

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

WIRELESS LAN MODULE

MODEL NUMBER: FZ09913-200

FCC ID: W2Z-02000002 IC: 7736B-02000002

REPORT NUMBER: 33BE0111-SH-R1

ISSUE DATE: SEPTEMBER 24, 2012

Prepared for Fuji Film Corporation 798 Miyanodai, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8538 Japan

Prepared by UL Japan, Inc. Shonan EMC Lab. 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN Telephone number : +81 463 50 6400 Facsimile number : +81 463 50 6401 JAB Accreditation No. : RTL02610

Revision History

Rev.	lssue Date	Revisions	Revised By
	09/24/12	Initial Issue	A.Hayashi
1	10/02/12	Addition of the test instruments (SHA-04, SAF-08, SCC-G17) that was used for the radiated tests. *This report is a revised version of 33BE0111-SH, which is replaced with this report.	A.Hayashi
		EXPOSURE" to a "Not applied". Addition of the "10.Statement for exclusion of RF Exposure".	

Page 2 of 130

TABLE OF CONTENTS

1.	ATTES	STATION OF TEST RESULTS	. 5
2.	TEST	METHODOLOGY	. 6
3.	FACIL	ITIES AND ACCREDITATION	. 6
4.	CALIB	RATION AND UNCERTAINTY	. 6
4	.1. M	EASURING INSTRUMENT CALIBRATION	. 6
4	.2. SA	AMPLE CALCULATION	. 6
4	² .3. MI	EASUREMENT UNCERTAINTY	. 6
5.	EQUIP	MENT UNDER TEST	. 7
5	5.1. DE	ESCRIPTION OF EUT	. 7
5	5.2. M	AXIMUM OUTPUT POWER	. 7
5	5.3. DE	ESCRIPTION OF AVAILABLE ANTENNAS	. 7
5	5.4. SC	OFTWARE AND FIRMWARE	. 7
5	5.5. W	ORST-CASE CONFIGURATION AND MODE	. 8
5	5.6. DE	ESCRIPTION OF TEST SETUP	. 9
6.	TEST	AND MEASUREMENT EQUIPMENT	11
7.	ANTEN	NNA PORT TEST RESULTS	13
7	.1. 80	2.11b MODE IN THE 2.4 GHz BAND	13
	7.1.1.		13
	7.1.2. 7.1.3.	99% BANDWIDTH	19
	7.1.4.		20
	7.1.5. 7.1.6.	CONDUCTED SPURIOUS EMISSIONS	21 24
7	.2. 80	02.11a MODE IN THE 2.4 GHz BAND	34
	7.2.1.	6 dB BANDWIDTH	34
	7.2.2. 7 2 3	99% BANDWIDTH	37 40
	7.2.4.	AVERAGE POWER	41
	7.2.5.		42 45
-	7.2.0.		40 55
/	.s. ou 7.3.1.	6 dB BANDWIDTH	55
	7.3.2.		58
	7.3.3. 7.3.4.	AVERAGE POWER	61 62
	7.3.5.	POWER SPECTRAL DENSITY	63
_	7.3.6.		66
7	7.4. 80 7.4.1	2.11n H I 40 SISO MODE IN THE 2.4 GHz BAND 6 dB BANDWIDTH	76 76
		Page 3 of 130	

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

	7.4.2.	99% BANDWIDTH	79
	7.4.3.	OUTPUT POWER	82
	7.4.4.	AVERAGE POWER	83
	7.4.5.	POWER SPECTRAL DENSITY	84
	7.4.6.	CONDUCTED SPURIOUS EMISSIONS	87
8.	RADIAT	ED TEST RESULTS	97
8	.1. LIM	ITS AND PROCEDURE	97
8	.2. TRA	ANSMITTER ABOVE 1 GHz	98
-	8.2.1.	802.11b MODE	98
	8.2.2.	802.11g MODE	03
	8.2.3.	802.11n HT20 SISO MODE	08
	8.2.4.	802.11n HT40 SISO MODE	13
8	.3. WO	RST-CASE BELOW 1 GHz 1	118
8	.4. AC	POWER LINE CONDUCTED EMISSIONS 1	121
9	ΜΔΧΙΜΙ		25
J .			20
10.	Staten	nent for exclusion of RF Exposure1	26
11.	SETU	Р РНОТОЅ 1	27

