

SAR TEST REPORT

Test Report No. : 31CE0283-HO-01-C

Applicant	:	FUJIFILM Corporation
Type of Equipment	:	D-EVO G35i
Model No.	:	DR-ID 601SE (with wireless LAN module: 11a,11n(20HT),11n(40HT), MIMO 3×3)
Test Standard	:	FCC 47CFR §2.1093, Supplement C (Edition 01-01) to OET Bulletin 65
Test Result	:	Complied
Maximum SAR(1g) Value	:	0.085 W/kg (at Antenna-top, IEEE 802.11a, 6Mbps(BPSK/OFDM), 5180MHz)
		0.052 W/kg (at Antenna-side-top, IEEE 802.11a, 6Mbps(BPSK/OFDM), 5180MHz)
		0.032 W/kg (at Anterna-side-bottom, IEEE 802.11a, 6Mbps(BPSK/OFDM), 5180MHz)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above standards.
- 4. The test results in this test report are traceable to the national or international standards.

Date of test:

November 30, December 1 and 2, 2010

Test engineer:

Hiroshi Naka Engineer of EMC Service

Approved by:

amm

Toyokazu Imamura Leader of EMC Service

CONTENTS

PAGE

SECTION 1:	Customer information	3
SECTION 2:	Equipment under test (E.U.T)	3
SECTION 3:	Test specification, procedures and results	4
3.1	Test specification	4
3.2	Exposure limit	4
3.3	Procedure and result	4
3.4	Test location	4
3.5	Confirmation before SAR testing	5
3.6	Confirmation after SAR testing.	6
3.7	Measurement procedure	6
3.8	Test setup of EUT	6
SECTION 4:	Operation of E.U.T. during testing	7
4.1	Operating modes for SAR testing	7
SECTION 5:	Uncertainty assessment	8
SECTION 6:	Confirmation before testing	9
6.1	Assessment for the conducted power of EUT	9
SECTION 7:	Measurement results	11
7.1	Body SAR	11

Contents of appendixes

APPENDIX 1:	Photographs of test setup	12
Appendix 1-1	Photograph of EUT and antenna position	12
Appendix 1-2	Photograph of test setup	13
APPENDIX 2:	SAR Measurement data	17
Appendix 2-1	Evaluation procedure	17
Appendix 2-2	Measurement data	18
APPENDIX 3:	Test instruments	30
Appendix 3-1	Equipment used	30
Appendix 3-2	Dosimetry assessment setup	31
Appendix 3-3	Configuration and peripherals	31
Appendix 3-4	System components	32
Appendix 3-5	Test system specification	33
Appendix 3-6	Simulated tissues composition	33
Appendix 3-7	Simulated tissues parameter confirmation	34
Appendix 3-8	System validation data	34
Appendix 3-9	Validation uncertainty	35
Appendix 3-10	Validation measurement data	36
Appendix 3-11	Calibration certificate: Dipole (D5GHzV2)	38
Appendix 3-12	Calibration certificate: E-Field Probe (EX3DV4)	49
Appendix 3-13	References	59

SECTION 1: Customer information

Company Name	FUJIFILM Corporation
Brand Name	FUJIFILM
Address	798 Miyanodai, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8538, Japan
Telephone Number	81-465-85-4054
Facsimile Number	81-465-85-2043
Contact Person	Hiroshi Ikarashi

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of EUT

Type of Equipment (EUT)	D-EVO G35i
	*.This EUT is an X-ray imaging system with wireless LAN (11a, 11n(20HT), 11n(40HT))specification.
Model Number (EUT)	DR-ID 601SE
Serial Number	A121013
Condition of EUT	Production prototype
Receipt Date of Sample	November 29, 2010
Country of Mass-production	Japan
Category Identified	Portable device
Test consideration	DC 12V operation. *. This dc power is supplied from either the battery or bus-power connected with the MP.
	DR-ID 601SE had the battery. However, during SAR test, DR-ID 601SE was operated bus-power supplied from the MP.
	Because the continuous transmit was stopped automatically about 20 minutes when it was the battery operation.

2.2 Product Description

Equipment type	Transceiver
Frequency of operation	5180-5240MHz (W52 band, UNII), (5190-5230MHz for IEEE 802.11n(40HT))
Clock Frequency	40MHz (Method of frequency generation: Crystal)
Bandwidth / Channel spacing	Bandwidth: 20MHz (11a, 11n(20HT)), 40MHz (11n(40HT)/Channel spacing: 20MHz (11a, 11n(20HT)), 40MHz (11n(40HT)
ITU code	DID
Type of modulation	OFDM (BPSK, QPSK, 16QAM, 64QAM)
Antenna model	ANTB26-018B0
Antenna quantity	3 pcs. (Location: Top, Side-top, Side-bottom) (see attached the drawing) All three antenna model are same. The different is the mounted location and the RF cable length b/w antenna and RF module. IEEE 802.11a: Only the specified antenna transmits independently. EEE.802.11n: Specified two antennas, or all three antennas (diversity) can transmit simultaneously, however up to 2 streams are supported when tree antennas are transmitted. For the pre-selected multiple antenna transmission, only two antennas combination are supported either top and side-top antenna or top and side-bottom antenna.
Antenna type	Planer inverted F antenna
Antenna connector type	RF PCB side: U.FL, Antenna side: U.FL, connected by RF cable with specified length.
Antenna gain	-3.5 dBi (5.2GHz) For the reference, antenna gain (including the RF cable loss) when there were mounted in the host device and specified location. Antenna-top: -8.5dBi / Antenna-side-top: -7.3dBi / Antenna-side-bottom: -10.2dBi
Transmit power	13 dBm average (11a), 14.7 dBm average in maximum (11n, when Tx ×3 sum total, 10 dBm for each antenna port) *Refer to section 6 in this report.
Power supply	Power input: DC3.3V (*.with constant voltage circuit.), Inner operation: DC1.2V and DC1.8V
Operation temperature range	+5 to +35 deg.C. (for DR-ID601SE)

*. The EUT do not use the special transmitting technique such as "beam-forming" and "time-space code diversity."

