



Project No.: Report No.: TM-2405000351P TMWK2405001686KS FCC ID: W2Z-01000016

Page: 1/36 Rev.: 00

# SAR TEST REPORT

FCC 47 CFR § 2.1093 IEEE Std 1528-2013

for

**Flat Panel Sensor** 

### Model: DR-ID 1285SE

Prepared for:

Fuji Film Corporation 7-3, AKASAKA 9-CHOME, MINATO-KU, Tokyo, 107-0052, Japan

Prepared by

Compliance Certification Services Inc. Wugu Lab. No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan. Issued Date: July 9, 2024

Note: This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NIST or any government agencies. The test results in the report only apply to the tested sample.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com.tw/Terms-and-Conditions">http://www.sgs.com.tw/Terms-and-Conditions</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com.tw/Terms-and-Conditions">http://www.sgs.com.tw/Terms-and-Conditions</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City , Taiwan /新北市五股區五工六路 11 號 t:(886-2) 2299-9720 f:(886-2) 2299-9721 www.sgs.com.tw



Page: 2/36 Rev.: 00

# **Revision History**

| Rev. | Issue<br>Date | Revisions     | Effect Page | Revised By |
|------|---------------|---------------|-------------|------------|
| 00   | July 9, 2024  | Initial Issue | ALL         | Peggy Tsai |



Page: 3 / 36 Rev.: 00

# **Table of Contents**

| 1  | ATT  | ESTATION OF TEST RESULTS                     | 4  |
|----|------|----------------------------------------------|----|
| 2  | TES  | T SPECIFICATION, METHODS AND PROCEDURES      | 5  |
| 3  | DEV  | ICE UNDER TEST (DUT) INFORMATION             | 6  |
|    | 3.1  | DUT DESCRIPTION                              | 6  |
|    | 3.2  | WIRELESS TECHNOLOGIES                        | 7  |
| 4  | SAR  | MEASUREMENT SYSTEM                           | 8  |
|    | 4.1  | SYSTEM COMPONENTS                            | 9  |
|    | 4.2  | SAR SCAN PROCEDURES                          | 12 |
| 5  | MEA  | SUREMENT UNCERTAINTY                         | 14 |
| 6  | RFE  | EXPOSURE CONDITIONS (TEST CONFIGURATIONS)    | 15 |
|    | 6.1  | STANDALONE SAR TEST EXCLUSION CONSIDERATIONS | 15 |
|    | 6.2  | REQUIRED TEST CONFIGURATIONS                 | 17 |
| 7  | DIEL | ECTRIC PROPERTY MEASUREMENTS & SYSTEM CHECK  | 18 |
|    | 7.1  | DIELECTRIC PROPERTY MEASUREMENTS             |    |
|    | 7.2  | SYSTEM CHECK                                 | 21 |
| 8  | CON  | IDUCTED OUTPUT POWER MEASUREMENTS            | 23 |
|    | 8.1  | WI-FI 2.4GHZ (DTS BAND)                      | 23 |
|    | 8.2  | WI-FI 5GHZ (U-NII BANDS)                     | 24 |
| 9  | MEA  | SURED AND REPORTED (SCALED) SAR RESULTS      | 27 |
|    | 9.1  | WI-FI (DTS BAND)                             | 27 |
|    | 9.2  | WI-FI (U-NII BAND)                           | 27 |
| 10 | SAR  | MEASUREMENT VARIABILITY                      | 28 |
| 11 | SIM  | ULTANEOUS TRANSMISSION SAR ANALYSIS          | 30 |
|    | 11.1 | SUM OF THE SAR FOR WI-FI & WI-FI             | 32 |
| 12 | EQU  | IPMENT LIST & CALIBRATION STATUS             | 33 |
| 13 | FAC  | ILITIES                                      | 35 |
| 14 | APP  | ENDIXES                                      | 36 |



### 1 Attestation of Test Results

| Applicant Name              | Fuji Film Corporation                         |            |  |  |  |  |  |  |  |
|-----------------------------|-----------------------------------------------|------------|--|--|--|--|--|--|--|
| Model                       | DR-ID 1285SE                                  |            |  |  |  |  |  |  |  |
| Applicable Standards        | FCC 47 CFR § 2.1093                           |            |  |  |  |  |  |  |  |
|                             | Published RF exposure KDB procedures          |            |  |  |  |  |  |  |  |
|                             | IEEE Std 1528-2013                            |            |  |  |  |  |  |  |  |
|                             | SAR Limit                                     | s (W/Kg)   |  |  |  |  |  |  |  |
| Exposure Category           | Peak spatia                                   | al-average |  |  |  |  |  |  |  |
|                             | (1g of t                                      | issue)     |  |  |  |  |  |  |  |
| General population          | 1.6                                           |            |  |  |  |  |  |  |  |
| PE Exposure Conditions      | Equipment Class - Highest Reported SAR (W/kg) |            |  |  |  |  |  |  |  |
| RF Exposure Conditions      | DTS                                           | NII        |  |  |  |  |  |  |  |
| Standalone                  | 1.28                                          | 1.23       |  |  |  |  |  |  |  |
| Simultaneous TX             | 1.                                            | 3          |  |  |  |  |  |  |  |
| Receive EUT Date (Original) | 01/16/2024                                    |            |  |  |  |  |  |  |  |
| Receive EUT Date (Update)   | 05/22/2024                                    |            |  |  |  |  |  |  |  |
| Date Tested (Original)      | 02/16/2024 to 02/18/2024                      |            |  |  |  |  |  |  |  |
| Date Tested (Update)        | 05/25/2024                                    | 05/25/2024 |  |  |  |  |  |  |  |
| Test Results                | Pass                                          |            |  |  |  |  |  |  |  |

Compliance Certification Services Inc., tested the above equipment in accordance with the requirements set forth in the above standards. Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainy.All indications of Pass/Fail in this report are opinions expressed by Compliance Certification Services Inc, based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Approved & Released By:

Tested by:

Jack Iana Sky Zhou Jack Yang Asst. Section Manager Engineer Compliance Certification Services Inc. Compliance Certification Services Inc.



Page: 5 / 36 Rev.: 00

Report No.: TMWK2405001686KS

# 2 Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure <u>KDB</u> procedures:

- o 248227 D01 802.11 Wi-Fi SAR v02r02
- o 447498 D04 Interim General RF Exposure Guidance v01
- o 616217 D04 SAR for laptop and tablets v01r02
- o 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- o 865664 D02 RF Exposure Reporting v01r02



Page: 6 / 36 Rev.: 00

# 3 Device Under Test (DUT) Information

# 3.1 DUT Description

| Applicant Name                | Fuji Film Corporation                                   |
|-------------------------------|---------------------------------------------------------|
| Applicant Address             | 7-3, AKASAKA 9-CHOME, MINATO-KU, Tokyo, 107-0052, Japan |
| Manufacturer Name             | Fuji Film Corporation                                   |
| Manufacturer<br>Address       | 7-3, AKASAKA 9-CHOME, MINATO-KU, Tokyo, 107-0052, Japan |
| Product                       | Flat Panel Sensor                                       |
| Trade Name                    | FUJIFILM                                                |
| Model                         | DR-ID 1285SE                                            |
| Model Discrepancy             | N/A                                                     |
| Device Dimension              | Overall (Length x Width): 232 mm x 332 mm               |
| Device Dimension              | Overall Diagonal: 435 mm                                |
| Back Cover                    | ⊠ Normal Battery Cover                                  |
| Battery Options               | ⊠ Standard – Lithium-ion battery, Rating 11.4Vdc, 48Wh  |
| Hardware Version              | v2                                                      |
| Software Version              | v120.253                                                |
| Sample Stage                  | PVT                                                     |
| Class II Permissive<br>Change | Added evaluation of WIFI 5G Band2 and Band3.            |



Page: 7 / 36 Rev.: 00

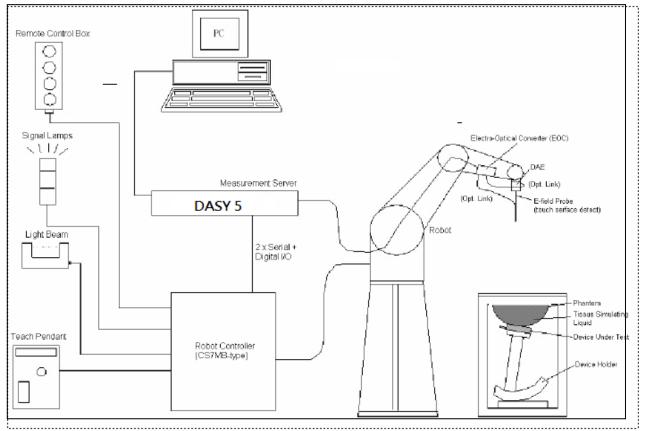
### 3.2 Wireless Technologies

| Wireless<br>technologies | Frequency bands | Peak<br>Antenna<br>Gain<br>(dBi) | Operating mode                                                                                                                                                   | Duty Cycle used for SAR<br>testing                                                                                      |  |  |  |  |  |  |
|--------------------------|-----------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                          | 2.4 GHz         | -1.84                            | 802.11b<br>802.11g<br>802.11n (HT20)<br>802.11n (HT40)<br>802.11ac (VHT20)<br>802.11ac (VHT40)<br>802.11ax (HE20)<br>802.11ax (HE40)                             | 99.9% (802.11b)<br>99.49% (802.11g)<br>99.38% (802.11n/ac/ax 20MHz BW)<br>98.76% (802.11n/ac/ax 40MHz BW)               |  |  |  |  |  |  |
| Wi-Fi (Main)             | 5 GHz           | 0.64                             | 802.11a<br>802.11n (HT20)<br>802.11n (HT40)<br>802.11ac (VHT20)<br>802.11ac (VHT40)<br>802.11ac (VHT80)<br>802.11ax (HE20)<br>802.11ax (HE40)<br>802.11ax (HE80) | 99.42% (802.11a)<br>99.53% (802.11n/ac/ax 20MHz BW)<br>98.76% (802.11n/ac/ax 40MHz BW)<br>97.53% (802.11ac/ax 80MHz BW) |  |  |  |  |  |  |
| Antenna                  | Brand Name      | TAOGLAS                          |                                                                                                                                                                  |                                                                                                                         |  |  |  |  |  |  |
| Specification            | Туре            | PCB antenn                       | а                                                                                                                                                                |                                                                                                                         |  |  |  |  |  |  |
| opeoineation             | Parts Number    | PC143.54.0360A                   |                                                                                                                                                                  |                                                                                                                         |  |  |  |  |  |  |
|                          | 2.4 GHz         | -11.01                           | 802.11b<br>802.11g<br>802.11n (HT20)<br>802.11n (HT40)<br>802.11ac (VHT20)<br>802.11ac (VHT40)<br>802.11ax (HE20)<br>802.11ax (HE40)                             | 99.9% (802.11b)<br>99.49% (802.11g)<br>99.38% (802.11n/ac/ax 20MHz BW)<br>98.76% (802.11n/ac/ax 40MHz BW)               |  |  |  |  |  |  |
| Wi-Fi (Aux)              | 5 GHz           | -1.62                            | 802.11a<br>802.11n (HT20)<br>802.11n (HT40)<br>802.11ac (VHT20)<br>802.11ac (VHT40)<br>802.11ac (VHT80)<br>802.11ax (HE20)<br>802.11ax (HE40)<br>802.11ax (HE80) | 99.42% (802.11a)<br>99.53% (802.11n/ac/ax 20MHz BW)<br>98.76% (802.11n/ac/ax 40MHz BW)<br>97.53% (802.11ac/ax 80MHz BW) |  |  |  |  |  |  |
|                          | Brand Name      | TAOGLAS                          |                                                                                                                                                                  |                                                                                                                         |  |  |  |  |  |  |
| Antenna                  | Туре            | PCB antenn                       | a                                                                                                                                                                |                                                                                                                         |  |  |  |  |  |  |
| Specification            | Parts Number    | PC143.54.0515A                   |                                                                                                                                                                  |                                                                                                                         |  |  |  |  |  |  |

#### Notes:

The sample selected for test was prototype that representative to production product and was provided by manufacturer 1.

Variant information between/among model numbers / trademarks is provided by the applicant, test results of this report are applicable to 2. the sample EUT received of main test model name.

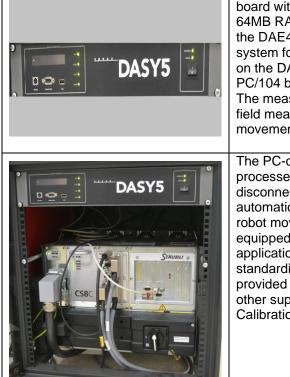

Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received Added U-NII 2A and U-NII 2C. 3.

4.



Page: 8/36 Rev.: 00

### 4 SAR Measurement System




#### The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (St"aubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7 or Windows XP.
- DASY software version: NEO52 D10.3 S14.6.13.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.



#### 4.1 System Components DASY5 Measurement Server



The DASY5 measurement server is based on a PC/104 CPU board with a 166MHz low-power Pentium, 32MB chip disk and 64MB RAM. The necessary circuits for communication with either the DAE4 electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY5 I/O-board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all real-time data evaluation for

field measurements and surface detection, controls robot movements and handles safety operation.

The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pinout and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server. Calibration: No calibration required.

#### **Data Acquisition Electronics (DAE)**



The data acquisition electronics (DAE4) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE4 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.



Page: 10 / 36 Rev.: 00

| EX3DV4 Isotropic E-Field Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for Dosimetri              | c Measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Construction:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | Built-in shielding against static charges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | PEEK enclosure material (resistant to organic solvents, e.g., DGBE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BKD<br>BKD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Calibration:               | Basic Broad Band Calibration in air: 10-3000 MHz.<br>Conversion Factors (CF) for HSL 900 and HSL 1800<br>CF-Calibration for other liquids and frequencies upon<br>request.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Frequency:                 | 10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Directivity:               | ± 0.3 dB in HSL (rotation around probe axis)<br>± 0.5 dB in HSL (rotation normal to probe axis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and the second se | Dynamic Rang               | e:10 μW/g to > 100 mW/g; Linearity: ± 0.2 dB<br>(noise: typically < 1 μW/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dimensions:                | Overall length: 330 mm (Tip: 20 mm)<br>Tip diameter: 2.5 mm (Body: 12 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Application:               | Distance from probe tip to dipole centers: 1 mm<br>High precision dosimetric measurements in any<br>exposure scenario (e.g., very strong gradient fields).<br>Only probe which enables compliance testing for<br>frequencies up to 6 GHz with precision of better 30%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SAM Phantom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Construction:              | The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE1528: 2013. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Shell Thickness            | s:2 ±0.2 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Filling Volume             | : Approx. 25 liters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dimensions:                | Height: 810mm; Length: 1000mm; Width: 500mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ELI Phantom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | Phantom for compliance testing of handheld and body-<br>mounted wireless devices in the frequency range of 30<br>MHz to 6 GHz. ELI4 is fully compatible with the latest<br>draft of the standard IEEE1528: 2013 and all known<br>tissue simulating liquids. ELI4 has been optimized<br>regarding its performance and can be integrated into our<br>standard phantom tables. A cover prevents evaporation<br>of the liquid. Reference markings on the phantom allow<br>installation of the complete setup, including all<br>predefined phantom positions and measurement grids,<br>by teaching three points. The phantom is supported by<br>software version DASY5 and higher and is compatible<br>with all SPEAG dosimetric probes and dipoles |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | s:2.0 ± 0.2 mm (sagging: <1%)<br>: Approx. 25 liters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | · 744107. 20 111013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dimensions:<br>Minor axis: | Major ellipse axis: 600 mm<br>400 mm 500mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



