

Test report No. Page

Issued date FCC ID : 11143372S-C-R1 : 1 of 23

: June 6, 2016 : W2Z-01000008

RADIO TEST REPORT

Test Report No.: 11143372S-C-R1

Applicant

FUJIFILM Corporation

Type of Equipment

Wireless LAN Module

Model No.

SX-PCEAN(FF-E)

FCC ID

W2Z-01000008

Test regulation

FCC Part 15 Subpart E: 2015 (DFS test only)

Test Result

Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.

:

- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by any agency of the Federal Government.
- 6. The opinions and the interpretations to the result of the description in this report are outside scopes where Japan has been accredited.
- 7. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 8. This report is a revised version of 11143372S-C. 11143372S-C is replaced with this report.

Representative test engineer:

Tatsuya Arai
Engineer
Consumer Technology Division

Approved by:

Toyokazu Imamura

Leader
Consumer Technology Division

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Telephone:

+81 463 50 6400

Facsimile:

+81 463 50 6401

Test report No. : 11143372S-C-R1
Page : 2 of 23
Issued date : June 6, 2016
FCC ID : W2Z-01000008

REVISION HISTORY

Original Test Report No.: 11143372S-C

Revision	Test report No. 11143372S-C	Date	Page revised	Contents
- (Original)	11143372S-C	April 11, 2016	-	-
1	11143372S-C-R1	April 11, 2016 June 6, 2016	4	Modification of antenna information
			6	Addition of description
			10	Addition of description Modification of table
	<u>l</u>	l	J	

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11143372S-C-R1 Page : 3 of 23 Issued date FCC ID : June 6, 2016 : W2Z-01000008

CONTENTS	PAGE
SECTION 1: Customer information	4
SECTION 2: Equipment under test (E.U.T.)	4
SECTION 3: Scope of Report	5
SECTION 4: Test specification, procedures & res	ults5
SECTION 5: Operation of E.U.T. during testing	10
SECTION 6: In-Service Monitoring for Channel I	,
SECTION 7: In-Service Monitoring for Non-Occu	ıpancy Period19
APPENDIX 1: Data of DFS test	21
APPENDIX 2: Test instruments	22
APPENDIX 3: Photographs of test setup	23

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN Telephone: +81 463 50 6400 Facsimile: +81 463 50 6401

Test report No. : 11143372S-C-R1
Page : 4 of 23
Issued date : June 6, 2016
FCC ID : W2Z-01000008

SECTION 1: Customer information

Company Name : FUJIFILM Corporation

Address : 9-7-3 Akasaka, Minato-ku, Tokyo 107-0052 Japan

Telephone Number : +81-3-6271-1654 Facsimile Number : +81-3-6271-1189 Contact Person : Takao Ozaki

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Wireless LAN Module Model No. : SX-PCEAN(FF-E)

Serial No. : Refer to Section 4, Clause 4.2

Rating : DC 3.3 V

Receipt Date of Sample : September 9, 2014

Country of Mass-production : Japan

Condition of EUT : Production model

Modification of EUT : No Modification by the test lab.

2.2 Product description

Model: SX-PCEAN(FF-E) (referred to as the EUT in this report) is a Wireless LAN Module.

General Specification

Clock frequency(ies) in the system : 40 MHz

Radio Specification

Radio Type : Transceiver Method of Frequency Generation : Synthesizer

	IEEE802.11b	IEEE802.11g	IEEE802.11a	IEEE802.11n	IEEE802.11n
				(20M band)	(40M band)
Frequency	2412-2462 MHz	2412-2462 MHz	5180-5320 MHz	2412-2462 MHz	2422-2452 MHz
of operation			5500-5700 MHz	5180-5320 MHz	5190-5310 MHz
			5745-5825 MHz	5500-5700 MHz	5510-5670 MHz
				5745-5825 MHz	5755-5795 MHz
Type of modulation	DSSS	OFDM-CCK	OFDM		
	(CCK, DQPSK,	(64QAM, 16QAM,	(64QAM, 16QAM, QPS	SK, BPSK)	
	DBPSK)	QPSK, BPSK)			
Channel spacing	5 MHz		20 MHz	2.4 GHz band	2.4 GHz band
				5 MHz	5 MHz
				5 GHz band	5 GHz band
				20 MHz	40 MHz