Page 4 of 130

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	Fuji Film Corporation 798 Miyanodai, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8538	3 Japan
EUT DESCRIPTION:	Wireless LAN Module	
MODEL:	FZ09913-200	
SERIAL NUMBER:	719591 (Antenna port tests), 71958E (other tests)	
DATE TESTED:	SEPTEMBER 12-18, 2012	
	APPLICABLE STANDARDS	
	STANDARD	TEST RESULTS
CF	R 47 Part 15 Subpart C	Pass
INDUSTRY C	ANADA RSS-210 Issue 8 Annex 8	Pass
INDUSTR	RY CANADA RSS-GEN Issue 3	Pass

UL Japan Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Japan, Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Japan, Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Japan, Inc. will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by any government agency.

Approved & Released For UL Japan, Inc. By:

Go Ishiwata Manager of WiSE Japan, UL Verification Service

Tested By:

. Marjash

Akio Hayashi Engineer of WiSE Japan, UL Verification Service

Page 5 of 130

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN.

UL Japan is accredited by JAB, Laboratory Code RTL02610. The full scope of accreditation can be viewed at http://www.jab.or.jp/cgi-bin/jab exam proof j.cgi?page=2&authorization number=RTL02610

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY	
Power Line Conducted Emission	150kHz-30MHz	+/- 3.5 dB
	30MHz-300MHz	+/- 4.9 dB
	300MHz-1000MHz	+/- 4.9 dB
Radiated Emission	1GHz-15GHz	+/- 4.9 dB
	15GHz-18GHz	+/- 5.6 dB
	18GHz-26.5GHz	+/- 4.4 dB

Uncertainty figures are valid to a confidence level of 95% using a coverage factor k=2.

Page 6 of 130

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Wireless LAN Module.

The radio module is manufactured by Mitsumi.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2412 - 2462	b	16.53	44.98
2412 - 2462	g	20.08	101.86
2412 - 2462	HT20 SISO	20.04	100.93
2422 - 2452	HT40 SISO	19.82	95.94

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes PCB Printed antenna, with a maximum gain of -4.14 dBi.

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was WiFi_GUI_TOOL (Release x86) Ver. 1.0.0.0.

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

All final tests in the 802.11b Mode were made at 1 Mb/s. All final tests in the 802.11g mode were made at 6 Mb/s. All final tests in the 802.11n HT20 SISO mode were made at MCS 0. All final tests in the 802.11n HT40 SISO mode were made at MCS 0.

The fundamental and spurious was measured in three different orientations X, Y and Z to find worst-case orientation, and final testing for radiated emissions was performed with EUT in following orientation.

	Horizontal	Vertical
Carrier	Х	Y
Spurious (below 1GHz)	Х	Y
Spurious (above 1GHz)	Х	Y
Spurious (Harmonics)	Х	Y

Page 8 of 130

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)		$(M/m \wedge 2)$	(m)M(om A2)
		(11)	(авш)	(аы)	(**/11-2)	(11100/011-2)

I/O CABLES

Cable No.	Port	# of Identica Ports	Connector Type	Cable Type	Cable Length	Remarks
1	Flat	1	FPC	Un-shielded	0.04m	N/A
2	DC	1	DC	Un-shielded	1.2m	N/A
3	AC	1	AC	Un-shielded	0.9m	N/A
4	DC	1	DC	Un-shielded	1.9m	N/A