Page: 11/36 Rev.: 00

### Report No.: TMWK2405001686KS

| Report No.: TMWK24050         | 01686KS       | Rev.: 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Device Holder for SAM Twin I  | Phantom       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |               | In combination with the Twin SAM Phantom V4.0 or<br>Twin SAM, the Mounting Device (made from POM)<br>enables the rotation of the mounted transmitter in<br>spherical coordinates, whereby the rotation point is the<br>ear opening. The devices can be easily and accurately<br>positioned according to IEC, IEEE, CENELEC, FCC or<br>other specifications. The device holder can be locked<br>at different phantom locations (left head, right head,<br>and flat phantom). |
| System Validation Kits for SA |               | • · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1                             | Construction: | Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor.                                                                                                                                                                                                                                                                |
|                               | Frequency:    | 2450, 5300, 5600, 5800 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                               | Return loss:  | <ul> <li>&gt; 20 dB at specified validation position</li> <li>: &gt; 100 W (f &lt; 1GHz); &gt; 40 W (f &gt; 1GHz)</li> </ul>                                                                                                                                                                                                                                                                                                                                                |
|                               | Dimensions:   | D2450V2: dipole length: 51.5 mm; overall height: 290<br>mm<br>D5GHzV2: dipole length: 20.6 mm; overall height:<br>300 mm                                                                                                                                                                                                                                                                                                                                                    |
| System Validation Kits for EL |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |               | Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor.                                                                                                                                                                                                                                                                |
|                               | • •           | 2450, 5300, 5600, 5800 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                               |               | > 20 dB at specified validation position<br>> 100 W (f < 1GHz): > 40 W (f > 1GHz)                                                                                                                                                                                                                                                                                                                                                                                           |
|                               | Dimensions:   | > 100 W (f < 1GHz); > 40 W (f > 1GHz)<br>D2450V2: dipole length: 51.5 mm; overall height: 290<br>mm<br>D5GHzV2: dipole length: 20.6 mm; overall height: 300<br>mm                                                                                                                                                                                                                                                                                                           |



Page: 12 / 36 Rev.: 00

Report No.: TMWK2405001686KS

#### 4.2 SAR Scan Procedures

#### Step 1: Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

#### Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE1528 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

|                                                                                                              | ≤ 3 GHz                                                                     | > 3 GHz                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Maximum distance from closest measurement point<br>(geometric center of probe sensors) to phantom<br>surface | 5 ± 1 mm                                                                    | ½·δ·ln(2) ± 0.5 mm                                                                                                                       |
| Maximum probe abgle from probe axis to phantom surface normal at the measurement location                    | 30° ± 1°                                                                    | 20° ± 1°                                                                                                                                 |
| Maximum area scan spatial resolution: ΔxZoom,                                                                | ≤ 2 GHz: ≤ 15 mm<br>2 – 3 GHz: ≤ 12 mm                                      | 3 – 4 GHz: ≤ 12 mm<br>4 – 6 GHz: ≤ 10 mm                                                                                                 |
| ΔyZoom                                                                                                       | measurement plane orie<br>above, the measuremen<br>corresponding x or y dim | on of the test device, in the ntation, is smaller than the t resolution must be $\leq$ the test device with nt point on the test device. |



#### Page: 13 / 36 Rev.: 00

#### Report No.: TMWK2405001686KS

#### Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

• Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

|                                                                          |                | ≤ 3 GHz > 3 GHz                                                                  |                                                                |                                                               |  |  |
|--------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|--|--|
| Maximum zoom scan spa                                                    | tial resolutio | ≤ 2 GHz: ≤ 8 mm<br>2 – 3 GHz: ≤ 5 mm                                             | 3 – 4 GHz: ≤ 5 mm<br>4 – 6 GHz: ≤ 4 mm                         |                                                               |  |  |
|                                                                          | Unifori        | m grid: Δz <sub>zoom</sub> (n)                                                   | ≤ 5 mm                                                         | 3 – 4 GHz: ≤ 4 mm<br>4 – 5 GHz: ≤ 3 mm<br>5 – 6 GHz: ≤ 2 mm   |  |  |
| Maximum zoom scan<br>spatial resolution,<br>normal to phantom<br>surface | graded         | ∆z <sub>zoom</sub> (1):between<br>1st two points<br>losest to phantom<br>surface | ≤ 4 mm                                                         | 3 – 4 GHz: ≤ 3 mm<br>4 – 5 GHz: ≤ 2.5 mm<br>5 – 6 GHz: ≤ 2 mm |  |  |
|                                                                          | grid           | Δz <sub>zoom</sub> (n>1):<br>between<br>subsequent points                        | ≤ 1.5·Δzzoom(n-1)                                              |                                                               |  |  |
| Maximum zoom scan<br>volume                                              | x, y, z        | ≥ 30 mm                                                                          | 3 – 4 GHz: ≥ 28 mm<br>4 – 5 GHz: ≥ 25 mm<br>5 – 6 GHz: ≥ 22 mm |                                                               |  |  |

#### Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1

#### Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction



Page: 14 / 36 Rev.: 00

Report No.: TMWK2405001686KS

# **5** Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be  $\leq$  30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE1528: 2013 is not required in SAR reports submitted for equipment approval.

Therefore, the measurement uncertainty is not required.



Page: 15 / 36 Rev.: 00

# 6 RF Exposure Conditions (Test Configurations)

Refer to Appendixes 1 for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

### 6.1 Standalone SAR Test Exclusion Considerations

Since the Dedicated Host Approach is applied, the SAR-based exemption in Appendix B of KDB 447498 D04 is applied together with KDB 616217 § 4.3 to determine the minimum test separation distance:

- When the separation distance from the antenna to an adjacent edge is ≤ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.
- When the separation distance from the antenna to an adjacent edge is > 5 mm, the actual antenna-to-edge separation distance is applied to determine SAR test exclusion.
- The available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold Pth (mW) described in the following formula.
   Pth is given by:

 $P_{\text{th}} (\text{mW}) = ERP_{20 \text{ cm}} (\text{mW}) = \begin{cases} 2040f & 0.3 \text{ GHz} \le f < 1.5 \text{ GHz} \\ \\ 3060 & 1.5 \text{ GHz} \le f \le 6 \text{ GHz} \end{cases}$ 

• The separation distances from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz . Pth is given by:

$$P_{\rm th} \,({\rm mW}) = \begin{cases} ERP_{20\,\,{\rm cm}} (d/20\,\,{\rm cm})^x & d \le 20\,\,{\rm cm} \\ \\ ERP_{20\,\,{\rm cm}} & 20\,\,{\rm cm} < d \le 40\,\,{\rm cm} \end{cases}$$

where

$$x = -\log_{10}\left(\frac{60}{ERP_{20}\,\mathrm{cm}\sqrt{f}}\right)$$

and *f* is in GHz, *d* is the separation distances (cm).



Page: 16 / 36 Rev.: 00

### SAR Test Exclusion Calculations for 1.5 GHz $\leq f \leq 6$ GHz

| Tx                | Frequency | Output | Power | Antenna Gain | ERP   | ERP Threshold |       | Separation Distances (cm) P <sub>th</sub> (mW) |       |       |        | Exemption result |       |      |       |        |       |        |           |           |           |           |           |           |
|-------------------|-----------|--------|-------|--------------|-------|---------------|-------|------------------------------------------------|-------|-------|--------|------------------|-------|------|-------|--------|-------|--------|-----------|-----------|-----------|-----------|-----------|-----------|
| Interface         | (GHz)     | dBm    | mW    | (dBi)        | (dBm) | (mW)          | Front | Rear                                           | Edge1 | Edge2 | Edge 3 | Edge4            | Front | Rear | Edge1 | Edge 2 | Edge3 | Edge 4 | Front     | Rear      | Edge1     | Edge2     | Edge3     | Edge4     |
| WIFi 2.4GHz(Main) | 2.462     | 16.00  | 40    | -1.84        | 12.01 | 15.89         | 0.5   | 0.5                                            | 15    | 28    | 24.5   | 0.5              | 3     | 3    | 22    | 3060   | 3060  | 3      | -MEASURE- | -MEASURE- | -MEASURE- | -EXEMPT-  | -EXEMPT-  | -MEASURE- |
| WIFi 5.2GHz(Main) | 5.24      | 9.50   | 9     | 0.64         | 7.99  | 6.30          | 0.5   | 0.5                                            | 1.5   | 28    | 24.5   | 0.5              | 1     | 1    | 14    | 3060   | 3060  | 1      | -MEASURE- | -MEASURE- | -EXEMPT-  | -EXEMPT-  | -EXEMPT-  | -MEASURE- |
| WIFi 5.3GHz(Main) | 5.32      | 9.50   | 9     | 0.64         | 7.99  | 6.30          | 0.5   | 0.5                                            | 1.5   | 28    | 24.5   | 0.5              | 1     | 1    | 14    | 3060   | 3060  | 1      | -MEASURE- | -MEASURE- | -EXEMPT-  | -EXEMPT-  | -EXEMPT-  | -MEASURE- |
| WIFi 5.5GHz(Main) | 5.7       | 9.50   | 9     | 0.64         | 7.99  | 6.30          | 0.5   | 0.5                                            | 1.5   | 28    | 24.5   | 0.5              | 1     | 1    | 14    | 3060   | 3060  | 1      | -MEASURE- | -MEASURE- | -EXEMPT-  | -EXEMPT-  | -EXEMPT-  | -MEASURE- |
| WIFi 5.8GHz(Main) | 5.825     | 10.00  | 10    | 0.64         | 8.49  | 7.06          | 0.5   | 0.5                                            | 1.5   | 28    | 24.5   | 0.5              | 1     | 1    | 14    | 3060   | 3060  | 1      | -MEASURE- | -MEASURE- | -EXEMPT-  | -EXEMPT-  | -EXEMPT-  | -MEASURE- |
| WiFi 2.4GHz(Aux)  | 2.462     | 16.00  | 40    | -11.01       | 2.84  | 1.92          | 0.5   | 0.5                                            | 33    | 1.5   | 0.5    | 19.5             | 3     | 3    | 3060  | 22     | 3     | 2916   | -MEASURE- | -MEASURE- | -EXEMPT-  | -MEASURE- | -MEASURE- | -EXEMPT-  |
| WiFi 5.2GHz(Aux)  | 5.24      | 9.50   | 9     | -1.62        | 5.73  | 3.74          | 0.5   | 0.5                                            | 33    | 1.5   | 0.5    | 19.5             | 1     | 1    | 3060  | 14     | 1     | 2904   | -MEASURE- | -MEASURE- | -EXEMPT-  | -EXEMPT-  | -MEASURE- | -EXEMPT-  |
| WiFi 5.3GHz(Aux)  | 5.32      | 9.50   | 9     | 0.64         | 7.99  | 6.30          | 0.5   | 0.5                                            | 33    | 1.5   | 0.5    | 19.5             | 1     | 1    | 3060  | 54     | 1     | 2904   | -MEASURE- | -MEASURE- | -EXEMPT-  | -EXEMPT-  | -MEASURE- | -EXEMPT-  |
| WiFi 5.5GHz(Aux)  | 5.7       | 9.50   | 9     | 0.64         | 7.99  | 6.30          | 0.5   | 0.5                                            | 33    | 1.5   | 0.5    | 19.5             | 1     | 1    | 3060  | 14     | 1     | 2903   | -MEASURE- | -MEASURE- | -EXEMPT-  | -EXEMPT-  | -MEASURE- | -EXEMPT-  |
| WiFi 5.8GHz(Aux)  | 5.825     | 10.00  | 10    | -1.62        | 6.23  | 4.20          | 0.5   | 0.5                                            | 33    | 1.5   | 0.5    | 19.5             | 1     | 1    | 3060  | 54     | 1     | 2902   | -MEASURE- | -MEASURE- | -EXEMPT-  | -EXEMPT-  | -MEASURE- | -EXEMPT-  |



#### Page: 17 / 36 Rev.: 00

**6.2 Required Test Configurations** The table below identifies the standalone test configurations required for this device according to the findings in Section 6.1:

| Wi-Fi Antenna Main  |       |      |       |       |       |       |  |  |  |  |  |  |  |
|---------------------|-------|------|-------|-------|-------|-------|--|--|--|--|--|--|--|
| Test Configurations | Front | Rear | Edge1 | Edge2 | Edge3 | Edge4 |  |  |  |  |  |  |  |
| WiFi 2.4GHz(Main)   | Yes   | Yes  | Yes   | No    | No    | Yes   |  |  |  |  |  |  |  |
| WiFi 5.2GHz(Main)   | Yes   | Yes  | No    | No    | No    | Yes   |  |  |  |  |  |  |  |
| WiFi 5.3GHz(Main)   | Yes   | Yes  | No    | No    | No    | Yes   |  |  |  |  |  |  |  |
| WiFi 5.5GHz(Main)   | Yes   | Yes  | No    | No    | No    | Yes   |  |  |  |  |  |  |  |
| WiFi 5.8GHz(Main)   | Yes   | Yes  | No    | No    | No    | Yes   |  |  |  |  |  |  |  |

| Wi-Fi Antenna Aux   |       |      |       |       |       |       |  |  |  |  |  |  |
|---------------------|-------|------|-------|-------|-------|-------|--|--|--|--|--|--|
| Test Configurations | Front | Rear | Edge1 | Edge2 | Edge3 | Edge4 |  |  |  |  |  |  |
| WiFi 2.4GHz(Aux)    | Yes   | Yes  | No    | Yes   | Yes   | No    |  |  |  |  |  |  |
| WiFi 5.2GHz(Aux)    | Yes   | Yes  | No    | No    | Yes   | No    |  |  |  |  |  |  |
| WiFi 5.3GHz(Aux)    | Yes   | Yes  | No    | No    | Yes   | No    |  |  |  |  |  |  |
| WiFi 5.5GHz(Aux)    | Yes   | Yes  | No    | No    | Yes   | No    |  |  |  |  |  |  |
| WiFi 5.8GHz(Aux)    | Yes   | Yes  | No    | No    | Yes   | No    |  |  |  |  |  |  |
| Noto(a)             |       |      |       |       |       |       |  |  |  |  |  |  |

#### Note(s):

Yes = Testing is required.

No = Testing is not required.



Page: 18 / 36 Rev.: 00

# 7 Dielectric Property Measurements & System Check

#### 7.1 Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within  $18^{\circ}$ C to  $25^{\circ}$ C and within  $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

The dielectric constant ( $\epsilon$ r) and conductivity ( $\sigma$ ) of typical tissue-equivalent media recipes are expected to be within ± 5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for  $\epsilon$ r and  $\sigma$  may be relaxed to ± 10%. This is limited to frequencies ≤ 3 GHz.