Antenna	Antenna #1 (Bottom)	Antenna #0 (Side)				
	2 pcs. (*. Separation distance between the antenna #0 and the antenna #1: 480 mm)					
Antenna quantity	11b,g,a: One selected Tx antenna operation.					
	11n(20HT),n(40HT): One selected Tx antenna operation (MCS0~7) / Two Tx antenna operation (MCS8~13)					
Antenna model	113Y120035A (cable length: 300 mm)	113Y1200036A (cable length: 575 mm)				
Antenna type / connector	Monopole antenna / Connector; PCB side: U.FL, Antenna side: soldered					
type						
Antenna gain (max.peak)	-5.1 dBi (2.4 GHz),	-6.9 dBi (2.4 GHz)				
(excluding cable loss)	-1.3 dBi (5 GHz)	-1.8 dBi (5 GHz)				

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11143372S-C-R1
Page : 5 of 23
Issued date : June 6, 2016
FCC ID : W2Z-01000008

SECTION 3: Scope of Report

This report only covers DFS requirement, as specified by the following referenced procedures.

SECTION 4: Test specification, procedures & results

4.1 Test Specification

Test Specification : FCC Part 15 Subpart E: 2015, final revised on November 23, 2015

*Some parts are effective on and after December 17, 2015 or December 23, 2015.

The revision does not affect the test specification applied to the EUT.

Title : FCC 47CFR Part15 Radio Frequency Device

Subpart E Unlicensed National Information Infrastructure Devices

Section 15.407 General technical requirements

Test Specification : KDB905462 D02 UNII DFS Compliance Procedures New Rules v01r02
Title : COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-

NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE 5250-5350MHz AND 5470-5725MHz BANDS

INCORPORATING DYNAMIC FREQUENCY SELECTION

Test Specification : KDB905462 D03 Client Without DFS New Rules v01r01

Title : U-NII CLIENT DEVICES WITHOUT RADAR DETECTION CAPABILITY

FCC Part 15.31 (e)

The RF Module has own regulator. The RF Module is constantly voltage through the regulator regardless of input voltage. Therefore, the EUT complies with the requirement.

FCC Part 15.203 / 212

The EUT has a unique antenna connector (U.FL). Therefore, the EUT complies with the requirement.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11143372S-C-R1
Page : 6 of 23
Issued date : June 6, 2016
FCC ID : W2Z-01000008

4.2 Procedures and results

Table 1: Applicability of DFS Requirements

Requirement	Operating Mode Client without Radar Detection	Test Procedures & Limits	Deviation	Results
U-NII Detection Bandwidth	Not required	KDB905462 D02 UNII DFS Compliance Procedures New Rules v01r02	N/A	N/A
Initial Channel	Not required	FCC15.407 (h)	N/A	N/A
Availability Check Time		KDB905462 D02 UNII DFS Compliance Procedures New Rules v01r02 RSS-247 6.3		
Radar Burst at the	Not required	FCC15.407 (h)	N/A	N/A
Beginning of the Channel Availability Check Time		KDB905462 D02 UNII DFS Compliance Procedures New Rules v01r02		
Radar Burst at the	Not required	RSS-247 6.3	N/A	N/A
End of the Channel Availability Check Time	- Not required	FCC15.407 (h) KDB905462 D02 UNII DFS Compliance Procedures New Rules v01r02	IN/A	IV/A
		RSS-247 6.3		
In-Service Monitoring	Yes	FCC15.407 (h)	N/A	Complied
for Channel Move Time, Channel Closing Transmission Time		KDB905462 D02 UNII DFS Compliance Procedures New Rules v01r02 RSS-247 6.3		
In-Service Monitoring	Yes *	FCC15.407 (h)	N/A	Complied
for Non-Occupancy period		KDB905462 D02 UNII DFS Compliance Procedures New Rules v01r02 RSS-247 6.3	IV/A	Compiled
Statistical Performance Check Note: UL Japan, Inc.'s	Not required	FCC15.407 (h) KDB905462 D02 UNII DFS Compliance Procedures New Rules v01r02	N/A	N/A

^{*}Although this test was not required in FCC, KDB 905462 D02, it was performed as additional test.