Page 9 of 130


```
SETUP DIAGRAM FOR TESTS
```

Page 10 of 130

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
SOS-06	Humidity Indicator	A&D	AD-5681	4062118	AT	2012/03/26 * 12
SPM-06	Power Meter	Anritsu	ML2495A	850009	AT	2012/04/19 * 12
SPSS-03	Power sensor	Anritsu	MA2411B	917063	AT	2012/04/19 * 12
SAT20-07	Attenuator	Weinschel Corp.	54A-20	31484	AT	2012/04/12 * 12
SCC-G12	Coaxial Cable	Suhner	SUCOFLEX 102	30790/2	AT	2012/03/12 * 12
KSA-08	Spectrum Analyzer	Agilent	E4446A	MY46180525	AT	2012/02/16 * 12
SAEC-03(NSA)	Semi-Anechoic Chamber	ТDК	SAEC-03(NSA)	3	RE	2011/09/23 * 12
SAF-06	Pre Amplifier	TOYO Corporation	TPA0118-36	1440491	RE	2012/07/18 * 12
SCC-G03	Coaxial Cable	Suhner	SUCOFLEX 104A	46499/4A	RE	2012/04/10 * 12
SCC-G23	Coaxial Cable	Suhner	SUCOFLEX 104	297342/4	RE	2012/05/22 * 12
SHA-03	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-739	RE	2012/08/17 * 12
SOS-05	Humidity Indicator	A&D	AD-5681	4062518	RE	2012/02/06 * 12
KSA-08	Spectrum Analyzer	Agilent	E4446A	MY46180525	RE	2012/02/16 * 12
SAT20-01	Attenuator(above1G Hz)	Agilent	8493C-020	74889	RE	2011/12/27 * 12
SFL-02	Highpass Filter	MICRO-TRONICS	HPM50111	51	RE	2011/12/27 * 12
SAF-03	Pre Amplifier	SONOMA	310N	290213	RE	2012/02/10 * 12
SAT6-03	Attenuator	JFW	50HF-006N	-	RE	2012/02/10 * 12
SBA-03	Biconical Antenna	Schwarzbeck	BBA9106	91032666	RE	2011/10/23 * 12
SCC- C1/C2/C3/C4/C 5/C10/SRSE-03	Coaxial Cable&RF Selector	Fujikura/Fujikura/Suhn er/Suhner/Suhner/Suh ner/TOYO	8D2W/12DSFA/14 1PE/141PE/141P E/141PE/NS4906	-/0901-271(RF Selector)	RE	2012/04/10 * 12
SLA-03	Logperiodic Antenna	Schwarzbeck	UHALP9108A	UHALP 9108- A 0901	RE	2011/10/23 * 12
SHA-04	Horn Antenna	ETS LINDGREN	3160-09	LM3640	RE	03/30/2012 * 12
SAF-08	Pre Amplifier	TOYO Corporation	HAP18-26W	00000019	RE	03/12/2012 * 12
SCC-G17	Coaxial Cable	Suhner	SUCOFLEX 104A	46291/4A	RE	03/12/2012 * 12
SJM-10	Measure	PROMART	SEN1935	-	CE	-
COTS-SEMI-1	EMI Software	TSJ	TEPTO- DV(RE,CE,RFI,MF)	-	CE	-
SCC- C9/C10/SRSE- 03	Coaxial Cable&RF Selector	Suhner/Suhner/TOYO	RG223U/141PE/N S4906	-/0901-271(RF Selector)	CE	2012/04/10 * 12
SLS-05	LISN	Rohde & Schwarz	ENV216	100516	CE	2012/02/23 * 12
SAT3-06	Attenuator	JFW	50HF-003N	-	CE	2012/02/17 * 12
STM-05	Terminator	ТМЕ	CT-01 BP	-	CE	2012/01/05 * 12
STR-03	Test Receiver	Rohde & Schwarz	ESI40	100054/040	CE	2012/06/14 * 12

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Page 11 of 130

Test Item:

RE: Radiated emission, CE: Conducted emission, AT: Antenna terminal disturbance voltage

Page 12 of 130

7. ANTENNA PORT TEST RESULTS

7.1. 802.11b MODE IN THE 2.4 GHz BAND

7.1.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	9.14	0.5
Middle	2437	9.15	0.5
High	2462	9.14	0.5

Page 13 of 130

6 dB BANDWIDTH

Page 14 of 130

UL Japan, Inc. Shonan EMC Lab. 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401 This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

Page 15 of 130

7.1.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% of SPAN. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	11.9271
Middle	2437	11.9501
High	2462	11.9662

Page 16 of 130

99% BANDWIDTH

Page 17 of 130

Page 18 of 130

7.1.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power sensor with power meter.

RESULTS

The cable assembly insertion loss of 21.60dB (including 20.25 dB pad and 1.35dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power	
	(MHz)	(dBm)	
Low	2412	16.04	
Middle	2437	16.41	
High	2462	16.53	

Page 19 of 130

7.1.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power sensor with power meter.