#### **Tissue Dielectric Parameters**

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

| Target Frequency (MHz) | Н              | ead     | Во             | dy      |
|------------------------|----------------|---------|----------------|---------|
|                        | ε <sub>r</sub> | σ (S/m) | ε <sub>r</sub> | σ (S/m) |
| 150                    | 52.3           | 0.76    | 61.9           | 0.80    |
| 300                    | 45.3           | 0.87    | 58.2           | 0.92    |
| 450                    | 43.5           | 0.87    | 56.7           | 0.94    |
| 835                    | 41.5           | 0.90    | 55.2           | 0.97    |
| 900                    | 41.5           | 0.97    | 55.0           | 1.05    |
| 915                    | 41.5           | 0.98    | 55.0           | 1.06    |
| 1450                   | 40.5           | 1.20    | 54.0           | 1.30    |
| 1610                   | 40.3           | 1.29    | 53.8           | 1.40    |
| 1800 – 2000            | 40.0           | 1.40    | 53.3           | 1.52    |
| 2450                   | 39.2           | 1.80    | 52.7           | 1.95    |
| 3000                   | 38.5           | 2.40    | 52.0           | 2.73    |
| 5000                   | 36.2           | 4.45    | 49.3           | 5.07    |
| 5100                   | 36.1           | 4.55    | 49.1           | 5.18    |
| 5200                   | 36.0           | 4.66    | 49.0           | 5.30    |
| 5300                   | 35.9           | 4.76    | 48.9           | 5.42    |
| 5400                   | 35.8           | 4.86    | 48.7           | 5.53    |
| 5500                   | 35.6           | 4.96    | 48.6           | 5.65    |
| 5600                   | 35.5           | 5.07    | 48.5           | 5.77    |
| 5700                   | 35.4           | 5.17    | 48.3           | 5.88    |
| 5800                   | 35.3           | 5.27    | 48.2           | 6.00    |

#### IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013



Page: 19 / 36 Rev.: 00

#### Report No.: TMWK2405001686KS

#### **Typical Composition of Ingredients for Liquid Tissue Phantoms**

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

| Ingredients         |       |       |       |      | Frequen | cy (MHz) |       |      |      |      |
|---------------------|-------|-------|-------|------|---------|----------|-------|------|------|------|
| (% by weight)       | 4     | 50    | 83    | 35   | 91      | 15       | 19    | 00   | 2450 |      |
| Tissue Type         | Head  | Body  | Head  | Body | Head    | Body     | Head  | Body | Head | Body |
| Water               | 38.56 | 51.16 | 41.45 | 52.4 | 41.05   | 56.0     | 54.9  | 40.4 | 62.7 | 73.2 |
| Salt (NaCl)         | 3.95  | 1.49  | 1.45  | 1.4  | 1.35    | 0.76     | 0.18  | 0.5  | 0.5  | 0.04 |
| Sugar               | 56.32 | 46.78 | 56.0  | 45.0 | 56.5    | 41.76    | 0.0   | 58.0 | 0.0  | 0.0  |
| HEC                 | 0.98  | 0.52  | 1.0   | 1.0  | 1.0     | 1.21     | 0.0   | 1.0  | 0.0  | 0.0  |
| Bactericide         | 0.19  | 0.05  | 0.1   | 0.1  | 0.1     | 0.27     | 0.0   | 0.1  | 0.0  | 0.0  |
| Triton X-100        | 0.0   | 0.0   | 0.0   | 0.0  | 0.0     | 0.0      | 0.0   | 0.0  | 36.8 | 0.0  |
| DGBE                | 0.0   | 0.0   | 0.0   | 0.0  | 0.0     | 0.0      | 44.92 | 0.0  | 0.0  | 26.7 |
| Dielectric Constant | 43.42 | 58.0  | 42.54 | 56.1 | 42.0    | 56.8     | 39.9  | 54.0 | 39.8 | 52.5 |
| Conductivity (S/m)  | 0.85  | 0.83  | 0.91  | 0.95 | 1.0     | 1.07     | 1.42  | 1.45 | 1.88 | 1.78 |

alt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16  $M\Omega^+$  resistivity HEC: Hydroxy thyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra-pure): Polyethylene glycol mono [4-(1, 1, 3, 3-tetramethylbutyl)phenyl]ether

#### Simulating Liquids for 5 GHz, Manufactured by SPEAG

| Ingredients        | (% by weight) |
|--------------------|---------------|
| Water              | 78            |
| Mineral oil        | 11            |
| Emulsifiers        | 9             |
| Additives and Salt | 2             |



Page: 20 / 36 Rev.: 00

#### **Dielectric Property Measurements Results:**

|           | Tissue | Frequency | Relativ  | /e Permittiv | ity (ɛr)     | Co       | onductivity ( | σ)           |
|-----------|--------|-----------|----------|--------------|--------------|----------|---------------|--------------|
| Date      | Туре   | (MHz)     | Measured | Target       | Delta<br>(%) | Measured | Target        | Delta<br>(%) |
|           |        | 2400      | 39.41    | 39.30        | 0.28         | 1.83     | 1.76          | 4.38         |
| 2024/2/16 | Head   | 2450      | 39.34    | 39.20        | 0.36         | 1.87     | 1.80          | 4.11         |
|           |        | 2480      | 39.32    | 39.16        | 0.41         | 1.90     | 1.83          | 3.77         |
|           |        | 5150      | 35.33    | 36.05        | -2.00        | 4.81     | 4.61          | 4.45         |
| 2024/2/17 | Head   | 5200      | 35.16    | 36.00        | -2.33        | 4.86     | 4.66          | 4.23         |
|           |        | 5250      | 35.10    | 35.95        | -2.36        | 4.93     | 4.71          | 4.61         |
|           |        | 5720      | 34.07    | 35.38        | -3.70        | 5.42     | 5.19          | 4.41         |
| 2024/2/18 | Head   | 5750      | 33.97    | 35.35        | -3.90        | 5.45     | 5.22          | 4.48         |
|           |        | 5850      | 33.80    | 35.25        | -4.11        | 5.56     | 5.32          | 4.43         |
|           |        | 5250      | 35.13    | 35.95        | -2.28        | 4.69     | 4.71          | -0.53        |
| 2024/5/25 | Head   | 5300      | 35.05    | 35.90        | -2.37        | 4.73     | 4.76          | -0.71        |
|           |        | 5350      | 34.88    | 35.85        | -2.71        | 4.80     | 4.81          | -0.19        |
|           |        | 5500      | 34.90    | 35.65        | -2.10        | 4.97     | 4.97          | 0.08         |
| 2024/5/25 | Head   | 5600      | 34.60    | 35.50        | -2.54        | 5.04     | 5.07          | -0.51        |
|           |        | 5720      | 34.28    | 35.38        | -3.11        | 5.25     | 5.19          | 1.16         |



Page: 21 / 36 Rev.: 00

#### Report No.: TMWK2405001686KS

### 7.2 System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

#### System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15 mm (below 1 GHz) and 10 mm (above 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
   For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 7x7x12 (above 3 GHz) fine cube
- Distance between probe sensors and phantom surface was set to 2 mm.
- The dipole input power (forward power) was 250 mW (below 2GHz) and 100 mW
- The results are normalized to 1 W input power.



Page: 22 / 36 Rev.: 00

#### **System Check Results**

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within  $\pm 10\%$  of the manufacturer calibrated dipole SAR target. Refer to Appendix 2 for the SAR System Check Plots.

| Date      | Tissue<br>Type | Dipole<br>S/N     | Input<br>Power<br>(mW) | Measured<br>1g SAR<br>(W/kg) | Targeted<br>1g SAR<br>(W/kg) | Normalized<br>1g SAR<br>(W/kg) | Delta 1g<br>±10<br>(%) | Measured<br>10g SAR<br>(W/kg) | Targeted<br>10g SAR<br>(W/kg) | Normalized<br>10g SAR<br>(W/kg) | Delta 10g<br>±10<br>(%) | Plot<br>No. |
|-----------|----------------|-------------------|------------------------|------------------------------|------------------------------|--------------------------------|------------------------|-------------------------------|-------------------------------|---------------------------------|-------------------------|-------------|
| 2024/2/16 | Head           | D2450V2-727       | 250                    | 12.40                        | 53.10                        | 49.6                           | -6.59                  | 5.71                          | 24.80                         | 22.84                           | -7.90                   | 1           |
| 2024/2/17 | Head           | D5GHzV2-1349-5250 | 100                    | 8.08                         | 80.40                        | 80.8                           | 0.50                   | 2.38                          | 23.00                         | 23.8                            | 3.48                    | 2           |
| 2024/2/18 | Head           | D5GHzV2-1349-5750 | 100                    | 8.46                         | 81.40                        | 84.6                           | 3.93                   | 2.41                          | 23.20                         | 24.1                            | 3.88                    | 3           |
| 2024/5/25 | Head           | D5GHzV2-1349-5250 | 100                    | 7.85                         | 80.90                        | 78.5                           | -2.97                  | 2.25                          | 23.10                         | 22.5                            | -2.60                   | 4           |
| 2024/5/25 | Head           | D5GHzV2-1349-5600 | 100                    | 8.22                         | 80.80                        | 82.2                           | 1.73                   | 2.34                          | 23.00                         | 23.4                            | 1.74                    | 5           |



Page: 23 / 36 Rev.: 00

# 8 Conducted Output Power Measurements

### 8.1 Wi-Fi 2.4GHz (DTS Band)

The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

SAR Test reduction was applied from KDB 248227 guidance, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11g/n/ac/ax mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. Additional output power measurements were not deemed necessary.

SAR testing is not required for OFDM mode(s) when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is  $\leq 1.2$  W/kg.

| Band   | Mode                | Data Rate | Ch # | Freq. | Mea   | s.AvgPwr(o | dBm)  | Tur   | ne-up Limit (dBm) |       | SAR Test | (Yes/No) |    |
|--------|---------------------|-----------|------|-------|-------|------------|-------|-------|-------------------|-------|----------|----------|----|
| Danu   | Mode                | Data Rate | Ch#  | (MHz) | Main  | Aux        | Total | Main  | Aux               | Total | Main     | Aux      |    |
|        |                     |           | 1    | 2412  | 15.72 | 15.61      | 18.68 | 16.0  | 16.0              | 19.0  |          |          |    |
|        | 802.11b             | 1 Mbps    | 6    | 2437  | 15.82 | 15.73      | 18.79 | 16.0  | 16.0              | 19.0  | Yes      | Yes      |    |
|        |                     |           | 11   | 2462  | 15.77 | 15.62      | 18.71 | 16.0  | 16.0              | 19.0  |          |          |    |
|        |                     |           | 1    | 2412  | 14.99 | 14.44      | 17.73 | 15.5  | 15.5              | 18.5  |          |          |    |
|        | 802.11g             | 6 Mbps    | 6    | 2437  | 15.15 | 14.48      | 17.84 | 15.5  | 15.5              | 18.5  | No       | No       |    |
|        |                     |           | 11   | 2462  | 14.84 | 14.40      | 17.64 | 15.5  | 15.5              | 18.5  |          |          |    |
|        |                     |           | 1    | 2412  | 15.10 | 14.87      | 18.00 | 15.5  | 15.5              | 18.5  |          |          |    |
|        | 802.11n<br>(HT20)   | MCS0      | 6    | 2437  | 15.24 | 14.82      | 18.05 | 15.5  | 15.5              | 18.5  | No       | No       |    |
|        | (11120)             |           | 11   | 2462  | 15.03 | 14.74      | 17.90 | 15.5  | 15.5              | 18.5  |          |          |    |
|        |                     |           | 1    | 2412  | 15.06 | 14.55      | 17.82 | 15.5  | 15.5              | 18.5  |          |          |    |
|        | 802.11ac<br>(VHT20) | MCS0      | 6    | 2437  | 15.34 | 14.68      | 18.03 | 15.5  | 15.5              | 18.5  | No       | No       |    |
| 2.4GHz | (11120)             |           | 11   | 2462  | 15.15 | 14.63      | 17.91 | 15.5  | 15.5              | 18.5  |          |          |    |
| (DTS)  |                     |           | 1    | 2412  | 15.20 | 14.76      | 18.00 | 15.5  | 15.5              | 18.5  |          |          |    |
|        | 802.11ax<br>(HE20)  | MCS0      | 6    | 2437  | 15.33 | 14.63      | 18.00 | 15.5  | 15.5              | 18.5  | No       | No       |    |
|        | (11220)             |           | 11   | 2462  | 14.97 | 14.41      | 17.71 | 15.5  | 15.5              | 18.5  |          |          |    |
|        |                     |           | 3    | 2422  | 14.33 | 13.56      | 16.97 | 14.5  | 14.5              | 17.5  |          |          |    |
|        | 802.11n<br>(HT40)   |           | MCS0 | 6     | 2437  | 14.36      | 13.44 | 16.93 | 14.5              | 14.5  | 17.5     | No       | No |
|        | (                   |           | 9    | 2452  | 14.00 | 13.39      | 16.72 | 14.5  | 14.5              | 17.5  |          |          |    |
|        |                     |           | 3    | 2422  | 13.83 | 13.38      | 16.62 | 14.5  | 14.5              | 17.5  |          |          |    |
|        | 802.11ac<br>(VHT40) | MCS0      | 6    | 2437  | 14.12 | 13.47      | 16.82 | 14.5  | 14.5              | 17.5  | No       | No       |    |
|        |                     |           | 9    | 2452  | 14.31 | 13.49      | 16.93 | 14.5  | 14.5              | 17.5  |          |          |    |
|        |                     |           | 3    | 2422  | 14.13 | 13.41      | 16.80 | 14.5  | 14.5              | 17.5  |          |          |    |
|        | 802.11ax<br>(HE40)  | MCS0      | 6    | 2437  | 14.20 | 13.47      | 16.86 | 14.5  | 14.5              | 17.5  | No       | No       |    |
|        | (112-10)            |           | 9    | 2452  | 14.05 | 13.31      | 16.71 | 14.5  | 14.5              | 17.5  |          |          |    |

#### Measured Results



Page: 24 / 36 Rev.: 00

#### Report No.: TMWK2405001686KS

### 8.2 Wi-Fi 5GHz (U-NII Bands)

The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

When the same transmission mode configurations have the same maximum output power on the same channel for the 802.11 a/g/n/ac modes, the channel in the lower order/sequence 802.11 mode (i.e. a, g, n then ac) is selected.

SAR Test reduction was applied from KDB 248227 guidance, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. Additional output powermeasurements were not deemed necessary.

#### **Measured Results**

| David               | Maria               | Data Data | <b>Ch</b> # | Freq. | Mea  | s. Avg Pwr (o | dBm)  | Tur  | ne-up Limit (dBm) |       | SAR Tes | t(Yes/No) |
|---------------------|---------------------|-----------|-------------|-------|------|---------------|-------|------|-------------------|-------|---------|-----------|
| Band                | Mode                | Data Rate | Ch #        | (MHz) | Main | Aux           | Total | Main | Aux               | Total | Main    | Aux       |
|                     |                     |           | 36          | 5180  | 9.08 | 8.66          | 11.88 | 9.5  | 9.5               | 12.5  |         |           |
|                     | 802.11a             | 6 Mbps    | 40          | 5200  | 9.14 | 8.71          | 11.94 | 9.5  | 9.5               | 12.5  | No      | No        |
|                     | 002.11d             | 0 Mbps    | 44          | 5220  | 8.96 | 8.58          | 11.78 | 9.5  | 9.5               | 12.5  | NO      | NU        |
|                     |                     |           | 48          | 5240  | 8.92 | 8.42          | 11.68 | 9.5  | 9.5               | 12.5  |         |           |
|                     |                     |           | 36          | 5180  | 9.28 | 8.84          | 12.08 | 9.5  | 9.5               | 12.5  |         |           |
|                     | 802.11n             | MCS0      | 40          | 5200  | 9.14 | 8.79          | 11.98 | 9.5  | 9.5               | 12.5  | No      | No        |
|                     | (HT20)              | IVIC-50   | 44          | 5220  | 8.68 | 8.41          | 11.56 | 9.5  | 9.5               | 12.5  | NU      | NU        |
|                     |                     |           | 48          | 5240  | 9.16 | 8.71          | 11.95 | 9.5  | 9.5               | 12.5  |         |           |
|                     |                     |           | 36          | 5180  | 9.10 | 8.65          | 11.89 | 9.5  | 9.5               | 12.5  |         |           |
|                     | 802.11ac            | MCS0      | 40          | 5200  | 8.75 | 8.52          | 11.65 | 9.5  | 9.5               | 12.5  | No      | No        |
|                     | (VHT20)             | IVICS0    | 44          | 5220  | 8.90 | 8.37          | 11.65 | 9.5  | 9.5               | 12.5  | INO     | INO       |
| 5.2GHz              |                     |           | 48          | 5240  | 9.05 | 8.47          | 11.78 | 9.5  | 9.5               | 12.5  |         |           |
| 5.2GHZ<br>(U-NII 1) |                     |           | 36          | 5180  | 8.91 | 8.51          | 11.73 | 9.5  | 9.5               | 12.5  |         |           |
|                     | 802.11ax            | MCSO      | 40          | 5200  | 8.83 | 8.34          | 11.60 | 9.5  | 9.5               | 12.5  | No      | No        |
|                     | (HE20)              | MCS0      | 44          | 5220  | 8.70 | 8.31          | 11.52 | 9.5  | 9.5               | 12.5  | NO      | NU        |
|                     |                     |           | 48          | 5240  | 8.69 | 8.37          | 11.54 | 9.5  | 9.5               | 12.5  |         |           |
|                     | 802.11n             | MCS0      | 38          | 5190  | 8.74 | 8.26          | 11.52 | 9.5  | 9.5               | 12.5  | No      | No        |
|                     | (HT40)              | IVICS0    | 46          | 5230  | 9.15 | 8.54          | 11.87 | 9.5  | 9.5               | 12.5  | INO     | INO       |
|                     | 802.11ac            | MCS0      | 38          | 5190  | 9.18 | 8.80          | 12.01 | 9.5  | 9.5               | 12.5  | No      | No        |
|                     | (VHT40)             | IVIC-50   | 46          | 5230  | 9.11 | 8.60          | 11.88 | 9.5  | 9.5               | 12.5  | NO      | NU        |
|                     | 802.11ax            |           | 38          | 5190  | 9.07 | 8.71          | 11.91 | 9.5  | 9.5               | 12.5  | No      | No        |
|                     | (HE40)              | IVICOU    | 46          | 5230  | 9.06 | 8.66          | 11.88 | 9.5  | 9.5               | 12.5  | NU      | UNU UNI   |
|                     | 802.11ac<br>(VHT80) | MCS0      | 42          | 5210  | 9.24 | 8.78          | 12.03 | 9.5  | 9.5               | 12.5  | Yes     | Yes       |
|                     | 802.11ax<br>(HE80)  | MCS0      | 42          | 5210  | 9.13 | 8.65          | 11.91 | 9.5  | 9.5               | 12.5  | No      | No        |