The test procedures and specifications in this report have not changed in FCC Part 15 Subpart E.

Therefore, the test data obtained are still adequate to demonstrate compliance with current applicable FCC regulation.

The EUT does not have hardware and / or software change since 2014.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11143372S-C-R1
Page : 7 of 23
Issued date : June 6, 2016
FCC ID : W2Z-01000008

Table 2 DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value (See Notes 1,2, and 3)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt and power spectral density <	-62 dBm
10dBm/MHz	
< 200 milliwatt that do not meet the power spectral	-64 dBm
density requirement	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note 3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 3 DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60
	milliseconds over remaining 10 second period.
	See Notes 1 and 2
U-NII Detection Bandwidth	Minimum 100 % of the U-NII 99 % transmission
	power bandwidth
	See Note 3

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signal will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11143372S-C-R1 Page : 8 of 23 Issued date : June 6, 2016 FCC ID : W2Z-01000008

Table 4 Short Pulse Radar Test Waveform

Radar Type	Pulse Width	PRI	Number of	Minimum	Minimum	
	(µsec)	(µsec)	Pulses	Percentage of	Number of	
				Successful	Traials	
				Detection		
0	1	1428	18	See Note 1	See Note 1	
1	1	Test A: 15 unique	Roundup{(1/36	60 %	30	
		PRI values randomly	0)*			
		selected from the list	(19*10 ⁶ /PRI			
		of 23 PRI values in	usec)}			
		Table 5a				
		Test B: 15 unique				
		PRI values randomly				
		selected within the				
		range of 518-3066				
		μsec, with a				
		minimum increment				
		of 1 µsec, excluding				
		PRI values selected				
		in Test A				
2	1-5	150-230	23-29	60 %	30	
3	6-10	200-500	16-18	60 %	30	
4	11-20	200-500	12-16	60 %	30	
Aggregate (Rade	r Types 1-4)			80 %	120	
Note 1. Clear Dules Dedon Tomo Onbould be used for the detection bonder it the second most time and showed also in						

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Table 5 Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chip Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Burst	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5 - 20	1000-2000	1-3	8-20	80 %	30

Table 6 Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulse per Hop (kHz)	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70 %	30

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11143372S-C-R1
Page : 9 of 23
Issued date : June 6, 2016
FCC ID : W2Z-01000008

4.3 Test Location

UL Japan, Inc. Shonan EMC Lab.

1-22-3, Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN

Telephone number : +81 463 50 6400 Facsimile number : +81 463 50 6401

	IC Registration No.	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Maximum measurement distance
☐ No.1 Semi-anechoic chamber	2973D-1	20.6 x 11.3 x 7.65	20.6 x 11.3	10m
☐ No.2 Semi-anechoic chamber	2973D-2	20.6 x 11.3 x 7.65	20.6 x 11.3	10m
☐ No.3 Semi-anechoic chamber	2973D-3	12.7 x 7.7 x 5.35	12.7 x 7.7	5m
☐ No.4 Semi-anechoic chamber	-	8.1 x 5.1 x 3.55	8.1 x 5.1	-
☐ No.1 Shielded room	-	6.8 x 4.1 x 2.7	6.8 x 4.1	-
☐ No.2 Shielded room	-	6.8 x 4.1 x 2.7	6.8 x 4.1	-
☐ No.3 Shielded room	-	6.3 x 4.7 x 2.7	6.3 x 4.7	-
☐ No.4 Shielded room	-	4.4 x 4.7 x 2.7	4.4 x 4.7	-
☑ No.5 Shielded room	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
☐ No.6 Shielded room	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
☐ No.1 Measurement room	-	2.55 x 4.1 x 2.5	-	-

