

| Date : 2015-08-06<br>No. : HM169934 |                                                                                                                                                                                                                                                                     | Page 1 of 33                                                                                                                   |  |  |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
| Applicant:                          |                                                                                                                                                                                                                                                                     | n (HK) Ltd.<br>23, Tower 2, Metroplaza, No. 223 Hing Fong<br>N.T., Hong Kong                                                   |  |  |
| Manufacturer:                       |                                                                                                                                                                                                                                                                     | n (HK) Ltd.<br>23, Tower 2, Metroplaza, No. 223 Hing Fong<br>N.T., Hong Kong                                                   |  |  |
| Description of Sample(s):           | Product:<br>Brand Name:<br>Model Number:<br>FCC ID:                                                                                                                                                                                                                 | PermissionManager<br>Gatekeeper Systems<br>D-9670<br>W3Z-D9670                                                                 |  |  |
| Date Sample(s) Received:            | 2015-07-08                                                                                                                                                                                                                                                          |                                                                                                                                |  |  |
| Date Tested:                        | 2015-07-31 to 201                                                                                                                                                                                                                                                   | 5-11-06                                                                                                                        |  |  |
| Investigation Requested:            | with FCC 47CFR                                                                                                                                                                                                                                                      | agnetic Interference measurement in accordance<br>[Codes of Federal Regulations] Part 15: 2014 and<br>3 for FCC Certification. |  |  |
| Conclusion(s):                      | The submitted product <u>COMPLIED</u> with the requirements of<br>Federal Communications Commission [FCC] Rules and<br>Regulations Part 15. The tests were performed in accordance with<br>the standards described above and on Section 2.2 in this Test<br>Report. |                                                                                                                                |  |  |
| Remark(s):                          |                                                                                                                                                                                                                                                                     |                                                                                                                                |  |  |

Dr. LEE Kam Chuen Authorized Signatory ElectroMagnetic Compatibility Department For and on behalf of The Hong Kong Standards and Testing Centre Ltd.



Page 2 of 33

| CON        | TENT:                                                      |                              |
|------------|------------------------------------------------------------|------------------------------|
|            | Cover<br>Content                                           | Page 1 of 33<br>Page 2 of 33 |
| <u>1.0</u> | General Details                                            |                              |
| 1.1        | Equipment Under Test [EUT]<br>Description of EUT operation | Page 3 of 33                 |
| 1.2        | Description of EUT Operation                               |                              |
| 1.3        | Date of Order                                              | Page 3 of 33                 |
| 1.4        | Submitted Sample                                           | Page 3 of 33                 |
| 1.5        | Test Duration                                              | Page 3 of 33                 |
| 1.6        | Country of Origin                                          | Page 3 of 33                 |
| <u>2.0</u> | Technical Details                                          |                              |
| 2.1        | Investigations Requested                                   | Page 4 of 33                 |
| 2.2        | Test Standards and Results Summary                         | Page 4 of 33                 |
| <u>3.0</u> | Test Results                                               |                              |
| 3.1        | Emission                                                   | Page 5-29 of 33              |
|            | Appendix A                                                 |                              |
|            | List of Measurement Equipment                              | Page 30 of 33                |
|            | Appendix B                                                 |                              |
|            | Photographs                                                | Page 31-33 of 33             |

The Hong Kong Standards and Testing Centre Limited



# Date : 2015-08-06

No. : HM169934

Page 3 of 33

## **<u>1.0</u>** General Details

#### 1.1 Equipment Under Test [EUT] Description of Sample(s)

| Product:      | PermissionManager                                                       |
|---------------|-------------------------------------------------------------------------|
| Manufacturer: | Gatekeeper System (HK) Ltd.                                             |
|               | Unit 2305, Level 23, Tower 2, Metroplaza, No. 223 Hing Fong Road,       |
|               | Kwai Fong, N.T., Hong Kong                                              |
| Brand Name:   | Gatekeeper Systems                                                      |
| Model Number: | D-9670                                                                  |
| Rating:       | 3.3Vd.c. (Powered by DC power supply at connector block pin 1)          |
|               | The AC/DC Adaptor used for the tests was a "Winstar" adaptor: Two pins  |
|               | (Live / Neutral) only adaptor, Model Number: NA-12, Input: 100-120/220- |
|               | 240Va.c., Output: 3-15Vd.c. 1200mA max.                                 |

## **1.2 Description of EUT Operation**

The Equipment Under Test (EUT) is a PermissionManager of Gatekeeper System (HK) Ltd.., it is two 2.4GHz transceivers and it is used to send commands to and receive data from the Gatekeeper Systems wheels, The RF signal was modulated by IC.

The Announce mode transmissions were modulated with 500K MSK (Minimum Shift Keying), the Data mode transmissions (data request and data acknowledge) were modulated with 500K MSK (Minimum Shift Keying) while data received from the wheel was modulated with 20K FSK (Frequency Shift Keying).

Antenna 1 (The announce radio) and Antenna 2 (The data radio) will not send out the announce radio commends with the same channel at the same time.

#### 1.3 Date of Order

2015-07-08

#### **1.4** Submitted Sample(s):

1 Sample

1.5 Test Duration

2015-07-31 to 2015-11-06

## 1.6 Country of Origin

China

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



## Date : 2015-08-06

No. : HM169934

Page 4 of 33

## 2.0 <u>Technical Details</u>

## 2.1 Investigations Requested

Perform Electromagnetic Interference measurements in accordance with FCC 47CFR [Codes of Federal Regulations] Part 15: 2014 Regulations and ANSI C63.10:2013 for FCC Certification.

#### 2.2 Test Standards and Results Summary Tables

| EMISSION<br>Results Summary                                 |                  |                  |          |           |      |  |  |  |  |
|-------------------------------------------------------------|------------------|------------------|----------|-----------|------|--|--|--|--|
| Test ConditionTest RequirementTest MethodClass /Test Result |                  |                  |          |           |      |  |  |  |  |
|                                                             |                  |                  | Severity | Pass      | Fail |  |  |  |  |
| Field Strength of<br>Fundamental &<br>Harmonics Emissions   | FCC 47CFR 15.249 | ANSI C63.10:2013 | N/A      |           |      |  |  |  |  |
| Radiated Emissions                                          | FCC 47CFR 15.209 | ANSI C63.10:2013 | N/A      |           |      |  |  |  |  |
| Conducted Emissions                                         | FCC 47CFR 15.207 | ANSI C63.10:2013 | N/A      | $\square$ |      |  |  |  |  |

Note: N/A - Not Applicable



# Date : 2015-08-06

No. : HM169934

Page 5 of 33

- 3.0 Test Results
- 3.1 Emission

#### 3.1.1 Field Strength of Fundamental & Harmonics Emissions

| Test Requirement:  | FCC 47CFR 15.249 |
|--------------------|------------------|
| Test Method:       | ANSI C63.10:2013 |
| Test Date:         | 2015-07-31       |
| Mode of Operation: | On Mode          |

#### **Test Method:**

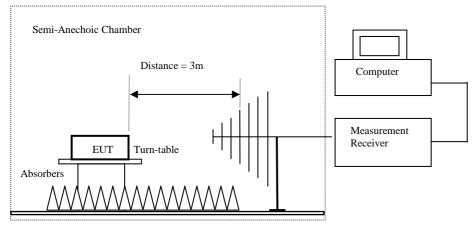
The sample was placed 0.8m above the ground plane on a standard radiated emission test site. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. In the frequency range of 9kHz to 30MHz, The center of the loop antenna shall be 1 meter above the ground and rotated loop axis for maximum reading. The emissions worst-case are shown in Test Results of the following pages.

Remark: 3 orthogonal axis apply to hand-held device only.

\*: Semi-anechoic chamber located on the G/F of The Hong Kong Standards and Testing Centre Ltd. with a metal ground plane filed with the FCC pursuant to section 2.948 of the FCC rules, with Registration Number: 607756.

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.


<sup>10</sup> Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong



No. : HM169934 **Spectrum Analyzer Setting:** 9KHz - 30MHz (Pk & Av) **RBW**: 10kHz VBW: 30kHz Sweep: Auto Span: Fully capture the emissions being measured Trace: Max. hold 30MHz - 1GHz (QP) **RBW**: 120kHz VBW: 120kHz Sweep: Auto Span: Fully capture the emissions being measured Trace: Max. hold RBW: 3MHz Above 1GHz (Pk & Av) VBW: 3MHz Sweep: Auto Span: Fully capture the emissions being measured Trace: Max. hold

## **Test Setup:**

Date : 2015-08-06



Ground Plane

Absorbers placed on top of the ground plane are for measurements above 1000MHz only.

