				5,000	Vertical		
24412.0		5,000 Vertical						

Field Strength of Fundamental and Harmonics Emissions								
		A	Average Valu	e				
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field		
	Level @3m	Factor	Strength	Strength		Polarity		
MHz	$dB\mu V/m$	dBµV/m	dBµV/m	$\mu V/m$	$\mu V/m$			
2441.2	46.3	27.9	74.2	5,128.6	50,000	Vertical		
* 4882.3	1.8	32.1	33.9	49.5	500	Vertical		
* 7323.5	-0.5	38.6	38.1	80.4	500	Vertical		
9764.8					500	Vertical		
* 12206.0		500 Vertical						
14647.2					500	Vertical		
17088.4	17088.4 Emissions detected are more than 500 Vertical					Vertical		
* 19529.6	9.6 20 dB below the FCC Limits 500 Vertical					Vertical		
21970.8	7	500 Vertical						
24412.0]	500 Vertical						

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2017-10-06 No. : HM170913

Result of TX mode (Highest Channel), (Above 1GHz): Pass

Field Strength of Fundamental and Harmonics Emissions										
Peak Value										
Frequency	Measured	Limit @3m	E-Field							
	Level @3m	Factor	Strength	Strength		Polarity				
MHz	dBµV/m	dBµV/m	dBµV/m	$\mu V/m$	$\mu V/m$					
2476.1	56.7	27.9	84.6	16,982.4	500,000	Vertical				
* 4952.1	17.1	32.1	49.2	288.4	5,000	Vertical				
* 7428.1	3.3	38.6	41.9	124.5	5,000	Vertical				
9904.4		5,000 Vertical								
* 12380.5]	5,000 Vertical								
14856.6]	5,000 Vertical								
17332.7	Emissions detected are more than 5,000 Vertical									
* 19808.8	20 dB below the FCC Limits 5,000 Vertical									
22284.9]				5,000	Vertical				
24761.0]				5,000	Vertical				

	Field Strength of Fundamental and Harmonics Emissions											
Average Value												
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field						
	Level @3m	Factor	Strength	Strength		Polarity						
MHz	dBµV/m	dBµV/m	dBµV/m	$\mu V/m$	$\mu V/m$							
2476.1	2476.1 36.1 27.9 6		64.0	1,584.9	50,000	Vertical						
* 4952.1	0.2 32.1		32.3	41.2	500	Vertical						
* 7428.1	-0.7	38.6	37.9	78.5	500	Vertical						
9904.4	500 Vertical											
* 12380.5	500 Vertical											
14856.6	500 Vertical											
17332.7	Emissions detected are more than 500 Vertical											
* 19808.8	20 dB below the FCC Limits 500 Vertical											
22284.9]				500	Vertical						
24761.0			500 Vertical									

Remarks:

No additional spurious emissions found between lowest internal used/generated frequency and 30 MHz

*: Denotes restricted band of operation. Measurements were made using a peak detector. Any emission less than 1000 MHz and falling within the restricted bands of FCC Rules Part 15 Section 15.205 and the limits of FCC Rules Part 15 Section 15.209 were applied.

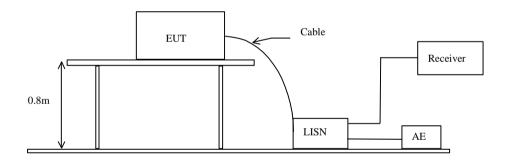
Calculated measurement uncertainty	:	9kHz to 30MHz	2.4dB
		30MHz to 18GHz	5.0dB

The Hong Kong Standards and Testing Centre Limited

Date : 2017-10-06 No. : HM170913

Page 10 of 26

3.1.2 Conducted Emissions (0.15MHz to 30MHz)


Test Requirement:	FCC 47CFR 15.207
Test Method:	ANSI C63.10:2013
Test Date:	2017-09-04

Mode of Operation: Tx mode

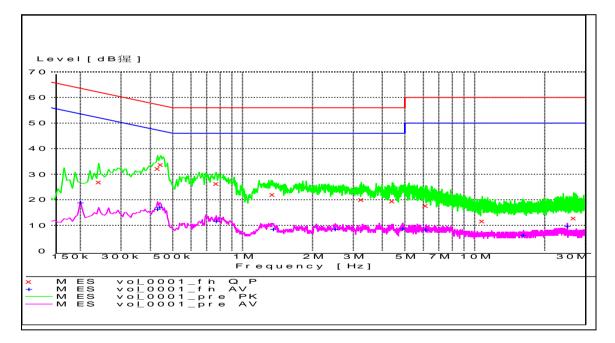
Test Method:

The test was performed in accordance with ANSI C63.10:2013, with the following: an initial measurement was performed in peak and average detection mode on the live line, any emissions recorded within 30dB of the relevant limit line were re-measured using quasi-peak and average detection on the live and neutral lines with the worst case recorded in the table of results.

Test Setup:

Date : 2017-10-06 No. : HM170913

Page 11 of 26


Limit for Conducted Emissions (FCC 47CFR 15.207):

Frequency Range	Quasi-Peak Limits	Average
[MHz]	[dBµV]	[dBµV]
0.15-0.5	66 to 56*	56 to 46*
0.5-5.0	56	46
5.0-30.0	60	50

* Decreases with the logarithm of the frequency.

Limits for Conducted Emissions Test, please refer to limit lines (Quasi-Peak and Average) in the following diagram.

Results of Tx mode – Live and Neutral: PASS

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2017-10-06 No. : HM170913 Page 12 of 26

MEASUREMENT RESULT: "vol_0001_fin QP"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Line	PE
0.240000	26.90	9.9	62	35.2	N	GND
0.430000	32.30	10.0	57	24.9	N	GND
0.445000	33.80	10.0	57	23.2	N	GND
0.770000	26.40	9.9	56	29.6	N	GND
1.345000	22.00	9.9	56	34.0	N	GND
3.245000	20.10	10.4	56	35.9	N	GND
4.420000	19.40	10.5	56	36.6	N	GND
6.145000	17.70	10.6	60	42.3	N	GND
10.770000	11.70	10.4	60	48.3	N	GND
26.680000	12.80	10.7	60	47. <i>2</i>	N	GND

MEASUREMENT RESULT: "vol_0001_fin AV"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Line	PE
0.200000	18.90	9.9	54	34.7	N	GND
0.430000	16.40	10.0	47	30.8	N	GND
0.440000	17.20	10.0	47	29.9	N	GND
0.770000	11.70	9.9	46	34.3	N	GND
1.360000	8.50	9.9	46	37.5	N	GND
2.505000	8.60	10.3	46	37.4	N	GND
4.910000	8.80	10.5	46	<i>37.2</i>	N	GND
6.160000	8.30	10.6	50	41.7	N	GND
16.230000	6.20	10.7	50	43.8	N	GND
25.060000	9.70	10.8	50	40.3	N	GND

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2017-10-06 No. : HM170913 Page 13 of 26

Limits for 20dB Bandwidth of Fundamental Emission:

Frequency Range	20dB Bandwidth
[MHz]	[MHz]
2403.2	1.465

Lowest Channel

0 dB/div Ref 107.99 dB	uV					M	1kr1 2.40 82.	3119 GH 118 dBµ`
og		-						· ·
.00				<u>_1</u>				
9.0				₹'				
9.0			and the second		2			
9.0		᠕ᡔᡅᡘ	r		www.			
9.0	Northand				~ 'n	Mundallan Value		
3.0 mg along and a start and a start and a start a sta	page -						har and the form	Any markers
9.0								
9.0								
enter 2.403 GHz Res BW 30 kHz	·		#VI	BW 100 k	Hz			Span 3 MH p 7.533 m
Occupied Bandwidt	h		Total P	ower	90.5 d	ΒμV		
1.0	0501 MI	Ηz						
Fransmit Freq Error 31.765 kHz		OBW Power		99.00 %				
x dB Bandwidth	1.465 N	1Hz	x dB		-26.00) dB		