4.4 Uncertainty

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Time Measurement uncertainty for this test was: (\pm) 0.012%

4.5 Test set up, Data of DFS test, and Test instruments of DFS

Refer to APPENDIX.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11143372S-C-R1
Page : 10 of 23
Issued date : June 6, 2016
FCC ID : W2Z-01000008

SECTION 5: Operation of E.U.T. during testing

5.1 Operating Modes

The EUT, which is a Client Device without Radar detection capability, operates over the 5260-5320MHz and 5500-5700MHz.

Power level of the EUT [dBm]

Band	Output Power (Min)	Output Power(Max)
W53	10.78	15.10
W56	11.40	17.13

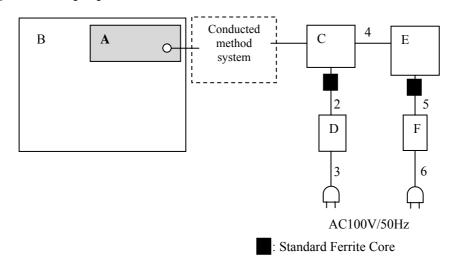
^{*} Refer to 11143372S-B-R1 for FCC Part 15E (FCC 15.407) report for other parts than DFS.

WLAN traffic is generated by the software to ping from the Master to the Client. That software has random ping intervals. (Channel loading was over 17%)

Software name & version: ExPing Version 1.33

The EUT utilizes the 802.11a and 802.11n architecture, with a nominal channel bandwidth. The EUT had used IEEE 802.11n (HT40) (widest mode).

The FCC ID for the Master Device used with EUT for DFS testing is LDK102073.


The rated output power of the Master unit is >200mW(23dBm). Therefore the required interference threshold level is -64 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -64 + 1 + 3.5 = -59.5 dBm (threshold level + additional 1dB + antenna gain).

It is impossible for users to change DFS control, because the DFS function is written on the firmware and users cannot access it.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11143372S-C-R1
Page : 11 of 23
Issued date : June 6, 2016
FCC ID : W2Z-01000008

5.2 Configuration and peripherals

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
Α	Wireless LAN Module	SX-PCEAN(FF-E)	00809261B110	Silex	EUT
В	Flat Panel Sensor	DR-ID 613SE *1)	E321154	Fujifilm	-
С	Wireless LAN access point (Master Device)	AIR-AP1262N-A-K9	FTX1619E5EZ	Cisco Systems	FCC ID: LDK102073
D	AC Adapter	EADP-18MB	DAB1528MANP	Cisco Systems	-
Е	Notebook Computer	DELL Vostro V1510	29090510205	Dell	-
F	AC Adaptor	LA65NS1-00	71615-93B-385D	Dell	-

^{*1)} It was used to operate the Wireless LAN module.

List of cables used

No.	Cable Name	Length (m)	Shield		
			Cable Connector		
2	Access Point DC Power	1.8	Unshielded	Unshielded	
3	Access Point AC Power	2.0	Unshielded	Unshielded	
4	LAN	3.0	Unshielded	Unshielded	
5	DELL PC DC Power	1.8	Unshielded	Unshielded	
6	DELL PC AC Power	0.7	Unshielded	Unshielded	

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

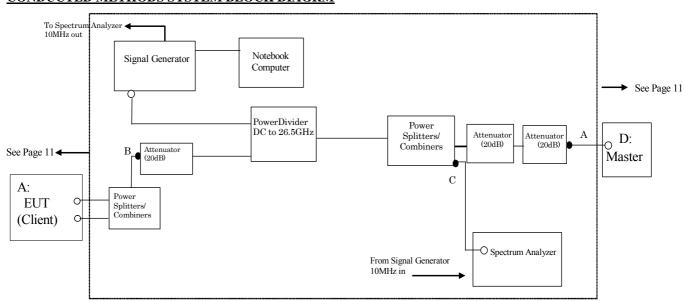
Test report No. : 11143372S-C-R1
Page : 12 of 23
Issued date : June 6, 2016
FCC ID : W2Z-01000008

5.3 Test and Measurement System

SYSTEM OVERVIEW

The measurement system is based on a conducted test method.