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 6 of 33



Page 7 of 33

## Limits for Field Strength of Fundamental & Harmonics Emissions [FCC 47CFR 15.249]:

| Fundamental frequency<br>[MHz] | Field strength of fundamental (millivolts/meter) | Field strength of harmonics<br>(microvolts/meter) |
|--------------------------------|--------------------------------------------------|---------------------------------------------------|
| 902-928 MHz                    | 50                                               | 500                                               |
| 2400-2483.5 MHz                | 50                                               | 500                                               |
| 5725-5875 MHz                  | 50                                               | 500                                               |
| 24.0-24.25 GHz                 | 250                                              | 2500                                              |

### Result of On mode (Antenna 1 - Channel 7), (Above 1GHz): Pass

|      | Field Strength of Fundamental and Harmonics Emissions |             |               |             |            |           |            |  |
|------|-------------------------------------------------------|-------------|---------------|-------------|------------|-----------|------------|--|
|      | Peak Value                                            |             |               |             |            |           |            |  |
| Free | quency                                                | Measured    | Correction    | Field       | Field      | Limit @3m | E-Field    |  |
|      |                                                       | Level @3m   | Factor        | Strength    | Strength   |           | Polarity   |  |
| Ν    | MHz                                                   | $dB\mu V/m$ | $dB\mu V/m$   | $dB\mu V/m$ | $\mu V/m$  | μV/m      |            |  |
| 2    | 2403.2                                                | 56.6        | 29.7          | 86.3        | 20,653.8   | 500,000   | Horizontal |  |
| * ∠  | 4806.9                                                | 13.2        | 32.1          | 45.3        | 184.1      | 5,000     | Horizontal |  |
|      | 7209.7                                                | 5.3         | 34.8          | 40.1        | 101.2      | 5,000     | Horizontal |  |
| 9    | 9612.8                                                |             |               |             |            | 5,000     | Horizontal |  |
| * 1  | 2016.0                                                |             |               |             |            | 5,000     | Horizontal |  |
| 1    | 4419.2                                                |             |               |             |            | 5,000     | Horizontal |  |
| 1    | 6822.4                                                | E           | missions dete | 5,000       | Horizontal |           |            |  |
| * 1  | 9225.6                                                |             | 20 dB below   | 5,000       | Horizontal |           |            |  |
| 2    | 21628.8                                               |             |               |             |            | 5,000     | Horizontal |  |
| 2    | 24032.0                                               |             |               |             |            | 5,000     | Horizontal |  |

|           | Field Strength of Fundamental and Harmonics Emissions |             |             |            |            |            |  |  |
|-----------|-------------------------------------------------------|-------------|-------------|------------|------------|------------|--|--|
|           | Average Value                                         |             |             |            |            |            |  |  |
| Frequency | Measured                                              | Correction  | Field       | Field      | Limit @3m  | E-Field    |  |  |
|           | Level @3m                                             | Factor      | Strength    | Strength   |            | Polarity   |  |  |
| MHz       | dBµV/m                                                | $dB\mu V/m$ | $dB\mu V/m$ | $\mu V/m$  | $\mu V/m$  |            |  |  |
| 2403.2    | 42.4                                                  | 29.7        | 72.1        | 4,027.2    | 50,000     | Horizontal |  |  |
| * 4806.9  | -2.0                                                  | 32.1        | 30.1        | 32.0       | 500        | Horizontal |  |  |
| 7209.7    | 0.8                                                   | 34.8        | 35.6        | 60.3       | 500        | Horizontal |  |  |
| 9612.8    |                                                       |             |             |            | 500        | Horizontal |  |  |
| * 12016.0 |                                                       |             |             |            | 500        | Horizontal |  |  |
| 14419.2   |                                                       |             |             |            | 500        | Horizontal |  |  |
| 16822.4   | 5822.4 Emissions detected are more than               |             |             |            |            | Horizontal |  |  |
| * 19225.6 |                                                       | 20 dB below | 500         | Horizontal |            |            |  |  |
| 21628.8   |                                                       |             |             | 500        | Horizontal |            |  |  |
| 24032.0   |                                                       |             |             |            | 500        | Horizontal |  |  |

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



Page 8 of 33

## Result of On mode (Antenna 1 - Channel 128), (Above 1GHz): Pass

| Field Strength of Fundamental and Harmonics Emissions |                                  |             |          |            |            |            |  |
|-------------------------------------------------------|----------------------------------|-------------|----------|------------|------------|------------|--|
| Peak Value                                            |                                  |             |          |            |            |            |  |
| Frequency                                             | Measured                         | Correction  | Field    | Field      | Limit @3m  | E-Field    |  |
|                                                       | Level @3m                        | Factor      | Strength | Strength   |            | Polarity   |  |
| MHz                                                   | dBµV/m                           | dBµV/m      | dBµV/m   | μV/m       | μV/m       |            |  |
| 2441.2                                                | 56.6                             | 29.7        | 86.3     | 20,653.8   | 500,000    | Horizontal |  |
| * 4882.5                                              | 0.9                              | 32.4        | 33.3     | 46.2       | 5,000      | Horizontal |  |
| * 7323.7                                              | 7.0                              | 35.1        | 42.1     | 127.4      | 5,000      | Horizontal |  |
| 9764.9                                                |                                  |             |          |            | 5,000      | Horizontal |  |
| * 12206.1                                             |                                  |             |          |            | 5,000      | Horizontal |  |
| 14647.3                                               |                                  |             |          |            | 5,000      | Horizontal |  |
| 17088.5                                               | Emissions detected are more than |             |          |            |            | Horizontal |  |
| * 19529.8                                             |                                  | 20 dB below | 5,000    | Horizontal |            |            |  |
| 21971.0                                               |                                  |             |          | 5,000      | Horizontal |            |  |
| 24412.2                                               |                                  |             |          |            | 5,000      | Horizontal |  |

| Field Strength of Fundamental and Harmonics Emissions |                                          |             |             |            |           |            |  |  |
|-------------------------------------------------------|------------------------------------------|-------------|-------------|------------|-----------|------------|--|--|
|                                                       | Average Value                            |             |             |            |           |            |  |  |
| Frequency                                             | Measured                                 | Correction  | Field       | Field      | Limit @3m | E-Field    |  |  |
|                                                       | Level @3m                                | Factor      | Strength    | Strength   |           | Polarity   |  |  |
| MHz                                                   | dBµV/m                                   | dBµV/m      | $dB\mu V/m$ | $\mu V/m$  | $\mu V/m$ |            |  |  |
| 2441.2                                                | 39.4                                     | 29.7        | 69.1        | 2,851.0    | 50,000    | Horizontal |  |  |
| * 4882.5                                              | -0.2                                     | 32.4        | 32.2        | 40.7       | 500       | Horizontal |  |  |
| * 7323.7                                              | -0.2                                     | 35.1        | 34.9        | 55.6       | 500       | Horizontal |  |  |
| 9764.9                                                |                                          |             |             |            | 500       | Horizontal |  |  |
| * 12206.1                                             |                                          |             |             |            | 500       | Horizontal |  |  |
| 14647.3                                               |                                          |             |             |            | 500       | Horizontal |  |  |
| 17088.5                                               | 17088.5 Emissions detected are more than |             |             |            |           | Horizontal |  |  |
| * 19529.8                                             | ]                                        | 20 dB below | 500         | Horizontal |           |            |  |  |
| 21971.0                                               | ]                                        |             |             |            | 500       | Horizontal |  |  |
| 24412.2                                               |                                          |             |             |            | 500       | Horizontal |  |  |

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



Page 9 of 33

## Result of On mode (Antenna 1 - Channel 239), (Above 1GHz): Pass

| Field Strength of Fundamental and Harmonics Emissions |                                          |             |             |            |            |            |  |  |
|-------------------------------------------------------|------------------------------------------|-------------|-------------|------------|------------|------------|--|--|
|                                                       | Peak Value                               |             |             |            |            |            |  |  |
| Frequency                                             | Measured                                 | Correction  | Field       | Field      | Limit @3m  | E-Field    |  |  |
|                                                       | Level @3m                                | Factor      | Strength    | Strength   |            | Polarity   |  |  |
| MHz                                                   | $dB\mu V/m$                              | dBµV/m      | $dB\mu V/m$ | μV/m       | μV/m       |            |  |  |
| 2476.1                                                | 57.4                                     | 29.7        | 87.1        | 22,646.4   | 500,000    | Horizontal |  |  |
| * 4952.8                                              | 14.1                                     | 32.5        | 46.6        | 213.8      | 5,000      | Horizontal |  |  |
| * 7429.1                                              | 6.2                                      | 35.5        | 41.7        | 121.6      | 5,000      | Horizontal |  |  |
| 9904.4                                                |                                          |             |             |            | 5,000      | Horizontal |  |  |
| * 12380.5                                             |                                          |             |             |            | 5,000      | Horizontal |  |  |
| 14856.5                                               |                                          |             |             |            | 5,000      | Horizontal |  |  |
| 17332.6                                               | 17332.6 Emissions detected are more than |             |             |            |            | Horizontal |  |  |
| * 19808.7                                             | ]                                        | 20 dB below | 5,000       | Horizontal |            |            |  |  |
| 22284.8                                               | ]                                        |             |             | 5,000      | Horizontal |            |  |  |
| 24760.9                                               |                                          |             |             |            | 5,000      | Horizontal |  |  |