Page: 25 / 36 Rev.: 00

#### **Measured Results**

| Image matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | neusu      | rea Re    | <u> 30113</u> |      | _              | Moo  |      |       | Tu  | ao un Limit (di | 2m)  | SA P Tool | (Vac/No) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|---------------|------|----------------|------|------|-------|-----|-----------------|------|-----------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Band       | Mode      | Data Rate     | Ch # | Freq.<br>(MHz) |      |      |       |     |                 |      |           | <u> </u> |
| <t< td=""><td></td><td></td><td></td><td>50</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>iviain</td><td>Aux</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |           |               | 50   |                |      |      |       |     |                 |      | iviain    | Aux      |
| No.         No.         No.         No.         No.         No.         No.         No.           HO.11         No.         Soc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |           |               |      |                |      |      |       |     |                 |      | -         |          |
| Image: border interms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 802.11a   | 6 Mbps        |      |                |      |      |       |     |                 |      | No        | No       |
| 94.14<br>(1970)         94.06<br>(1970)         10.06<br>(1970)         94.06<br>(1970)         94.01<br>(1970)         94.01<br>(1970)        94.01<br>(1970)         94.01<br>(1970) </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |           |               | -    |                |      |      |       |     |                 |      |           |          |
| </td <td></td> <td></td> <td></td> <td>÷.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |               | ÷.   |                |      |      |       |     |                 |      |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |           |               | 52   | 5260           |      | 9.11 |       |     |                 | 12.5 |           |          |
| Intro         Intro <t< td=""><td></td><td></td><td>MCS0</td><td>56</td><td>5280</td><td>9.25</td><td>9.15</td><td>12.21</td><td>9.5</td><td>9.5</td><td>12.5</td><td>No</td><td>No</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |           | MCS0          | 56   | 5280           | 9.25 | 9.15 | 12.21 | 9.5 | 9.5             | 12.5 | No        | No       |
| Matrix<br>(MAR2)<br>(MAR2)         Home<br>(MAR2)<br>(MAR2)         Home<br>(MAR2)         Home<br>(MAR2)        Home<br>(MAR2)         Home<br>(MAR2)         Home<br>(MAR2)        Home<br>(MAR2)        Home<br>(MAR2)        Home<br>(MAR2)        Home<br>(MAR2)         Home<br>(MAR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | (HT20)    |               | 60   | 5300           | 9.31 | 9.19 | 12.26 | 9.5 | 9.5             | 12.5 |           |          |
| 1 + 10 + 10 + 10 + 10 + 10 + 10 + 10 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           |               | 64   | 5320           | 9.20 | 9.04 | 12.13 | 9.5 | 9.5             | 12.5 |           |          |
| Image         Image <th< td=""><td></td><td></td><td></td><td>52</td><td>5260</td><td>9.18</td><td>9.05</td><td>12.13</td><td>9.5</td><td>9.5</td><td>12.5</td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |           |               | 52   | 5260           | 9.18 | 9.05 | 12.13 | 9.5 | 9.5             | 12.5 |           |          |
| Sector         Control         Bod         Sector         Bod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 802.11ac  | MCCO          | 56   | 5280           | 9.30 | 9.14 | 12.23 | 9.5 | 9.5             | 12.5 | No        | No       |
| Mode<br>(HED)         Hole<br>(HED)         Hole<br>(H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | (VHT20)   | INC-SU        | 60   | 5300           | 9.17 | 9.07 | 12.13 | 9.5 | 9.5             | 12.5 | INO       | INO      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =          |           |               | 64   | 5320           | 9.19 | 9.10 | 12.16 | 9.5 | 9.5             | 12.5 |           |          |
| bi           in         main         m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |           |               | 52   | 5260           | 9.15 | 9.12 | 12.15 | 9.5 | 9.5             | 12.5 |           |          |
| (H20)         (H20)         000         0300         0.20         0.10         0.20         0.80         0.80         0.80         0.80           80:111         MC0         64         520         0.10         0.10         0.80         0.80         0.80         0.20         0.80         0.80         0.80         0.20         0.80         0.80         0.80         0.20         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.80         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ()         | 802.11ax  |               | 56   | 5280           | 9.13 | 9.05 | 12.10 | 9.5 | 9.5             | 12.5 |           |          |
| Image         Image <t< td=""><td></td><td></td><td>MCS0</td><td>60</td><td>5300</td><td>9.21</td><td>9.17</td><td>12.20</td><td>9.5</td><td>9.5</td><td>12.5</td><td>No</td><td>No</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |           | MCS0          | 60   | 5300           | 9.21 | 9.17 | 12.20 | 9.5 | 9.5             | 12.5 | No        | No       |
| 80110<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(0.11)<br>(                                                                                                                                              |            |           |               | -    |                |      |      |       |     |                 |      | 1         |          |
| (initia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 902.11#   |               |      |                |      |      |       |     | 9.5             |      |           |          |
| Norther<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;<br>No.1140;                                                                                                                                                                                                                                                                                                                                                 |            |           | MCS0          |      |                |      |      |       |     |                 |      | No        | No       |
| ( \u0396 \u03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           |               |      |                |      |      |       |     |                 |      |           |          |
| 600 147:<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12)<br>(W12 |            |           | MCS0          |      |                |      |      |       |     |                 |      | No        | No       |
| (rife)<br>(W148)<br>(W148)<br>(W148)<br>(W148)<br>(W148)6865355309.989.90012.339.969.9612.52M0M0W1480<br>(W1480)<br>(W1480)M63065852809.309.01012.320.550.5512.5M0M0W1480<br>(W1480)M630658052009.029.0712.339.859.550.5512.5M0M0M0W149<br>(W149)M05912.140.509.159.0712.159.559.5512.5M012.5W141<br>(W120)M0590.119.01012.150.550.5512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           |               |      |                |      |      |       |     |                 |      |           |          |
| Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br>Image<br><td></td> <td></td> <td>MCS0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>No</td> <td>No</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |           | MCS0          |      |                |      |      |       |     |                 |      | No        | No       |
| Ivation<br>(PER)<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)Ivation<br>(PER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |           |               | 62   | 5310           | 9.18 | 9.06 | 12.13 | 9.5 | 9.5             | 12.5 |           |          |
| 00.11m<br>(H2)<br>(H2)<br>(H2)<br>(H2)M250M20S2009.009.009.1249.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.059.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           | MCS0          | 58   | 5290           | 9.36 | 9.27 | 12.32 | 9.5 | 9.5             | 12.5 | Yes       | Yes      |
| (HEB)         (HEB) <th< td=""><td></td><td>802.11ax</td><td>MCSO</td><td>58</td><td>5290</td><td>9.30</td><td>9.16</td><td>12 24</td><td>9.5</td><td>95</td><td>12.5</td><td>No</td><td>No</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 802.11ax  | MCSO          | 58   | 5290           | 9.30 | 9.16 | 12 24 | 9.5 | 95              | 12.5 | No        | No       |
| NoNoNoNoNoNoNoNoNoNoNoNo80:11a66000.100.0712.130.500.550.5512.514067000.150.0512.110.550.5512.514467000.160.0612.110.550.5512.511055000.1112.150.550.5512.511112256000.110.110.550.5512.511112256000.160.0712.130.550.5512.511112256000.160.0712.120.550.5512.511212256000.160.0312.150.550.5512.511112455000.160.0312.110.550.5512.511112455000.160.0312.110.550.5512.511111110150011112.150.5512.51111111011011111110.550.5512.51111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 <td< td=""><td></td><td>(HE80)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>140</td><td>140</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | (HE80)    |               |      |                |      |      |       |     |                 |      | 140       | 140      |
| 802.11a<br>802.11a80.8bp124<br>152<br>164090.10<br>1709.17<br>171<br>1709.5<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |           |               | -    |                |      |      |       |     |                 |      | -         |          |
| 802.11a         6 Mpip         132         5660         9.19         9.10         12.15         9.5         9.5         12.5         14.5           140         5700         0.15         0.05         12.11         0.5         0.55         12.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5         10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |           |               | -    |                |      |      |       |     |                 |      |           |          |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 802 11a   | 6 Mbps        | 124  | 5620           | 9.17 | 9.07 | 12.13 | 9.5 | 9.5             | 12.5 | No        | No       |
| No         144         5720         9.17         9.13         12.16         9.5         9.5         12.5           NG20         NG30         0.16         9.00         12.16         9.5         12.5         12.5           802.11n         NG30         12.4         5600         9.16         9.07         12.17         9.5         9.5         12.5           140         5700         9.19         9.06         12.16         9.5         9.55         12.5           140         5700         9.19         9.06         12.11         9.5         9.5         12.5           802.11ac         (VH72)         116         5800         9.18         9.07         12.11         9.5         9.5         12.5           82.11ac         (VH72)         116         5800         9.05         12.11         9.5         9.5         12.5           116         5800         9.19         9.01         12.16         9.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 002.114   | 0 100003      | 132  | 5660           | 9.19 | 9.10 | 12.15 | 9.5 | 9.5             | 12.5 | - 110     | 140      |
| Solution<br>(H20)         MCS0         100         5800         9.19         9.08         12.15         9.5         9.5         12.5         9.5         12.5           802.11n<br>(H20)         MCS0         118         5680         9.16         9.07         12.13         9.5         9.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5         12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |           |               | 140  | 5700           | 9.15 | 9.05 | 12.11 | 9.5 | 9.5             | 12.5 |           |          |
| 802.11n<br>(H720)         NRS0         116         5800         9.20         9.11         12.17         9.5         9.5         12.5           140         5700         9.16         9.00         12.10         9.5         9.5         12.5           140         5700         9.16         9.08         12.10         9.5         9.5         12.5           140         5700         9.16         9.08         12.15         9.5         9.5         12.5           100         5800         0.16         9.08         12.11         9.5         9.5         12.5           802.11ac         116         5800         9.16         9.05         12.11         9.5         9.5         12.5           802.11ac         116         5800         9.16         9.05         12.11         9.5         9.5         12.5           110         5800         9.05         12.11         9.5         9.5         12.5         12.5         12.5         12.5           110         5800         9.20         9.11         12.15         9.5         12.5         12.5         12.5           110         5800         9.21         9.05         12.15         9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |           |               | 144  | 5720           | 9.17 | 9.13 | 12.16 | 9.5 | 9.5             | 12.5 | -         |          |
| 802.11n<br>(H720)         NRS0         116         5800         9.20         9.11         12.17         9.5         9.5         12.5           140         5700         9.16         9.00         12.10         9.5         9.5         12.5           140         5700         9.16         9.08         12.10         9.5         9.5         12.5           140         5700         9.16         9.08         12.15         9.5         9.5         12.5           100         5800         0.16         9.08         12.11         9.5         9.5         12.5           802.11ac         116         5800         9.16         9.05         12.11         9.5         9.5         12.5           802.11ac         116         5800         9.16         9.05         12.11         9.5         9.5         12.5           110         5800         9.05         12.11         9.5         9.5         12.5         12.5         12.5         12.5           110         5800         9.20         9.11         12.15         9.5         12.5         12.5         12.5           110         5800         9.21         9.05         12.15         9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | -         |               | 100  | 5500           | 9.19 | 9.08 | 12.15 | 9.5 | 9.5             | 12.5 |           |          |
| 802.11<br>(HT20)         NC50         124         5620         9.16         9.07         12.13         9.5         9.5         12.5         Nb         Nb           140         5700         0.15         0.03         12.10         0.5         0.5         12.5           140         5700         0.15         0.06         12.12         0.5         0.5         12.5           100         5500         0.16         0.03         12.11         0.5         0.5         12.5           1116         5580         0.16         0.03         12.11         0.5         0.5         12.5           1122         5660         0.15         0.05         12.11         0.5         0.5         12.5           1124         5620         0.21         0.10         12.15         0.5         0.55         12.5           1124         5620         0.20         0.18         0.00         12.16         0.5         0.55         12.5           1144         5720         0.18         0.20         12.15         0.5         12.5         12.5           110         5500         9.21         0.15         12.16         0.5         0.5         12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           |               | -    |                |      |      |       |     |                 |      |           |          |
| (HT20)         MC50         132         5660         9.15         9.03         12.10         9.5         9.5         12.5           440         6700         9.16         9.08         12.15         9.5         9.5         12.5           60.21126         9.5         9.5         9.5         9.5         12.5         9.5         12.5           60.21126         9.5         9.5         12.5         9.5         12.5         9.5         12.5           116         5560         9.16         9.03         12.11         9.5         9.5         12.5           116         5560         9.16         9.11         12.15         9.5         9.5         12.5           124         6620         9.16         9.11         12.17         9.5         9.5         12.5           140         5700         9.16         9.11         12.17         9.5         9.5         12.5           1116         5580         9.22         9.08         12.16         9.5         9.5         12.5           1124         5520         9.22         9.08         12.16         9.5         12.5         9.5         12.5           114 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |               |      |                |      |      |       |     |                 |      |           |          |
| No         140         5000         110         5000         12.10         50.50         50.50         12.50           440         5700         9.16         9.06         12.12         9.55         9.55         12.5           802.11ac         116         5500         9.16         9.03         12.11         9.55         9.55         12.5           802.11ac         116         5500         9.15         9.06         12.11         9.55         9.55         12.5           802.11ac         116         5500         9.15         9.05         12.11         9.55         9.55         12.5           802.11ac         116         5500         9.16         9.11         12.15         9.55         12.5         12.5           802.11ac         116         5500         9.20         9.11         12.17         9.5         9.5         12.5           1116         5500         9.20         9.08         12.16         9.5         12.5         12.5           1124         5600         9.20         9.08         12.16         9.5         12.5         12.5           1116         5500         9.21         9.10         12.15         9.5 <td></td> <td></td> <td>MCS0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>No</td> <td>No</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |           | MCS0          |      |                |      |      |       |     |                 |      | No        | No       |
| Image: brain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | (20)      |               |      |                |      |      |       |     |                 |      | -         |          |
| S.SCH:<br>(VH720)         MCS0         100         3500         9.16         9.03         12.11         9.5         9.5         12.5         12.5           802.11ac<br>(VH720)         MCS0         116         5600         9.11         9.05         12.14         9.5         9.5         12.5           132         5660         9.15         9.06         12.11         9.5         9.5         12.5           144         5720         9.18         9.06         12.11         9.5         9.5         12.5           144         5720         9.18         9.06         12.17         9.5         9.5         12.5           116         5680         9.20         9.11         12.17         9.5         9.5         12.5           116         5680         9.20         9.11         12.17         9.5         9.5         12.5           124         5670         9.22         9.06         12.16         9.5         9.5         12.5           144         5720         9.14         12.17         9.5         9.5         12.5           110         5550         9.22         9.06         12.16         9.5         9.5         12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |           |               |      |                |      |      |       |     |                 |      |           |          |
| No.         110         5680         9.18         9.07         12.14         9.5         9.5         12.5           402.11a         MCS0         124         5620         9.21         9.09         12.16         9.5         9.5         12.5           140         5700         9.16         9.05         12.5         9.5         9.5         12.5           140         5700         9.18         9.09         12.15         9.5         9.5         12.5           144         5720         9.18         9.09         12.15         9.5         9.5         12.5           100         5500         9.19         9.12         12.17         9.5         9.5         12.5           116         5680         9.22         9.08         12.16         9.5         9.5         12.5           110         5700         9.22         9.08         12.16         9.5         9.5         12.5           111         5700         9.22         9.06         12.16         9.5         9.5         12.5           111         5500         9.14         9.12         12.13         9.5         9.5         12.5           1111         560<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |           |               | 144  | 5720           | 9.15 | 9.06 | 12.12 | 9.5 | 9.5             | 12.5 |           |          |
| 802.11 ar<br>(VH720)         MC80         124         5620         9.21         9.09         12.16         9.5         9.5         12.5           132         5660         9.15         9.05         12.11         9.5         9.5         12.5           144         5700         9.18         9.09         12.15         9.5         9.5         12.5           802.11 ar<br>(HE20)         MC80         114         5700         9.18         9.09         12.15         9.5         9.5         12.5           802.11 ar<br>(HE20)         MC80         116         5560         9.22         9.08         12.16         9.5         9.5         12.5           112         5600         9.20         9.08         12.16         9.5         9.5         12.5           114         5700         9.20         9.08         12.16         9.5         9.5         12.5           110         5500         9.21         9.06         12.16         9.5         9.5         12.5           110         5500         9.15         12.19         9.5         9.5         12.5           110         5500         9.23         9.10         12.16         9.5         9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           |               | 100  | 5500           | 9.16 | 9.03 | 12.11 | 9.5 | 9.5             | 12.5 |           |          |
| (VHT20)         MCS0<br>132         56860         9.15         9.05         12.11         9.5         9.5         12.5           140         5700         9.16         9.09         12.15         9.5         9.5         12.5           602.11ax<br>(HE20)         MCS0         116         5500         9.20         9.11         12.17         9.5         9.5         12.5           802.11ax<br>(HE20)         MCS0         116         5500         9.20         9.08         12.12         9.5         9.5         12.5           110         5700         9.20         9.08         12.16         9.5         9.5         12.5           114         5720         9.14         9.10         12.17         9.5         9.5         12.5           110         5550         9.21         9.06         12.16         9.5         9.5         12.5           1110         5550         9.21         9.16         12.19         9.5         9.5         12.5           1118         5580         9.21         9.16         12.19         9.5         12.5           1118         5580         9.23         9.14         12.21         9.5         9.5         12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |           |               | 116  | 5580           | 9.18 | 9.07 | 12.14 | 9.5 | 9.5             | 12.5 |           |          |
| No         Interface         Inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 802.11ac  |               | 124  | 5620           | 9.21 | 9.09 | 12.16 | 9.5 | 9.5             | 12.5 | 1         |          |
| No.         144         5720         9.18         9.09         12.15         9.5         9.5         12.5           802.11ax<br>(HE20)         A         100         5500         9.20         9.11         12.17         9.5         9.5         12.5           802.11ax<br>(HE20)         A         5500         9.20         9.11         12.16         9.5         9.5         12.5           140         5700         9.20         9.08         12.16         9.5         9.5         12.5           144         5700         9.20         9.08         12.15         9.5         9.5         12.5           144         5700         9.20         9.08         12.15         9.5         9.5         12.5           141         5500         9.21         9.10         12.13         9.5         9.5         12.5           110         5500         9.21         9.16         12.17         9.5         9.5         12.5           1118         5500         9.21         9.14         12.17         9.5         9.5         12.5           1124         5710         9.14         9.121         12.17         9.5         9.5         12.5 <tr< td=""><td></td><td>(VHT20)</td><td>MCS0</td><td>132</td><td>5660</td><td>9.15</td><td>9.05</td><td>12.11</td><td>9.5</td><td>9.5</td><td>12.5</td><td>No</td><td>No</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | (VHT20)   | MCS0          | 132  | 5660           | 9.15 | 9.05 | 12.11 | 9.5 | 9.5             | 12.5 | No        | No       |
| No.         144         5720         9.18         9.09         12.15         9.5         9.5         12.5           802.11ax<br>(HE20)         A         100         5500         9.20         9.11         12.17         9.5         9.5         12.5           802.11ax<br>(HE20)         A         5500         9.20         9.11         12.16         9.5         9.5         12.5           140         5700         9.20         9.08         12.16         9.5         9.5         12.5           144         5700         9.20         9.08         12.15         9.5         9.5         12.5           144         5700         9.20         9.08         12.15         9.5         9.5         12.5           141         5500         9.21         9.10         12.13         9.5         9.5         12.5           110         5500         9.21         9.16         12.17         9.5         9.5         12.5           1118         5500         9.21         9.14         12.17         9.5         9.5         12.5           1124         5710         9.14         9.121         12.17         9.5         9.5         12.5 <tr< td=""><td></td><td></td><td></td><td>140</td><td>5700</td><td>9.16</td><td>9.11</td><td>12.15</td><td>9.5</td><td>9.5</td><td>12.5</td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           |               | 140  | 5700           | 9.16 | 9.11 | 12.15 | 9.5 | 9.5             | 12.5 |           |          |
| 5.5GHz<br>(LNI 2C)         100         5500         9.19         9.12         12.17         9.5         9.5         12.5           802.11ax<br>(HE20)         MCS0         116         5580         9.20         9.11         12.17         9.5         9.5         12.5           124         5620         9.22         9.08         12.16         9.5         9.5         12.5           140         5700         9.20         9.08         12.15         9.5         9.5         12.5           140         5700         9.20         9.08         12.16         9.5         9.5         12.5           140         5700         9.20         9.06         12.16         9.5         9.5         12.5           110         5550         9.21         9.15         12.16         9.5         9.5         12.5           111         5550         9.21         9.15         12.16         9.5         9.5         12.5           111         5550         9.23         9.14         12.17         9.5         9.5         12.5           112         5710         9.16         9.08         12.18         9.5         9.5         12.5           118 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |           |               |      |                |      |      |       |     |                 |      |           |          |
| 802.11ax<br>(H20)         MCS0         116         580         9.20         9.11         12.17         9.5         9.5         12.5           5.5GHz<br>(LMI2C)         MCS0         124         5620         9.22         9.08         12.16         9.5         9.5         12.5           132         5660         9.19         9.03         12.15         9.5         9.5         12.5           144         5720         9.14         9.10         12.13         9.5         9.5         12.5           802.11n<br>(HT40)         MCS0         118         5500         9.12         9.15         12.16         9.5         9.5         12.5           110         5550         9.21         9.15         12.16         9.5         12.5              9.5         12.5               9.5         12.5                  9.5         12.5 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |           |               |      |                |      |      |       |     |                 |      |           |          |
| 802.11ax<br>(HE2)         MCS0         124         560         9.22         9.08         12.16         9.5         9.5         12.5           132         5660         9.19         9.03         12.12         9.5         9.5         12.5           140         5700         9.20         9.08         12.15         9.5         9.5         12.5           144         5720         9.14         9.12         9.5         9.5         12.5           110         5550         9.21         9.15         12.19         9.5         9.5         12.5           110         5550         9.21         9.15         12.19         9.5         9.5         12.5           110         5550         9.21         9.15         12.19         9.5         9.5         12.5           111         5550         9.21         9.14         12.17         9.5         9.5         12.5           114         5670         9.23         9.10         12.18         9.5         9.5         12.5           142         5710         9.17         9.14         12.17         9.5         9.5         12.5           112         5600         9.21 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |           |               | -    |                |      |      |       |     |                 |      | -         |          |