*. Antenna outline drawing;

SECTION 3: Test specification, procedures and results

3.1 Requirements for compliance testing defined by the FCC / Test specification

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992. According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

- 1. Specific Absorption Rate (SAR) is a measure of the rate of energy absorption due to exposure to an RF transmitting source (wireless portable device).
- 2. IEEE/ANSI Std. C95.1-1992 limits are used to determine compliance with FCC ET Docket 93-62.

Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01):

Supplement C (Edition 01-01) - Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions

OET Bulletin 65 (Edition 97-01) - Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields

IEEE Std 1528-2003:

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques Supplement C

In additions;

KDB 447498 D01(v04)(Nov.13, 2009):	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
KDB 248227 (rev.1.2)(May 29, 2007):	SAR Measurement Procedures for 802.11a//b/g Transmitters

3.2 Exposure limit

(A) Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles		
(averaged over the entire body)	(averaged over any 1g of tissue)	(averaged over any 10g of tissue)		
0.4	8.0	20.0		

(B) Limits for General population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
(averaged over the entire body)	(averaged over any 1g of tissue)	(averaged over any 10g of tissue)
0.08	1.6	4.0

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

The limit applied in this test report is;

General population / Uncontrolled exposure, Partial-Body (averaged over any 1g of tissue) limit: 1.6 W/kg

3.3 **Procedures and Results**

Item	Test Procedure	Limit	Exclusion	Remarks	Result
Human	FCC	1.6 W/kg	(*1)	SAR	Complied (*2)
exposure	OET Bulletin 65,	(FCC 47CFR		measurement	Maximum SAR(1g):
	Supplement C	§2.1093)		(in accordance with	0.085 W/kg (at antenna-top, IEEE 802.11a, 6Mbps, 5180MHz)
				KDB248227)	0.052 W/kg (at antenna-side-top, IEEE 802.11a, 6Mbps, 5180MHz)
					0.032 W/kg (at antenna-side-bottom, IEEE 802.11a, 6Mbps, 5180MHz)

Note: UL Japan's SAR Work Procedures No.QPM46 and QPM47. Other than above, no addition, deviation nor exclusion has been made from standards.

*1. Refer to the FCC inquiry number: 265500 of the test procedure for SAR.

*2. For the multi antenna transmitting simultaneously (MIMO), the measured SAR(1g) values of each antenna were not summed, because the antenna separation of each antenna was more than 5cm. Refer to the FCC inquiry number: 265500 of the test procedure for SAR.

3.4 Test Location

No.7 shielded room (2.76(Width) × 3.76m(Depth) × 2.4m(Height)) for SAR testing.

UL Japan, Inc., Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN Telephone number: +81 463 50 6400 / Facsimile number: +81 463 50 6401

3.5 Confirmation before SAR testing

3.5.1 Correlation of Output Power between EMC and SAR tests

It was checked that the antenna port power was correlated within $0 \sim +5\%$ (FCC requirements) The result is shown in Section 6.

- *. **Output power at SAR test:** SAR power was measured before SAR testing (S/N: A121013). 11a, 11n(20HT) and 11n(40HT) mode was measured the average output power at full channel.
- *. Output power at EMC test: EMC power was measured during EMC testing. (S/N: A121014). The average output power of 11a, 11n(20HT) at 5180MHz and 11n(40HT) at 5190 MHz which were obtained the worst average power in SAR test sample, was measured on the EMC test sample by using the power sensor/meter method as a cross-reference data for SAR test.

3.5.2 Average power for SAR tests

Step.1 Data rate check

The data rate check was measurement all data rate in the lower default frequency of each frequency band. (*1) *1. 5180MHz (11a, 11n(20HT)), 5190MHz (11n(40HT))

11:	a		11	n		<u>11n</u>			
Modulation	Data rate [Mbps]	MCS Index	Spatial Stream	Modulation	MCS Index	Spatial Stream	Modulation		
BPSK/OFDM	6	MCS0	1	BPSK/OFDM	MCS0	1	BPSK/OFDM		
BPSK/OFDM	9	MCS1	1	QPSK/OFDM	MCS1	1	QPSK/OFDM		
QPSK/OFDM	12	MCS2	1	QPSK/OFDM	MCS2	1	QPSK/OFDM		
QPSK/OFDM	18	MCS3	1	16QAM/OFDM	MCS3	1	16QAM/OFDM		
16QAM/OFDM	24	MCS4	1	16QAM/OFDM	MCS4	1	16QAM/OFDM		
16QAM/OFDM	36	MCS5	1	64QAM/OFDM	MCS5	1	64QAM/OFDM		
64QAM/OFDM	48	MCS6	1	64QAM/OFDM	MCS6	1	64QAM/OFDM		
64QAM/OFDM	54	MCS7	1	64QAM/OFDM	MCS7	1	64QAM/OFDM		
		MCS8	2	BPSK/OFDM	MCS8	2	BPSK/OFDM		
		MCS9	2	QPSK/OFDM	MCS9	2	QPSK/OFDM		
		MCS10	2	QPSK/OFDM	MCS10	2	QPSK/OFDM		
		MCS11	2	16QAM/OFDM	MCS11	2	16QAM/OFDM		
		MCS12	2	16QAM/OFDM	MCS12	2	16QAM/OFDM		
		MCS13	2	64QAM/OFDM	MCS13	2	64QAM/OFDM		
		MCS14	2	64QAM/OFDM	MCS14	2	64QAM/OFDM		
		MCS15	2	64QAM/OFDM	MCS15	2	64QAM/OFDM		

Step.2 Decision of SAR test channel

The average output power for 802.11a, 11n(20HT), 11n(40Ht) were measured on all channels in each frequency band.