RESULTS

The cable assembly insertion loss of 21.60dB (including 20.25 dB pad and 1.35dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power	
	(MHz)	(dBm)	
Low	2412	12.82	
Middle	2437	12.91	
High	2462	12.98	

Page 20 of 130

7.1.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-15.95	8	-23.95
Middle	2437	-15.84	8	-23.84
High	2462	-15.44	8	-23.44

Page 21 of 130

POWER SPECTRAL DENSITY

Page 22 of 130

Page 23 of 130

7.1.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 9 kHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

Page 24 of 130

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

Page 25 of 130

Page 26 of 130

Page 27 of 130

SPURIOUS EMISSIONS, MID CHANNEL

Page 28 of 130

Page 29 of 130

Page 30 of 130

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 31 of 130

Page 32 of 130

Page 33 of 130

7.2. 802.11g MODE IN THE 2.4 GHz BAND

7.2.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

<u>RESULTS</u>

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	16.49	0.5
Middle	2437	16.51	0.5
High	2462	16.52	0.5

Page 34 of 130

6 dB BANDWIDTH

Page 35 of 130

UL Japan, Inc. Shonan EMC Lab. 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401 This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

Page 36 of 130
7.2.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% of SPAN. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	17.1357
Middle	2437	17.1288
High	2462	17.2622

Page 37 of 130

99% BANDWIDTH

Page 38 of 130

Page 39 of 130

7.2.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power sensor with power meter.

RESULTS

The cable assembly insertion loss of 21.60dB (including 20.25 dB pad and 1.35dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power	
	(MHz)	(dBm)	
Low	2412	19.89	
Middle	2437	20.03	
High	2462	20.08	

Page 40 of 130

7.2.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power sensor with power meter.

RESULTS

The cable assembly insertion loss of 21.60dB (including 20.25 dB pad and 1.35dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency Power	
	(MHz)	(dBm)
Low	2412	11.01
Middle	2437	11.13
High	2462	11.30

Page 41 of 130

7.2.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-17.82	8	-25.82
Middle	2437	-17.25	8	-25.25
High	2462	-16.97	8	-24.97

Page 42 of 130

POWER SPECTRAL DENSITY

Page 43 of 130

Page 44 of 130

7.2.6. CONDUCTED SPURIOUS EMISSIONS

<u>LIMITS</u>

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 9 kHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

Page 45 of 130

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

Page 46 of 130

Page 47 of 130

Page 48 of 130

SPURIOUS EMISSIONS, MID CHANNEL

Page 49 of 130

Page 50 of 130

Page 51 of 130

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 52 of 130

Page 53 of 130

Page 54 of 130

7.3. 802.11n HT20 SISO MODE IN THE 2.4 GHz BAND

7.3.1. 6 dB BANDWIDTH

<u>LIMITS</u>

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

<u>RESULTS</u>

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	17.69	0.5
Middle	2437	17.69	0.5
High	2462	17.70	0.5

Page 55 of 130

6 dB BANDWIDTH

Page 56 of 130

Page 57 of 130

7.3.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% of SPAN. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	17.8435
Middle	2437	17.8316
High	2462	17.8159

Page 58 of 130

99% BANDWIDTH

Page 59 of 130

Page 60 of 130

7.3.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power sensor with power meter.

RESULTS

The cable assembly insertion loss of 21.60dB (including 20.25 dB pad and 1.35dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	19.81
Middle	2437	20.04
High	2462	20.01

Page 61 of 130

7.3.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power sensor with power meter.

RESULTS

The cable assembly insertion loss of 21.60dB (including 20.25 dB pad and 1.35dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency Power	
	(MHz)	(dBm)
Low	2412	11.04
Middle	2437	11.07
High	2462	11.32

Page 62 of 130

7.3.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-17.67	8	-25.67
Middle	2437	-17.61	8	-25.61
High	2462	-17.18	8	-25.18

Page 63 of 130

POWER SPECTRAL DENSITY

Page 64 of 130

Page 65 of 130

7.3.6. CONDUCTED SPURIOUS EMISSIONS

<u>LIMITS</u>

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 9 kHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

Page 66 of 130

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

Page 67 of 130

Page 68 of 130

Page 69 of 130

SPURIOUS EMISSIONS, MID CHANNEL

Page 70 of 130

Page 71 of 130

Page 72 of 130
SPURIOUS EMISSIONS, HIGH CHANNEL

Page 73 of 130

Page 74 of 130

Page 75 of 130

7.4. 802.11n HT40 SISO MODE IN THE 2.4 GHz BAND

7.4.1. 6 dB BANDWIDTH

<u>LIMITS</u>

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

<u>RESULTS</u>

Channel	Frequency	6 dB Bandwidth	Minimum Limit			
	(MHz)	(MHz)	(MHz)			
Low	2422	36.13	0.5			
Middle	2437	36.39	0.5			
High	2452	36.26	0.5			

Page 76 of 130

6 dB BANDWIDTH

Page 77 of 130

UL Japan, Inc. Shonan EMC Lab. 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401 This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

Page 78 of 130

7.4.2. 99% BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% of SPAN. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2422	36.1066
Middle	2437	36.1223
High	2452	36.0623

Page 79 of 130

99% BANDWIDTH

Page 80 of 130

Page 81 of 130

7.4.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power sensor with power meter.