The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution. The short pulse types 2, 3, and 4, the long pulse type 5, and the frequency hopping type 6 parameters are randomized at run-time.


The signal monitoring equipment consists of a spectrum analyzer with the capacity to display 8001 bins on the horizontal axis. A time-domain resolution of 2 msec/bin is achievable with a 16 second sweep time, meeting the 10 seconds short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection. A time-domain resolution of 3 msec/bin is achievable with a 24 second sweep time, meeting the 22 second long pulse reporting criteria and allowing a minimum of 10 seconds after the end of the long pulse waveform.

FREQUENCY HOPPING RADAR WAVEFORM GENERATING SUBSYSTEM

The first 100 frequencies are selected out of the hopping sequence of the randomized 475 hop frequencies. Only a *Burst* that has the frequency falling within the receiver bandwidth of the tested U-NII device is selected among those frequencies. (Frequency-domain simulation). The radar waveform generated at the start time of the selected *Burst* (Time-domain simulation) is download to the Signal Generator.

If all of the randomly selected 100 frequencies do not fall within the receiver bandwidth of the U-NII device, the radar waveform is not used for the test.

CONDUCTED METHODS SYSTEM BLOCK DIAGRM

MEASUREMENT SYSTEM FREQUENCY REFERENCE

Lock the signal generator and the spectrum analyzer to the same reference sources as follows: Connect the 10MHz OUT on the signal generator to the 10MHz IN on the spectrum analyzer and set the spectrum analyzer 10MHz In to On.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11143372S-C-R1 Page : 13 of 23 **Issued date** : June 6, 2016 FCC ID : W2Z-01000008

SYSTEM CALIBRATION

Step 1: Set the system as shown in Figure 3 of FCC, KDB 905462 Section 7.2.2.

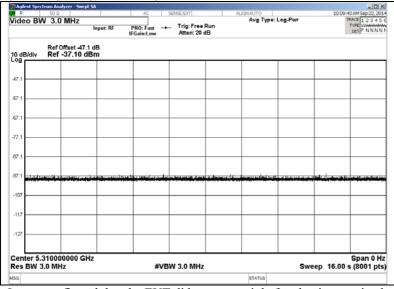
Step 2: Adjust each attenuator to fulfill the following three conditions:

- WLAN can be communicated, and
- Rader detection threshold level is bigger than Client Device traffic level on the spectrum analyzer, and
- Master Device traffic level is not displayed on the spectrum analyzer.

Step 3: Terminate 50 ohm at B and C points, and connect the spectrum analyzer to the point A. (See the figure on page 12)

At the point A, adjust the signal generator and spectrum analyzer to the center frequency of the channel to be measured. Download the applicable radar waveforms to the signal generator. Select the radar waveform, trigger a burst manually and measure the amplitude on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

Step 4: Without changing any of the instrument settings, restore the system setting to Step 2 and adjust the Reference Level Offset of the spectrum analyzer to the level at Step 3.


By taking the above steps 1 to 4, the spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device.

See Clause 5.4 for Plots of Noise, Rader Waveforms, and WLAN signals.

5.4 Plots of Noise, Rader Waveforms, and WLAN signals

Plots of System Noise Floor

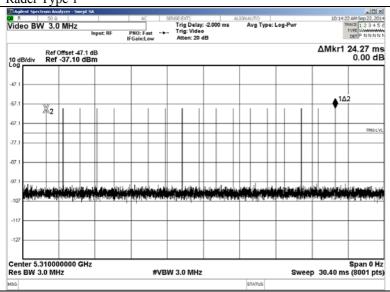
(for 11n (HT40), 5310MHz)

It was confirmed that the EUT did not transmit before having received appropriate control signals from a Master Device.