| Field Strength of Fundamental and Harmonics Emissions |                                  |             |             |            |           |            |  |  |  |
|-------------------------------------------------------|----------------------------------|-------------|-------------|------------|-----------|------------|--|--|--|
|                                                       | Average Value                    |             |             |            |           |            |  |  |  |
| Frequency                                             | Measured                         | Correction  | Field       | Field      | Limit @3m | E-Field    |  |  |  |
|                                                       | Level @3m                        | Factor      | Strength    | Strength   |           | Polarity   |  |  |  |
| MHz                                                   | dBµV/m                           | dBµV/m      | $dB\mu V/m$ | $\mu V/m$  | $\mu V/m$ |            |  |  |  |
| 2476.1                                                | 43.6                             | 29.7        | 73.3        | 4,623.8    | 50,000    | Horizontal |  |  |  |
| * 4952.8                                              | 0.4                              | 32.5        | 32.9        | 44.2       | 500       | Horizontal |  |  |  |
| * 7429.1                                              | -2.4                             | 35.5        | 33.1        | 45.2       | 500       | Horizontal |  |  |  |
| 9904.4                                                |                                  |             |             |            | 500       | Horizontal |  |  |  |
| * 12380.5                                             |                                  |             |             |            | 500       | Horizontal |  |  |  |
| 14856.5                                               |                                  |             |             |            | 500       | Horizontal |  |  |  |
| 17332.6                                               | Emissions detected are more than |             |             |            |           | Horizontal |  |  |  |
| * 19808.7                                             | ]                                | 20 dB below | 500         | Horizontal |           |            |  |  |  |
| 22284.8                                               | ]                                |             |             |            | 500       | Horizontal |  |  |  |
| 24760.9                                               |                                  |             |             |            | 500       | Horizontal |  |  |  |

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



Page 10 of 33

## Result of On mode (Antenna 2 - Channel 7), (Above 1GHz): Pass

|   | Field Strength of Fundamental and Harmonics Emissions |                                                   |             |          |          |           |            |  |  |
|---|-------------------------------------------------------|---------------------------------------------------|-------------|----------|----------|-----------|------------|--|--|
|   | Peak Value                                            |                                                   |             |          |          |           |            |  |  |
| F | requency                                              | Measured                                          | Correction  | Field    | Field    | Limit @3m | E-Field    |  |  |
|   |                                                       | Level @3m                                         | Factor      | Strength | Strength |           | Polarity   |  |  |
|   | MHz                                                   | $dB\mu V/m$                                       | $dB\mu V/m$ | dBµV/m   | μV/m     | $\mu V/m$ |            |  |  |
|   | 2403.2                                                | 60.6                                              | 29.7        | 90.3     | 32,734.1 | 500,000   | Horizontal |  |  |
| * | 4806.1                                                | 18.2                                              | 32.1        | 50.3     | 327.3    | 5,000     | Horizontal |  |  |
|   | 7209.3                                                | 7.3                                               | 34.8        | 42.1     | 127.4    | 5,000     | Horizontal |  |  |
|   | 9612.8                                                |                                                   |             |          |          | 5,000     | Horizontal |  |  |
| * | 12016.0                                               |                                                   |             |          |          | 5,000     | Horizontal |  |  |
|   | 14419.2                                               |                                                   |             |          |          | 5,000     | Horizontal |  |  |
|   | 16822.4                                               | Emissions detected are more than 5,000 Horizontal |             |          |          |           |            |  |  |
| * | 19225.6                                               | 20 dB below the FCC Limits 5,000 Horizontal       |             |          |          |           |            |  |  |
|   | 21628.8                                               |                                                   |             |          |          | 5,000     | Horizontal |  |  |
|   | 24032.0                                               |                                                   |             |          |          | 5,000     | Horizontal |  |  |

|           | Field Strength of Fundamental and Harmonics Emissions |            |             |           |           |            |  |  |  |
|-----------|-------------------------------------------------------|------------|-------------|-----------|-----------|------------|--|--|--|
|           | Average Value                                         |            |             |           |           |            |  |  |  |
| Frequency | Measured                                              | Correction | Field       | Field     | Limit @3m | E-Field    |  |  |  |
|           | Level @3m                                             | Factor     | Strength    | Strength  |           | Polarity   |  |  |  |
| MHz       | dBµV/m                                                | dBµV/m     | $dB\mu V/m$ | $\mu V/m$ | $\mu V/m$ |            |  |  |  |
| 2403.2    | 43.2                                                  | 29.7       | 72.9        | 4,415.7   | 50,000    | Horizontal |  |  |  |
| * 4806.1  | 6.5                                                   | 32.1       | 38.6        | 85.1      | 500       | Horizontal |  |  |  |
| 7209.3    | -2.2                                                  | 34.8       | 32.6        | 42.7      | 500       | Horizontal |  |  |  |
| 9612.8    |                                                       |            |             |           | 500       | Horizontal |  |  |  |
| * 12016.0 |                                                       |            |             |           | 500       | Horizontal |  |  |  |
| 14419.2   |                                                       |            |             |           | 500       | Horizontal |  |  |  |
| 16822.4   | Emissions detected are more than 500 Horizontal       |            |             |           |           |            |  |  |  |
| * 19225.6 | 20 dB below the FCC Limits 500 Horizontal             |            |             |           |           |            |  |  |  |
| 21628.8   | 500 Horizontal                                        |            |             |           |           |            |  |  |  |
| 24032.0   |                                                       |            |             |           | 500       | Horizontal |  |  |  |

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



## Result of On mode (Antenna 2 - Channel 128), (Above 1GHz): Pass

|           | Field Strength of Fundamental and Harmonics Emissions |             |          |          |           |            |  |  |  |
|-----------|-------------------------------------------------------|-------------|----------|----------|-----------|------------|--|--|--|
|           | Peak Value                                            |             |          |          |           |            |  |  |  |
| Frequency | Measured                                              | Correction  | Field    | Field    | Limit @3m | E-Field    |  |  |  |
|           | Level @3m                                             | Factor      | Strength | Strength |           | Polarity   |  |  |  |
| MHz       | dBµV/m                                                | $dB\mu V/m$ | dBµV/m   | μV/m     | μV/m      |            |  |  |  |
| 2441.2    | 60.9                                                  | 29.7        | 90.6     | 33,884.4 | 500,000   | Horizontal |  |  |  |
| * 4882.5  | 19.8                                                  | 32.4        | 52.2     | 407.4    | 5,000     | Horizontal |  |  |  |
| * 7323.7  | 6.6                                                   | 35.1        | 41.7     | 121.6    | 5,000     | Horizontal |  |  |  |
| 9764.9    |                                                       |             |          |          | 5,000     | Horizontal |  |  |  |
| * 12206.1 |                                                       |             |          |          | 5,000     | Horizontal |  |  |  |
| 14647.3   |                                                       |             |          |          | 5,000     | Horizontal |  |  |  |
| 17088.5   | Emissions detected are more than 5,000 Horizontal     |             |          |          |           |            |  |  |  |
| * 19529.8 | 20 dB below the FCC Limits 5,000 Horizontal           |             |          |          |           |            |  |  |  |
| 21971.0   |                                                       |             |          |          | 5,000     | Horizontal |  |  |  |
| 24412.2   |                                                       |             |          |          | 5,000     | Horizontal |  |  |  |

|           | Field Strength of Fundamental and Harmonics Emissions |            |             |           |           |            |  |  |  |
|-----------|-------------------------------------------------------|------------|-------------|-----------|-----------|------------|--|--|--|
|           | Average Value                                         |            |             |           |           |            |  |  |  |
| Frequency | Measured                                              | Correction | Field       | Field     | Limit @3m | E-Field    |  |  |  |
|           | Level @3m                                             | Factor     | Strength    | Strength  |           | Polarity   |  |  |  |
| MHz       | dBµV/m                                                | dBµV/m     | $dB\mu V/m$ | $\mu V/m$ | $\mu V/m$ |            |  |  |  |
| 2441.2    | 43.0                                                  | 29.7       | 72.7        | 4,315.2   | 50,000    | Horizontal |  |  |  |
| * 4882.5  | 8.9                                                   | 32.4       | 41.3        | 116.1     | 500       | Horizontal |  |  |  |
| * 7323.7  | -3.2                                                  | 35.1       | 31.9        | 39.4      | 500       | Horizontal |  |  |  |
| 9764.9    |                                                       |            |             |           | 500       | Horizontal |  |  |  |
| * 12206.1 | ]                                                     |            |             |           | 500       | Horizontal |  |  |  |
| 14647.3   | ]                                                     |            |             |           | 500       | Horizontal |  |  |  |
| 17088.5   | Emissions detected are more than 500 Horizontal       |            |             |           |           |            |  |  |  |
| * 19529.8 | 20 dB below the FCC Limits 500 Horizontal             |            |             |           |           |            |  |  |  |
| 21971.0   | 500 Horizontal                                        |            |             |           |           |            |  |  |  |
| 24412.2   |                                                       |            |             |           | 500       | Horizontal |  |  |  |