					"Default Test Channel"			
Μ	ode	GHz	Channel	Turbo Channel	FCC	15.247	UNII	
					802.11b	802.11g	UNII	
		2.412	1		\checkmark	Δ		
802.1	1 b/g	2.437	6	6	\checkmark	Δ		
		2.462	11		\checkmark	Δ		
		5.18	36				\checkmark	
		5.20	40	42(5.21 GHz)				*
		5.22	44	42(3.21 OHZ)				*
		5.24	48	50(5.25 GHz)		-	N	
		5.26	52	00(0.20 012)			\checkmark	
		5.28	56	58(5.29 GHz)				*
		5.30	60	50(5.2) GIL)				*
		5.32	64				√	
		5.50	100					*
	UNII	5.52	104				\checkmark	
		5.54	108					*
802.119		5.56	112					*
002.11a		5.58	116				V	
		5.60	120	Unknown				*
		5.62	124				V	
		5.64	128					*
		5.66	132					*
		5.68	136				N	
		5.70	140					*
	UNII	5.745	149		\checkmark		V	
	or	5.765	153	152(5.76 GHz)		*		*
	FCC 15.247	5.785	157		Ń			*
		5.805	161	160(5.80GHz)		*	V	
	FCC 15.247	5.825	165		\checkmark			

 $\sqrt{}$ = "default test channels"

* = Possible 802.11a channels with maximum average output > the "default test channels"

 Δ = Possible 802.11g channels with maximum average output ¹/₄ dB \geq the "default test channels"

3.6 Confirmation after SAR testing

It was checked that the power drift [W] is within $\pm 5\%$ in the evaluation procedure of SAR testing. The verification of power drift during the SAR test is that DASY4 system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position. The result is shown in APPENDIX 2.

*. DASY4 system calculation Power drift value[dB] =20log(Ea)/(Eb) (where, Before SAR testing: Eb[V/m] / After SAR testing: Ea[V/m]) Limit of power drift[W] = ±5%

```
Power drift limit (X) [dB] = 10log(P_drift)=10log(1.05/1)=10log(1.05)-10log(1)=0.212dB
from E-filed relations with power.

S=E\times H=E^{2}/\eta=P/(4\times\pi\times r^{2}) (\eta: \text{Space impedance}) \rightarrow P=(E^{2}\times4\times\pi\times r^{2})/\eta
Therefore, The correlation of power and the E-filed

Power drift limit (X) dB=10log(P_drift)=10log(E_drift)^{2}=20log(E_drift)

From the above mentioned, the calculated power drift of DASY4 system must be the less than ±0.212dB.
```

3.7 Measurement procedure

Operation mode: IEEE 802.11a, IEEE 802.11n(20HT), IEEE 802.11n(40HT)

Radiated power is always monitored by Spectrum Analyzer. At the start, the SAR was measured on each 11a/11n(20HT)/11n(40HT) mode that had the highest average power for the antenna port conducted power measurement.

Step 1	The searching for the worst position. (at highest average power data rate and channel.)
Step 2	Change the transmitting mode at worst position.
Step 3	Change to the Low and High channels at worst position and at worst mode only when the measured SAR(1g) was higher than
^	0.8W/kg.
Step 4	Change to the Tx antenna and repeat above step $1 \sim 3$.

3.8 Test setup of EUT

Top-touch	The part of top surface which was near section of the antenna-top was touched to the flat section of Flat phantom.
Right-touch	Either the part of top surface which was near section of either antenna-side-top or antenna side-bottom was touched to the flat
_	section of Flat phantom.
Front-touch	The part of front surface (patient side) was touched to the flat section of Flat phantom for either near section of the antenna-top,
	antenna-side-top nor antenna-side-bottom.
Rear-touch	The part of rear surface (operator side) was touched to the flat section of Flat phantom for either near section of the antenna-top,
	antenna-side-top nor antenna-side-bottom.
Bottom-touch	The test was not applied. Because the measured SAR values were very small even the cross section of antenna, and this side
	had enough separation distance from each antenna. (*1)
Left-touch	The test was not applied. Because the measured SAR values were very small even the cross section of antenna, and this side
	had enough separation distance from each antenna. (*1)

*1. Refer to the FCC inquiry number: 265500 of the test procedure for SAR.

SECTION 4: Operation of E.U.T. during testing

4.1 Operating modes for SAR testing

This EUT has IEEE.802.11a/11n(20HT)/11n(40HT) continuous transmitting modes. The frequency band and the modulation used in the SAR testing are shown as a following.

Operation mode	IEEE 802.11a	IEEE 802.11n(20Ht)	IEEE 802.11n(40HT)
Tx frequency band	5180-5240MHz	5180-5240MHz	5190-5230MHz
Tested channel	36ch (5180MHz) (*1)	36ch (5180MHz) (*1)	not applied (*2)
Modulation	BPSK/OFDM	BPSK/OFDM	not applied (*2)
Data rate	6Mbps (lower, worst average power of antenna terminal conducted)	MCS0 (lower, worst average power of antenna terminal conducted)	not applied (*2)
Tested antenna	Top, Side-top, Side-bottom independently	Top, Side-top, Side-bottom independently	not applied (*2)
Crest factor	1.0 (100% duty cycle)	1.0 (100% duty cycle)	not applied (*2)
Controlled software	Tera Term-192.168.0.30_VT During SAR test, the EUT was connected v supplied dc power via SE cable. The softw pre-set by the internal calibration data before antenna ID for test; 11a: single transmission antenna either top, i 11n(20HT): multi transmission antenna.	with the MP (Main Processor) via SE cable are made set transmission antenna, q'ty, dat e the test. side-top or side-bottom.	The MP was set the transmit condition and also a rate, frequency. The transmit power was made

*1. The SAR tested channel was lowest default channel that had highest average antenna power alone. Because the measured SAR(1g) with this lowest default channel was less than 0.8W/kg. In accordance with KDB 447498, 1), e), i), the SAR test was only performed lowest default channel that had highest average antenna power alone. Refer to the FCC inquiry number: 265500 of the test procedure for SAR.

*2. The SAR test for IEEE 802.11n(40HT) was not applied. Because the measured SAR of IEEE 802.11n(20HT) was very small (<0.1W/kg) and enough smaller than the corresponded IEEE .802.11a SAR data.

Refer to the FCC inquiry number: 265500 of the test procedure for SAR.

*. The photograph shows the example for the control software used. (single Tx of antenna-side-top, 11a, 6Mbps, 5180MHz, after calibration (=13dBm RF out))

ファイル(F) 編集(E) 設定(S) コントロール(Q) ウィンドウ(W) ヘルブ(H)	
I - Decrease Center Frequency by 5 MHz (L dec by 100 MHz)	(E)
	0
Continuous Transmit Options	2
p - Increase Center Frequency by 5 MHz (P inc by 100 MHz) 1 1 - Decrease Center Frequency by 5 MHz (L dec by 100 MHz)	¥Docu
	-
I Continuous Transmit Options	レダの
p - Increase Center Frequency by 5 MHz (P inc by 100 MHz)	LOZE
4 - Togsle HT40 Mode	PODALIN
o - Increase Data Rate (0 - next rate mode)	しを移動
i - Increase pada nate (N - Tast rate mode)	レをコピ
j - Decrease podac (J dec by 10)	LE We
c - Decrease power output by 0.5dBm (C dec by 5dBm)	レを電子
u - Increase ob by 1 (w - increase b-ob)	-
s - Togsle output mode (tx100 tx39 single carrier)	しを日期
d - Toggle Data Pattern	レ在自己的
: - Cycle up dac IO constant values (511 - 2047) (; - down)	
ESC - exit	
Operation in the st sharped & 1900Mr. Obvion ATY 70Y	100
operating in the at channel 5.1000n2, chans 414 /ha	ACK.
Power control mode: Target Power = 13.0, ext power detector = 0, xpdGaip = 0,	AUF
ob = 5, db = 5, b_ob = 5, b_db = 5,	1-2
ANI_A, LIX33], Kate = 6 Mbps, PN9 PDADCU = 0, PDADCI = 0, PDADC2 = 13, sain0 = 0, sain1 = 0, sain2 = 5	ワーク
dacgn0 = 0, dacgn1 = 0, dacgn2 = 2	
Exit continuous mode	12950
Test Harness Main Options:	
c - (C)ontinuous transmit mode	77F.t
I - (L)ink test menu	ノト 年11月
t - (T)hroughput test menu o - Toggle M(o)de	
h - C(h)ain Menu	
P - EE(P)ROM function	
u - (U)tility Menu	
i - (N)oise Immunity Menu a - 10 calibr(a)tion	
a - (0)uit	

Uncenteinty of SAD measurement system	5~6	GHz
Uncertainty of SAR measurement system	1g SAR	10g SAR
combined measurement uncertainty of the measurement system (k=1)	±13.6%	±13.3%
expanded uncertainty (k=2)	±27.2%	$\pm 26.7\%$

Uncertainty Assessment (SAR measurement)

SECTION 5:

	Error Description	Uncertainty Value	Probability distribution	Divisor	ci (1g)	ci (10g)	ui (1g)	ui (10g)	vi, veff
Α	Measurement System						(std.uncertainty)	(std.uncertainty)	
1	Probe calibration	±6.8 %	Normal	1	1	1	±6.8 %	±6.8 %	00
2	Axial isotropy	±4.7 %	Rectangular	√3	0.7	0.7	±1.9 %	±1.9 %	00
3	Hemispherical isotropy (*flat phantom, <5°)	±2.6 %	Rectangular	√3	0.7	0.7	±1.1 %	±1.1 %	x
4	Boundary effects	±2.0 %	Rectangular	√3	1	1	±1.2 %	±1.2 %	00
5	Probe linearity	±4.7 %	Rectangular	√3	1	1	±2.7 %	±2.7 %	00
6	System detection limit	±1.0 %	Rectangular	√3	1	1	±0.6 %	±0.6 %	x
7	System readout electronics	±0.3 %	Normal	1	1	1	±0.3 %	±0.3 %	x
8	Response time	±0.8 %	Rectangular	√3	1	1	±0.5 %	±0.5 %	00
- 9	Integration time	±2.6 %	Rectangular	√3	1	1	±1.5 %	±1.5 %	00
10	RF ambient - noise	±3.0 %	Rectangular	√3	1	1	±1.7 %	±1.7 %	00
11	RF ambient - reflections	±3.0 %	Rectangular	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	x
12	Probe positioner mechanical tolerance	±0.8 %	Rectangular	√3	1	1	±0.5 %	±0.5 %	00
13	Probe positioning with respect to phantom shell	±9.9 %	Rectangular	√3	1	1	±5.7 %	±5.7 %	00
14	Max.SAR evaluation	±4.0 %	Rectangular	√3	1	1	±2.3 %	±2.3 %	x
В	Test Sample Related								
15	Device positioning	±5.0 %	Normal	1	1	1	±5.0 %	±5.0 %	00
16	Device holder uncertainty	±5.0 %	Normal	1	1	1	±5.0 %	±5.0 %	00
17	Power drift	±5.0 %	Rectangular	√3	1	1	±5.0 %	±2.9 %	x
С	Phantom and Setup								
18	Phantom uncertainty	±4.0 %	Rectangular	√3	1	1	±2.3 %	±2.3 %	00
19	Liquid conductivity (target)	±5.0 %	Rectangular	√3	0.64	0.43	±1.8 %	±1.2 %	00
20	Liquid conductivity (meas.)	±3.0 %	Normal	1	0.64	0.43	±1.9 %	±1.3 %	x
21	Liquid permittivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.6	0.49	±1.7 %	±1.4 %	x
22	Liquid permittivity (meas.)	±3.2 %	Normal	1	0.6	0.49	±1.9 %	±1.6 %	x
	Combined Standard Uncertainty						±13.6 %	±13.3 %	00
	Expanded Uncertainty (k=2)						±27.2 %	±26.7 %	

*. This measurement uncertainty budget is suggested by Schmid & Partner Engineering AG. [6]

SECTION 6: Confirmation before testing

6.1 Assessment for the conducted power of EUT

Power for SAR (data rate, channel determination) and Correlation of Output Power b/w EMC and SAR tests

[Antenna terminal conducted power]

Mode:	IE	E 802.	<u>11a</u>		*.target	=13dBn	n/after calib	ration com	mand						
1)EMC vs	SAR powe	r	1 Sin	gle Tx.	ant#3:to	p/ant#	2:side-botto	m/ant#1:si	de-top		↓ sn:A1210)13	1 sn:A121014		
Ch	Freq.	Data	Ant.	type	Marchal		P/M R	leading	Cable Loss	Attenuator	Result	s(SAR)	Result	ts(EMC)	ASAR-
On.	[MHz]	Rate	No.		Modu	auon	Ave.[dBm]	Pk[dB]	[dB]	[dB]	Ave.[dBm]	Ave.[mW]	Ave.[dBm]	Ave.[mW]	EMC[dBm]
36	5180	6	1	emc	BPSK	OFDM	0.08	9.75	1.37	10.00			11.45	13.98	ref.ant#1
36	5180	6	2	emc	BPSK	OFDM	0.09	9.40	1.37	10.00			11.46	14.01	ref.ant#2
36	5180	6	3	emc	BPSK	OFDM	0.53	9.32	1.37	10.00			11.90	15.51	ref.ant#3
36	5180	6	1	sar	BPSK	OFDM	0.19	9.51	1.37	10.01	11.57	14.37	-(† *1)	-(† *1)	0.12
36	5180	6	2	sar	BPSK	OFDM	0.19	9.51	1.37	10.01	11.57	14.37			0.11
36	5180	6	3	sar	BPSK	OFDM	0.58	9.39	1.37	10.01	11.96	15.72			0.06
2)SAR power (vs. data rate) (at highest average power channel) 1 sn:A121013															
Ch	Freq.	Data	Ant.	Worst	Madul	lation	P/M R	leading	Cable Loss	Attenuator	Result	s (SAR)	PAR	*.PAR=Peak-	ve[dB]
Un.	[MHz]	Rate	No.		Modu	ation	Ave.[dBm]	Pk[dB]	[dB]	[dB]	SAR-pre[dBm]	SAR-pre.[mW]	[dB]		
36	5180	6	3	worst	BPSK	OFDM	0.58	9.39	1.37	10.01	11.96	15.72	8.81	1	
36	5180	9	3		QPSK	OFDM	0.48	9.52	1.37	10.01	11.86	15.36	9.04		
36	5180	12	3		QPSK	OFDM	0.47	9.58	1.37	10.01	11.85	15.33	9.11		
36	5180	18	3		16QAM	OFDM	0.43	9.34	1.37	10.01	11.81	15.19	8.91		
36	5180	24	3		16QAM	OFDM	0.38	9.35	1.37	10.01	11.76	15.01	8.97		
36	5180	36	3		64QAM	OFDM	0.34	9.29	1.37	10.01	11.72	14.88	8.95		
36	5180	48	3		64QAM	OFDM	0.33	9.51	1.37	10.01	11.71	14.84	9.18		
36	5180	54	3		64QAM	OFDM	0.30	9.63	1.37	10.01	11.68	14.74	9.33		
3)SAR pow	ver (vs. ch	annel) (a	t wors	st ave	rage pov	ver dat	ta rate)				↓ sn:A1210)13			
Ch	Freq.	Data	Ant.	Test	Modul	lation	P/M R	leading	Cable Loss	Attenuator	Res	ults	PAR	∠ldef [dBm]	default
On.	[MHz]	Rate	No.	ch.?	Modu	auon	Ave.[dBm]	Pk[dB]	[dB]	[dB]	Ave[dBm]	Ave[mW]	[dB]	(vs.next.ch.)	change?
36	5180	6	3	defalut	BPSK	OFDM	0.58	9.39	1.37	10.01	11.96	15.72	8.81	default	->default worst
40	5200	6	3		BPSK	OFDM	0.57	9.22	1.37	10.01	11.95	15.69	8.65	-0.01	×
44	5220	6	3		BPSK	OFDM	0.50	9.67	1.37	10.01	11.88	15.43	9.17	0.19	×
48	5240	6	3	default	BPSK	OFDM	0.31	9.42	1.37	10.01	11.69	14.77	9.11	default	->defalut
36	5180	6	2	defalut	BPSK	OFDM	0.19	9.51	1.37	10.01	11.57	14.37	9.32	default	->default worst
40	5200	6	2		BPSK	OFDM	-0.05	9.38	1.37	10.01	11.33	13.60	9.43	-0.24	×
44	5220	6	2		BPSK	OFDM	-0.26	9.20	1.37	10.01	11.12	12.96	9.46	0.15	×
48	5240	6	2	default	BPSK	OFDM	-0.41	8.84	1.37	10.01	10.97	12.52	9.25	default	->defalut
36	5180	6	1	defalut	BPSK	OFDM	0.14	9.84	1.37	10.01	11.52	14.21	9.70	default	->default worst
40	5200	6	1		BPSK	OFDM	-0.10	9.82	1.37	10.01	11.28	13.44	9.92	-0.24	×
44	5220	6	1		BPSK	OFDM	0.09	9.72	1.37	10.01	11.47	14.04	9.63	-0.01	×
48	5240	6	1	default	BPSK	OFDM	0.10	9.64	1.37	10.01	11.48	14.08	9.54	default	->defalut
*.no off tin	ne(11a)->/	continuo	us Tx	dasy	4 Cres	t.Eact	tor=1.0								

[Antenna terminal conducted power]

RF mode:	IEEE 8	102.11n	(201	4T)	*.target	:=10dBr	n at each ar	ntenna port	/after calib	ration comm	nand								
1)EMC vs	SAR powe	r					Ant#1	:side-top	Ant#2:s	ide-bottom	I Ant	#3.top			1 sn:A1210	13 summed	1 sn:A1210	014 summed	
Ch	Freq.	MCS	Ant.	Worst	Modu	lation	Ant#1.PN	Reading	Ant#2.P/	M Reading	At#3.P/M	Reading	Cable Loss	Attenuator	Ant#1+#2+#3	Results(SAR)	Ant#1+#2+#3	Results(EMC)	
Un.	[MHz]	Index	No.		Modu	auon	Ave.[dBm]	Pk[dB]	Ave.[dBm]	Pk[dB]	Ave.[dBm]	Pk[dB]	[dB]	[dB]	Ave.[dBm]	Ave.[mW]	Ave.[dBm]	Ave.[mW]	EMC[dBm
36	5180	0	multi-Te	emc	BPSK	OFDM	-2.30	7.39	-2.98	6.55	-2.38	6.34	1.37	10.00			13.60	22.93	ref.
36	5180	0	multi-To	SAR	BPSK	OFDM	-2.33	7.52	-2.96	6.65	-2.37	6.34	1.37	10.01	13.61	22.97	-(† *1)	-(† *1)	0.01
2)SAR pow	ver (vs. da	ta rate)	(at hig	;hest a	average	power	channel)								1 sn:A1210	13 summed			
Ch	Freq.	MCS	Ant.	Worst	Madu	lation	Ant#1.PN	Reading	Ant#2.P/	M Reading	At#3.P/M	A Reading	Cable Loss	Attenuator	Ant#1+#2+	#3:Results			
Un.	[MHz]	Index	No.		Modu	auon	Ave.[dBm]	Pk[dB]	Ave.[dBm]	Pk[dB]	Ave.[dBm]	Pk[dB]	[dB]	[dB]	Ave.[dBm]	Ave.[mW]			
36	5180	0	multi-To	worst	BPSK	OFDM	-2.33	7.52	-2.96	6.65	-2.37	6.34	1.37	10.01	13.61	22.97]		
36	5180	1	multi-Te		QPSK	OFDM	-2.66	7.63	-3.17	6.56	-2.50	6.64	1.37	10.01	13.39	21.82			
36	5180	2	multi-Tr		QPSK	OFDM	-2.48	7.07	-3.24	6.92	-2.58	7.41	1.37	10.01	13.40	21.89			
36	5180	3	multi-Tr		16QAM	OFDM	-2.38	7.31	-3.35	6.72	-2.57	7.28	1.37	10.01	13.41	21.92			
36	5180	4	multi-Tr		16QAM	OFDM	-2.74	7.33	-3.37	6.90	-2.55	7.34	1.37	10.01	13.28	21.30			
36	5180	5	multi-T)		64QAM	OFDM	-2.48	7.04	-3.45	6.70	-2.61	7.32	1.37	10.01	13.33	21.53			
36	5180	6	multi-To		64QAM	OFDM	-2.62	7.11	-3.42	6.82	-2.68	7.51	1.37	10.01	13.26	21.20			
36	5180	7	multi-To		QPSK	OFDM	-2.59	7.42	-3.36	7.18	-2.64	7.35	1.37	10.01	13.31	21.41			
36	5180	8	multi-Tr	_	QPSK	OFDM	-2.64	7.52	-3.35	6.88	-2.48	7.05	1.37	10.01	13.35	21.62			
36	5180	9	multi-To		16QAM	OFDM	-2.45	7.90	-3.26	6.95	-2.47	7.12	1.37	10.01	13.45	22.11			
36	5180	10	multi-To		QPSK	OFDM	-2.61	7.66	-3.38	6.58	-2.58	7.45	1.37	10.01	13.31	21.45			
36	5180	11	multi-To		QPSK	OFDM	-2.67	7.49	-3.32	6.49	-2.59	7.33	1.37	10.01	13.31	21.42			
36	5180	12	multi-To		16QAM	OFDM	-2.84	7.38	-3.46	7.02	-2.69	7.31	1.37	10.01	13.17	20.76			
36	5180	13	multi-To		64QAM	OFDM	-2.91	7.62	-3.64	6.95	-2.73	7.10	1.37	10.01	13.08	20.32			
36	5180	14	multi-To		64QAM	OFDM	-2.96	-7.65	-3.67	6.91	-2.72	7.27	1.37	10.01	13.06	20.22			
36	5180	15	multi-To		64QAM	OFDM	-3.01	8.12	-3.71	6.87	-2.77	7.02	1.37	10.01	13.01	20.00			
3)SAR pow	er (vs. ch	annel) (a	t wor	st ave	rage po	wer da	ta rate)								1 sn:A1210	13 summed			
Ch.	Freq.	MCS	Ant.	Test	Modu	lation	Ant#1.PN	Reading	Ant#2.P/	M Reading	At#3.P/N	Reading	Gable Loss	Attenuator	Ant#1+#2+	#3:Results	⊿def.[dBm]	default	
	[MHz]	Index	No.	ch.?			Ave.[dBm]	Pk[dB]	Ave.[dBm]	Pk[dB]	Ave.[dBm]	Pk[dB]	[dB]	[dB]	Ave.[dBm]	Ave[mW]	(vs.next.ch.)	change?	
36	5180	0	multi-Tr	defalut	BPSK	OFDM	-2.33	7.52	-2.96	6.65	-2.37	6.34	1.37	10.01	13,61	22.97	default	->default worst	
40	5200	0	multi-To		BPSK	OFDM	-2.56	7.43	-3.17	6.84	-3.47	6.23	1.37	10.01	13.11	20.45	0.00	×	1
44	5220	0	multi-Tr		BPSk	OFDM	-2.63	7.24	-3.08	6.27	-3.20	6.29	1.37	10.01	13.19	20.86	0.00	×	1
48	5240	0	multi-To	default	BPSK	OFDM	-2.97	6.97	-3.40	6.16	-3.22	6.13	1.37	10.01	12.96	19.78	default	->defalut	

*.no off time(11n(20HT))->continuous Tx^{**}dasy4 Crest.Factor=1.0

*.Sample calculation: Results=(P/M Reading)+(Cable Loss)+(Attenuator)
*.Equipment used(SAR); KPM-08, KPSS-04, KCC-D23, KAT10-S3, STM-G2&SCC-H2, STM-G3&SCC-H1
*1.These number are the one of the reference only to compare both EUT and the RF power level with using same measurement method. For the radio measurement, the different EUT (sm:A121014) was used.
Equipment used(radio); SPM-06, SPSS-03, KCC-D23, SAT10-06, STM-G2&SCC-H2, STM-G3&SCC-H1

Test report No.	:	31СЕ0283-НО-01-С
Page	:	10 of 59
Issued date	:	December 22, 2010
FCC ID	:	W2Z-01000001

Power for SAR (data rate, channel determination) and Correlation of Output Power b/w EMC and SAR tests (cont'd)

Antenna	termina	l condu	cted	DOW	(er]														
RF mode:	IEEE 8	02.11n	(40)	(T)	*.target	=10dBn	n at each ar	tenna port	/after calibr	ation comm	and								.
1)EMC vs S	SAR powe	r		_		_	↓ Ant#1	side-top	↓ Ant#2:si	de-bottom	↓ Ant	#3:top			↓ sn:A1210	13 summed	↓ sn:A1210	14 summed	_
Ch.	Freq.	MCS	Ant.	Worst	Modu	lation	Ant#1.PN	Reading	Ant#2.P/	M Reading	At#3.P/N	Reading	Cable Loss	Attenuator	Ant#1+#2+#3	Results(SAR)	Ant#1+#2+#3	Results(EMC)	⊿sa
	MHz	Index	No.				Ave.[dBm]	Pk[dB]	Ave.[dBm]	Pk[dB]	Ave.[dBm]	Pk[dB]	[dB]	[dB]	Ave.[dBm]	Ave.[mW]	Ave.[dBm]	Ave.[mW]	EMC[df
38	5190	0	multi-Ta	emc	BPSK	OFDM	-2.36	10.20	-2.70	8.65	-2.71	8.65	1.37	10.00		_	13.56	22.69	ref.
38	5190	0	multi-Ta	SAR	BPSK	OFDM	-2.36	10.31	-2.61	8.69	-2.60	8.65	1.37	10.01	13.63	23.09	-(† *1)	-(† *1)	0.08
2)SAR pow	er (vs. da	ta rate)	(at hig	thest a	average	power	channel)								↓ sn:A1210	13 summed			
Ch.	Freq.	MCS	Ant.	Worst	Made	lation.	Ant#1.PN	Reading	Ant#2.P/	M Reading	At#3.P/N	I Reading	Cable Loss	Attenuator	Ant#1+#2+	#3:Results			
Un.	[MHz]	Index	No.		Modu	lation	Ave.[dBm]	Pk[dB]	Ave.[dBm]	Pk[dB]	Ave.[dBm]	Pk[dB]	[dB]	[dB]	Ave.[dBm]	Ave.[mW]			
38	5190	0	18283	worst	BPSK	OFDM	-2.36	10.31	-2.61	8.69	-2.60	8.65	1.37	10.01	13.63	23.09			
38	5190	1	18283		QPSK	OFDM	-2.52	8.26	-2.87	7.64	-2.79	8.26	1.37	10.01	13.43	22.04	1		
38	5190	2	18283		QPSK	OFDM	-2.66	8.87	-2.87	7.55	-2.82	8.07	1.37	10.01	13.37	21.75	1		
38	5190	3	18283		16QAM	OFDM	-2.75	8.99	-2.98	7.82	-2.79	7.26	1.37	10.01	13.32	21.46	1		
38	5190	4	18283		16QAM	OFDM	-2.83	8.23	-3.09	7.52	-2.91	7.33	1.37	10.01	13.21	20.96	1		
38	5190	5	18283		64QAM	OFDM	-2.89	9.14	-3.14	8.13	-2.95	8.51	1.37	10.01	13.16	20.72	1		
38	5190	6	18283		64QAM	OFDM	-2.86	8.21	-3.17	7.27	-3.01	8.41	1.37	10.01	13.14	20.63	1		
38	5190	7	18283		QPSK	OFDM	-2.82	8.25	-3.17	7.33	-3.11	7.35	1.37	10.01	13.13	20.54	1		
38	5190	8	18283		QPSK	OFDM	-2.64	7.81	-2.87	7.56	-2.89	7.37	1.37	10.01	13.36	21.67	1		
38	5190	9	16263		16QAM	OFDM	-2.70	8.06	-2.98	7.98	-2.97	7.12	1.37	10.01	13.27	21.26	1		
38	5190	10	18283		QPSK	OFDM	-2.72	8.30	-3.15	7.14	-3.03	7.33	1.37	10.01	13,19	20.86	1		
38	5190	11	18283		QPSK	OFDM	-2.79	8.14	-3.10	7.50	-3.07	7.21	1.37	10.01	13.17	20.76	1		
38	5190	12	18283		16QAM	OFDM	-2.77	8.27	-3.19	7.74	-3.18	7.26	1.37	10.01	13.11	20.48	1		
38	5190	13	18283		64QAM	OFDM	-2.93	8.13	-3.21	7.52	-3.25	7.23	1.37	10.01	13.03	20.08	1		
38	5190	14	18283		64QAM	OFDM	-2.90	8.10	-3.24	7.35	-3.36	7.08	1.37	10.01	12.99	19.92	1		
38	5190	15	18283		64QAM	OFDM	-2.96	8.02	-3.26	7.42	-3.40	6.94	1.37	10.01	12.95	19.74	1		
SAR pow	er (vs. ch	annel) (a	t wors	st ave	rage por	wer dat	ta rate)								L sn:A1210	13 summed			1
	Frea.	MCS	Ant	Test			Ant#1.PN	Reading	Ant#2.P/	M Reading	At#3.P/N	Reading	Cable Loss	Attenuator	Ant#1+#2+	#3:Results	444540-1	default	1
Ch.	[MHz]	Index	No.	ch.?	Modu	lation	Ave.[dBm]	Pk[dB]	Ave.[dBm]	Pk[dB]	Ave.[dBm]	Pk[dB]	[dB]	[dB]	Ave.[dBm]	Ave[mW]	(vs.next.ch.)	change?	
38	5190	0	18.28.2	del la	BPSK	OFDM	-2.36	10.31	-2.61	8.69	-2.60	8.65	1.37	10.01	13.63	23.09	default	- Set to be a set	1
46	5230	ő	18283	datad	BPSK	OFDM	-2.67	9.85	-2.98	8.27	-2.62	8.64	1.37	10.01	13.40	21.89	default	->defalut	1
	(11-(40)	IT I DI 44	19200	with the	D. OK	~ .	A Count F	0.00		V.67	2.72	0.04	1.07	14.01	10,10	21.00	aviault	20010101	

*.Sample calculation: Results=(P/M Reading)+(Cable Loss)+(Attenuator) *.Equipment used(SAR): KPM-08, KPSS-04, KCC-D23, KAT10-S3, STM-G2&SCC-H2, STM-G3&SCC-H1

*I.These number are the one of the reference only to compare both EUT and the RF power level with using same measurement method. For the radio measurement, the different EUT (sn:A121014) was used. Equipment used(radio); SPM-06, SPSS-03, KCC-D23, SAT10-06, STM-G2&SCC-H2, STM-G3&SCC-H1

For the SAR reference (S/N:A12013); measured date: November29, 2010/Measured by: Hiroshi Naka/Measured place: No. 5 shielded room. (24 deg.C. / 35 %) For the EMC reference (S/N:A12014); measured date: November30, 2010/Measured by: Tastuya Arai/Measured place: No. 6 shielded room. (24 deg.C. / 33 %) *. * The EMC test data was shown in the EMC test report: 31CE0283-HO-01-A.