UL Japan, Inc.

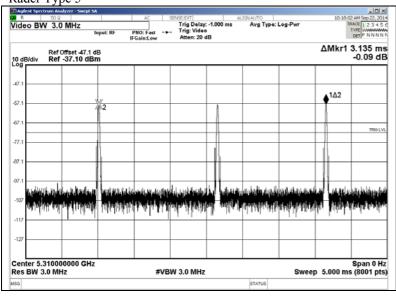
Shonan EMC Lab. 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Telephone: +81 463 50 6400


Facsimile: +81 463 50 6401

Test report No. : 11143372S-C-R1
Page : 14 of 23
Issued date : June 6, 2016
FCC ID : W2Z-01000008

Plots of Radar Waveforms

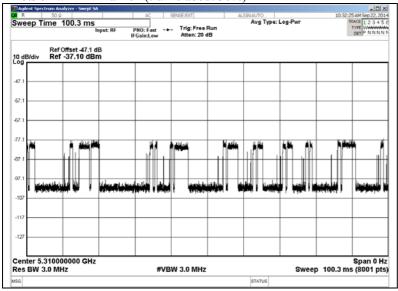

(for 11n (HT40), 5310MHz)

Rader Type 1

(for 11n (HT40), 5310MHz)

Rader Type 5

UL Japan, Inc.


Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11143372S-C-R1
Page : 15 of 23
Issued date : June 6, 2016
FCC ID : W2Z-01000008

(for 11n (HT40), 5310MHz)

Plots of WLAN Traffic (traffic about 30%)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11143372S-C-R1
Page : 16 of 23
Issued date : June 6, 2016
FCC ID : W2Z-01000008

<u>SECTION 6: In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time</u>

6.1 Operating environment

Test place : No.5 Shielded Room

Temperature : 26 deg.C Humidity : 43 %RH

6.2 Test Procedure

Transfer files from the Master Device to the Client Device on the tested channel during the entire period of the test. The Radar Waveform generator sends a Burst of pulses for one of the Short Pulse Radar Types 0-4 at levels defined, on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.

Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds.

6.3 Test data

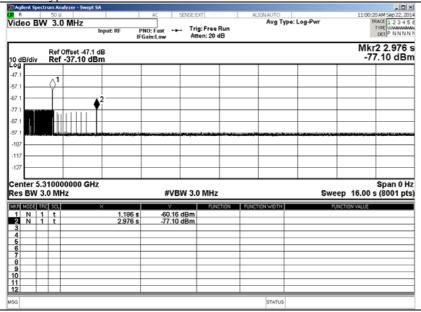
(for 11n (HT40), 5310MHz)

(======================================								
Test Item	Unit	Measurement Time	Limit	Results				
Channel Move Time *1)	[sec]	1.790	10.000	Pass				
Channel Closing								
Transmission Time *2)	[msec]	20	60	Pass				

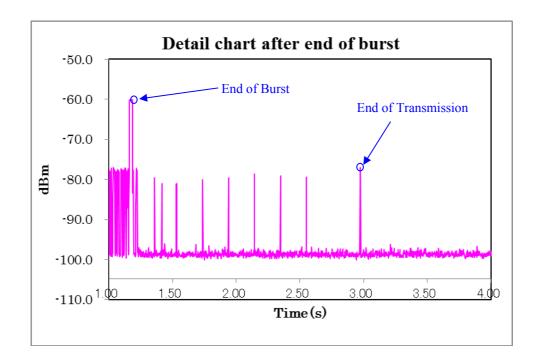
*1) Channel Move Time is calculated as follows: (Channel Move Time) = (End of Transmission) - (End of Burst) = 2.976 – 1.186

*2) Channel Closing Transmission Time is calculated from (End of Burst + 200msec) to (End of Burst + 10sec) (Channel Closing Transmission Time) = (Number of analyzer bins showing transmission) * (dwell time per bin) = 10 x 2 (msec)

Shonan EMC Lab.