RESULTS

The cable assembly insertion loss of 21.60dB (including 20.25 dB pad and 1.35dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2422	19.74
Middle	2437	19.78
High	2452	19.82

Page 82 of 130

7.4.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power sensor with power meter.

RESULTS

The cable assembly insertion loss of 21.60dB (including 20.25 dB pad and 1.35dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power				
	(MHz)	(dBm)				
Low	2422	10.79				
Middle	2437	10.98				
High	2452	11.10				

Page 83 of 130

7.4.5. POWER SPECTRAL DENSITY

<u>LIMITS</u>

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2422	-18.81	8	-26.81
Middle	2437	-20.01	8	-28.01
High	2452	-19.13	8	-27.13

Page 84 of 130

POWER SPECTRAL DENSITY

Page 85 of 130

Page 86 of 130

7.4.6. CONDUCTED SPURIOUS EMISSIONS

<u>LIMITS</u>

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 9 kHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

Page 87 of 130

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

Page 88 of 130

Page 89 of 130

Page 90 of 130

SPURIOUS EMISSIONS, MID CHANNEL

Page 91 of 130

Page 92 of 130

Page 93 of 130

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 94 of 130

Page 95 of 130

Page 96 of 130

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 97 of 130

8.2. TRANSMITTER ABOVE 1 GHz

8.2.1. 802.11b MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Page 98 of 130

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Page 99 of 130

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Page 100 of 130

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 101 of 130

UL Japan, Inc. Shonan EMC Lab. 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401 This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

HARMONICS AND SPURIOUS EMISSIONS

Radiated Emission

Test place Date Engineer Mode

UL Japan, Inc. Shonan EMC Lab. September 12, 2012 Temperature / Humidity 28 deg.C , 46%RH Akio Hayashi Tx, IEEE802.11b

No.3 Semi Anechoic Chamber September 13, 2012 24 deg.C , 48%RH Akio Hayashi

MH ₇		

Tx 2412MHz												
Polarity	Frequency	Detector	Reading	Ant Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4824.000	PK	51.0	31.1	6.8	41.2	47.7	73.9	26.2	100	217	
Hori.	4824.000	AV	43.5	31.1	6.8	41.2	40.2	53.9	13.7	100	217	
Vert.	4824.000	PK	50.7	31.1	6.8	41.2	47.4	73.9	26.5	119	150	
Vert.	4824.000	AV	43.4	31.1	6.8	41.2	40.1	53.9	13.8	119	150	

Tx 2437MHz

Polarity	Frequency	Detector	Reading	Ant Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4874.000	PK	49.6	31.3	6.9	41.1	46.7	73.9	27.2	100	158	
Hori.	4874.000	AV	41.5	31.3	6.9	41.1	38.6	53.9	15.3	100	158	1
Vert.	4874.000	PK	50.4	31.3	6.9	41.1	47.5	73.9	26.4	100	225	1
Vert.	4874.000	AV	42.9	31.3	6.9	41.1	40.0	53.9	13.9	100	225	1

Tx 2462MHz

142402101	112											
Polarity	Frequency	Detector	Reading	Ant Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4924.000	PK	50.9	31.5	6.9	41.0	48.3	73.9	25.6	100	250	
Hori.	4924.000	AV	43.2	31.5	6.9	41.0	40.6	53.9	13.3	100	250	
Vert.	4924.000	PK	52.0	31.5	6.9	41.0	49.4	73.9	24.5	106	227	
Vert.	4924.000	AV	44.8	31.5	6.9	41.0	42.2	53.9	11.7	106	227	
ver.	4924.000	AV	-++.0	51.5	0.9	41.0	42.2	33.9	11.7	100	221	

 Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 15GHz)) - Gain(Amprifier)

 *Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

 No noise was detected above the 3rd order harmonics.