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2017-10-06 No. : HM170913

Page 14 of 26

Frequency Range	20dB Bandwidth
[MHz]	[MHz]
2441.2	1.499

Middle Channel

						tal Emission		1 2.441	
0 dB/div	Ref 107.99 dE	BμV						84.0	61 dBµ
og		•							
9.00					▲ 1				
19.0					<u>₹</u>				
.9.0				m	\sim	<u>~</u>			
9.0				~		mary			
9.0		~~~	ward V	~~			~~~~		
9.0		som I					John March	\sim	Δ
	man house for							• • • • • • • • • • • • • • • • • • • •	A.
'9.0									
39.0									
enter 2	2.441 GHz							S	pan 3 M
	V 30 kHz				#VBW 100	kHz			ep 3.2 r
Occu	pied Bandwid	th		Tota	al Power	92.7 dB	μV		
	1.	.0761	MHz	<u>-</u>					
Trans	Transmit Freq Error 46.074 kHz		Z OB	N Power	99.00	1%			
	Bandwidth		99 MH:	z xde	-	-26.00	-10		

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2017-10-06 No. : HM170913

Page 15 of 26

Frequency Range	20dB Bandwidth
[MHz]	[MHz]
2476.0	1.350

Highest Channel

		20dB	Bandw	idth of Fu	ndamen	tal Emission			
0 dB/div	Ref 107.99 dB	μV					M	lkr1 2.47 82.	′6015 GH 213 dBμ
og		r••							•
.00					4				
9.0)'				
9.0				mon	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
9.0			~~~~	4		λ			
9.0		- man	Ann			my har have	All man	_	
9.0		vrus ^r					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm m	
9.0 Marcall	we want have been and							hanger how was	" Why way
9.0									
9.0									
5.0									
enter 2.4 Res BW 3				#\/F	3W 100 k	H7			Span 3 MH ep 7.533 m
	50 MIL							<i>"</i> о псс	,p 1.000 ii
Occupi	ied Bandwidt	h		Total P	ower	91.1 dB	μV		
	1.	1859 N	/IHz						
Transmit Freq Error 29.317 kł		7 kHz	OBW Power		99.00	%			
x dB Ba	ndwidth	1.350	MHz	x dB		-20.00	dB		

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2017-10-06 No. : HM170913

Page 16 of 26

Band Edge Measurement:

Frequency Range	Radiated Emission Attenuated below the Fundamental
[MHz]	[dB]
TX mode – Lowest Fundamental	39.8

			39.5d	B Level R	eduction	at Lo	ower H	Band Ed	lge		
10 dE	B/div Re	ef 106.99 di	ΒμV						~	Mkr1 2.40 84.	02 96 GHz 640 dBµ∖
-og											
97.0											1
87.0		_									
77.0											<u>[]</u>
67.0											
											[]
57.0											2
47.0									3		
37.0									17.5		× ~~~
27.0	and a second second second	walness warmakers		and the last of the second	and and the second	town the first the second	hunk	أحواوها بعشراسهم	molucion	when the advert	
17.0	•	1					.]	•			
17.0											
	: 2.30000 ; BW 100			#VB\	N 300 kHz		I		Swe	Stop 2 ep 10.53 m	2.41000 GHz is (1001 pts)
MKR M	IODE TRC SO	L	×	Y	FUN	CTION	FUNCTI	ON WIDTH		FUNCTION VALUE	~
1	N 1 f		2.402 96 GHz	84.640 d							
	N 1 f N 1 f		2.400 00 GHz 2.378 76 GHz	<u>44.858 d</u> 34.376 d							
4			2.010 10 012	54.576 0							

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2017-10-06 No. : HM170913

Page 17 of 26

Band Edge Measurement:

Frequency Range	Radiated Emission Attenuated below the Fundamental
[MHz]	[dB]
TX mode – Highest Fundamental	49.5

		44.80	lB Level I	Reductior	n at Uj	pper	Band H	dge			
0 dB/div R	Ref 106.99 dB	uV							N	1kr1 2.47 83.	′5 88 GHz 494 dBµ∨
og 97.0											
		1									
37.0		4.									
7.0											
7.0		- hy									
7.0								_			
7.0		1. North Contraction of the second se		• • •							
7.0 7.0 aportoliticon int	hwt when	1. NA	and a short the state	$\langle \rangle^2 \rangle^3$							
7.0				๛๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	uwww.	\sim	_ም አጥተላ _{ሥታ}	Uluna	a c ^{al} lach às	المالية معرفاته	Areadination and stand
									• • •		
7.0											
tart 2.4700	0 GHz									Stop 2	.50000 GHz
Res BW 10	0 kHz		#VB	W 300 kHz	2				Sweep		s (1001 pts)
KR MODE TRC S	SCL	×	Y	FUI	ICTION	FUNCT	ION WIDTH		F	UNCTION VALUE	^
		2.475 88 GHz	83.494								
<u> </u>		<u>2.483 50 GHz</u> 2.484 10 GHz	33.989 34.814								
4											