| (HE20)         MC50         132         5660         9.19         9.03         12.12         9.5         9.5         12.5           5.5GHz         140         5700         9.20         9.08         12.15         9.5         9.5         12.5           144         5720         9.14         9.10         12.13         9.5         9.5         12.5           102         5510         9.22         9.06         12.16         9.5         9.5         12.5           802.11n         110         5550         9.21         9.15         12.19         9.5         9.5         12.5           110         5550         9.21         9.16         12.19         9.5         9.5         12.5           1118         5590         9.25         9.14         12.17         9.5         9.5         12.5           142         5710         9.17         9.14         12.18         9.5         9.5         12.5           142         5710         9.17         9.14         12.10         9.5         9.5         12.5           142         5710         9.16         9.08         12.16         9.5         9.5         12.5           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |           |               |      |                |      |      |       |     |                 |      | -         |          |
| S.5GHz<br>(LHNI2C)         140<br>140         5700         9.20         9.00         12.12         9.5         9.5         12.5           3.60         144         5700         9.14         9.10         12.13         9.5         9.5         12.5           144         5720         9.14         9.10         12.13         9.5         9.5         12.5           144         5720         9.14         9.15         12.19         9.5         9.5         12.5           100         550         9.21         9.15         12.17         9.5         9.5         12.5           110         550         9.25         9.14         12.17         9.5         9.5         12.5           126         5630         9.25         9.14         12.17         9.5         9.5         12.5           134         5670         9.23         9.10         12.18         9.5         9.5         12.5           142         5710         9.17         9.14         12.17         9.5         9.5         12.5           142         5710         9.12         12.16         9.5         9.5         12.5           110         5550         9.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |           | MCS0          | -    |                |      |      |       |     |                 |      | No        | No       |
| S.SGHz<br>(LFNI2C)         Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | (HE20)    |               |      |                |      |      |       |     |                 |      | -         |          |
| (U-NI2C)         NCS0         102         5510         9.22         9.06         12.16         9.5         9.5         12.5           802.11n<br>(HT40)         110         5550         9.21         9.15         12.19         9.5         9.5         12.5           118         5590         9.26         9.14         12.17         9.5         9.5         12.5           118         5590         9.23         9.10         12.17         9.5         9.5         12.5           1142         5710         9.17         9.14         12.17         9.5         9.5         12.5           802.11ac         1110         5550         9.23         9.14         12.12         9.5         9.5         12.5           802.11ac         1118         5590         9.21         9.08         12.16         9.5         9.5         12.5           110         5550         9.23         9.14         12.20         9.5         9.5         12.5           1118         5590         9.24         9.12         12.16         9.5         9.5         12.5           112         5710         9.12         12.17         9.5         9.5         12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 1         |               |      |                |      |      |       |     | 0.0             |      | 1         |          |
| B02.11n<br>(HT40)         MCS0         110<br>110         550<br>550         9.21<br>9.21         9.15<br>9.14         12.19<br>12.19         9.5<br>9.5         12.5<br>9.5         12.5<br>12.5           110         5500         9.21         9.16         12.19         9.5         9.5         12.5           118         5590         9.21         9.14         12.17         9.5         9.5         12.5           134         5670         9.23         9.10         12.18         9.5         9.5         12.5           142         5710         9.17         9.14         12.17         9.5         9.5         12.5           110         5550         9.23         9.10         12.18         9.5         9.5         12.5           110         5510         9.13         9.14         12.20         9.5         9.5         12.5           111         5500         9.23         9.14         12.20         9.5         9.5         12.5           1110         5550         9.23         9.14         12.20         9.5         9.5         12.5           112         124         5710         9.17         9.10         12.16         9.5         12.5           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           |               | 144  | 5720           | 9.14 | 9.10 | 12.13 | 9.5 | 9.5             | 12.5 |           |          |
| 802.11n<br>(HT40)         MCS0         118         5590         9.18         9.14         12.17         9.5         9.5         12.5           126         5630         9.25         9.14         12.11         9.5         9.5         12.5           134         5670         9.23         9.10         12.18         9.5         9.5         12.5           142         5710         9.17         9.14         12.17         9.5         9.5         12.5           142         5710         9.17         9.14         12.17         9.5         9.5         12.5           802.11ac<br>(VHT40)         MCS0         110         5550         9.23         9.14         12.20         9.5         9.5         12.5           110         5550         9.23         9.14         12.20         9.5         9.5         12.5           118         5690         9.24         9.12         12.16         9.5         9.5         12.5           114         5670         9.24         9.12         12.16         9.5         9.5         12.5           142         5710         9.16         9.09         12.14         9.5         9.5         12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (U-NII 2C) |           |               | 102  | 5510           | 9.22 | 9.06 | 12.16 | 9.5 | 9.5             | 12.5 |           |          |
| (HT40)         MCS0         126         5630         9.25         9.14         12.21         9.5         9.5         12.5           134         5670         9.23         9.10         12.18         9.5         9.5         12.5           142         5710         9.17         9.14         12.17         9.5         9.5         12.5           142         5710         9.17         9.14         12.17         9.5         9.5         12.5           802.11ac<br>(VHT40)         MCS0         110         5550         9.23         9.14         12.20         9.5         9.5         12.5           110         5550         9.23         9.14         12.20         9.5         9.5         12.5           1118         5590         9.23         9.14         12.20         9.5         9.5         12.5           1118         5590         9.24         9.12         12.16         9.5         9.5         12.5           134         5670         9.24         9.12         12.17         9.5         9.5         12.5           142         5710         9.10         9.12         12.17         9.5         9.5         12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |           |               | 110  | 5550           | 9.21 | 9.15 | 12.19 | 9.5 | 9.5             | 12.5 |           |          |
| (HT40)         MCS0         126         5630         9.25         9.14         12.21         9.5         9.5         12.5           134         5670         9.23         9.10         12.18         9.5         9.5         12.5           142         5710         9.17         9.14         12.17         9.5         9.5         12.5           142         5710         9.17         9.14         12.17         9.5         9.5         12.5           802.11ac<br>(VHT40)         118         5550         9.23         9.14         12.20         9.5         9.5         12.5           110         5550         9.23         9.14         12.20         9.5         9.5         12.5           1118         5550         9.23         9.14         12.20         9.5         9.5         12.5           1118         5560         9.24         9.12         12.16         9.5         9.5         12.5           134         5670         9.24         9.12         12.14         9.5         9.5         12.5           142         5710         9.16         9.09         12.14         9.5         9.5         12.5           110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 802.11n   | 10000         | 118  | 5590           | 9.18 | 9.14 | 12.17 | 9.5 | 9.5             | 12.5 | ]         | l        |
| Instruct of the second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           | MCS0          | -    |                |      |      |       |     |                 |      | No        | No       |
| Index         142         5710         9.17         9.14         12.17         9.5         9.5         12.5           March         102         5510         9.16         9.08         12.13         9.5         9.5         12.5           March         110         5550         9.23         9.14         12.20         9.5         9.5         12.5           110         5550         9.23         9.14         12.20         9.5         9.5         12.5           118         5590         9.21         9.08         12.16         9.5         9.5         12.5           118         5590         9.21         9.08         12.16         9.5         9.5         12.5           114         5590         9.24         9.12         12.16         9.5         9.5         12.5           114         5670         9.24         9.12         12.17         9.5         9.5         12.5           142         5710         9.16         9.09         12.17         9.5         9.5         12.5           110         5550         9.23         9.11         12.17         9.5         9.5         12.5           1118         55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 1         |               |      |                |      |      |       |     |                 |      | 1         |          |
| MCS0         102         5510         9.16         9.08         12.13         9.5         9.5         12.5           802.11ac<br>(VHT40)         110         5550         9.23         9.14         12.20         9.5         9.5         12.5           118         5590         9.21         9.08         12.16         9.5         9.5         12.5           118         5590         9.21         9.08         12.16         9.5         9.5         12.5           126         5630         9.17         9.10         12.15         9.5         9.5         12.5           134         5670         9.24         9.12         12.19         9.5         9.5         12.5           142         5710         9.16         9.09         12.14         9.5         9.5         12.5           110         5550         9.20         9.12         12.17         9.5         9.5         12.5           110         5550         9.23         9.11         12.18         9.5         9.5         12.5           1110         5550         9.23         9.13         12.17         9.5         9.5         12.5           1126         5630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |           |               |      |                |      |      |       |     |                 |      | 1         |          |
| B02.11ac<br>(VHT40)         I10         5550         9.23         9.14         12.0         9.5         9.5         12.5           118         5590         9.21         9.08         12.16         9.5         9.5         12.5           126         5630         9.17         9.10         12.15         9.5         9.5         12.5           134         5670         9.24         9.12         12.19         9.5         9.5         12.5           142         5710         9.16         9.09         12.14         9.5         9.5         12.5           142         5710         9.16         9.09         12.14         9.5         9.5         12.5           110         5550         9.23         9.11         12.17         9.5         9.5         12.5           110         5550         9.23         9.11         12.18         9.5         9.5         12.5           1110         5550         9.23         9.11         12.17         9.5         9.5         12.5           1110         5560         9.21         9.13         12.17         9.5         9.5         12.5           1126         5630         9.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |           |               |      |                |      |      |       |     |                 |      |           |          |
| 802.11ac<br>(VHT40)         MCS0         118         5590         9.21         9.08         12.16         9.5         9.5         12.5           126         5630         9.17         9.10         12.15         9.5         9.5         12.5           134         5670         9.24         9.12         12.19         9.5         9.5         12.5           142         5710         9.16         9.09         12.14         9.5         9.5         12.5           142         5710         9.16         9.09         12.14         9.5         9.5         12.5           110         5550         9.23         9.11         12.17         9.5         9.5         12.5           110         5550         9.23         9.11         12.17         9.5         9.5         12.5           1118         5590         9.12         12.17         9.5         9.5         12.5           1126         5630         9.21         9.13         12.17         9.5         9.5         12.5           1134         5670         9.19         9.12         12.17         9.5         9.5         12.5           142         5710         9.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 1         |               |      |                |      |      |       |     |                 |      | 4         |          |
| (VHT40)         MCS0         126         5630         9.17         9.10         12.15         9.5         9.5         12.5           134         5670         9.24         9.12         12.19         9.5         9.5         12.5           142         5710         9.16         9.09         12.14         9.5         9.5         12.5           142         5710         9.16         9.09         12.14         9.5         9.5         12.5           802.11ax<br>(HE40)         MCS0         110         5550         9.23         9.11         12.18         9.5         9.5         12.5           110         5550         9.23         9.11         12.18         9.5         9.5         12.5           1118         5690         9.19         9.12         12.17         9.5         9.5         12.5           1134         5670         9.19         9.12         12.17         9.5         9.5         12.5           134         5670         9.19         9.12         12.17         9.5         9.5         12.5           142         5710         9.17         9.07         12.13         9.5         9.5         12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |           |               | -    |                |      |      |       |     |                 |      | -         |          |
| (VIII40)         126         5630         9.17         9.10         12.15         9.5         9.5         12.5           134         5670         9.24         9.12         12.19         9.5         9.5         12.5           142         5710         9.16         9.09         12.14         9.5         9.5         12.5           102         5510         9.20         9.12         12.17         9.5         9.5         12.5           110         5550         9.23         9.11         11.218         9.5         9.5         12.5           110         5550         9.23         9.11         12.18         9.5         9.5         12.5           110         5550         9.23         9.11         12.18         9.5         9.5         12.5           1110         5550         9.23         9.11         12.18         9.5         9.5         12.5           1126         5630         9.21         9.13         12.17         9.5         9.5         12.5           1141         5670         9.17         9.07         12.13         9.5         9.5         12.5           1142         5710         9.17         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |           | MCS0          | -    |                |      |      |       |     |                 |      | No        | No       |
| Index         142         5710         9.16         9.09         12.14         9.5         9.5         12.5           142         5710         9.16         9.09         12.14         9.5         9.5         12.5           142         5510         9.20         9.12         12.17         9.5         9.5         12.5           110         5550         9.23         9.11         12.18         9.5         9.5         12.5           118         5590         9.19         9.12         12.17         9.5         9.5         12.5           118         5590         9.19         9.12         12.17         9.5         9.5         12.5           1142         5610         9.19         9.12         12.17         9.5         9.5         12.5           1143         5670         9.19         9.12         12.17         9.5         9.5         12.5           1142         5710         9.17         9.07         12.13         9.5         9.5         12.5           802.11ac         MCS0         122         5610         9.36         9.23         12.37         9.5         9.5         12.5           802.11ax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | (VH140)   |               |      |                |      |      |       |     |                 |      |           |          |
| MCS0         102         5510         9.20         9.12         12.17         9.5         9.5         12.5           110         5550         9.23         9.11         12.18         9.5         9.5         12.5           110         5550         9.23         9.11         12.18         9.5         9.5         12.5           118         5590         9.19         9.12         12.17         9.5         9.5         12.5           1126         5630         9.21         9.13         12.18         9.5         9.5         12.5           126         5630         9.21         9.13         12.18         9.5         9.5         12.5           134         5670         9.19         9.12         12.17         9.5         9.5         12.5           142         5710         9.17         9.07         12.13         9.5         9.5         12.5           802.11ac<br>(VH780)         MCS0         122         5610         9.36         9.32         12.31         9.5         9.5         12.5           138         5690         9.33         9.28         12.31         9.5         9.5         12.5           802.11ax<br>(HE80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1         |               |      |                |      |      |       |     |                 |      | 1         |          |
| MCS0         110         5550         9.23         9.11         12.18         9.5         9.5         12.5           118         5590         9.19         9.12         12.17         9.5         9.5         12.5           118         5590         9.21         9.13         12.17         9.5         9.5         12.5           126         5630         9.21         9.13         12.18         9.5         9.5         12.5           134         5670         9.19         9.12         12.17         9.5         9.5         12.5           142         5710         9.17         9.07         12.13         9.5         9.5         12.5           802.11ax<br>(VHR80)         MCS0         122         5610         9.36         9.32         12.35         9.5         9.5         12.5           802.11ax<br>(HE80)         MCS0         122         5610         9.28         12.31         9.5         9.5         12.5           802.11ax<br>(HE80)         MCS0         122         5610         9.26         9.17         12.22         9.5         9.5         12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           |               | 142  | 5710           | 9.16 | 9.09 | 12.14 | 9.5 | 9.5             | 12.5 |           |          |
| 802.11ax<br>(HE40)         MCS0         118         5590         9.19         9.12         12.17         9.5         9.5         12.5           126         5630         9.21         9.13         12.18         9.5         9.5         12.5           134         5670         9.19         9.12         12.17         9.5         9.5         12.5           142         5710         9.17         9.07         12.13         9.5         9.5         12.5           802.11ac<br>(VH780)         MCS0         122         5610         9.36         9.32         12.35         9.5         9.5         12.5           802.11ax<br>(HE80)         MCS0         122         5610         9.36         9.32         12.31         9.5         9.5         12.5           802.11ax<br>(HE80)         MCS0         106         5530         9.29         9.19         12.25         9.5         9.5         12.5           802.11ax<br>(HE80)         MCS0         122         5610         9.26         9.17         12.22         9.5         9.5         12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |           |               | 102  | 5510           | 9.20 | 9.12 | 12.17 | 9.5 | 9.5             | 12.5 |           |          |
| (HE40)         MCS0         126         5630         9.21         9.13         12.18         9.5         9.5         12.5           134         5670         9.19         9.12         12.17         9.5         9.5         12.5           142         5710         9.17         9.07         12.13         9.5         9.5         12.5           802.11ac<br>(VH780)         MCS0         122         5610         9.36         9.32         12.31         9.5         9.5         12.5           802.11ax<br>(VH780)         MCS0         122         5610         9.36         9.32         12.31         9.5         9.5         12.5           802.11ax<br>(VH780)         MCS0         106         5530         9.29         9.19         12.21         9.5         9.5         12.5           802.11ax<br>(VH780)         MCS0         122         5610         9.26         9.17         12.22         9.5         9.5         12.5           802.11ax<br>(HE80)         MCS0         122         5610         9.26         9.17         12.22         9.5         9.5         12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |           |               | 110  | 5550           | 9.23 | 9.11 | 12.18 | 9.5 | 9.5             | 12.5 | ]         |          |
| (HE40)         MCS0         126         5630         9.21         9.13         12.18         9.5         9.5         12.5           134         5670         9.19         9.12         12.17         9.5         9.5         12.5           142         5710         9.17         9.07         12.13         9.5         9.5         12.5           802.11ac<br>(VH780)         MCS0         122         5610         9.36         9.32         12.31         9.5         9.5         12.5           802.11ax<br>(VH780)         MCS0         122         5610         9.36         9.32         12.31         9.5         9.5         12.5           802.11ax<br>(VH780)         MCS0         106         5530         9.29         9.19         12.21         9.5         9.5         12.5           802.11ax<br>(VH780)         MCS0         122         5610         9.26         9.17         12.22         9.5         9.5         12.5           802.11ax<br>(HE80)         MCS0         122         5610         9.26         9.17         12.22         9.5         9.5         12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 802.11ax  |               | 118  | 5590           | 9.19 | 9.12 | 12.17 | 9.5 | 9.5             | 12.5 | 1         | l        |
| 134         5670         9.19         9.12         12.17         9.5         9.5         12.5           142         5710         9.17         9.07         12.13         9.5         9.5         12.5           802.11ac<br>(VH780)         MCS0         122         5610         9.36         9.32         12.35         9.5         9.5         12.5           802.11ac<br>(VH780)         MCS0         122         5610         9.36         9.32         12.35         9.5         9.5         12.5           802.11ac<br>(HE80)         MCS0         122         5610         9.33         9.28         12.31         9.5         9.5         12.5           802.11ac<br>(HE80)         MCS0         122         5610         9.26         9.17         12.22         9.5         9.5         12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           | MCSO          |      |                |      |      |       |     |                 |      | No        | No       |
| Id2         5710         9.17         9.07         12.13         9.5         9.5         12.5           802.11ac<br>(VH780)         MCS0         106         5530         9.39         9.34         12.37         9.5         9.5         12.5           802.11ac<br>(VH780)         MCS0         122         5610         9.36         9.32         12.35         9.5         9.5         12.5           802.11ax<br>(HE80)         MCS0         106         5530         9.29         9.19         12.25         9.5         9.5         12.5           802.11ax<br>(HE80)         MCS0         122         5610         9.26         9.17         12.22         9.5         9.5         12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |           |               | -    |                |      |      |       |     |                 |      | 1         |          |
| B02.11ac<br>(VH780)         MCS0         106         5530         9.39         9.34         12.37         9.5         9.5         12.5           302.11ac<br>(HEB0)         MCS0         122         5610         9.36         9.32         12.35         9.5         9.5         12.5         Yes         Yes         Yes           802.11ac<br>(HEB0)         MCS0         106         5530         9.29         9.19         12.25         9.5         9.5         12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 1         |               | -    |                |      |      |       |     |                 |      | 1         |          |
| 802.11ac<br>(VH780)         MCS0         122         5610         9.36         9.32         12.35         9.5         9.5         12.5         Yes         Yes           802.11ax<br>(HE80)         MCS0         122         5610         9.36         9.32         12.31         9.5         9.5         12.5         Yes         Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           |               |      |                |      |      |       |     |                 |      |           |          |
| (VHT80)         MCS0         122         5610         9.36         9.32         12.35         9.5         9.5         12.5         Yes         Yes           138         5690         9.33         9.28         12.31         9.5         9.5         12.5         Yes         Yes         Yes           802.11ax<br>(HE80)         MCS0         106         5530         9.29         9.19         12.25         9.5         9.5         12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 802.11ac  | 1000          |      |                |      |      |       |     |                 |      |           | N.S.     |
| MCS0         106         5530         9.29         9.19         12.25         9.5         9.5         12.5           MCS0         122         5610         9.26         9.17         12.22         9.5         9.5         12.5         No         No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |           | MCS0          |      |                |      |      |       |     |                 |      | Yes       | Yes      |
| 802.11ax<br>(HE80) MCS0 122 5610 9.26 9.17 12.22 9.5 9.5 12.5 No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |           |               |      |                |      |      |       |     |                 |      |           |          |
| (HE80) MCS0 122 5610 9.26 9.17 12.22 9.5 9.5 12.5 NO NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 802 11 94 |               |      |                |      |      |       |     |                 |      | 1         |          |
| 138 5690 9.22 9.12 12.18 9.5 9.5 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |           | MCS0          | 122  | 5610           | 9.26 | 9.17 | 12.22 | 9.5 | 9.5             | 12.5 | No        | No       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | /         |               | 138  | 5690           | 9.22 | 9.12 | 12.18 | 9.5 | 9.5             | 12.5 |           |          |