1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11143372S-C-R1 : 17 of 23 : June 6, 2016 : W2Z-01000008

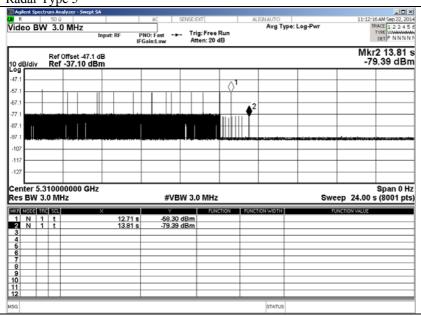

Page **Issued date** FCC ID

(for 11n (HT40), 5310MHz)

Radar Type 1

Marker 1: - End of Burst : 1.186 s Marker 2: - End of Transmission : 2.976 s

UL Japan, Inc. Shonan EMC Lab.


1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Telephone: +81 463 50 6400 +81 463 50 6401 Facsimile:

Test report No. : 11143372S-C-R1
Page : 18 of 23
Issued date : June 6, 2016
FCC ID : W2Z-01000008

(for 11n (HT40), 5310MHz)

Radar Type 5

Marker 1 : End of Burst : 12710 ms Marker 2 : End of Transmission : 13810ms

6.4 Test result

Test result: Pass

Date: September 22, 2014 Test engineer: Tatsuya Arai

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11143372S-C-R1
Page : 19 of 23
Issued date : June 6, 2016
FCC ID : W2Z-01000008

SECTION 7: In-Service Monitoring for Non-Occupancy Period

7.1 Operating environment

Test place : No.5 Shielded Room

Temperature : 26 deg.C Humidity : 43 %RH

7.2 Test Procedure

The following two tests are performed:

1). Transfer files from the Master Device to the Client Device on the tested channel during the entire period of the test. The Radar Waveform generator sends a Burst of pulses for one of the Radar Types 0-6 at levels defined on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.

Observe the transmissions of the EUT after the Channel Move Time on the Operating Channel for duration greater than 30 minutes.

2). Transfer files from the Master Device to the Client Device on the tested channel during the entire period of the test. Observe the transmissions of the EUT on the Operating Channel for duration greater than 30 minutes after the Master Device is shut off.

7.3 Test data

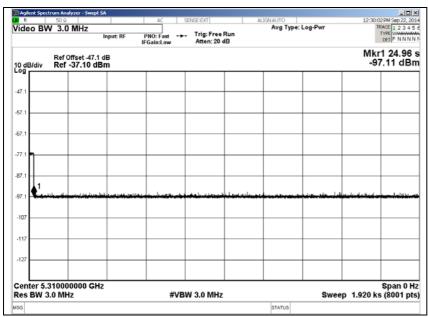
(for 11n (HT40), 5310MHz)

1).Radar Type 1

Pagistra Spectrum Analyzer - Swept SA	AC	SENCECT	ALDNAUTO	O1.06-43PM Sep 22, 2014			
Marker 2 29,9200 s	Input RF	PNO: Fast	FGaint.tow	Trig: Free Run	Akyg Type: Log-Pwr	RRACE	12 44 5 6
Ref Offset -47.1 dB	Mkr2 29.92 s	-97.05 dBm	-97.05 dBm				
Od Bldiv	Ref -37.10 dBm	-97.05 dBm	-97.05 dBm				
Od Bldiv	Ref -37.10 dBm	-97.05 dBm	-97.05 dBm				
Od Bldiv	Ref -37.10 dBm	-97.05 dBm	-97.05 dBm				
Od Bldiv	Ref -37.10 dBm	-97.05 dBm	-97.05 dBm	-97.05 dBm			
Od Bldiv	Ref -37.10 dBm	-97.05 dBm	-97.0				

Marker 1 : End of Burst : 19.92 sec Marker 2 : End of Burst +10sec : 29.92 sec

UL Japan, Inc.


Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11143372S-C-R1
Page : 20 of 23
Issued date : June 6, 2016
FCC ID : W2Z-01000008

2). Master is shut off

(for 11n (HT40), 5310MHz)

Marker 1 : End of transmission : 24.96 sec

7.4 Test result

Test result: Pass

Date: September 22, 2014 Test engineer: Tatsuya Arai

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11143372S-C-R1
Page : 21 of 23
Issued date : June 6, 2016
FCC ID : W2Z-01000008

APPENDIX 1: Data of DFS test

Parameter Data for Radar Type 5

Trial	Dumat	Number of	Pulse	Chirp	Pulse 1-to-2	Pulse 2-to-3	Starting Location
Number	Burst	Pulses	Width (usec)	Width (MHz)	Spacing (usec)	Spacing (usec)	Within Interval (usec)
1	1	1	52	8			64
1	2	2	94	7	1535		680793
1	3	3	67	8	1851	1146	452538
1	4	1	50	18			791967
1	5	3	82	14	1511	1064	61930
1	6	2	98	12	1125		95345
1	7	1	76	6			434356
1	8	1	64	16			720311
1	9	1	79	13			728383
1	10	1	61	15			194181
1	11	3	73	16	1638	1497	569650
1	12	2	95	11	1811		434312
1	13	2	50	19	1491		613325
1	14	3	58	13	1254	1098	431579

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11143372S-C-R1
Page : 22 of 23
Issued date : June 6, 2016
FCC ID : W2Z-01000008

APPENDIX 2: Test instruments

EMI Test Equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
SSG-01	01 Signal Generator Agilent		E4438C	MY47271584	DFS	2014/03/03 * 12
SSA-01	Spectrum Analyzer	Agilent	N9010A-526	MY48031482	DFS	2014/04/07 * 12
SCC-G14	Coaxial Cable	Suhner	SUCOFLEX 102	31600/2	DFS	2014/03/13 * 12
SCC-G32	Coaxial Cable	Junkosha	MWX241-02000KM SKMS	OCT-09-13-00 5	DFS	2013/10/21 * 12
SCC-G28	Coaxial Cable	Junkosha	MWX241-01000KM SKMS	SEP-20-12-002	DFS	2014/09/16 * 12
SCC-G24	Coaxial Cable	Suhner	141PE	-	DFS	2014/07/10 * 12
SCC-G25	Coaxial Cable	Suhner	141PE	-	DFS	2014/07/10 * 12
SCC-G26	Coaxial Cable	Suhner	141PE	-	DFS	2014/07/10 * 12
SPD-01	Power Divider	Agilent	11636B	56998	DFS	2014/04/22 * 12
SPSC-02	Power Splitters/Combiners	Mini-Circuits	ZFSC-2-10G+	-	DFS	2014/04/22 * 12
SPSC-03	Power Splitters/Combiners	Mini-Circuits	ZFSC-2-10G+	-	DFS	2014/04/22 * 12
SPSC-04	Power Splitters/Combiners	Mini-Circuits	ZN4PD1-63-S+	-	DFS	2014/07/31 * 12
SAT20-03	Attenuator	Agilent	8493C-020	74891	DFS	2014/03/13 * 12
SAT20-06	Attenuator	Weinschel Corp.	54A-20	31506	DFS	2014/04/22 * 12
SAT20-07	Attenuator	Weinschel Corp.	54A-20	31484	DFS	2014/04/22 * 12
STM-G3	Terminator	Weinschel	M1459A	U6569	DFS	2014/07/10 * 12
SOS-09	Humidity Indicator	A&D	AD-5681	4061484	DFS	2014/03/07 * 12
	1	1				

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test Item:

DFS: Dynamic Frequency Selection

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN