

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Fax: +86-512-66308368 Web: www.mrt-cert.com Report No.: 1604RSU01501 Report Version: V01 Issue Date: 05-30-2016

MEASUREMENT REPORT FCC PART 15.247 Bluetooth v4.0

OUPE
(

Application Type:	Certification
Product:	BLE REMOTE CONTROL
Model No.:	GEMMOTION, 4MOD730RBLE
Brand Name:	EMTEC
FCC Classification:	Digital Transmission System (DTS)
FCC Rule Part(s):	Part 15.247
Test Procedure(s):	ANSI C63.10-2013, KDB 558074 D01v03r05
Test Date:	April 23 ~ May 09, 2016

Reviewed By

Approved By

: Robin Wu) Marlinchen • (Marlin Chen)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 558074 D01v03r05. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

FCC ID: W3QGEMMOTION

Revision History

Report No.	Version	Description	Issue Date
1604RSU01501	Rev. 01	Initial report	05-30-2016

CONTENTS

De	scriptio	n Page
1.	INTRO	DDUCTION
	1.1.	Scope
	1.2.	MRT Test Location
2.	PROD	OUCT INFORMATION
	2.1.	Feature of Equipment under Test7
	2.2.	Product Specification Subjective to this Report7
	2.3.	Working Frequencies for this Report7
	2.4.	Test Configuration
	2.5.	EMI Suppression Device(s)/Modifications
	2.6.	Labeling Requirements
	2.7.	Test Software
3.	DESC	RIPTION OF TEST
	3.1.	Evaluation Procedure
	3.2.	AC Line Conducted Emissions9
	3.3.	Radiated Emissions
4.	ANTE	NNA REQUIREMENTS11
5.	TEST	EQUIPMENT CALIBRATION DATE
6.		SUREMENT UNCERTAINTY
7.		RESULT
7.		
	7.1.	Summary
	7.2.	6dB Bandwidth Measurement
	7.2.1.	Test Limit
	7.2.2.	Test Procedure used
	7.2.3. 7.2.4.	Test Setting
	7.2.4.	Test Setup
	7.2.5.	Output Power Measurement
	7.3.1.	Test Limit
	7.3.2.	Test Procedure Used
	7.3.2.	Test Setting
	7.3.4.	Test Setup
	7.3.4.	Test Result of Output Power
	7.4.	Power Spectral Density Measurement
	7.4.1.	Test Limit
FCC		QGEMMOTION Page Number: 3 of 49

7.4.2.	Test Procedure Used	19
7.4.3.	Test Setting	19
7.4.4.	Test Setup	19
7.4.5.	Test Result	20
7.5.	Conducted Band Edge and Out-of-Band Emissions	21
7.5.1.	Test Limit	21
7.5.2.	Test Procedure Used	21
7.5.3.	Test Settitng	21
7.5.4.	Test Setup	22
7.5.5.	Test Result	23
7.6.	Radiated Spurious Emission Measurement	25
7.6.1.	Test Limit	25
7.6.2.	Test Procedure Used	25
7.6.3.	Test Setting	25
7.6.4.	Test Setup	27
7.6.5.	Test Result	29
7.7.	Radiated Restricted Band Edge Measurement	38
7.7.1.	Test Result	38
7.8.	AC Conducted Emissions Measurement	46
7.8.1.	Test Limit	46
7.8.2.	Test Setup	46
7.8.3.	Test Result	47
CONC	CLUSION	49

8.

Applicant:	DEXXON GROUPE		
Applicant Address:	79 av Louis Roche 92238, Gennevilliers, France		
Test Site:	MRT Technology (Suzhou) Co., Ltd		
Test Site Address:	D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong		
	Economic Development Zone, Suzhou, China		
MRT Registration No.:	809388		
FCC Rule Part(s):	Part 15.247		
Model No.:	GEMMOTION, 4MOD730RBLE		
FCC ID:	W3QGEMMOTION		
Test Device Serial No.:	N/A Droduction Pre-Production Engineering		
FCC Classification:	Digital Transmission System (DTS)		

§2.1033 General Information

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 809388) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-4179, G-814, C-4664, T-2206) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications and Radio testing for FCC, Industry Canada, EU and TELEC Rules.

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on September 30, 2013.

2. PRODUCT INFORMATION

2.1. Feature of Equipment under Test

Product Name	BLE REMOTE CONTROL	
Model No.	GEMMOTION, 4MOD730RBLE	
Brand Name	EMTEC	

Note 1: These different models are for different market requirement.

Note 2: We choose the model no 4MOD730RBLE for all RF testing.

2.2. Product Specification Subjective to this Report

Bluetooth Frequency	2402~2480MHz
Bluetooth Version	v4.0
Type of modulation	FHSS
Data Rate	1Mbps(GFSK)
Antenna Type	PCB Antenna
Antenna Gain	0dBi

2.3. Working Frequencies for this Report

Channel	Frequency	Channel	Frequency	Channel	Frequency
00	2402 MHz	01	2404 MHz	02	2406 MHz
03	2408 MHz	04	2410 MHz	05	2412 MHz
06	2414 MHz	07	2416 MHz	08	2418 MHz
09	2420 MHz	10	2422 MHz	11	2424 MHz
12	2426 MHz	13	2428 MHz	14	2430 MHz
15	2432 MHz	16	2434 MHz	17	2436 MHz
18	2438 MHz	19	2440 MHz	20	2442 MHz
21	2444 MHz	22	2446 MHz	23	2448 MHz
24	2450 MHz	25	2452 MHz	26	2454 MHz
27	2456 MHz	28	2458 MHz	29	2460 MHz
30	2462 MHz	31	2464 MHz	32	2466 MHz
33	2468 MHz	34	2470 MHz	35	2472 MHz
36	2474 MHz	37	2476 MHz	38	2478 MHz
39	2480 MHz				

2.4. Test Configuration

The **BLE REMOTE CONTROL FCC ID: W3QGEMMOTION** was tested per the guidance of KDB 558074 D01v03r05. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.5. EMI Suppression Device(s)/Modifications

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.
Adapter	Supply by MRT	HKC0055010-2D

2.6. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

2.7. Test Software

The test utility software used during testing was engineering directive ordered by applicant.

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions were used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

Line conducted emissions test results are shown in Section 7.8.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the Antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive Antenna height using a broadband Antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn Antennas were used. For frequencies below 30MHz, a calibrated loop Antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband Antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive Antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn Antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive Antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive Antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn Antenna, the horn Antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the **BLE REMOTE CONTROL** is **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The **BLE REMOTE CONTROL FCC ID: W3QGEMMOTION** unit complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions - SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2016/11/03
Two-Line V-Network	R&S	ENV216	MRTSUE06002	1 year	2016/11/03
Two-Line V-Network	R&S	ENV216	MRTSUE06003	1 year	2016/11/03
Temperature/Humidity Meter	Yuhuaze	HTC-2	MRTSUE06182	1 year	2016/12/20

Radiated Emissions – AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Agilent	E4447A	MRTSUE06028	1 year	2016/12/08
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2016/11/03
Preamplifier	Agilent	83017A	MRTSUE06076	1 year	2017/03/29
Preamplifier	Schwarzbeck	BBV9721	MRTSUE06121	1 year	2017/04/16
Loop Antenna	Schwarzbeck	FMZB1519	MRTSUE06025	1 year	2016/12/14
TRILOG Antenna	Schwarzbeck	VULB9162	MRTSUE06022	1 year	2016/11/07
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	MRTSUE06023	1 year	2016/11/07
Broadband Horn Antenna	Schwarzbeck	BBHA9170	MRTSUE06024	1 year	2017/01/04
Temperature/Humidity Meter	Yuhuaze	HTC-2	MRTSUE06183	1 year	2016/12/20

Conducted Test Equipment – TR3

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Agilent	N9020A	MRTSUE06106	1 year	2017/05/08
USB Wideband Power Sensor	Boonton	55006	MRTSUE06109	1 year	2017/05/08
Temperature/Humidity Meter	Yuhuaze	HTC-2	MRTSUE06180	1 year	2016/12/20

Software	Version	Function
e3	V8.3.5	EMI Test Software

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

AC Conducted Emission Measurement – SR2	
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):	
150kHz~30MHz: 3.46dB	
Radiated Emission Measurement – AC1	
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):	
9kHz ~ 1GHz: 4.18dB	
1GHz ~ 25GHz: 4.76dB	

7. TEST RESULT

7.1. Summary

Company Name:	DEXXON GROUPE
FCC ID:	W3QGEMMOTION
FCC Classification:	Digital Transmission System (DTS)
Data Rate(s) Tested:	1Mbps(GFSK) (BLE)

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	6dB Bandwidth	≥ 500kHz		Pass	Section 7.2
15.247(b)(3)	Output Power	≤ 1Watt	Conducted	Pass	Section 7.3
15.247(e)	Power Spectral Density	≤ 8dBm / 3kHz Band		Pass Pass	Section 7.4
15.247(d)	Band Edge / Out-of-Band Emissions	≥ 20dBc(Peak)			Section 7.5
15.205 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	Pass	Section 7.6 & 7.7
15.207	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	Pass	Section 7.8

Notes:

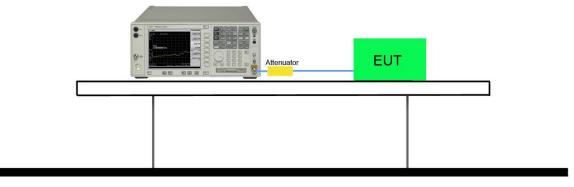
- All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.

7.2. 6dB Bandwidth Measurement

7.2.1. Test Limit

The minimum 6dB bandwidth shall be at least 500 kHz.

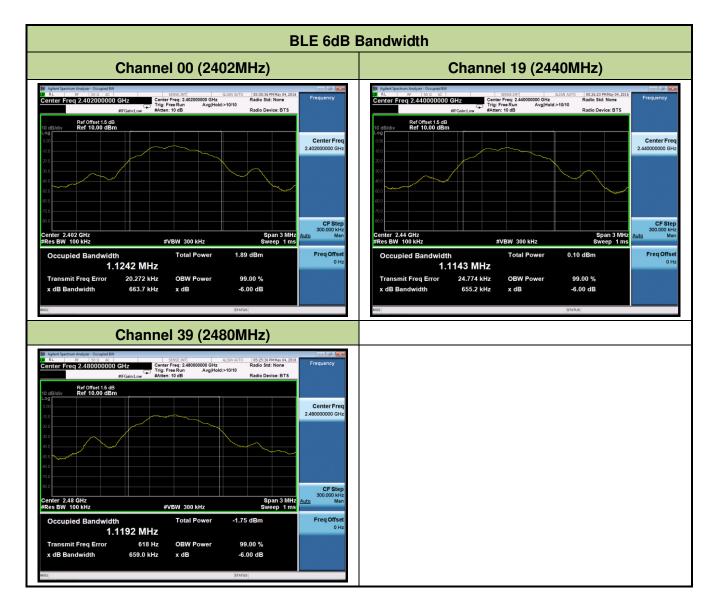
7.2.2. Test Procedure used


KDB 558074 D01v03r05 - Section 8.2 Option 2

7.2.3. Test Setting

- The Spectrum's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. Set RBW = 100 kHz
- 3. VBW \geq 3 × RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. Allow the trace was allowed to stabilize

7.2.4. Test Setup


Spectrum Analyzer

7.2.5. Test Result

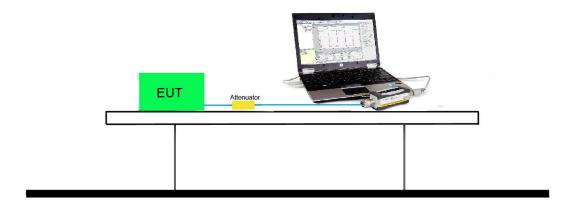
Test Mode	Data Rate (Mbps)	Channel No.	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)	Result
BLE	1	00	2402	0.66	≥ 0.5	Pass
BLE	1	19	2440	0.66	≥ 0.5	Pass
BLE	1	39	2480	0.66	≥ 0.5	Pass

7.3. Output Power Measurement

7.3.1. Test Limit

The maximum out power shall be less 1 Watt (30dBm).

7.3.2. Test Procedure Used


KDB 558074 D01v03r05 - Section 9.1.2 PKPM1 - Peak Power Method

7.3.3. Test Setting

Method PKPM1 (Peak Power Measurement of Signals with DTS BW ≤ 50MHz)

Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

7.3.4. Test Setup

7.3.5. Test Result of Output Power

Test Result of Peak Output Power

Test Mode	Data Rate	Channel	Frequency	Peak Power	Limit	Result
	(Mbps)	No.	(MHz)	(dBm)	(dBm)	
BLE	1	00	2402	-3.32	≤ 30	Pass
BLE	1	19	2440	-4.03	≤ 30	Pass
BLE	1	39	2480	-5.15	≤ 30	Pass

Test Result of Average Output Power (Reporting Only)

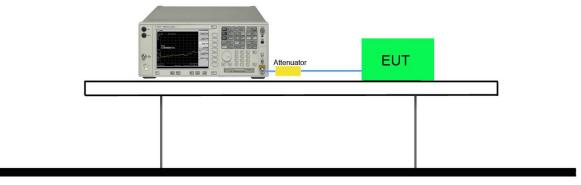
Test Mode	Data Rate	Channel	Frequency	Average Power	Limit	Result
	(Mbps)	No.	(MHz)	(dBm)	(dBm)	
BLE	1	00	2402	-4.05	≤ 30	Pass
BLE	1	19	2440	-4.92	≤ 30	Pass
BLE	1	39	2480	-5.82	≤ 30	Pass

7.4. Power Spectral Density Measurement

7.4.1. Test Limit

The maximum permissible power spectral density is 8dBm in any 3 kHz band.

7.4.2. Test Procedure Used


KDB 558074 D01v03r05 - Section 10.2 Method PKPSD

7.4.3. Test Setting

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 3kHz
- 4. VBW = 10kHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

7.4.4. Test Setup


Spectrum Analyzer

7.4.5. Test Result

Test Mode	Data Rate (Mbps)	Channel No.	Frequency (MHz)	PSD Result (dBm / 3kHz)	Limit (dBm / 3kHz)	Result
BLE	1	00	2402	-20.48	≤ 8	Pass
BLE	1	19	2440	-22.44	≤ 8	Pass
BLE	1	39	2480	-24.01	≤ 8	Pass

7.5. Conducted Band Edge and Out-of-Band Emissions

7.5.1. Test Limit

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure.

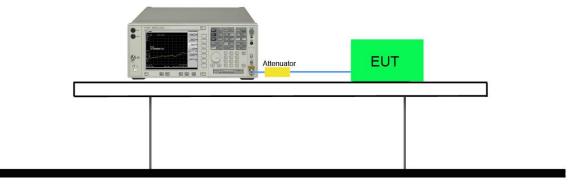
7.5.2. Test Procedure Used

KDB 558074 D01v03r05 - Section 11.2 & Section 11.3

7.5.3. Test Settitng

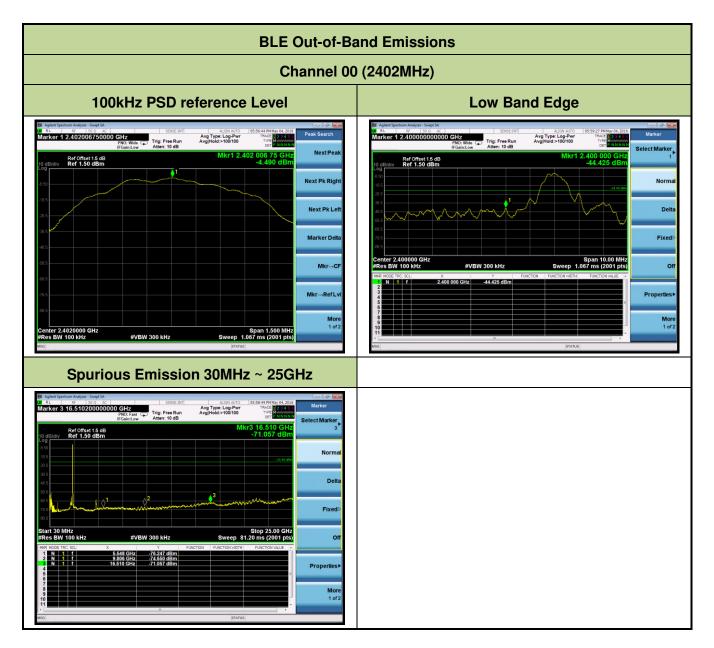
1. Reference level measurement

- (a) Set instrument center frequency to DTS channel center frequency
- (b) Set the span to \geq 1.5 times the DTS bandwidth
- (c) Set the RBW = 100 kHz
- (d) Set the VBW \geq 3 x RBW
- (e) Detector = peak
- (f) Sweep time = auto couple
- (g) Trace mode = max hold
- (h) Allow trace to fully stabilize


2. Emission level measurement

- (a) Set the center frequency and span to encompass frequency range to be measured
- (b) RBW = 100kHz
- (c) VBW = 300 kHz
- (d) Detector = Peak
- (e) Number of sweep points \geq 2 x Span/RBW
- (f) Trace mode = max hold
- (g) Sweep time = auto couple
- (h) The trace was allowed to stabilize

7.5.4. Test Setup


Spectrum Analyzer

7.5.5. Test Result

Test Mode	Data Rate (Mbps)	Channel No.	Frequency (MHz)	Limit	Result
BLE	1	00	2402	20dBc	Pass
BLE	1	19	2440	20dBc	Pass
BLE	1	39	2480	20dBc	Pass

7.6. Radiated Spurious Emission Measurement

7.6.1. Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209						
Frequency [MHz]	Field Strength [V/m]	Measured Distance [Meters]				
0.009 – 0.490	2400/F (kHz)	300				
0.490 – 1.705	24000/F (kHz)	30				
1.705 - 30	30	30				
30 - 88	100	3				
88 - 216	150	3				
216 - 960	200	3				
Above 960	500	3				

7.6.2. Test Procedure Used

KDB 558074 D01v03r05 - Section 12.2.3 (quasi-peak measurements)

KDB 558074 D01v03r05 - Section 12.2.4 (peak power measurements)

KDB 558074 D01v03r05 - Section 12.2.5 (average power measurements)

7.6.3. Test Setting

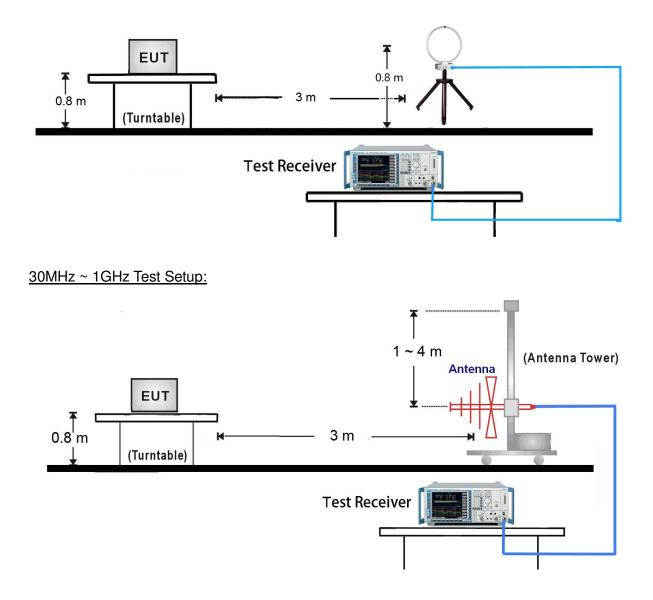
Peak Field Strength Measurements per Section 12.2.4 of KDB 558074 D01v03r05

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = as specified in Table 1
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple

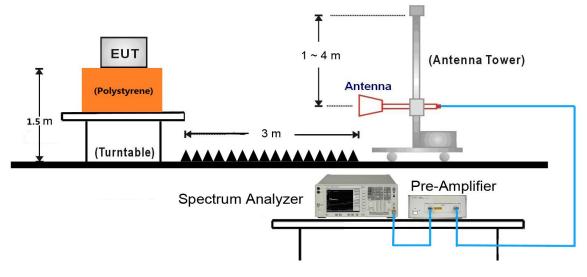
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Table 1 - RBW as a function of frequency

Frequency	RBW				
9 ~ 150 kHz	200 ~ 300 Hz				
0.15 ~ 30 MHz	9 ~ 10 kHz				
30 ~ 1000 MHz	100 ~ 120 kHz				
> 1000 MHz	1 MHz				


Average Field Strength Measurements per Section 12.2.4 of KDB 558074 D01v03r05

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW ≥ 1/T
- 4. De As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode
- 5. Detector = Peak
- 6. Sweep time = auto
- 7. Trace mode = max hold
- 8. Allow max hold to run for at least 50 times (1/duty cycle) traces


7.6.4. Test Setup

9kHz ~ 30MHz Test Setup:

1GHz ~ 25GHz Test Setup:

7.6.5. Test Result

Test Mode:	BLE	Test Site:	AC1
Test Channel:	00	Test Engineer:	Vince Yu
Remark:	 Average measurement was no limit. Other frequency was 20dB bel 		Ŭ
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	3522.0	37.5	-1.0	36.5	74.0	-37.5	Peak	Horizontal
*	4417.0	36.4	1.4	37.8	74.0	-36.2	Peak	Horizontal
	4791.0	40.1	2.7	42.8	74.0	-31.2	Peak	Horizontal
	7526.0	34.6	8.3	42.9	74.0	-31.1	Peak	Horizontal
*	3429.0	37.0	-1.5	35.5	74.0	-38.5	Peak	Vertical
*	4462.0	35.3	1.5	36.8	74.0	-37.2	Peak	Vertical
	4799.5	39.0	2.7	41.7	74.0	-32.3	Peak	Vertical
	7433.0	34.7	8.0	42.7	74.0	-31.3	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit	is 20dBc of th	ne fundamental	emissior	n level (81	.5dBµV/m)

or 15.209 which is higher.

Note 2: Measure Level $(dB\mu V/m) = Reading Level (dB\mu V) + Factor (dB)$

Test Mode:	BLE	Test Site:	AC1						
Test Channel:	19	Test Engineer:	Vince Yu						
Remark:	1. Average measurement was not performed if peak level lower than average								
	-	limit. 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show							
	in the report.								

Mark	Frequency (MHz)	Reading Level	Factor (dB)	Measure Level	Limit (dBµV/m)	Margin (dB)	Detector	Polarization
		(dBµV)		(dBµV/m)				
*	3352.0	38.0	-1.9	36.1	74.0	-37.9	Peak	Horizontal
*	4426.0	36.2	1.5	37.7	74.0	-36.3	Peak	Horizontal
	4884.5	40.6	2.7	43.3	74.0	-30.7	Peak	Horizontal
	7392.0	37.4	7.9	45.3	74.0	-28.7	Peak	Horizontal
*	3415.0	37.7	-1.6	36.1	74.0	-37.9	Peak	Vertical
*	4429.0	35.9	1.5	37.4	74.0	-36.6	Peak	Vertical
	4884.5	39.0	2.7	41.7	74.0	-32.3	Peak	Vertical
	7460.0	36.8	8.1	44.9	74.0	-29.1	Peak	Vertical

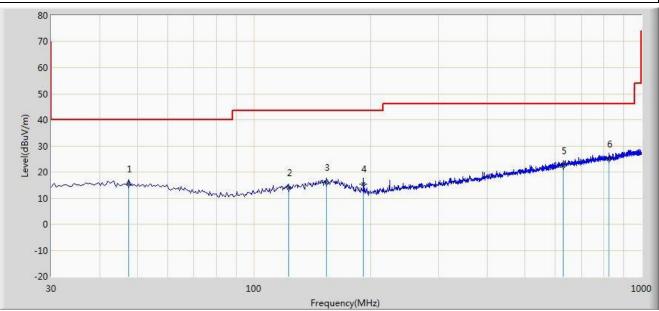
Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (80.6dBµV/m) or 15.209 which is higher.

Note 2: Measure Level $(dB\mu V/m) = Reading Level (dB\mu V) + Factor (dB)$

Test Mode:	BLE	Test Site:	AC1						
Test Channel:	39	Test Engineer:	Vince Yu						
Remark:	1. Average measurement was not performed if peak level lower than average								
	-	limit. 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show							
	in the report.		,						

Mark	Frequency (MHz)	Reading Level (dBµV)	Factor (dB)	Measure Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Polarization
*	3526.0	37.3	-1.0	36.3	74.0	-37.7	Peak	Horizontal
*	4436.0	36.7	1.5	38.2	74.0	-35.8	Peak	Horizontal
	4961.0	40.6	2.9	43.5	74.0	-30.5	Peak	Horizontal
	7426.0	34.6	8.0	42.6	74.0	-31.4	Peak	Horizontal
*	3529.0	37.0	-1.0	36.0	74.0	-38.0	Peak	Vertical
*	4418.0	36.3	1.4	37.7	74.0	-36.3	Peak	Vertical
	4961.0	39.7	2.9	42.6	74.0	-31.4	Peak	Vertical
	7526.0	35.1	8.3	43.4	74.0	-30.6	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (79.8dBµV/m) or 15.209 which is higher.


Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

The worst case of Radiated Emission below 1GHz:

Site: AC1	Time: 2016/05/05 - 11:51
Limit: FCC_Part15.209_RE(3m)	Engineer: Vince Yu
Probe: VULB9162_0.03-8GHz	Polarity: Horizontal
EUT: BLE REMOTE CONTROL	Power: By Battery

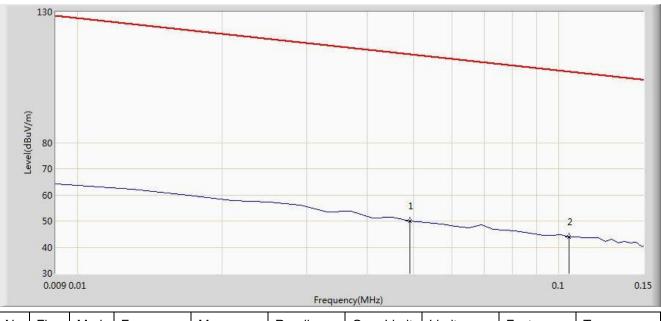
Worse Case Mode: Transmit by BLE at channel 2402MHz

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			47.460	15.255	1.136	-24.745	40.000	14.119	QP
2			123.120	13.866	0.526	-29.634	43.500	13.340	QP
3			153.672	15.962	0.775	-27.538	43.500	15.187	QP
4			191.990	15.371	3.859	-28.129	43.500	11.512	QP
5			628.975	22.248	1.158	-23.752	46.000	21.090	QP
6		*	823.460	24.870	1.418	-21.130	46.000	23.452	QP

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Site: AC1					Time: 2016/05	/05 - 11:52			
Limit: FCC_Part15.209_RE(3m)					Engineer: Vince Yu				
Prob	Probe: VULB9162_0.03-8GHz					Polarity: Vertic	al		
EUT	: BLE I	REMOT	E CONTROL			Power: By Bat	tery		
Wor	se Ca	se Mod	e: Transmit b	y BLE at cha	nnel 2402MI	Hz			
Level(dBuV/m)	80 70 60 50 40 30 20 -10	1	2		3 4	Abyte Abricken gel der enter ster	eahill streetingspacedaard	5	6
	-20 30			100	Frequ	ency(MHz)			1000
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			36.305	14.261	0.256	-25.739	40.000	14.005	QP
2			54.250	15.622	1.859	-24.378	40.000	13.763	QP
3			138.640	15.243	0.859	-28.257	43.500	14.384	QP
4			159.010	15.621	0.447	-27.879	43.500	15.174	QP
5			615.395	23.631	2.827	-22.369	46.000	20.804	QP
6		*	799.695	25.191	1.992	-20.809	46.000	23.199	QP


Note: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

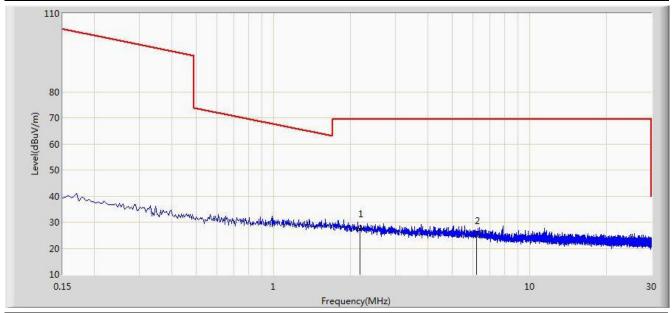
Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Site: AC1	Time: 2016/04/29 - 15:32
Limit: FCC_Part15.209_RE(3m)	Engineer: Vince Yu
Probe: FMZB1519_0.009-30MHz	Polarity: Face On
EUT: BLE REMOTE CONTROL	Power: By Battery

Note: There is the ambient noise within frequency range 9kHz~30MHz.

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			0.049	50.112	29.552	-63.688	113.800	20.560	AV
2		*	0.105	44.043	23.845	-63.137	107.180	20.198	QP

Note: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)


Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

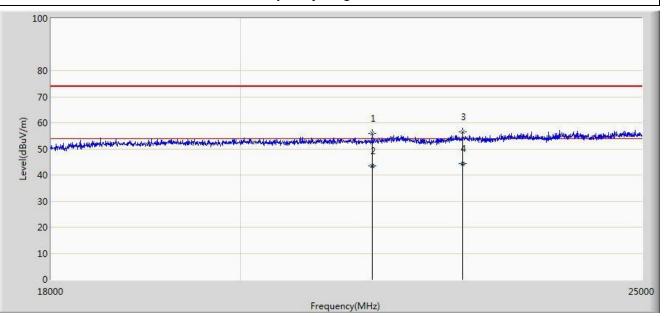
Limit@3m = 20*Log((2400/49)uV/m) + 40*Log(300m/3m) = 113.800dBµv/m (Average detector)

Time: 2016/04/29 - 15:35
Engineer: Vince Yu
Polarity: Face On
Power: By Battery

Note: There is the ambient noise within frequency range 9kHz~30MHz.

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	2.175	27.371	6.960	-42.129	69.500	20.412	QP
2			6.216	24.786	4.701	-44.714	69.500	20.085	QP

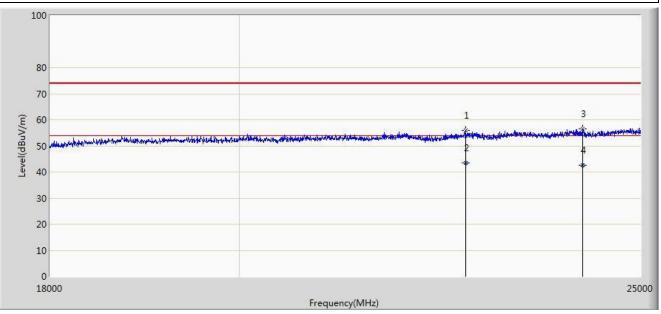
Note: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)


Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

 $\label{eq:limit} Limit@3m = 20*Log(30uV/m) + 20*Log(30m/3m) = 49.5dB\mu v/m \mbox{ (Average detector), and 69.5dB\mu v/m (Average detector).}$

Site: AC1	Time: 2016/04/29 - 15:32
Limit: FCC_Part15.209_RE(3m)	Engineer: Vince Yu
Probe: BBHA9170_18-40GHz	Polarity: Horizontal
EUT: BLE REMOTE CONTROL	Power: By Battery

Note: There is the ambient noise within frequency range 18GHz~25GHz.


No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			21517.500	55.869	17.883	-18.131	74.000	37.986	PK
2			21517.650	43.351	5.365	-10.649	54.000	37.986	AV
3			22630.500	56.509	18.223	-17.491	74.000	38.286	PK
4		*	22630.540	44.310	6.024	-9.690	54.000	38.286	AV

Note: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

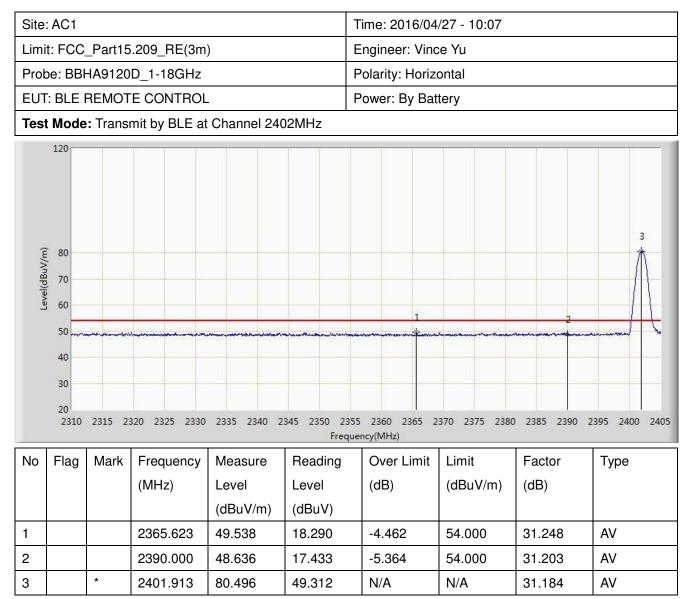
Site: AC1	Time: 2016/04/29 - 15:32
Limit: FCC_Part15.209_RE(3m)	Engineer: Vince Yu
Probe: BBHA9170_18-40GHz	Polarity: Vertical
EUT: BLE REMOTE CONTROL	Power: By Battery

Note: There is the ambient noise within frequency range 18GHz~25GHz.

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			22686.500	55.811	17.457	-18.189	74.000	38.354	PK
2			22686.540	43.598	5.244	-10.402	54.000	38.354	AV
3			24205.500	56.430	17.607	-17.570	74.000	38.823	PK
4		*	24205.658	42.518	3.695	-11.482	54.000	38.823	AV

Note: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

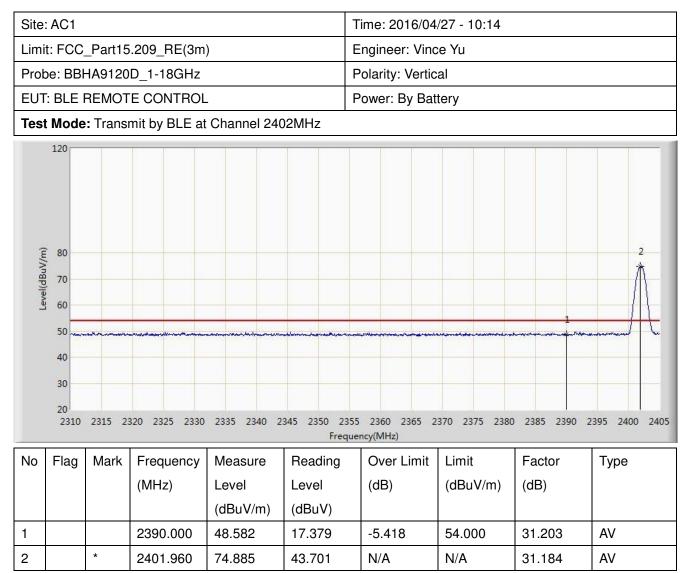
Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)


7.7. Radiated Restricted Band Edge Measurement

7.7.1. Test Result

Site	AC1				Time: 2016/0	04/26 - 17:01				
Limi	t: FCC	_Part15	5.209_RE(3m)		Engineer: Vir	nce Yu			
Prot	be: BBI	HA9120	D_1-18GHz			Polarity: Hori	zontal			
EUT	BLE I	REMOT	E CONTROL			Power: By Ba	attery			
Test	Mode	: Trans	mit by BLE at	Channel 240)2MHz					
	120	1				ľ l			1 1 1	
									3	
Ē	80								<u>/ħ</u>	
Level(dBuV/m)	70									
veltd	10							1 2		
e	60 ++++	shi dago ng ng pang.		n y filje der har freihingen der antikkenen erste bigel		enderstand and approved	washedrows. An administration of the	here and a set on a set of the set	-predomining	
	50	_								
	40	_								
	30									
	20 2310	2315 23	320 2325 2330	2335 2340 2	345 2350 2355 Freque	5 2360 2365 2 ency(MHz)	370 2375 2380	2385 2390 2	2395 2400 2405	
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре	
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	14	
			(1911 12)	(dBuV/m)	(dBuV)					
			0000.000	, ,	· · ·	11.005	74.000	01.010	DK	
1				30.865	-11.925 74.000 31.210 PK			PK		
2			2390.000	60.811	29.608	-13.189	74.000	31.203	PK	
3		*	2402.103	81.460	50.276	N/A	N/A	31.184	PK	

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)



Site	AC1				Time: 2016/04/27 - 10:08						
Limi	t: FCC	_Part15	.209_RE(3m))		Engineer: Vind	ce Yu				
Prob	be: BBH	HA9120	D_1-18GHz			Polarity: Vertic	al				
EUT	BLE I	REMOT	E CONTROL			Power: By Bat	ttery				
Test	Mode	: Transı	mit by BLE at	Channel 240	2MHz						
	120					ia li					
(E	80 —								3		
dBuV/	70					0.28			Â		
Level(dBuV/m)	60	ayarkan suus halayo	an mar a fan an alas a sua das a sua das as			1	onthe matter and a managert of a standard of	2	and the second sec		
	50										
	40										
	30										
	20										
6	2310	2315 23	320 2325 2330	2335 2340 2	345 2350 235 Frequ	5 2360 2365 2 ency(MHz)	2370 2375 2380	2385 2390	2395 2400 2405		
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре		
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)			
				(dBuV/m)	(dBuV)						
1			2358.022	61.403	30.140	-12.597	74.000	31.263	PK		
2			2390.000	59.758	28.555	-14.242	74.000	31.203	PK		
3		*	2402.340	76.209	45.025	N/A	N/A	31.184	PK		

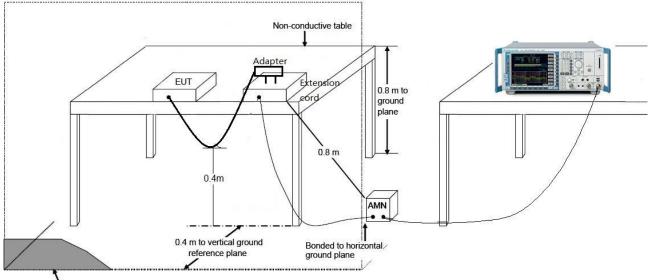
Site	: AC1				-	Time: 2016/04	/27 - 10:27			
Limi	t: FCC	_Part15	.209_RE(3m)		Engineer: Vince Yu				
Prot	be: BBH	HA9120	D_1-18GHz			Polarity: Horiz	ontal			
EUT	BLE I	REMOT	E CONTROL			Power: By Bat	tery			
Test	t Mode	: Transı	mit by BLE at	Channel 248	30MHz					
Level(dBuV/m)	120 80 70 60 m ² 50 40 30 20	1		2 3						
15	2478	2479 248	0 2481 2482 248	33 2484 2485 24		2489 2490 2491 : ency(MHz)	2492 2493 2494	2495 2496 2497	2498 2499 2500	
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре	
	(MHz) Level Level					(dB)	(dBuV/m)	(dB)		
				(dBuV/m)	(dBuV)					
1	* 2479.749 79.793 48.610			48.610	N/A	N/A	31.184	PK		
2			2483.500	59.357	28.164	-14.643	74.000	31.194	PK	
3			2484.523	61.209	30.013	-12.791	74.000	31.196	РК	

Site	Site: AC1 Time: 2016/04/27 - 10:32												
Limi	t: FCC	_Part15	.209_RE(3m))		Engineer: Vind	ce Yu						
Prob	be: BBH	HA9120	D_1-18GHz			Polarity: Horiz	ontal						
EUT	BLE F	REMOT	E CONTROL	-		Power: By Bat	tery						
Test	Test Mode: Transmit by BLE at Channel 2480MHz												
	W M M M M M M M M M M M M M M M M M M M												
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре				
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)					
				(dBuV/m)	(dBuV)								
1	* 2480.046 78.542 47.358					N/A	N/A	31.184	AV				
2			2483.500	48.745	17.552	-5.255	54.000	31.194	AV				
3			2484.930	49.592	18.395	-4.408	54.000	31.197	AV				

Site	AC1					Time: 2016/04	/27 - 10:33		
Limi	t: FCC	_Part15	.209_RE(3m))		Engineer: Vinc	ce Yu		
Prob	e: BBH	HA9120	D_1-18GHz			Polarity: Vertic	al		
EUT	: BLE I	REMOT	E CONTROL	-		Power: By Bat	tery		
Test	Mode	: Transı	mit by BLE at	Channel 248	30MHz				
Level(dBuV/m)	50 40 30 20 2478		0 2481 2482 248		Fred	3 2489 2490 2491 juency(MHz)			
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	2479.672	77.299	46.116	N/A	N/A	31.184	PK
2			2483.500	60.153	28.960	-13.847	74.000	31.194	PK

Site	: AC1					Time: 2016/04	/27 - 10:38		
Limi	t: FCC	_Part15	.209_RE(3m)		Engineer: Vinc	ce Yu		
Prob	be: BBH	HA9120	D_1-18GHz			Polarity: Vertic	al		
EUT	BLE F	REMOT	E CONTROL	_		Power: By Bat	tery		
Test	Mode	: Trans	mit by BLE at	Channel 248	30MHz				
Level(dBuV/m)	50	2479 248	0 2481 2482 248	2		3 2489 2490 2491 : uency(MHz)	2492 2493 2494	2495 2496 2497	2498 2499 2500
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
	(MHz) Level Level					(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	2480.079	75.682	44.498	N/A	N/A	31.184	AV
2			2483.500	48.584	17.391	-5.416	54.000	31.194	AV
3			2490.540	49.673	18.461	-4.327	54.000	31.212	AV

7.8. AC Conducted Emissions Measurement

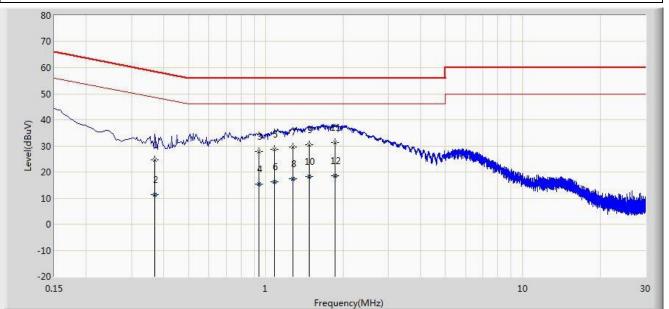

7.8.1. Test Limit

FCC Part 15 Subpart C Paragraph 15.207 Limits									
Frequency (MHz)	QP (dBuV)	AV (dBuV)							
0.15 - 0.50	66 - 56	56 – 46							
0.50 - 5.0	56	46							
5.0 - 30	60	50							

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

7.8.2. Test Setup


Vertical ground reference plane

7.8.3. Test Result

Site: SR2	Time: 2016/05/05 - 17:09
Limit: FCC_Part15.207_CE_AC Power	Engineer: Vince Yu
Probe: ENV216_101683_Filter On	Polarity: Line
EUT: BLE REMOTE CONTROL	Power: AC 120V/60Hz

Test Mode: Transmit by BLE at channel 2402MHz

				r					
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV)	(dB)	
				(dBuV)	(dBuV)				
1			0.370	24.752	14.691	-33.749	58.501	10.061	QP
2			0.370	11.274	1.212	-37.227	48.501	10.061	AV
3			0.942	27.857	17.919	-28.143	56.000	9.938	QP
4			0.942	15.394	5.456	-30.606	46.000	9.938	AV
5			1.078	28.735	18.830	-27.265	56.000	9.905	QP
6			1.078	16.331	6.426	-29.669	46.000	9.905	AV
7			1.274	29.550	19.652	-26.450	56.000	9.899	QP
8			1.274	17.249	7.350	-28.751	46.000	9.899	AV
9			1.474	30.516	20.626	-25.484	56.000	9.890	QP
10			1.474	18.131	8.240	-27.869	46.000	9.890	AV
11		*	1.862	31.209	21.333	-24.791	56.000	9.875	QP
12			1.862	18.621	8.746	-27.379	46.000	9.875	AV

Note: Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB)

Site	: SR2				Т	ime: 2016/05	/05 - 17:18				
Limi	t: FCC	_Part15	.207_CE_AC	Power	E	Engineer: Vince Yu					
Prot	be: EN	V216_1	01683_Filter	On	P	Polarity: Neutral					
EUT	BLE I	REMOT	E CONTROL		P	Power: AC 120V/60Hz					
Test	Mode	: Trans	mit by BLE at	channel 240	2MHz						
Level(dBuV)	80 70 60 50 . 40 . 30 20 10 . 0 . 10		2 4 +	ndar an a		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12 *				
5	-20 0.15			1		ncy(MHz)		10	30		
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре		
			(MHz)	Level	Level	(dB)	(dBuV)	(dB)			
				(dBuV)	(dBuV)						
1			0.258	27.482	17.475	-34.013	61.496	10.007	QP		
2			0.258	7.722	-2.285	-43.774	51.496	10.007	AV		
3			0.450	25.305	15.155	-31.571	56.875	10.150	QP		
4			0.450	6.942	-3.208	-39.933	46.875	10.150	AV		
5			0.610	25.634	15.508	-30.366	56.000	10.126	QP		
6			0.610	6.896	-3.230	-39.104	46.000	10.126	AV		
7			1.454	31.400	21.508	-24.600	56.000	9.892	QP		
8			1.454	12.612	2.720	-33.388	46.000	9.892	AV		
9		*	1.866	32.334	22.457	-23.666	56.000	9.877	QP		
10			1.866	13.501	3.624	-32.499	46.000	9.877	AV		
11			5.514	24.715	14.632	-35.285	60.000	10.083	QP		
12			5.514	8.906	-1.177	-41.094	50.000	10.083	AV		

Factor (dB) = Cable Loss (dB) + LISN Factor (dB)

8. CONCLUSION

The data collected relate only the item(s) tested and show that the **BLE REMOTE CONTROL FCC**

ID: W3QGEMMOTION is in compliance with Part 15C of the FCC Rules.

The End