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。



Page: 26 / 36 Rev.: 00

#### Measured Results

| Band                | Mode                | Data Rate | Ch # | Freq. | Mea  | s. Avg Pwr (o | dBm)  | Tur  | ne-up Limit (dBm) |       | SAR Test | : (Yes/No) |
|---------------------|---------------------|-----------|------|-------|------|---------------|-------|------|-------------------|-------|----------|------------|
| Danu                | wode                | Data Rate | Un#  | (MHz) | Main | Aux           | Total | Main | Aux               | Total | Main     | Aux        |
|                     |                     |           | 149  | 5745  | 9.76 | 9.17          | 12.48 | 10.0 | 10.0              | 13.0  |          |            |
|                     | 802.11a             | 6 Mbps    | 157  | 5785  | 9.69 | 9.22          | 12.47 | 10.0 | 10.0              | 13.0  | No       | No         |
|                     |                     |           | 165  | 5825  | 9.18 | 9.51          | 12.35 | 10.0 | 10.0              | 13.0  |          |            |
|                     |                     |           | 149  | 5745  | 9.69 | 9.40          | 12.56 | 10.0 | 10.0              | 13.0  |          |            |
|                     | 802.11n<br>(HT20)   | MCS0      | 157  | 5785  | 9.61 | 9.40          | 12.52 | 10.0 | 10.0              | 13.0  | No       | No         |
|                     | (,                  |           | 165  | 5825  | 9.77 | 9.48          | 12.64 | 10.0 | 10.0              | 13.0  |          |            |
|                     |                     |           | 149  | 5745  | 9.42 | 9.60          | 12.52 | 10.0 | 10.0              | 13.0  |          |            |
|                     | 802.11ac<br>(VHT20) | MCS0      | 157  | 5785  | 9.41 | 9.73          | 12.58 | 10.0 | 10.0              | 13.0  | No       | No         |
|                     | (11120)             |           | 165  | 5825  | 9.14 | 9.25          | 12.21 | 10.0 | 10.0              | 13.0  |          |            |
| 5.8GHz              |                     |           | 149  | 5745  | 9.77 | 9.27          | 12.54 | 10.0 | 10.0              | 13.0  |          |            |
| 5.8GHZ<br>(U-NII 3) | 802.11ax<br>(HE20)  | MCS0      | 157  | 5785  | 9.73 | 9.34          | 12.55 | 10.0 | 10.0              | 13.0  | No       | No         |
| . ,                 | (                   |           | 165  | 5825  | 9.37 | 8.81          | 12.11 | 10.0 | 10.0              | 13.0  |          |            |
|                     | 802.11n             | MCS0      | 151  | 5755  | 9.50 | 9.27          | 12.40 | 10.0 | 10.0              | 13.0  | No       | No         |
|                     | (HT40)              | 10030     | 159  | 5795  | 9.06 | 9.43          | 12.26 | 10.0 | 10.0              | 13.0  | NO       | NO         |
|                     | 802.11ac            | MCS0      | 151  | 5755  | 9.59 | 9.46          | 12.54 | 10.0 | 10.0              | 13.0  | No       | No         |
|                     | (VHT40)             | INCOU     | 159  | 5795  | 9.21 | 9.03          | 12.14 | 10.0 | 10.0              | 13.0  | 140      | 140        |
|                     | 802.11ax            | MCS0      | 151  | 5755  | 9.38 | 9.69          | 12.55 | 10.0 | 10.0              | 13.0  | No       | No         |
|                     | (HE40)              | IVICOU    | 159  | 5795  | 9.33 | 8.95          | 12.16 | 10.0 | 10.0              | 13.0  | NU       | NU         |
|                     | 802.11ac<br>(VHT80) | MCS0      | 155  | 5775  | 9.74 | 9.20          | 12.49 | 10.0 | 10.0              | 13.0  | Yes      | Yes        |
|                     | 802.11ax<br>(HE80)  | MCS0      | 155  | 5775  | 9.13 | 8.82          | 11.99 | 10.0 | 10.0              | 13.0  | No       | No         |