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2017-10-06 No. : HM170913

Page 18 of 26

Limits for Radiated Emissions [FCC 47 CFR 15.209]:

Frequency Range [MHz]	Quasi-Peak Limits [µV/m]
0.009-0.490	2400/F (kHz)
0.490-1.705	24000/F (kHz)
1.705-30	30
30-88	100
88-216	150
216-960	200
Above960	500

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

Result of On mode, (9kHz - 30MHz): PASS

Emissions detected are more than 20 dB below the FCC Limits

Result of On mode, (30MHz – IGHz): PASS									
Field Strength of Fundamental and Harmonics Emissions									
Quasi-Peak Value									
Frequency	Frequency Measured Correction Field Field Limit @3m E-Field								
	Level @3m	Factor	Strength	Strength		Polarity			
MHz	dBµV/m	dBµV/m	$dB\mu V/m$	$\mu V/m$	$\mu V/m$				
90.3	0.4	9.2	9.6	3.0	100	Horizontal			
110.3	0.3	10.3	10.6	3.4	150	Horizontal			
223.4	0.5	14.0	14.5	5.3	150	Horizontal			
261.3	1.1	15.7	16.8	6.9	200	Horizontal			
340.8	1.5	18.6	20.1	10.1	200	Horizontal			
423.5	1.5	21.1	22.6	13.5	200	Horizontal			

Result of On mode, (30MHz – 1GHz): PASS

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Page 19 of 26

Date : 2017-10-06 No. : HM170913

Result of On mode (TX mode, Band-edge measurement), (1GHz – 18GHz): PASS

	Field Strength of Fundamental and Harmonics Emissions									
	Peak Value									
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field				
	Level @3m	Factor	Strength	Strength		Polarity				
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m					
2399.1	20.7	27.9	48.6	269.2	5,000	Vertical				
2484.6	18.3	28.0	46.3	206.5	5,000	Vertical				

	Field Strength of Fundamental and Harmonics Emissions								
		F	Average Valu	e					
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field			
	Level @3m	Factor	Strength	Strength		Polarity			
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m				
2399.1	9.1	27.9	37.0	70.8	500	Vertical			
2484.6	10.1	28.0	38.1	80.4	500	Vertical			

The Hong Kong Standards and Testing Centre Limited

Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Date : 2017-10-06

Page 20 of 26

No. : HM170913

Result of Receiver mode, (9kHz - 30MHz): PASS

Emissions detected are more than 20 dB below the Limits

Result of Receiver mode, (30MHz - 1GHz): PASS

Emissions detected are more than 20 dB below the Limits

Result of Receiver mode, (1GHz - 18GHz): PASS

	Field Strength of Fundamental and Harmonics Emissions									
	Peak Value									
Frequency	Measured	Measured Correction Field Field Limit @3m E-Field								
	Level @3m	Factor	Factor Strength Strength			Polarity				
MHz	dBµV/m	dBµV/m	dBµV/m	$\mu V/m$	μV/m					
2441.2	441.2 5.3 27.9 33.2 45.7 5,000 Vertical									

	Field Strength of Fundamental and Harmonics Emissions									
	Average Value									
Frequency	Measured	Correction	Field	Field	Limit @3m	E-Field				
	Level @3m	Factor	Strength	Strength		Polarity				
MHz	dBµV/m	dBµV/m	dBµV/m	μV/m	μV/m					
2441.2	2.3	27.9	30.2	32.4	500	Vertical				

Remarks:

No additional spurious emissions found between lowest internal used/generated frequency and 30 MHz Correction Factor included Antenna Factor and Cable Attenuation.

Calculated measurement uncertainty : 30MHz to 18GHz 5.0dB

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Date : 2017-10-06 No. : HM170913

Page 21 of 26

Appendix A

LIST OF MEASUREMENT EQUIPMENT

Radiated Emission

EQP NO.	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CAL	DUE CAL				
EM215	MULTIDEVICE CONTROLLER	EMCO	2090	00024676	N/A	N/A				
EM216	MINI MAST SYSTEM	EMCO	2075	00026842	N/A	N/A				
EM217	ELECTRIC POWERED TURNTABLE	EMCO	2088	00029144	N/A	N/A				
EM218	ANECHOIC CHAMBER	ETS-LINDGREN	FACT-3		2017/04/24	2018/04/24				
EM355	BICONILOG ANTENNA	ETS-LINDGREN	3143B	00094856	2016/03/03	2018/03/03				
EM229	EMI TEST RECEIVER	R&S	ESIB40	100248	2017/06/01	2018/06/01				
EM299	DOUBLE-RIDGED WAVEGUIDE HORN ANTENNA	ETS-LINDGREN	3115	00114120	2016/04/27	2018/04/27				
EM302	PRECISION OMNIDIRECTIONAL DIPOLE (1 – 6GHZ)	SEIBERSDORF LABORATORIES	POD 16	161806/L	2016/05/11	2018/05/11				
EM303	PRECISION OMNIDIRECTIONAL DIPOLE (6 – 18GHZ)	SEIBERSDORF LABORATORIES	POD 618	6181908/L	2016/05/11	2018/05/11				

Line Conducted

EQP NO.	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CAL	DUE CAL
EM232	LISN	SCHAFFNER	NNB41	04/100082	2017/03/03	2018/03/03
EM145	EMI TEST RECEIVER	R & S	ESCS 30	830245/021	2017/06/01	2018/06/01
EM179	IMPULSE LIMITER	ROHDE & SCHWARZ	ESH3-Z2	357-8810.52/54	2017/01/11	2018/01/11
EM154	SHIELDING ROOM	SIEMENS MATSUSHITA COMPONENTS	N/A	803-740-057- 99A	2017/02/03	2022/02/03

Remarks:

- CM Corrective Maintenance
- N/A Not Applicable or Not Available

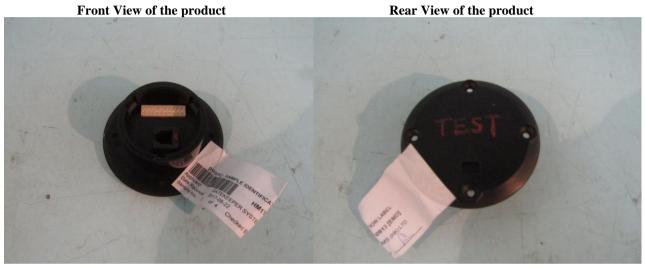
TBD To Be Determined

The Hong Kong Standards and Testing Centre Limited

Head Office: 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Unit B, 10/F, Block 1, Tai Ping Industrial Centre, No. 57 Ting Kok Road, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org


This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2017-10-06 No. : HM170913 Page 22 of 26

Appendix **B**

Photographs of EUT

Date : 2017-10-06 No. : HM170913 Page 23 of 26

Photographs of EUT

Inner Circuit Top View

Inner Circuit Bottom View

Date : 2017-10-06 No. : HM170913 Page 24 of 26

Photographs of EUT

Measurement of Radiated Emission Test Set Up (9kHz to 30MHz)

Date : 2017-10-06 No. : HM170913 Page 25 of 26

Photographs of EUT

Measurement of Radiated Emission Test Set Up (30MHz to 1000MHz)

Date : 2017-10-06 No. : HM170913 Page 26 of 26

Photographs of EUT

Measurement of Radiated Emission Test Set Up (Above 1000MHz)

***** End of Test Report *****

Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by The Hong Kong Standards & Testing Centre Limited (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The Company provides its services on the basis that such terms and conditions constitute express agreement between the Company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by the Company as a result of this application for testing service (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to his customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. The Report refers only to the sample tested and does not apply to the bulk, unless the sampling has been carried out by the Company and is stated as such in the Report.
- 5. In the event of the improper use the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 6. Sample submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 7. The Company will not be liable for or accept responsibility for any loss or damage howsoever arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 8. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as to otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of this test report for a period of three years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after the retention period. Under no circumstances shall we be liable for damages of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.
- 10. Issuance records of the Report are available on the internet at www.stc-group.org. Further enquiry of validity or verification of the Reports should be addressed to the Company.