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



## Result of On mode (Antenna 2 - Channel 239), (Above 1GHz): Pass

|           | Field Strength of Fundamental and Harmonics Emissions |                                                   |          |          |           |            |  |  |  |
|-----------|-------------------------------------------------------|---------------------------------------------------|----------|----------|-----------|------------|--|--|--|
|           | Peak Value                                            |                                                   |          |          |           |            |  |  |  |
| Frequency | Measured                                              | Correction                                        | Field    | Field    | Limit @3m | E-Field    |  |  |  |
|           | Level @3m                                             | Factor                                            | Strength | Strength |           | Polarity   |  |  |  |
| MHz       | $dB\mu V/m$                                           | dBµV/m                                            | dBµV/m   | μV/m     | μV/m      |            |  |  |  |
| 2476.1    | 60.4                                                  | 29.7                                              | 90.1     | 31,989.0 | 500,000   | Horizontal |  |  |  |
| * 4952.2  | 18.7                                                  | 32.5                                              | 51.2     | 363.1    | 5,000     | Horizontal |  |  |  |
| * 7428.3  | 6.6                                                   | 35.5                                              | 42.1     | 127.4    | 5,000     | Horizontal |  |  |  |
| 9904.4    |                                                       |                                                   |          |          | 5,000     | Horizontal |  |  |  |
| * 12380.5 |                                                       |                                                   |          |          | 5,000     | Horizontal |  |  |  |
| 14856.5   |                                                       |                                                   |          |          | 5,000     | Horizontal |  |  |  |
| 17332.6   | E                                                     | Emissions detected are more than 5,000 Horizontal |          |          |           |            |  |  |  |
| * 19808.7 | 20 dB below the FCC Limits 5,000 Horizontal           |                                                   |          |          |           |            |  |  |  |
| 22284.8   | ]                                                     |                                                   |          |          | 5,000     | Horizontal |  |  |  |
| 24760.9   |                                                       |                                                   |          |          | 5,000     | Horizontal |  |  |  |

|           | Field Strength of Fundamental and Harmonics Emissions |            |             |           |           |            |  |  |  |
|-----------|-------------------------------------------------------|------------|-------------|-----------|-----------|------------|--|--|--|
|           | Average Value                                         |            |             |           |           |            |  |  |  |
| Frequency | Measured                                              | Correction | Field       | Field     | Limit @3m | E-Field    |  |  |  |
|           | Level @3m                                             | Factor     | Strength    | Strength  |           | Polarity   |  |  |  |
| MHz       | dBµV/m                                                | dBµV/m     | $dB\mu V/m$ | $\mu V/m$ | $\mu V/m$ |            |  |  |  |
| 2476.1    | 43.4                                                  | 29.7       | 73.1        | 4,518.6   | 50,000    | Horizontal |  |  |  |
| * 4952.2  | 7.2                                                   | 32.5       | 39.7        | 96.6      | 500       | Horizontal |  |  |  |
| * 7428.3  | -1.2                                                  | 35.5       | 34.3        | 51.9      | 500       | Horizontal |  |  |  |
| 9904.4    |                                                       |            |             |           | 500       | Horizontal |  |  |  |
| * 12380.5 |                                                       |            |             |           | 500       | Horizontal |  |  |  |
| 14856.5   |                                                       |            |             |           | 500       | Horizontal |  |  |  |
| 17332.6   | Emissions detected are more than 500 Horizontal       |            |             |           |           |            |  |  |  |
| * 19808.7 | 20 dB below the FCC Limits 500 Horizontal             |            |             |           |           |            |  |  |  |
| 22284.8   | 500 Horizontal                                        |            |             |           |           |            |  |  |  |
| 24760.9   |                                                       |            |             |           | 500       | Horizontal |  |  |  |

#### Remarks:

No additional spurious emissions found between lowest internal used/generated frequency and 30 MHz

\*: Denotes restricted band of operation.

Measurements were made using a peak detector. Any emission less than 1000 MHz and falling within the restricted bands of FCC Rules Part 15 Section 15.205 and the limits of FCC Rules Part 15 Section 15.209 were applied.

| Calculated measurement uncertainty | : | 9kHz to 30MHz | 2.4dB  |
|------------------------------------|---|---------------|--------|
|                                    |   | 30MHz to 1GHz | 4.9dB  |
|                                    |   | 1GHz to 6GHz  | 4.02dB |
|                                    |   | 6GHz to 18GHz | 4.03dB |



Page 13 of 33

#### Limits for 20dB Bandwidth of Fundamental Emission:

| Frequency Range | 20dB Bandwidth |
|-----------------|----------------|
| [MHz]           | [MHz]          |
| 2403.2          | 1.456          |

Antenna 1 - Channel 7

|                                            |                                         | 200B Bai      | ndwidth of Fun              | damental Emis                    | sion       |                    |                        |
|--------------------------------------------|-----------------------------------------|---------------|-----------------------------|----------------------------------|------------|--------------------|------------------------|
| Agilent Spectrum Anal                      | yzer - Occupied BW                      |               |                             |                                  |            |                    |                        |
| IXI RF                                     | 50Ω AC                                  |               | SENSE:INT                   | ALIGN AUTO                       |            |                    | 9 PM Jul 30, 2019      |
| Center Freq 2                              | 2.403143000                             | GHz           | Center Free<br>Trig: Free F | q: 2.403143000 GHz<br>Run AvalHo | old: 10/10 | Radio Std: N       | one                    |
|                                            |                                         | #IFGain:Lo    |                             |                                  |            | Radio Device       | : BTS                  |
|                                            | ef -20.00 dBm                           |               |                             |                                  | М          | kr1 2.403<br>-36.4 | 143 GHz<br>544 dBm     |
| Log                                        |                                         |               |                             | 4                                |            |                    |                        |
| -30.0                                      |                                         |               |                             | )'                               |            |                    |                        |
| -40.0                                      |                                         |               |                             |                                  |            |                    |                        |
| -50.0                                      |                                         |               |                             | - Nor of                         |            |                    |                        |
| -60.0                                      |                                         | har we wanted |                             | - 100-1                          | U munul    |                    |                        |
|                                            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~             |                             |                                  | ° V~1      | m Mun              | <u> </u>               |
| -70.0 v~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                         |               |                             |                                  |            | 0 0000             | ᠃᠃᠂᠁ᢉ                  |
| -80.0                                      |                                         |               |                             |                                  |            |                    |                        |
| -90.0                                      |                                         |               |                             |                                  |            |                    |                        |
| -100                                       |                                         |               |                             |                                  |            |                    |                        |
|                                            |                                         |               |                             |                                  |            |                    |                        |
| -110                                       |                                         |               |                             |                                  |            |                    |                        |
| Center 2.403 G<br>#Res BW 100 k            |                                         | l             | VBW                         | / 1 MHz                          |            |                    | pan 3 MHz<br>/eep 1 ms |
| Occupied                                   | Bandwidth                               |               | Total Po                    | wer -29.5                        | i dBm      |                    |                        |
| -                                          | 1.2                                     | 371 MH        | Z                           |                                  |            |                    |                        |
| Transmit Fr                                | eq Error                                | 17.964 kH     | Iz OBW Po                   | ower 99                          | 9.00 %     |                    |                        |
| x dB Bandw                                 | ridth                                   | 1.456 MH      | lz xdB                      | -20.                             | 00 dB      |                    |                        |
|                                            |                                         |               |                             |                                  |            |                    |                        |
| MSG                                        |                                         |               |                             | STATUS                           |            |                    |                        |

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



## Page 14 of 33

| Frequency Range | 20dB Bandwidth |
|-----------------|----------------|
| [MHz]           | [MHz]          |
| 2441.22         | 1.414          |

|                                                                 | 1            | ntal Emission                             | of Fundan                                                | 20dB Bandwidt     |                                                                      | allant Count            |
|-----------------------------------------------------------------|--------------|-------------------------------------------|----------------------------------------------------------|-------------------|----------------------------------------------------------------------|-------------------------|
| 05:01:23 PM Jul 30, 201<br>Radio Std: None<br>Radio Device: BTS | 10/10<br>Rad | ALIGN AUTO<br>154000 GHz<br>Avg Hold:>10. | :INT<br>enter Freq: 2.44<br>rig: Free Run<br>Atten: 6 dB | SE<br>#IFGain:Low | Analyzer     - Occupied BW       RF     50 Ω     AC       -20.00 dBm | u I                     |
| kr1 2.441154 GH:<br>-43.372 dBn                                 | Mkr1         |                                           |                                                          |                   | Ref -20.00 dBm                                                       | 10 dB/div               |
|                                                                 |              |                                           |                                                          |                   |                                                                      | - <b>0g</b><br>30.0     |
|                                                                 |              |                                           | 1                                                        |                   |                                                                      | 40.0                    |
|                                                                 |              |                                           |                                                          |                   |                                                                      | 50.0                    |
|                                                                 | www          |                                           |                                                          | m                 |                                                                      | 60.0                    |
|                                                                 |              |                                           |                                                          |                   | mont                                                                 | 70.0                    |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                          |              |                                           |                                                          |                   | man man                                                              | 80.0 <mark>\}}}</mark>  |
|                                                                 |              |                                           |                                                          |                   |                                                                      | 90.0                    |
|                                                                 |              |                                           |                                                          |                   |                                                                      | -100                    |
|                                                                 |              |                                           |                                                          |                   |                                                                      | -110                    |
| Span 3 MH<br>Sweep 1 m                                          |              | Hz                                        | VBW 1                                                    | l l               |                                                                      | Center 2.4<br>#Res BW 1 |
|                                                                 | ßm           | -36.5 dBn                                 | otal Power                                               |                   | ed Bandwidth                                                         | Occupi                  |
|                                                                 |              |                                           |                                                          | 03 MHz            |                                                                      |                         |
|                                                                 | 1%           | 99.00 %                                   | BW Power                                                 | 14.765 kHz        | Freq Error                                                           | Transmi                 |
|                                                                 |              | -20.00 dl                                 | dB                                                       | 1.414 MHz         | ndwidth                                                              |                         |

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



## Page 15 of 33

| Frequency Range | 20dB Bandwidth |
|-----------------|----------------|
| [MHz]           | [MHz]          |
| 2476.09         | 1.178          |

## Antenna 1 - Channel 239

|                                       | 20dB Bandwi                            | idth of Fundament                          | al Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |
|---------------------------------------|----------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| gilent Spectrum Analyzer - Occupied B | W                                      |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| center Freq 2.476030000               |                                        | Center Freq: 2.4760300<br>→ Trig: Free Run | ALIGN AUTO<br>000 GHz<br>Avg Hold:>10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04:58:07 PM Jul 30, 20:<br>Radio Std: None |
|                                       | #IFGain:Low                            | #Atten: 6 dB                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Radio Device: BTS                          |
| 0 dB/div Ref -20.00 dBr               | n                                      |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mkr1 2.47606 GH<br>-42.589 dBn             |
| og                                    |                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| 30.0                                  |                                        | <b></b> 1                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| 10.0                                  |                                        | mmmm                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| i0.0                                  |                                        |                                            | ~h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |
| 0.0                                   | hanness and a second                   |                                            | White and a start of the start |                                            |
| 0.0                                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                            | 2 N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |
| - no mon                              |                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - man harden                               |
|                                       |                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| 0.0                                   |                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| 00                                    |                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| 10                                    |                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
|                                       |                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| enter 2.476 GHz<br>Res BW 100 kHz     |                                        | VBW 1 MHz                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Span 3 MH<br>Sweep 1 m                     |
| Occupied Bandwidt                     | h                                      | Total Power                                | -35.9 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |
| 1.1                                   | 1319 MHz                               |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| Transmit Freq Error                   | 51.596 kHz                             | OBW Power                                  | 99.00 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |
| x dB Bandwidth                        | 1.178 MHz                              | x dB                                       | -20.00 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |
|                                       |                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| G                                     |                                        |                                            | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



## Page 16 of 33

| Frequency Range | 20dB Bandwidth |
|-----------------|----------------|
| [MHz]           | [MHz]          |
| 2403.2          | 1.46           |

## Antenna 2 - Channel 7

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20dB Bandwi | idth of Fundament                                                       | al Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|
| gilent Spectrum Analyzer - Occupied BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                             |
| RF     50 Ω     AC       larker 1     2.4032     GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +IFGain:Low | SENSE:INT<br>Center Freq: 2.4031650<br>⊢ Trig: Free Run<br>#Atten: 6 dB | ALIGNAUTO<br>000 GHz<br>Avg Hold: 10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        | 04:45:59 PM Jul 30, 201<br>dio Std: None<br>dio Device: BTS |
| 0 dB/div <b>Ref -20.00 dBm</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mkr1                                   | 2.403165 GH:<br>-40.901 dBn                                 |
| og<br>30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 1<br>1                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                             |
| 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | - many                                                                  | ~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                                             |
| 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - www       |                                                                         | - man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                                             |
| 60.0 Solo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                                         | when the second s | ~                                      |                                                             |
| 10.0 more man and the second s |             |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | mummum                                                      |
| 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                             |
| 90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                             |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                             |
| 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                             |
| enter 2.403 GHz<br>Res BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | VBW 1 MHz                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | Span 3 MH:<br>Sweep 1 ms                                    |
| Occupied Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | Total Power                                                             | -34.0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                             |
| 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72 MHz      |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                             |
| Transmit Freq Error -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.043 kHz  | OBW Power                                                               | 99.00 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                                             |
| x dB Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.460 MHz   | x dB                                                                    | -20.00 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                         | 20.00 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                                             |
| SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                                         | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                                                             |

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



| Frequency Range | 20dB Bandwidth |
|-----------------|----------------|
| [MHz]           | [MHz]          |
| 2441.22         | 1.272          |

# Antenna 2 - Channel 128

|                                       | 20dB Bandw         | vidth of Fundament                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al Emission                             |           |                                                             |
|---------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------|-------------------------------------------------------------|
| gilent Spectrum Analyzer - Occupied B | w                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |           |                                                             |
| Center Freq 2.441182000               |                    | SENSE:INT<br>Center Freq: 2.4411820<br>June                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ALIGNAUTO<br>000 GHz<br>Avg Hold: 10/10 |           | 04:48:29 PM Jul 30, 20:<br>dio Std: None<br>dio Device: BTS |
| 0 dB/div Ref -20.00 dB                | m                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Mkr1      | 2.441182 GH<br>-43.503 dBr                                  |
| og                                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |           |                                                             |
| 30.0                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |           |                                                             |
| 40.0                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |           |                                                             |
| 0.0                                   |                    | and the second s | ~~                                      |           |                                                             |
|                                       | ~~~~~ <sup>~</sup> | n <sup>er</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | when                                    |           |                                                             |
| 0.0                                   | man and the        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - www.                                  | ~         |                                                             |
| 0.0                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | - Martine |                                                             |
| 0.0 marchanthe 0.0                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |           |                                                             |
| 0.0                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |           |                                                             |
| 100                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |           |                                                             |
| 100                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |           |                                                             |
| 110                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |           |                                                             |
| renter 2.441 GHz<br>Res BW 100 kHz    | L.                 | VBW 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |           | Span 3 MH<br>Sweep 1 m                                      |
| Occupied Bandwidt                     | h                  | Total Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -36.4 dBm                               |           |                                                             |
| 1.                                    | 2433 MHz           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |           |                                                             |
| Transmit Freq Error                   | 40.216 kHz         | OBW Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 99.00 %                                 |           |                                                             |
| x dB Bandwidth                        | 1.272 MHz          | x dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -20.00 dB                               |           |                                                             |
| G                                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS                                  |           |                                                             |
| 3                                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS                                  |           |                                                             |

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



## Page 18 of 33

| Frequency Range | 20dB Bandwidth |
|-----------------|----------------|
| [MHz]           | [MHz]          |
| 2476.06         | 1.434          |

## Antenna 2 - Channel 239

| 20dB Bandwi | dth of Fundament                      | al Emission                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| w           |                                       |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | Center Freq: 2.476030                 | 000 GHz                                                                                                                         | 04:51:17 PM Jul 30, 20:<br>Radio Std: None                                                                                                                                                                                                                                                                                                                                                                                                                    |
| #IFGain:Low | #Atten: 6 dB                          |                                                                                                                                 | Radio Device: BTS                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| n           |                                       |                                                                                                                                 | Mkr1 2.47606 GH<br>-47.050 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                       |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                       |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | ↓ ↓ 1 · · · ·                         |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                       |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                       |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                       |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ~~          |                                       |                                                                                                                                 | Weber www.w. w. warded                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             |                                       |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                       |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                       |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                       |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | VBW 1 MHz                             |                                                                                                                                 | Span 3 MH<br>Sweep 1 m                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| h           | Total Power                           | -39.7 dBm                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3213 MHz    |                                       |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 21.743 kHz  | OBW Power                             | 99.00 %                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.434 MHz   | x dB                                  | -20.00 dB                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                       | STATUS                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | m<br>m<br>h<br>3213 MHz<br>21.743 kHz | w<br>SENSE:INT<br>Center Freq: 2.4760300<br>TIFGain:Low<br>#Atten: 6 dB<br>m<br>TOTAL Power<br>3213 MHz<br>21.743 kHz OBW Power | SENSE:INT   ALIGNAUTO     Center Freq: 2.476030000 GHz   Avg Hold: 10/10     #IFGain:Low   #Atten: 6 dB     m   1     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0     0   0 < |

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



Page 19 of 33

#### **Band Edge Measurement:**

| Frequency Range                | Radiated Emission Attenuated below the Fundamental |
|--------------------------------|----------------------------------------------------|
| [MHz]                          | [dB]                                               |
| Antenna 1 – Lowest Fundamental | 41.1                                               |

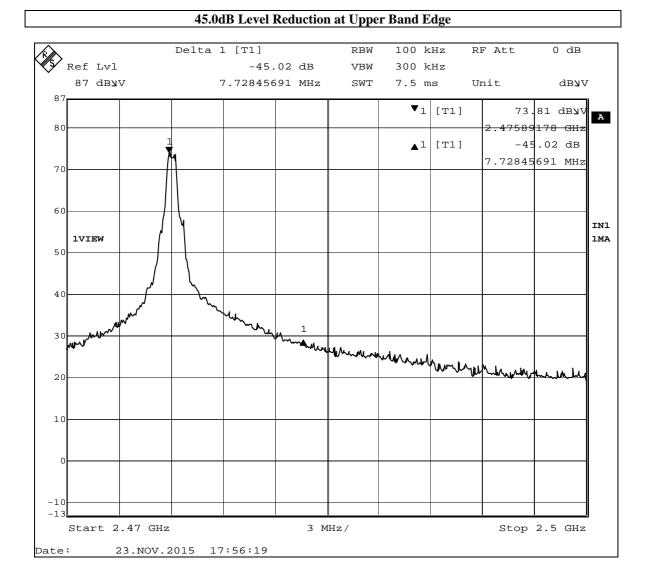
41.1dB Level Reduction at Lower Band Edge

|                  |             |         |          | <u>1 ut 1000 c</u> |            |      |              |                         |    |
|------------------|-------------|---------|----------|--------------------|------------|------|--------------|-------------------------|----|
| <b>x</b>         | Marker      | 1 [T1]  |          | RBW                | 100 ]      | κHz  | RF Att       | 0 dB                    |    |
| Ref Lvl          |             | 72.0    | 3 dbyv   | VBW                | 300 ]      | κHz  |              |                         |    |
| 87 db <b>y</b> v | 2           | .403386 | 77 GHz   | SWT                | 28 r       | ns   | Unit         | db <b>n</b>             | 7  |
| 87               |             |         |          |                    | ▼1         | [T1] | 72           | .03 dbyv                | ]  |
| 80               |             |         |          |                    |            |      |              | 677 GHz                 | A  |
|                  |             |         |          |                    | <b>^</b> 1 | [T1] |              | 1.14 dB                 |    |
|                  |             |         |          |                    |            |      |              | 144 MHz                 |    |
| 70               |             |         |          |                    |            |      |              |                         |    |
|                  |             |         |          |                    |            |      |              |                         |    |
| 60               |             |         |          |                    |            |      |              |                         |    |
|                  |             |         |          |                    |            |      |              |                         | IN |
| 1VIEW            |             |         |          |                    |            |      |              |                         | 11 |
| 50               |             |         |          |                    |            |      |              |                         |    |
|                  |             |         |          |                    |            |      |              |                         |    |
| 40               |             |         |          |                    |            |      |              | +11                     |    |
|                  |             |         |          |                    |            |      |              | $ _1 / \langle \rangle$ |    |
| 30               |             |         |          |                    |            |      |              |                         |    |
|                  |             |         |          |                    |            |      | کر           | ~                       | 1  |
|                  |             |         | اللاحم م |                    | ليمانيهم   | Klum | when the way |                         |    |
| 20 mm mm         | Mymmum      | www.www |          | 4                  |            |      |              |                         |    |
|                  |             |         |          |                    |            |      |              |                         |    |
| 10               |             |         |          |                    |            |      |              |                         |    |
|                  |             |         |          |                    |            |      |              |                         |    |
| 0                |             |         |          |                    |            |      |              |                         |    |
|                  |             |         |          |                    |            |      |              |                         |    |
|                  |             |         |          |                    |            |      |              |                         |    |
| 10               |             |         |          |                    |            |      |              |                         |    |
| Start 2.3 (      | GHz         |         | 11 1     | MHz/               |            |      | Stop 3       | 2.41 GHz                | -  |
| ce: 23.N         | 017 2015 17 |         |          |                    |            |      |              |                         |    |
| .e. 23.N         | UV.ZUIS 1/  |         |          |                    |            |      |              |                         |    |

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org


This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



Page 20 of 33

#### **Band Edge Measurement:**

| Frequency Range                 | Radiated Emission Attenuated below the Fundamental |
|---------------------------------|----------------------------------------------------|
| [MHz]                           | [dB]                                               |
| Antenna 1 – Highest Fundamental | 45.0                                               |



The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.



Page 21 of 33

#### **Band Edge Measurement:**

| Frequency Range                | Radiated Emission Attenuated below the Fundamental |
|--------------------------------|----------------------------------------------------|
| [MHz]                          | [dB]                                               |
| Antenna 2 – Lowest Fundamental | 35.5                                               |

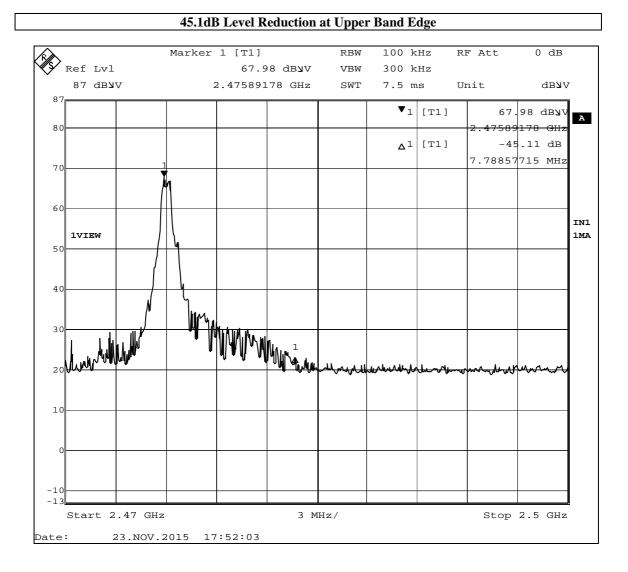
35.5dB Level Reduction at Lower Band Edge

| •               |                       |        |        |                       |      |         |                       |      |          |
|-----------------|-----------------------|--------|--------|-----------------------|------|---------|-----------------------|------|----------|
| $\sim$          | Marker 1 [T1]         |        | RBW    |                       |      | RF Att  | 0                     | dB   |          |
| Y Ref Lvl       |                       | 7 dbyv |        |                       | kHz  |         |                       |      |          |
| 87 dbvv         | 2.403166              | 33 GHz | SWT    | 28                    | ms   | Unit    |                       | dBAA | 7        |
| 87              |                       |        |        | <b>v</b> <sub>1</sub> | [T1] | 59      | 9.37                  | dbav | A        |
| 80              |                       |        |        |                       |      | 2.4031  | 6633                  | GHz  |          |
|                 |                       |        |        | <b>Δ</b> <sup>1</sup> | [T1] | - 3     | 35.52                 | dB   |          |
| 70              |                       |        |        |                       |      | -3.8276 | 5531                  | MHz  |          |
| /0              |                       |        |        |                       |      |         |                       |      |          |
|                 |                       |        |        |                       |      |         | 1                     |      |          |
| 60              |                       |        |        |                       |      |         | 1                     |      |          |
| lVIEW           |                       |        |        |                       |      |         |                       |      | IN<br>1M |
| 50              |                       |        |        |                       |      |         |                       |      |          |
|                 |                       |        |        |                       |      |         |                       |      |          |
| 4.0             |                       |        |        |                       |      |         | $\parallel \parallel$ |      |          |
| 40              |                       |        |        |                       |      |         |                       |      |          |
|                 |                       |        |        |                       |      |         |                       |      |          |
| 30              |                       |        |        |                       |      |         |                       |      |          |
|                 |                       |        |        |                       |      |         | ₽, <b>N</b>           | Y,   |          |
| 20 mm Mulum Mr. | ALLIA . MAMININ MACAN | ~~~~~~ | muhune | lenkan                |      | munun   | N M                   | Her  |          |
|                 |                       | •••    |        |                       |      |         |                       |      |          |
|                 |                       |        |        |                       |      |         |                       |      |          |
| 10              |                       |        |        |                       |      |         |                       |      |          |
|                 |                       |        |        |                       |      |         |                       |      |          |
| 0               |                       |        |        |                       |      |         | _                     |      |          |
|                 |                       |        |        |                       |      |         |                       |      |          |
| 10              |                       |        |        |                       |      |         |                       |      |          |
| -10             |                       |        |        |                       |      |         |                       |      |          |
| Start 2.3 GHz   |                       | 11 1   | MHz/   |                       |      | Stop    | 2.41                  | GHz  |          |
| te: 23.NOV.     | 2015 17.40.14         |        |        |                       |      |         |                       |      |          |

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org


This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



Page 22 of 33

#### **Band Edge Measurement:**

| Frequency Range                 | Radiated Emission Attenuated below the Fundamental |
|---------------------------------|----------------------------------------------------|
| [MHz]                           | [dB]                                               |
| Antenna 2 – Highest Fundamental | 45.1                                               |



The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



Page 23 of 33

## Limits for Radiated Emissions [FCC 47 CFR 15.209 Class B]:

| Frequency Range<br>[MHz] | Quasi-Peak Limits<br>[µV/m] |
|--------------------------|-----------------------------|
| 0.009-0.490              | 2400/F (kHz)                |
| 0.490-1.705              | 24000/F (kHz)               |
| 1.705-30                 | 30                          |
| 30-88                    | 100                         |
| 88-216                   | 150                         |
| 216-960                  | 200                         |
| Above960                 | 500                         |

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

#### Result of On mode (Antenna 1), (9kHz - 30MHz): PASS

Emissions detected are more than 20 dB below the FCC Limits

#### Result of On mode (Antenna 1), (30MHz - 1GHz): PASS

| Field Strength of Spurious Emissions |                                                        |        |            |        |        |            |  |  |  |  |
|--------------------------------------|--------------------------------------------------------|--------|------------|--------|--------|------------|--|--|--|--|
|                                      |                                                        |        | Quasi-Peak |        |        |            |  |  |  |  |
| Frequency                            | Frequency Measured Correction Field Limit Margin E-Fie |        |            |        |        |            |  |  |  |  |
|                                      | Level @3m                                              | Factor | Strength   | @3m    |        | Polarity   |  |  |  |  |
| MHz                                  | dBµV                                                   | dB/m   | dBµV/m     | dBµV/m | dBµV/m |            |  |  |  |  |
| 61.3                                 | 0.5                                                    | 8.6    | 9.1        | 40.0   | 30.9   | Horizontal |  |  |  |  |
| 133.5                                | 0.3                                                    | 10.2   | 10.5       | 43.5   | 33.0   | Horizontal |  |  |  |  |
| 243.5                                | 0.2                                                    | 15.5   | 15.7       | 46.0   | 30.3   | Horizontal |  |  |  |  |
| 337.9                                | 0.8                                                    | 18.6   | 19.4       | 46.0   | 26.6   | Horizontal |  |  |  |  |
| 481.3                                | 0.6                                                    | 22.6   | 23.2       | 46.0   | 22.8   | Horizontal |  |  |  |  |
| 613.8                                | 0.7                                                    | 26.0   | 26.7       | 46.0   | 19.3   | Horizontal |  |  |  |  |

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



Page 24 of 33

#### **Result of On mode (Antenna 2), (9kHz – 30MHz): PASS** Emissions detected are more than 20 dB below the FCC Limits

#### Result of On mode (Antenna 2), (30MHz - 1GHz): PASS

| Field Strength of Spurious Emissions |           |            |            |        |        |            |  |
|--------------------------------------|-----------|------------|------------|--------|--------|------------|--|
|                                      |           |            | Quasi-Peak |        |        |            |  |
| Frequency                            | Measured  | Correction | Field      | Limit  | Margin | E-Field    |  |
|                                      | Level @3m | Factor     | Strength   | @3m    |        | Polarity   |  |
| MHz                                  | dBµV      | dB/m       | dBµV/m     | dBµV/m | dBµV/m |            |  |
| 64.3                                 | 0.4       | 8.6        | 9.0        | 40.0   | 31.0   | Horizontal |  |
| 143.5                                | 0.8       | 10.5       | 11.3       | 43.5   | 32.2   | Horizontal |  |
| 228.4                                | 0.6       | 14.8       | 15.4       | 46.0   | 30.6   | Horizontal |  |
| 343.2                                | 0.5       | 18.7       | 19.2       | 46.0   | 26.8   | Horizontal |  |
| 477.6                                | 0.3       | 22.5       | 22.8       | 46.0   | 23.2   | Horizontal |  |
| 651.2                                | 0.5       | 26.7       | 27.2       | 46.0   | 18.8   | Horizontal |  |

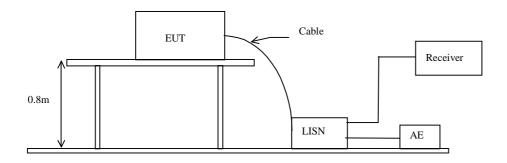
Remarks:

No additional spurious emissions found between lowest internal used/generated frequency and 30 MHz Correction Factor included Antenna Factor and Cable Attenuation.

| Calculated measurement uncertainty | : | 30MHz to 1GHz | 4.9dB  |
|------------------------------------|---|---------------|--------|
|                                    |   | 1GHz to 6GHz  | 4.02dB |
|                                    |   | 6GHz to 18GHz | 4.03dB |



Page 25 of 33


## 3.1.3 Conducted Emissions (0.15MHz to 30MHz)

| Test Requirement:  | FCC 47CFR 15.207 |
|--------------------|------------------|
| Test Method:       | ANSI C63.4:2009  |
| Test Date:         | 2015-11-05       |
| Mode of Operation: | On mode          |
| Test Voltage:      | 120Va.c., 60Hz   |

## **Test Method:**

The test was performed in accordance with ANSI C63.4: 2009, with the following: an initial measurement was performed in peak and average detection mode on the live line, any emissions recorded within 30dB of the relevant limit line were re-measured using quasi-peak and average detection on the live and neutral lines with the worst case recorded in the table of results.

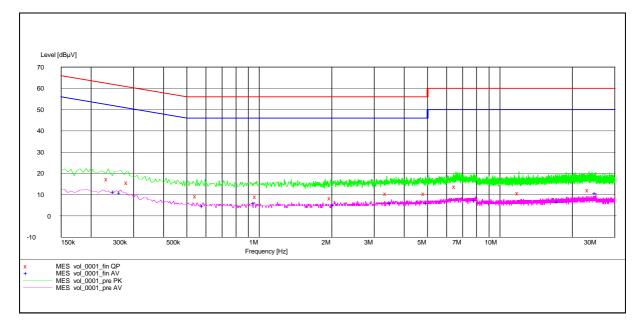
## **Test Setup:**





Page 26 of 33

## Limit for Conducted Emissions (FCC 47 CFR 15.207):


| Frequency Range | Quasi-Peak Limits | Average   |
|-----------------|-------------------|-----------|
| [MHz]           | [dBµV]            | [dBµV]    |
| 0.15-0.5        | 66 to 56*         | 56 to 46* |
| 0.5-5.0         | 56                | 46        |
| 5.0-30.0        | 60                | 50        |

\* Decreases with the logarithm of the frequency.

Limits for Conducted Emissions Test, please refer to limit lines (Quasi-Peak and Average) in the following diagram.

## **Results of On mode: PASS**

Please refer to the following diagram for individual results.



The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



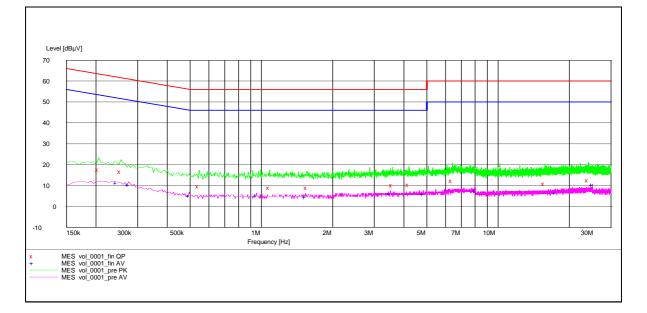
Page 27 of 33

#### **Results of On mode - Live: PASS**

|                 |           | Quasi | i-peak | Average |       |
|-----------------|-----------|-------|--------|---------|-------|
| Conductor       | Frequency | Level | Limit  | Level   | Limit |
| Live or Neutral | MHz       | dBµV  | dBµV   | dBµV    | dBµV  |
| Live            | 0.235     | 17.3  | 62.0   | _*_     | _*_   |
| Live            | 0.250     | _*_   | _*_    | 11.4    | 52.0  |
| Live            | 0.265     | _*_   | _*_    | 11.0    | 51.0  |
| Live            | 0.285     | 15.7  | 61.0   | _*_     | _*_   |
| Live            | 0.550     | 9.3   | 56.0   | _*_     | _*_   |
| Live            | 0.585     | _*_   | _*_    | 4.6     | 46.0  |
| Live            | 0.955     | _*_   | _*_    | 5.9     | 46.0  |
| Live            | 0.975     | 8.9   | 56.0   | _*_     | _*_   |
| Live            | 1.990     | 8.3   | 56.0   | _*_     | _*_   |
| Live            | 2.045     | _*_   | _*_    | 5.1     | 46.0  |
| Live            | 3.385     | 10.3  | 56.0   | _*_     | _*_   |
| Live            | 3.525     | _*_   | _*_    | 6.0     | 10.3  |
| Live            | 4.890     | 10.4  | 56.0   | _*_     | _*_   |
| Live            | 5.000     | _*_   | _*_    | 6.1     | 46.0  |
| Live            | 6.550     | 13.8  | 60.0   | _*_     | _*_   |
| Live            | 7.935     | _*_   | _*_    | 7.5     | 50.0  |
| Live            | 11.985    | 10.6  | 60.0   | _*_     | _*_   |
| Live            | 17.465    | _*_   | _*_    | 6.6     | 50.0  |
| Live            | 23.475    | 12.1  | 60.0   | _*_     | _*_   |
| Live            | 25.060    | _*_   | _*_    | 10.7    | 50.0  |

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong


Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



#### **Results of On mode - Neutral: PASS**

Please refer to the following diagram for individual results.



The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 28 of 33



Page 29 of 33

## **Results of On mode - Neutral: PASS**

|                 |           | Quasi | i-peak | Average |       |  |
|-----------------|-----------|-------|--------|---------|-------|--|
| Conductor       | Frequency | Level | Limit  | Level   | Limit |  |
| Live or Neutral | MHz       | dBµV  | dBµV   | dBµV    | dBµV  |  |
| Neutral         | 0.205     | 17.6  | 63.0   | _*_     | _*_   |  |
| Neutral         | 0.245     | _*_   | _*_    | 11.4    | 52.0  |  |
| Neutral         | 0.255     | 16.6  | 62.0   | _*_     | _*_   |  |
| Neutral         | 0.275     | _*_   | _*_    | 10.6    | 51.0  |  |
| Neutral         | 0.495     | _*_   | _*_    | 5.2     | 46.0  |  |
| Neutral         | 0.545     | 9.8   | 56.0   | _*_     | _*_   |  |
| Neutral         | 0.955     | _*_   | _*_    | 5.3     | 46.0  |  |
| Neutral         | 1.085     | 8.9   | 56.0   | _*_     | _*_   |  |
| Neutral         | 1.535     | _*_   | _*_    | 4.4     | 46.0  |  |
| Neutral         | 1.560     | 8.9   | 56.0   | _*_     | _*_   |  |
| Neutral         | 3.510     | _*_   | _*_    | 6.0     | 46.0  |  |
| Neutral         | 3.580     | 10.3  | 56.0   | _*_     | _*_   |  |
| Neutral         | 4.200     | 10.4  | 56.0   | _*_     | _*_   |  |
| Neutral         | 4.830     | _*_   | _*_    | 5.9     | 46.0  |  |
| Neutral         | 6.415     | 12.4  | 60.0   | _*_     | _*_   |  |
| Neutral         | 8.010     | _*_   | _*_    | 7.6     | 50.0  |  |
| Neutral         | 15.745    | 10.9  | 60.0   | _*_     | _*_   |  |
| Neutral         | 17.490    | _*_   | _*_    | 6.7     | 50.0  |  |
| Neutral         | 24.045    | 12.5  | 60.0   | _*_     | _*_   |  |
| Neutral         | 25.060    | _*_   | _*_    | 10.6    | 50.0  |  |

#### Remarks:

Calculated measurement uncertainty (0.15MHz – 30MHz): 3.2dB

-\*- Emission(s) that is far below the corresponding limit line.

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



Page 30 of 33

## Appendix A

## LIST OF MEASUREMENT EQUIPMENT

|         |                                         | Radiated I   | Emission        |            |            |            |
|---------|-----------------------------------------|--------------|-----------------|------------|------------|------------|
| EQP NO. | DESCRIPTION                             | MANUFACTURER | MODEL NO.       | SERIAL NO. | LAST CAL   | DUE CAL    |
| EM299   | DOUBLE-RIDGED WAVEGUIDE<br>HORN ANTENNA | ETS-LINDGREN | 3115            | 00114120   | 2014/01/15 | 2016/01/25 |
| EM215   | MULTIDEVICE CONTROLLER                  | EMCO         | 2090            | 00024676   | N/A        | N/A        |
| EM216   | MINI MAST SYSTEM                        | EMCO         | 2075            | 00026842   | N/A        | N/A        |
| EM217   | ELECTRIC POWERED<br>TURNTABLE           | EMCO         | 2088            | 00029144   | N/A        | N/A        |
| EM218   | ANECHOIC CHAMBER                        | ETS-LINDGREN | FACT-3          |            | 2014/09/29 | 2015/09/29 |
| EM320   | BICONILOG ANTENNA                       | ETS-LINDGREN | 3142D           | 00094856   | 2014/08/06 | 2016/08/06 |
| EM229   | EMI TEST RECEIVER                       | R&S          | ESIB40          | 100248     | 2015/06/01 | 2016/06/01 |
| EM022   | LOOP ANTENNA                            | EMCO         | 6502            | 1189-2424  | 2014/01/15 | 2016/01/15 |
| EM527   | MICROWAVE FREQUENCY<br>CABLE            | SUHNER       | SUCOFLEX<br>102 | 24514      | 2013/08/26 | 2016/08/26 |
| EM528   | MICROWAVE FREQUENCY<br>CABLE            | SUHNER       | SUCOFLEX<br>102 | 24515      | 2013/08/26 | 2016/08/26 |
| EM529   | MICROWAVE FREQUENCY<br>CABLE            | SUHNER       | SUCOFLEX<br>104 | 238296     | 2014/07/24 | 2016/07/24 |
| EM530   | MICROWAVE FREQUENCY<br>CABLE            | SUHNER       | SUCOFLEX<br>102 | 24970      | 2013/08/26 | 2016/08/26 |

## Line Conducted

|         | Line Conducted  |                                     |           |                     |            |            |  |
|---------|-----------------|-------------------------------------|-----------|---------------------|------------|------------|--|
| EQP NO. | DESCRIPTION     | MANUFACTURER                        | MODEL NO. | SERIAL NO.          | LAST CAL   | DUE CAL    |  |
| EM232   | LISN            | SCHAFFNER                           | NNB41     | 04/100082           | 2014/12/08 | 2015/12/08 |  |
| EM179   | IMPULSE LIMITER | ROHDE & SCHWARZ                     | ESH3-Z2   | 357-<br>8810.52/54  | 2015/01/14 | 2016/01/14 |  |
| EM154   | SHIELDING ROOM  | SIEMENS<br>MATSUSHITA<br>COMPONENTS | N/A       | 803-740-057-<br>99A | 2012/02/03 | 2017/02/03 |  |

Remarks:

CM Corrective Maintenance

N/A Not Applicable or Not Available

TBD To Be Determined

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@hkstc.org Website: www.stc-group.org

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



Page 31 of 33

Appendix B

**Photographs of EUT** 



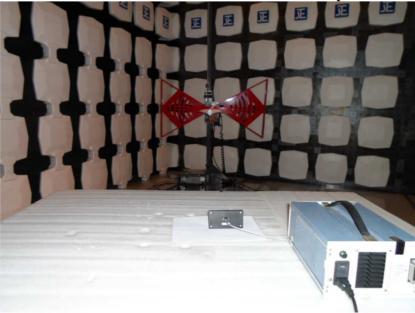
**Inner Circuit Top View** 



**Rear View of the product** 

**Inner Circuit Bottom View** 








Photographs of EUT

Page 32 of 33

Measurement of Radiated Emission Test Set Up



Measurement of Radiated Emission Test Set Up





Page 33 of 33

**Photographs of EUT** 



Measurement of Conducted Emission Test Set Up

\*\*\*\*\* End of Test Report \*\*\*\*\*



# **Conditions of Issuance of Test Reports**

- 1. All samples and goods are accepted by The Hong Kong Standards & Testing Centre Limited (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The Company provides its services on the basis that such terms and conditions constitute express agreement between the Company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by the Company as a result of this application for testing service (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to his customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. The Report refers only to the sample tested and does not apply to the bulk, unless the sampling has been carried out by the Company and is stated as such in the Report.
- 5. In the event of the improper use the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 6. Sample submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 7. The Company will not be liable for or accept responsibility for any loss or damage howsoever arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 8. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as to otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of this test report for a period of three years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after the retention period. Under no circumstances shall we be liable for damages of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.
- 10. Issuance records of the Report are available on the internet at www.stc-group.org. Further enquiry of validity or verification of the Reports should be addressed to the Company.