Page: 27 / 36 Rev.: 00

# 9 Measured and Reported (Scaled) SAR Results

### 9.1 Wi-Fi (DTS Band)

| Frequency | RF                     |         |         | Dist. |               |       | Freq. |            | Pow er           | (dBm) | 1-g SAF | R (W/kg) | Plot |
|-----------|------------------------|---------|---------|-------|---------------|-------|-------|------------|------------------|-------|---------|----------|------|
| Band      | Exposure<br>Conditions | Mode    | Antenna | (mm)  | Test Position | Ch #. | (MHz) | Duty Cycle | Tune-up<br>Limit | Meas. | Meas.   | Scaled   | No.  |
|           |                        |         |         |       | Front         | 6     | 2437  | 99.90%     | 16.0             | 15.82 | 0.126   | 0.13     |      |
|           |                        |         |         |       | Rear          | 6     | 2437  | 99.90%     | 16.0             | 15.82 | 0.105   | 0.11     |      |
| 2.4GHz    | Standalone             | 802.11b | SISO    | 0     | Edge 1        | 6     | 2437  | 99.90%     | 16.0             | 15.82 | 0.004   | 0.00     |      |
| 2.40112   | Stanualone             | 002.110 | Main    | 0     | Edge 4        | 1     | 2412  | 99.90%     | 16.0             | 15.72 | 0.822   | 0.88     |      |
|           |                        |         |         |       | Edge 4        | 6     | 2437  | 99.90%     | 16.0             | 15.82 | 1.030   | 1.07     |      |
|           |                        |         |         |       | Edge 4        | 11    | 2462  | 99.90%     | 16.0             | 15.77 | 1.150   | 1.21     | 1    |
|           |                        |         |         |       | Front         | 6     | 2437  | 99.90%     | 16.0             | 15.73 | 0.077   | 0.08     |      |
|           |                        |         |         |       | Rear          | 6     | 2437  | 99.90%     | 16.0             | 15.73 | 0.072   | 0.08     |      |
| 2.4GHz    | Standalone             | 802.11b | SISO    | 0     | Edge 2        | 6     | 2437  | 99.90%     | 16.0             | 15.73 | 0.000   | 0.00     |      |
| 2.4012    | Stariualone            | 802.110 | Aux     | 0     | Edge 3        | 1     | 2412  | 99.90%     | 16.0             | 15.61 | 0.862   | 0.94     |      |
|           |                        |         |         |       | Edge 3        | 6     | 2437  | 99.90%     | 16.0             | 15.73 | 0.970   | 1.03     |      |
|           |                        |         |         |       | Edge 3        | 11    | 2462  | 99.90%     | 16.0             | 15.62 | 1.170   | 1.28     | 2    |

### 9.2 Wi-Fi (U-NII Band)

| Frequency         | RF                     |                     |              | Dist.    |               |       | Freq. |            | Pow er           | (dBm) | 1-g SAI | R (W/kg) | Plot |
|-------------------|------------------------|---------------------|--------------|----------|---------------|-------|-------|------------|------------------|-------|---------|----------|------|
| Band              | Exposure<br>Conditions | Mode                | Antenna      | (mm)     | Test Position | Ch #. | (MHz) | Duty Cycle | Tune-up<br>Limit | Meas. | Meas.   | Scaled   | No.  |
|                   |                        |                     |              |          | Front         | 42    | 5210  | 97.53%     | 9.5              | 9.24  | 0.064   | 0.07     |      |
| 5.2GHz            | Standalone             | 802.11ac            | SISO         | 0        | Rear          | 42    | 5210  | 97.53%     | 9.5              | 9.24  | 0.057   | 0.06     |      |
| (U-NII 1)         | Stanualone             | (VHT80)             | Main         | 0        | Edge 1        | 42    | 5210  | 97.53%     | 9.5              | 9.24  | 0.000   | 0.00     |      |
|                   |                        |                     |              |          | Edge 4        | 42    | 5210  | 97.53%     | 9.5              | 9.24  | 1.030   | 1.12     | 3    |
|                   |                        |                     |              |          | Front         | 42    | 5210  | 97.53%     | 9.5              | 8.78  | 0.056   | 0.07     |      |
| 5.2GHz            | Standalone             | 802.11ac            | SISO         | 0        | Rear          | 42    | 5210  | 97.53%     | 9.5              | 8.78  | 0.028   | 0.03     |      |
| (U-NII 1)         | Standalone             | (VHT80)             | Aux          | 0        | Edge 2        | 42    | 5210  | 97.53%     | 9.5              | 8.78  | 0.000   | 0.00     |      |
|                   |                        |                     |              |          | Edge 3        | 42    | 5210  | 97.53%     | 9.5              | 8.78  | 1.010   | 1.22     | 4    |
|                   |                        |                     | 010.0        |          | Front         | 58    | 5290  | 97.53%     | 9.5              | 9.36  | 0.043   | 0.05     |      |
| 5.3<br>(U-NII 2A) | Standalone             | 802.11ac<br>(VHT80) | SISO<br>Main | 0        | Rear          | 58    | 5290  | 97.53%     | 9.5              | 9.36  | 0.042   | 0.04     |      |
| (U-INIIZA)        |                        | (100)               | IVIAILU      |          | Edge 4        | 58    | 5290  | 97.53%     | 9.5              | 9.36  | 0.735   | 0.78     | 7    |
|                   |                        |                     |              |          | Front         | 58    | 5290  | 97.53%     | 9.5              | 9.27  | 0.052   | 0.06     |      |
| 5.3<br>(U-NII 2A) | Standalone             | 802.11ac<br>(VHT80) | SISO         | 0        | Rear          | 58    | 5290  | 97.53%     | 9.5              | 9.27  | 0.040   | 0.04     |      |
| (U-INIIZA)        |                        | (100)               | Aux          |          | Edge 3        | 58    | 5290  | 97.53%     | 9.5              | 9.27  | 1.030   | 1.11     | 8    |
|                   |                        |                     |              |          | Front         | 106   | 5530  | 97.53%     | 9.5              | 9.39  | 0.071   | 0.07     |      |
|                   |                        |                     | 0.00         |          | Rear          | 106   | 5530  | 97.53%     | 9.5              | 9.39  | 0.048   | 0.05     |      |
| 5.5<br>(U-NII 2C) | Standalone             | 802.11ac<br>(VHT80) | SISO<br>Main | 0        | Edge 4        | 106   | 5530  | 97.53%     | 9.5              | 9.39  | 0.747   | 0.79     |      |
| (U-INII 2C)       |                        | (100)               | IVIAILU      |          | Edge 4        | 122   | 5610  | 97.53%     | 9.5              | 9.36  | 0.817   | 0.87     |      |
|                   |                        |                     |              |          | Edge 4        | 138   | 5690  | 97.53%     | 9.5              | 9.33  | 1.040   | 1.11     | 9    |
|                   |                        |                     |              |          | Front         | 106   | 5530  | 97.53%     | 9.5              | 9.34  | 0.035   | 0.04     |      |
|                   |                        |                     | 0.00         |          | Rear          | 106   | 5530  | 97.53%     | 9.5              | 9.34  | 0.035   | 0.04     |      |
| 5.5<br>(U-NII 2C) | Standalone             | 802.11ac<br>(VHT80) | SISO<br>Aux  | 0        | Edge 3        | 106   | 5530  | 97.53%     | 9.5              | 9.34  | 0.656   | 0.70     |      |
| (U-INII 2C)       |                        | (100)               | Aux          |          | Edge 3        | 122   | 5610  | 97.53%     | 9.5              | 9.32  | 0.558   | 0.60     |      |
|                   |                        |                     |              |          | Edge 3        | 138   | 5690  | 97.53%     | 9.5              | 9.28  | 0.932   | 1.01     | 10   |
|                   |                        |                     |              |          | Front         | 155   | 5775  | 97.53%     | 10.0             | 9.74  | 0.106   | 0.12     |      |
| 5.8               | o                      | 802.11ac            | SISO         |          | Rear          | 155   | 5775  | 97.53%     | 10.0             | 9.74  | 0.061   | 0.07     |      |
| (U-NII 3)         | Standalone             | (VHT80)             | Main         | 0        | Edge 1        | 155   | 5775  | 97.53%     | 10.0             | 9.74  | 0.000   | 0.00     |      |
|                   |                        |                     |              |          | Edge 4        | 155   | 5775  | 97.53%     | 10.0             | 9.74  | 0.919   | 1.00     | 5    |
|                   |                        |                     |              |          | Front         | 155   | 5775  | 97.53%     | 10.0             | 9.20  | 0.089   | 0.11     |      |
| 5.8               | 0                      | 802.11ac            | SISO         | <u>,</u> | Rear          | 155   | 5775  | 97.53%     | 10.0             | 9.20  | 0.062   | 0.08     |      |
| (U-NII 3)         | Standalone             | (VHT80)             | Aux          | 0        | Edge 2        | 155   | 5775  | 97.53%     | 10.0             | 9.20  | 0.000   | 0.00     |      |
|                   |                        |                     |              |          | Edge 3        | 155   | 5775  | 97.53%     | 10.0             | 9.20  | 1.000   | 1.23     | 6    |



Page: 28 / 36 Rev.: 00

Report No.: TMWK2405001686KS

# **10 SAR Measurement Variability**

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.



#### Page: 29 / 36 Rev.: 00

### Wi-Fi (DTS Band)

| Frequency | RF                     |         |              | Dist. |               |       | Freq. |            | Meas. SA | AR (W/kg) | Largest to            |
|-----------|------------------------|---------|--------------|-------|---------------|-------|-------|------------|----------|-----------|-----------------------|
| Band      | Exposure<br>Conditions | Mode    | Antenna      | (mm)  | Test Position | Ch #. | (MHz) | Duty Cycle | Original | Repeated  | Smallest<br>SAR Ratio |
| 2.4GHz    | Standalone             | 802.11b | SISO<br>Main | 0     | Edge 4        | 11    | 2462  | 99.9%      | 1.150    | 1.140     | 1.01                  |
| 2.4GHz    | Standalone             | 802.11b | SISO<br>Aux  | 0     | Edge 3        | 11    | 2462  | 99.9%      | 1.170    | 1.170     | 1.00                  |

# Wi-Fi (U-NII Band)

| RF                     |                                                    |                                                                                                                                                                                                                                                                                                                              | Dist                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Freq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Meas. SAR (W/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Largest to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exposure<br>Conditions | Mode                                               | Antenna                                                                                                                                                                                                                                                                                                                      | (mm)                                                                                                                                                                                                                                                                                                                     | Lest Position   (Ch #                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Duty Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Original                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Repeated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Smallest<br>SAR Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Standalone             | 802.11ac                                           | SISO                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                        | Edge 4                                                                                                                                                                                                                                                                                                                                        | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | (VHT80)                                            | Main                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                        | - 5 -                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Standalone             | 802.11ac                                           | SISO                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                        | Edge 3                                                                                                                                                                                                                                                                                                                                        | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | (VHI80)                                            | Aux                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                          | Ŭ                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Standalone             | 802.11ac                                           | SISO                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                        | Edge 3                                                                                                                                                                                                                                                                                                                                        | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97.53%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | (VHT80)                                            | Aux                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                        | - 5                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Standalone             | 802.11ac                                           | SISO                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                        | Edge 4                                                                                                                                                                                                                                                                                                                                        | 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97 53%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| etandalerie            | (VHT80)                                            | Main                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                        | _090 .                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01.0070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Standalone             | 802.11ac                                           | SISO                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                        | Edge 3                                                                                                                                                                                                                                                                                                                                        | 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97 53%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| otaridaloric           | (VHT80)                                            | Aux                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                        | Luge 0                                                                                                                                                                                                                                                                                                                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 57.5576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Standalono             | 802.11ac                                           | SISO                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                        | Edgo 4                                                                                                                                                                                                                                                                                                                                        | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 07 53%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Standalone             | (VHT80)                                            | Main                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                        | Luge 4                                                                                                                                                                                                                                                                                                                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5//5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31.3376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Standalone             | 802.11ac                                           | SISO                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                        | Edge 4                                                                                                                                                                                                                                                                                                                                        | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 07 53%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| StanualOffe            | (VHT80)                                            | Aux                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                        | Luge 4                                                                                                                                                                                                                                                                                                                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 91.33%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | Exposure<br>Conditions<br>Standalone<br>Standalone | Exposure<br>ConditionsModeStandalone802.11ac<br>(VHT80)Standalone802.11ac<br>(VHT80)Standalone802.11ac<br>(VHT80)Standalone802.11ac<br>(VHT80)Standalone802.11ac<br>(VHT80)Standalone802.11ac<br>(VHT80)Standalone802.11ac<br>(VHT80)Standalone802.11ac<br>(VHT80)Standalone802.11ac<br>(VHT80)Standalone802.11ac<br>(VHT80) | Exposure<br>ConditionsModeAntennaStandalone802.11acSISOStandalone(VHT80)MainStandalone802.11acSISO(VHT80)AuxAuxStandalone802.11acSISO(VHT80)AuxAuxStandalone802.11acSISO(VHT80)AuxAuxStandalone802.11acSISO(VHT80)MainMainStandalone802.11acSISO(VHT80)AuxAuxStandalone802.11acSISO(VHT80)MainMainStandalone802.11acSISO | Exposure<br>ConditionsModeAntennaDist.<br>(mm)Standalone802.11acSISO0(VHT80)Main0Standalone802.11acSISO0(VHT80)Aux0Standalone802.11acSISO0(VHT80)Aux0Standalone802.11acSISO0Standalone802.11acSISO0Standalone802.11acSISO0Standalone802.11acSISO0Standalone802.11acSISO0Standalone802.11acSISO0Standalone802.11acSISO0Standalone802.11acSISO0 | Exposure<br>ConditionsModeAntennaDist.<br>(mm)Test PositionStandalone802.11ac<br>(VHT80)SISO<br>Main0Edge 4Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 3Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 3Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 3Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 3Standalone802.11ac<br>(VHT80)SISO<br>Main0Edge 4Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 3Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 3Standalone802.11ac<br>(VHT80)SISO<br>Main0Edge 4Standalone802.11ac<br>(VHT80)SISO<br>Main0Edge 4 | Exposure<br>ConditionsModeAntennaDist.<br>(mm)Test PositionCh #.Standalone802.11ac<br>(VHT80)SISO<br>Main0Edge 442Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 342Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 342Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 358Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 4138Standalone802.11ac<br>(VHT80)SISO<br>Main0Edge 4138Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 3138Standalone802.11ac<br>(VHT80)SISO<br>Main0Edge 4155Standalone802.11ac<br>(VHT80)SISO<br>Main0Edge 4155 | Exposure<br>ConditionsModeAntennaDist.<br>(mm)Test PositionCh #.Freq.<br>(MHz)Standalone802.11ac<br>(VHT80)SISO<br>Main0Edge 4425210Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 3425210Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 3425210Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 3585290Standalone802.11ac<br>(VHT80)SISO<br>Main0Edge 41385690Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 31385690Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 41555775Standalone802.11ac<br>(VHT80)SISO<br>Main0Edge 41555775 | Exposure<br>ConditionsModeAntennaDist.<br>(mm)Test PositionCh #.Freq.<br>(MHz)Duty CycleStandalone802.11ac<br>(VHT80)SISO<br>Main0Edge 442521097.5%Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 342521097.5%Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 342521097.5%Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 358529097.53%Standalone802.11ac<br>(VHT80)SISO<br>Main0Edge 4138569097.53%Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 3138569097.53%Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 4155577597.53%Standalone802.11ac<br>(VHT80)SISO<br>Main0Edge 4155577597.53% | Exposure<br>ConditionsModeAntennaDist.<br>(mm)Test PositionCh #.Freq.<br>(MHz)Duty CycleOriginalStandalone802.11ac<br>(VHT80)SISO<br>Main0Edge 442521097.5%1.030Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 342521097.5%1.010Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 358529097.53%1.030Standalone802.11ac<br>(VHT80)SISO<br>Aux0Edge 358529097.53%1.030Standalone802.11ac<br>(VHT80)SISO<br>Main0Edge 4138569097.53%1.040Standalone802.11ac<br>(VHT80)SISO<br>Main0Edge 3138569097.53%0.932Standalone802.11ac<br>(VHT80)SISO<br>Main0Edge 4155577597.53%0.919Standalone802.11ac<br>(VHT80)SISO<br>Main0Edge 4155577597.53%1.000 | Exposure<br>ConditionsModeAntennaDist.<br>(mm)Test PositionCh #.Freq.<br>(MHz)Duty CycleInstruction (mg)RepeatedStandalone $802.11ac$<br>(VHT80)SISO<br>Main0Edge 442521097.5%1.0300.927Standalone $802.11ac$<br>(VHT80)SISO<br>Aux0Edge 342521097.5%1.0100.973Standalone $802.11ac$<br>(VHT80)SISO<br>Aux0Edge 358529097.53%1.0300.959Standalone $802.11ac$<br>(VHT80)SISO<br>Aux0Edge 4138569097.53%1.0400.956Standalone $802.11ac$<br>(VHT80)SISO<br>Main0Edge 3138569097.53%0.9320.917Standalone $802.11ac$<br>(VHT80)SISO<br>Aux0Edge 4155577597.53%0.9190.943Standalone $802.11ac$<br>(VHT80)SISO<br>Aux0Edge 4155577597.53%1.0001.010 |

#### Note(s):

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is < 1.20.