SECTION 7: Measurement results

7.1 Body SAR

Measurement date	:	November 30, December 1 and 2, 2010
Measurement by	:	Hiroshi Naka

[Liquid measurement (body tissue)]

Used Target	Target H	ead Tissue		Measured Head Tis	sue	Enviro	onment		
Frequency	Permittivity	Conductivity	Permittivity	Conductivity	Temp.	Depth	Temp.	Humidity	Measured Date
[MHz]		[S/m]	(ɛr) [-]	(σ) [S/m]	[deg.C.]	[mm]	[deg.C.]	[%]	
5180	49.0	5.28	47.24 (-3.7%)	5.356 (+1.5%)	23.6	144	23.3	34	November 30, 2010, before SAR
5180	49.0	5.28	47.15 (-3.8%)	5.345 (+1.3%)	23.5	144	23.6	35	December 1, 2010, before SAR
5180	49.0	5.28	46.72 (-4.7%)	5.318 (+0.8%)	23.7	144	23.6	35	December 2, 2010, before SAR

*. The target value was linear interpolated from the number of 3000MHz and 5800MHz defined in OET Bulletin 65, Supplement C.

[SAR measurement results]

SAR measurement results											
Frequency			Modulation	EUT setup conditions			Liquid temp. [deg.C]		Power	SAR(1g) [W/kg]	Domonto
Mode	ch	[MHz]	/ crest factor	Antenna no#	Position	Distance [mm]	Before	After	[dB]	maximum value of multi-peak	Rentariks
Antenna: Antenna Top											
Step A1: Worst setup position search (at highest average antenna power data rate and channel)											
11a	36	5180	BPSK&OFDM / 6Mbps / 1.0	Top	Top-touch	0	22.6	22.6	-0.169	0.085	->Worst for antenna-Top.
	36	5180	BPSK&OFDM / 6Mbps / 1.0	Тор	Front-touch	0	23.0	23.0	0.20	0.017	-
	36	5180	BPSK&OFDM/6Mbps/1.0	Тор	Rear-touch	0	22.9	23.0	0.21	0.031	-
Step A2: Change the transmitting mode at worst position (IEEE 801.11n, at highest average antenna power data rate and channel)											
20HT	36	5180	BPSK&OFDM/MCS0/1.0	Тор	Top-touch	0	22.6	22.6	0.166	0.043	SimultaneouslymultiTx.
Antenna: Antenna_Side-top											
Step B1: Worst setup position search (at highest average antenna power data rate and channel)											
11a	36	5180	BPSK&OFDM/6Mbps/1.0	Side-top	Right-touch	0	22.9	22.9	-0.085	0.052	->Worst for antenna-Side-top.
	36	5180	BPSK&OFDM / 6Mbps / 1.0	Side-top	Front-touch	0	23.3	23.3	0.21	0.0063	H
	36	5180	BPSK&OFDM / 6Mbps / 1.0	Side top	Rear-touch	0	23.2	23.2	-0.20	0.034	
Step B2: Change the transmitting mode at worst position (IEEE 801.11n, at highest average antenna power data rate and channel)											
20HT	36	5180	BPSK&OFDM/MCS0/1.0	Side-top	Right-touch	0	23.2	23.2	0.21	0.024	SimultaneouslymultiTx.
Antenna: Antenna Side-bottom											
Step C1: Worst setup position search (at highest average antenna power data rate and channel)											
11a	36	5180	BPSK&OFDM/6Mbps/1.0	Side bottom	Right-touch	0	22.7	22.8	-0.046	0.032	->Worst for antenna-Side-
	36	5180	BPSK&OFDM / 6Mbps / 1.0	Side bottom	Front-touch	0	23.0	23.0	-	Small (*1)	a -
	36	5180	BPSK&OFDM/6Mbps/1.0	Side bottom	Rear-touch	0	23.0	23.0	-	Small (*1)	-
Step C2: Change the transmitting mode at worst position (IEEE 801.11n, at highest average antenna power data rate and channel)											
20HT	36	5180	BPSK&OFDM/MCS0/1.0	Side bottom	Right-touch	0	23.2	23.2	0.054	0.010	SimultaneouslymultiTx.

Notes:

*1. The zoom scan was not applied. The SAR value measured in area scan was very small. Therefore, for the zoom scan procedure, the correct interpolation process could not be achieved, because the target transmission level was very small.

*. The SAR test was only applied to the lower channel (as default) that had highest average antenna power. Because the measured SAR(1g) with this channel was less than 0.1W/kg. In accordance with KDB 447498, 1), e), i), the measured SAR was less than 0.8W/kg and the frequency band was equal or smaller than 100MHz (this EUT had 60MHz frequency band), the SAR test was only performed lower default channel that had highest average antenna power.

The SAR test for IEEE 802.11n(40HT) was not applied. Because the measured SAR of IEEE 802.11n(20HT) was very small (<0.1W/kg) and enough smaller than the corresponded of IEEE .802.11a SAR data.

The test was not applied to the bottom and left surface of EUT. Because the measured SAR values were very small even the cross section of antenna, and these side had enough separation distance (longer than 5cm) from each antenna.

For the multi antenna transmitting simultaneously (MIMO), the measured SAR(1g) values of each antenna were not summed, because the antenna separation of each antenna was more than 5cm.

The head SAR by using the head simulated liquid was not applied, because the measured body SAR was enough small to the limit.

For the above mentions, refer to the FCC inquiry number: 265500 of the test procedure for SAR.