 Distance factor :
 15GHz

 40GHz :
 20log(3.0m/1.0m)=

 9.5dB

20log(3.0m/1.0m)= 9.5dB

Page 102 of 130

8.2.2. 802.11g MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Page 103 of 130

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Page 104 of 130

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Page 105 of 130

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 106 of 130

HARMONICS AND SPURIOUS EMISSIONS

Radiated Emission

Test place
Date
Temperature / Humidity
Engineer
Mode

Akio Hayashi Tx, IEEE802.11g

UL Japan, Inc. Shonan EMC Lab. No.3 Semi September 12, 2012 September 13, 2012 20 Jac C 46%RH 24 deg.C , 48%RH No.3 Semi Anechoic Chamber Akio Hayashi

Tr 2412MU-

1X 241200	nz.											
Polarity	Frequency	Detector	Reading	Ant Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4824.000	PK	50.6	31.1	6.8	41.2	47.3	73.9	26.6	100	50	
Hori.	4824.000	AV	43.3	31.1	6.8	41.2	40.0	53.9	13.9	100	50	
Vert.	4824.000	PK	50.4	31.1	6.8	41.2	47.1	73.9	26.8	107	235	
Vert.	4824.000	AV	43.0	31.1	6.8	41.2	39.7	53.9	14.2	107	235	

Tx 2437MHz

Polarity	Frequency	Detector	Reading	Ant Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4874.000	PK	49.4	31.3	6.9	41.1	46.5	73.9	27.4	130	55	
Hori.	4874.000	AV	40.9	31.3	6.9	41.1	38.0	53.9	15.9	130	55	
Vert.	4874.000	PK	50.1	31.3	6.9	41.1	47.2	73.9	26.7	137	231	
Vert.	4874.000	AV	42.6	31.3	6.9	41.1	39.7	53.9	14.2	137	231	

Tx 2462MHz

Polarity	Frequency	Detector	Reading	Ant Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4924.000	PK	50.3	31.5	6.9	41.0	47.7	73.9	26.2	100	250	
Hori	4924.000	AV	41.7	31.5	6.9	41.0	39.1	53.9	14.8	100	250	
Vert.	4924.000	PK	51.0	31.5	6.9	41.0	48.4	73.9	25.5	104	232	
Vert.	4924.000	AV	44.1	31.5	6.9	41.0	41.5	53.9	12.4	104	232	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 15GHz)) - Gain(Amprifier)
 "Other frequency noise omitted in this report were not seen or have enough margin (more than 20dB).

 No noise was detected above the 3rd order harmonics.

 Distance factor :
 15GHz
 -40GHz :
 20log(3.0m/1.0m)= 9.5dB

20log(3.0m/1.0m)= 9.5dB

Page 107 of 130

8.2.3. 802.11n HT20 SISO MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Page 108 of 130
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Page 109 of 130

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Page 110 of 130

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 111 of 130

HARMONICS AND SPURIOUS EMISSIONS

Radiated Emission

Test place	UL Japan,
Date	September
Temperature / Humidity	28 deg.C
Engineer	Akio Haya
Mode	Tx, IEEE8

, Inc. Shonan EMC Lab. r 12, 2012 ,46%RH ashi 802.11n HT20

No.3 Semi Anechoic Chamber September 13, 2012 24 deg.C , 48%RH Akio Hayashi

Tx 2412MHz

1 A 2412IVL	112											
Polarity	Frequency	Detector	Reading	Ant Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4824.000	PK	50.4	31.1	6.8	41.2	47.1	73.9	26.8	100	49	
Hori.	4824.000	AV	43.1	31.1	6.8	41.2	39.8	53.9	14.1	100	49	
Vert.	4824.000	PK	50.8	31.1	6.8	41.2	47.5	73.9	26.4	135	233	
Vert.	4824.000	AV	43.8	31.1	6.8	41.2	40.5	53.9	13.4	135	233	

Tx 2437MHz

	•											
Polarity	Frequency	Detector	Reading	Ant Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4874.000	PK	50.0	31.3	6.9	41.1	47.1	73.9	26.8	106	51	
Hori.	4874.000	AV	41.8	31.3	6.9	41.1	38.9	53.9	15.0	106	51	
Vert.	4874.000	PK	50.3	31.3	6.9	41.1	47.4	73.9	26.5	100	231	
Vert.	4874.000	AV	43.1	31.3	6.9	41.1	40.2	53.9	13.7	100	231	

Tx 2462MHz

Polarity	Frequency	Detector	Reading	Ant Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4924.000	PK	50.4	31.5	6.9	41.0	47.8	73.9	26.1	100	72	
Hori.	4924.000	AV	41.4	31.5	6.9	41.0	38.8	53.9	15.1	100	72	
Vert.	4924.000	PK	51.4	31.5	6.9	41.0	48.8	73.9	25.1	112	229	
Vert.	4924.000	AV	44.0	31.5	6.9	41.0	41.4	53.9	12.5	112	229	

 Result = Reading + Ant Factor + Loss (Cable+Attennator+Filter-Distance factor(above 15GHz)) - Gain(Amprifier)

 *Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

 No noise was detected above the 3rd order harmonics.

 Distance factor :
 15GHz

 40GHz :
 20log(3.0m/1.0m)= 9.5dB

Page 112 of 130

8.2.4. 802.11n HT40 SISO MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Page 113 of 130

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Page 114 of 130

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Page 115 of 130

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 116 of 130

HARMONICS AND SPURIOUS EMISSIONS

Radiated Emission

Test place
Date
Temperature / Humidity
Engineer
Mode

UL Japan, Inc. Shonan EMC Lab. September 12, 2012 28 deg.C , 46%RH Akio Hayashi Tx, IEEE802.11n HT40

No.3 Semi Anechoic Chamber September 13, 2012 24 deg.C , 48%RH Akio Hayashi

T-- 2422MU-

1 X 2422IVII	12											
Polarity	Frequency	Detector	Reading	Ant Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4844.000	PK	50.1	31.2	6.8	41.1	47.0	73.9	26.9	108	40	
Hori.	4844.000	AV	43.3	31.2	6.8	41.1	40.2	53.9	13.7	108	40	
Vert.	4844.000	PK	51.1	31.2	6.8	41.1	48.0	73.9	25.9	104	234	
Vert.	4844.000	AV	43.5	31.2	6.8	41.1	40.4	53.9	13.5	104	234	

Tx 2437MHz

Tx 2452MHz

Polarity	Frequency	Detector	Reading	Ant Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	4904.000	PK	50.7	31.4	6.9	41.0	48.0	73.9	25.9	100	55	
Hori.	4904.000	AV	42.4	31.4	6.9	41.0	39.7	53.9	14.2	100	55	
Vert.	4904.000	PK	50.9	31.4	6.9	41.0	48.2	73.9	25.7	107	229	
Vert.	4904.000	AV	43.0	31.4	6.9	41.0	40.3	53.9	13.6	107	229	

Result = Reading + Ant Factor + Loss (Cable+Attennator+Filter-Distance factor(above 15GHz)) - Gain(Amprifier)

"Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).
 No noise was detected above the 3rd order harmonics.
 Distance factor: 15GHz 40GHz: 20log(3.0m/1.0m)= 9.5dB

Page 117 of 130

8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Page 118 of 130

RADIATED EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 119 of 130

RADIATED EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

HORIZONTA	AL ANE) VI	ERT	ICA	L DA	TA							
				<u>DA</u>	<u>ta o</u>	FR	ADI	AT	<u>ED</u> יוג	EN Japan	1153 , Inc.	Shonan EMC Lab. No.3 Semi-Anechoic Chamber	
C K M S S	Company (ind of EUT Model No. Serial No. Remarks	:	MITS Wirel DWM 7195	UMI ELI ess LAI -W094 58E	CTRIC C Module	0., LTD.			Mod Rep Pow Tem	e ort No er p./Hu). Jmi.	: Tx 2.4GHz Worst Case : 33BE0111-SH : DC 3.3V : 25deg.C. / 65%RH	
Li	.imit1 : FCC	15.20	9 3m,	below 1	GHz:QP,	above 1	GHz:P	к	Engi	neer		: Akio Hayashi	
<	< OP DATA	>> Reading			Result	Limit	Margin					1	
Ν	No. Freq. [MHz]	<qp> [dBuV]</qp>	Ant.Fac [dB/m]	Loss Ga [dB] [dl	in <qp> [dBuV/m]</qp>	<qp> [dBuV/m]</qp>	<qp> [dB]</qp>	Pola. [H/V]	Height [cm]	Angle [deg]	Ant. Type	Comment	·
	1 30,480 2 52,000 3 67,879 4 78,000 6 520,000 7 721,234 8 30,480 9 52,000 10 67,879 11 78,000 12 130,000 13 520,000 14 721,234	238 236 240 237 236 235 232 237 236 266 263 243 234 234 234	17.8 17.8 10.5 7.0 6.2 13.6 18.0 20.7 17.8 10.5 7.0 6.2 13.6 18.0 20.7	Image Image <th< td=""><td>2 2 159 2 86 2 53 2 50 1 125 8 22 2 86 2 53 1 125 8 223 2 158 2 86 2 7.9 2 56 1 123 0 18,5 8 223</td><td>400 400 400 400 400 400 400 400 435 460 400 400 400</td><td>24.1 31.4 34.7 35.0 27.0 23.7 24.2 31.4 32.1 34.4 31.2 27.5 23.5</td><td>Hori Hori Hori Hori Hori Hori Hori Vert. Vert.</td><td>300 151 100 121 120 152 100 100 100 100 100 100</td><td>275 144 2 285 61 159 6 8 8 321 155 358 321 155 358 321 4 284</td><td>BC BC BC BC BC BC BC BC BC BC BC BC BC B</td><td></td><td></td></th<>	2 2 159 2 86 2 53 2 50 1 125 8 22 2 86 2 53 1 125 8 223 2 158 2 86 2 7.9 2 56 1 123 0 18,5 8 223	400 400 400 400 400 400 400 400 435 460 400 400 400	24.1 31.4 34.7 35.0 27.0 23.7 24.2 31.4 32.1 34.4 31.2 27.5 23.5	Hori Hori Hori Hori Hori Hori Hori Vert. Vert.	300 151 100 121 120 152 100 100 100 100 100 100	275 144 2 285 61 159 6 8 8 321 155 358 321 155 358 321 4 284	BC BC BC BC BC BC BC BC BC BC BC BC BC B		
Ċ	Calculation:R Int.Type=BC	esult [(:Bicon	dBuV/r ical An	n] =Rea tenna, L	ding [dBu P:Logper	V] +Ant. iodic An	Fac [d tenna,	B∕m] SHA(+Los D3:Ho	s (Cal rn An	ble+A tenna	NTT) [dB] – Gain (AMP) [dB] I	

Page 120 of 130

8.4. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

Frequency of Emission (MHz)	Conducted L	imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

ANSI C63.4

Page 121 of 130

RESULTS

Lim Lim	it1 : FCC it2 : FCC	15C (1) 15C (1)	5.207) 5.207)	QP AV				En	gineer		: Ak	io Hayashi
<<	QP/AV DA	ATA >>										
No	Freq.	<pre> Rea </pre>	ding < AV>	C.Fac	<pre>COP></pre>	sults < AV>	Li COP>	mit < AV>	Margin		Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]	Thase	Comment
1	0.15600	30.6	4.7	12.7	43.3	17.4	65.6	55.6	22.3	38.2	N	
2	0.18200	34.8	19.2	12.7	47.5	31.9	64.3	54.3	16.8	22.4	N	
4	0.33400	13.4	1.7	12.7	26.1	14.4	59.3	49.3	33.2	34.9	N	
5	0.42300	18.4	12.8	12.7	31.1	25.5	57.3	47.3	26.2	21.8	N	
6	3.62240	11.3	2.5	12.8	24.1	15.3	56.0	46.0	31.9	30.7	N	
	0.15600	302	4.6	12./	42.9	17.3	65.6 64.0	55.6	22.7	38.3		
9	0.24300	26.9	12.4	12.7	39.6	25.1	61.9	51.9	22.3	26.8	L1	
10	0.33400	13.7	1.2	12.7	26.4	13.9	59.3	49.3	32.9	35.4	L1	
11	0.42300	17.5	13.3	12.7	30.2	26.0	57.3	47.3	27.1	21.3	L1	
12	3.62240	14.3	4.9	12.8	27.1	17.7	56.0	46.0	28.9	28.3	L I	
				- -								
1												
1												
1												

 $\label{eq:calculation:Result [dBuV] = Reading [dBuV] + C.Fac (LISN+Cable+ATT) [dB] \\ LISN:SLS-05$

Page 122 of 130

LINE 1 RESULTS

Page 123 of 130

LINE 2 RESULTS

Page 124 of 130