Page: 30 / 36 Rev.: 00

Report No.: TMWK2405001686KS

# **11 Simultaneous Transmission SAR Analysis**

KDB 447498 D04 General RF Exposure Guidance provides two procedures for determining simultaneous transmission SAR test exclusion: Sum of SAR and SAR to Peak Location Ratio (SPLSR)

#### Sum of SAR

To qualify for simultaneous transmission SAR test exclusion based upon Sum of SAR the sum of the reported standalone SARs for all simultaneously transmitting antennas shall be below the applicable standalone SAR limit. If the sum of the SARs is above the applicable limit then simultaneous transmission SAR test exclusion may still apply if the requirements of the SAR to Peak Location Ratio (SPLSR) evaluation are met.

#### SAR to Peak Location Ratio (SPLSR)

KDB 447498 D04 General RF Exposure Guidance explains how to calculate the SAR to Peak Location Ratio (SPLSR) between pairs of simultaneously transmitting antennas:

#### SPLSR = (SAR<sub>1</sub> + SAR<sub>2</sub>)<sup>1.5</sup> /Ri

Where:

**SAR**<sub>1</sub> is the highest measured or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition

**SAR**<sub>2</sub> is the highest measured or estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first

*Ri* is the separation distance between the pair of simultaneous transmitting antennas. When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of  $[(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2]$ 

In order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR > 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of:

### $(SAR_1 + SAR_2)^{1.5} / Ri \le 0.04$

When an individual antenna transmits at on two bands simultaneously, the sum of the highest reported SAR for the frequency bands should be used to determine SAR1.or SAR2. When SPLSR is necessary, the smallest distance between the peak SAR locations for the antenna pair with respect to the peaks from each antenna should be used.

The antennas in all antenna pairs that do not qualify for simultaneous transmission SAR test exclusion must be tested for SAR compliance, according to the enlarged zoom scan and volume scan post-processing procedures in KDB Publication 865664 D01



Page: 31 / 36 Rev.: 00

# Simultaneous Transmission Condition

| RF Exposure Condition | Item | Capable Transmit Configurations |  |  |  |  |  |  |  |
|-----------------------|------|---------------------------------|--|--|--|--|--|--|--|
| Standalone            | 1    | DTS (Main) + DTS (Aux)          |  |  |  |  |  |  |  |
|                       | 2    | U-NII (Main) + U-NII (Aux)      |  |  |  |  |  |  |  |



Page: 32 / 36 Rev.: 00

#### Report No.: TMWK2405001686KS

#### Estimated SAR for Simultaneous Transmission SAR Analysis Considerations for SAR estimation

- 1. When standalone SAR test exclusion applies, standalone SAR must also be estimated to determine simultaneous transmission SAR test exclusion.
- Please refer to <u>Estimated SAR Tables</u> to see which test positions are inherently compliant as they consist of only estimated SAR values for all applicable transmitters and consequently will always have sum of SAR values < 1.2 W/kg. Simultaneous transmission SAR analysis was therefore not performed for these test positions.
- 3. Refer to Appendix E of KDB 447498 D04 and multiply the corresponding ratio by the 1-g SAR limit of 1.6 W/kg SAR.

SAR<sub>est</sub> is given by:

SARest = 1.6 \* Pant / Pth [W/kg]

#### Estimated SAR for 1.5 GHz $\leq f \leq 6$ GHz

| Tx                | Frequency | Output | Power | Antenna Gain | ERP   | ERP Threshold |       | S    | paration D | listances (c | m)    |       |       |      | P <sub>th</sub> (r | mW)   |       |       |           | Esti      | mated 1-g S | AR Value (W | //kg)     |           |
|-------------------|-----------|--------|-------|--------------|-------|---------------|-------|------|------------|--------------|-------|-------|-------|------|--------------------|-------|-------|-------|-----------|-----------|-------------|-------------|-----------|-----------|
| Interface         | (GHz)     | dBm    | mW    | (dBi)        | (dBm) | (mW)          | Front | Rear | Edge1      | Edge2        | Edge3 | Edge4 | Front | Rear | Edge1              | Edge2 | Edge3 | Edge4 | Front     | Rear      | Edge1       | Edge2       | Edge 3    | Edge 4    |
| WiFi 2.4GHz(Main) | 2.462     | 16.00  | 40    | -1.84        | 12.01 | 15.89         | 0.5   | 0.5  | 1.5        | 28           | 24.5  | 0.5   | 3     | 3    | 22                 | 3060  | 3060  | 3     | -MEASURE- | -MEASURE- | -MEASURE-   | 0.02        | 0.02      | -MEASURE- |
| WiFi 5.2GHz(Main) | 5.24      | 9.50   | 9     | 0.64         | 7.99  | 6.30          | 0.5   | 0.5  | 1.5        | 28           | 24.5  | 0.5   | 1     | 1    | 14                 | 3060  | 3060  | 1     | -MEASURE- | -MEASURE- | 1.03        | 0.00        | 0.00      | -MEASURE- |
| WiFi 5.3GHz(Main) | 5.32      | 9.50   | 9     | 0.64         | 7.99  | 6.30          | 0.5   | 0.5  | 1.5        | 28           | 24.5  | 0.5   | 1     | 1    | 14                 | 3060  | 3060  | 1     | -MEASURE- | -MEASURE- | 1.03        | 0.00        | 0.00      | -MEASURE- |
| WiFi 5.5GHz(Main) | 5.7       | 9.50   | 9     | 0.64         | 7.99  | 6.30          | 0.5   | 0.5  | 1.5        | 28           | 24.5  | 0.5   | 1     | 1    | 14                 | 3060  | 3060  | 1     | -MEASURE- | -MEASURE- | 1.03        | 0.00        | 0.00      | -MEASURE- |
| WiFi 5.8GHz(Main) | 5.825     | 10.00  | 10    | 0.64         | 8.49  | 7.06          | 0.5   | 0.5  | 1.5        | 28           | 24.5  | 0.5   | 1     | 1    | 14                 | 3060  | 3060  | 1     | -MEASURE- | -MEASURE- | 1.14        | 0.01        | 0.01      | -MEASURE- |
| WIFi 2.4GHz(Aux)  | 2.462     | 16.00  | 40    | -11.01       | 2.84  | 1.92          | 0.5   | 0.5  | 33         | 15           | 0.5   | 19.5  | 3     | 3    | 3060               | 22    | 3     | 2916  | -MEASURE- | -MEASURE- | 0.02        | -MEASURE-   | -MEASURE- | 0.02      |
| WIFi 5.2GHz(Aux)  | 5.24      | 9.50   | 9     | -1.62        | 5.73  | 3.74          | 0.5   | 0.5  | 33         | 15           | 0.5   | 19.5  | 1     | 1    | 3060               | 14    | 1     | 2904  | -MEASURE- | -MEASURE- | 0.00        | 1.03        | -MEASURE- | 0.00      |
| WIFi 5.3GHz(Aux)  | 5.32      | 9.50   | 9     | 0.64         | 7.99  | 6.30          | 0.5   | 0.5  | 33         | 15           | 0.5   | 19.5  | 1     | 1    | 3060               | 14    | 1     | 2904  | -MEASURE- | -MEASURE- | 0.00        | 1.03        | -MEASURE- | 0.00      |
| WIFi 5.5GHz(Aux)  | 5.7       | 9.50   | 9     | 0.64         | 7.99  | 6.30          | 0.5   | 0.5  | 33         | 15           | 0.5   | 19.5  | 1     | 1    | 3060               | 14    | 1     | 2903  | -MEASURE- | -MEASURE- | 0.00        | 1.03        | -MEASURE- | 0.00      |
| WIFi 5.8GHz(Aux)  | 5.825     | 10.00  | 10    | -1.62        | 6.23  | 4.20          | 0.5   | 0.5  | 33         | 15           | 0.5   | 19.5  | 1     | 1    | 3060               | 14    | 1     | 2902  | -MEASURE- | -MEASURE- | 0.01        | 1.14        | -MEASURE- | 0.01      |

### 11.1 Sum of the SAR for Wi-Fi & Wi-Fi

|                  | S         | Standalone | SAR (W/kg | $\Sigma$ 1-g SAR (W/kg) |           |               |  |
|------------------|-----------|------------|-----------|-------------------------|-----------|---------------|--|
| Test<br>Position | D         | TS         | U-        | NII                     | DTS + DTS | U-NII + U-NII |  |
| Position         | Main<br>① | Aux<br>2   | Main<br>③ | Aux<br>④                | 1+2       | 3+4           |  |
| Front            | 0.13      | 0.08       | 0.12      | 0.11                    | 0.21      | 0.23          |  |
| Rear             | 0.11      | 0.08       | 0.07      | 0.08                    | 0.19      | 0.15          |  |
| Edge 1           | 0.00      | 0.02       | 1.14      | 0.01                    | 0.02      | 1.15          |  |
| Edge 2           | 0.02      | 0.00       | 0.01      | 1.14                    | 0.02      | 1.15          |  |
| Edge 3           | 0.02      | 1.28       | 0.01      | 1.23                    | 1.30      | 1.24          |  |
| Edge 4           | 1.21      | 0.02       | 1.12      | 0.01                    | 1.23      | 1.13          |  |



Report No.: TMWK2405001686KS Page: 33 / 36 Rev.: 00

# **12 Equipment List & Calibration Status**

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards. Date Tested: 02/16/2024 to 02/18/2024

| Dielectric Property Measurements |              |            |            |               |  |  |  |
|----------------------------------|--------------|------------|------------|---------------|--|--|--|
| Name of Equipment                | Manufacturer | Type/Model | Serial No. | Cal. Due Date |  |  |  |
| Dielectric Assessment Kit        | SPEAG        | DAKS-3.5   | 1053       | 2024/2/26     |  |  |  |
| Thermometer                      | TES          | TES-1306   | 210801061  | 2024/11/1     |  |  |  |

| System Check                 |              |            |             |               |
|------------------------------|--------------|------------|-------------|---------------|
| Name of Equipment            | Manufacturer | Type/Model | Serial No.  | Cal. Due Date |
| Signal Generator             | Agilent      | N5181A     | MY 50145826 | 2024/9/21     |
| Pow er Meter                 | Anritsu      | ML2496A    | 2136002     | 2024/11/15    |
| Pow er Sensor                | Anritsu      | MA2411B    | 1911386     | 2024/7/24     |
| Pow er Sensor                | Anritsu      | MA2411B    | 1911387     | 2024/7/24     |
| Dual Directional Coupler     | Agilent      | 772D       | MY 46151258 | 2024/9/25     |
| Amplifier                    | EMCI         | ZVE-8G     | 980190      | N/A           |
| Data Acquisition Electronice | SPEAG        | DAE4       | 856         | 2024/4/25     |
| Dosimetric E-Field Probe     | SPEAG        | EX3DV4     | 3665        | 2024/8/17     |
| System Validation Dipole     | SPEAG        | D2450V2    | 727         | 2024/4/24     |
| System Validation Dipole     | SPEAG        | D5GHzV2    | 1349        | 2024/3/19     |
| Humidity/Temp meter          | TECPEL       | DTM-303A   | TP131515    | 2024/6/1      |
| Thermometer                  | TES          | TES-1306   | 210801061   | 2024/11/1     |

| Software Version          |
|---------------------------|
| DASY NEO52 D10.3 S14.6.13 |
| SEMCAD-X-PostPro          |



Page: 34 / 36 Rev.: 00

#### Date Tested: 05/25/2024

| Dielectric Property Measurements |              |            |            |               |  |  |  |
|----------------------------------|--------------|------------|------------|---------------|--|--|--|
| Name of Equipment                | Manufacturer | Type/Model | Serial No. | Cal. Due Date |  |  |  |
| Dielectric Assessment Kit        | SPEAG        | DAKS-3.5   | 1053       | 2025/2/20     |  |  |  |
| Thermometer                      | TES          | TES-1306   | 210801061  | 2024/11/1     |  |  |  |

| <u>System Check</u>          |              |            |             |               |
|------------------------------|--------------|------------|-------------|---------------|
| Name of Equipment            | Manufacturer | Type/Model | Serial No.  | Cal. Due Date |
| Signal Generator             | Agilent      | N5181A     | MY 50145826 | 2024/9/21     |
| Pow er Meter                 | Anritsu      | ML2496A    | 2136002     | 2024/11/15    |
| Pow er Sensor                | Anritsu      | MA2411B    | 1911386     | 2024/7/24     |
| Pow er Sensor                | Anritsu      | MA2411B    | 1911387     | 2024/7/24     |
| Dual Directional Coupler     | Agilent      | 772D       | MY 46151258 | 2024/9/25     |
| Amplifier                    | EMCI         | ZVE-8G     | 980190      | N/A           |
| Data Acquisition Electronice | SPEAG        | DAE4       | 1751        | 2025/3/12     |
| Dosimetric E-Field Probe     | SPEAG        | EX3DV4     | 3665        | 2024/8/17     |
| System Validation Dipole     | SPEAG        | D5GHzV2    | 1349        | 2025/3/18     |
| Humidity/Temp meter          | TECPEL       | DTM-303A   | TP131515    | 2024/6/1      |
| Thermometer                  | TES          | TES-1306   | 210801061   | 2024/11/1     |

| Software Version          |
|---------------------------|
| DASY NEO52 D10.3 S14.6.13 |
| SEMCAD-X-PostPro          |



# **13 Facilities**

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan.

Page: 35 / 36 Rev.: 00



Page: 36 / 36 Rev.: 00

# 14 Appendixes

| Exhibit | Content                                    |
|---------|--------------------------------------------|
| 1       | SAR Setup Photos                           |
| 2       | SAR System Check Plots                     |
| 3       | Highest SAR Test Plots                     |
| 4       | SAR DAE and Probe Calibration Certificates |
| 5       | SAR Dipole Calibration Certificates        |

### **END OF REPORT**