Test of iControl, miKEY 802.15.4 To: FCC 47 CFR Part 15.247 & IC RSS-210 Test Report Serial No.: ICON07-A2 Rev A Test of iControl, miKEY 802.15.4 to To FCC 47 CFR Part 15.247 & IC RSS-210 Test Report Serial No.: ICON07-A2 Rev A This report supersedes: None **Applicant:** iControl, Incorporated 3235 Kifer, Suite 260 Santa Clara California, 95051 USA Product Function: 802.15.4 Wireless Key Chain for **mLOCK** Copy No: pdf Issue Date: 16th December 2009 # This Test Report is Issued Under the Authority of; #### MiCOM Labs, Inc. 440 Boulder Court, Suite 200 Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com CERTIFICATE #2381.01 MiCOM Labs is an ISO 17025 Accredited Testing Laboratory **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 3 of 78 This page has been left intentionally blank **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 4 of 78 # **TABLE OF CONTENTS** | AC | CCREDITATION, LISTINGS and RECOGNITION | 5 | |----|---|----| | 1. | TEST RESULT CERTIFICATE | 8 | | 2. | REFERENCES AND MEASUREMENT UNCERTAINTY | 9 | | | 2.1. Normative References | | | | 2.2. Test and Uncertainty Procedures | | | 3. | PRODUCT DETAILS AND TEST CONFIGURATIONS | | | | 3.1. Technical Details | | | | 3.2. Scope of Test Program | | | | 3.3. Equipment Model(s) and Serial Number(s) | | | | 3.4. Antenna Details | | | | 3.5. Cabling and I/O Ports | | | | 3.6. Test Configurations | | | | 3.7. Equipment Modifications | | | | 3.8. Deviations from the Test Standard | 15 | | 4. | TEST SUMMARY | 16 | | 5. | TEST RESULTS | 18 | | | 5.1. Device Characteristics | 18 | | | 5.1.1. 6 dB and 99 % Bandwidth | 18 | | | 5.1.2. Peak Output Power | 24 | | | 5.1.3. Peak Power Spectral Density | 31 | | | 5.1.4. Maximum Permissible Exposure | 37 | | | 5.1.5. Conducted Spurious Emissions | 38 | | | 5.1.6. Radiated Emissions | | | | 5.1.7. AC Wireline Conducted Emissions (150 kHz – 30 MHz) | 70 | | 6. | PHOTOGRAPHS | 72 | | | 6.1. Radiated Spurious Emissions – Test Configuration | | | | 6.2. Radiated Spurious Emissions - below 1 GHz | 73 | | | 6.3. Radiated Spurious Emissions - above 1 GHz | 74 | | | 6.4. Conducted Measurement Test Set-Up | | | | 6.5. Conducted Measurement Test Equipment | 76 | | 7 | TEST FOUIPMENT DETAILS | 77 | To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 5 of 78 # **ACCREDITATION, LISTINGS and RECOGNITION** ## **ACCREDITATION** MiCOM Labs, Inc. an accredited laboratory complies with the international standard BS EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-01.pdf # Accredited Laboratory A2LA has accredited # MICOM LABS Pleasanton, CA for technical competence in the field of #### Electrical Testing This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009). Presented this 26th day of February 2008. President & CEO V For the Accreditation Council Certificate Number 2381.01 Valid to February 28, 2010 Revised November 17, 2009 $For the \ tests \ or \ types \ of \ tests \ to \ which \ this \ accreditation \ applies, \ please \ refer \ to \ the \ laboratory's \ Electrical \ Scope \ of \ Accreditation.$ **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 6 of 78 # **LISTINGS** MiCOM Labs test facilities are listed by the following organizations; # North America #### **United States of America** Federal Communications Commission (FCC): 102167 Canada Industry Canada: 4143A ## **Japan Registration** VCCI Membership Number: 2959 Radiation 3 meter site; Registration No. R-2881 • Line Conducted, Registration Nos. C-3181 & T-1470 • Emissions; Registration Nos. C-3180 & T-1469 ## RECOGNITION **APEC MRA (Asia-Pacific Economic Community Mutual Recognition Agreement)** # Conformity Assessment Body (CAB) - MiCOM Labs Test data generated by MiCOM Labs is accepted in the following countries under the APEC MRA. | Country | Recognition Body | Phase | CAB Identification No. | | |--------------|---|-------|------------------------|--| | Australia | Australian Communications and Media Authority (ACMA) | I | | | | Hong
Kong | Office of the Telecommunication Authority (OFTA) | I | | | | Korea | Ministry of Information and Communication Radio Research Laboratory (RRL) | I | US0159 | | | Singapore | Infocomm Development Authority (IDA) | | | | | Taiwan | Directorate General of Telecommunications (DGT) Bureau of Standards, Metrology and Inspection | I | | | | | (BSMI) | | | | **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 7 of 78 # **DOCUMENT HISTORY** | | Document History | | | | |----------|--------------------------------|-----------------|--|--| | Revision | Date | Comments | | | | Draft | | | | | | А | 16 th December 2009 | Initial Release | **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 8 of 78 # 1. TEST RESULT CERTIFICATE Manufacturer: iControl, Incorporated Tested By: MiCOM Labs, Inc. 3235 Kifer, Suite 260 440 Boulder Court Santa Clara Suite 200 California, 95051 USA Pleasanton California, 94566, USA EUT: Wireless Key Chain for Telephone: +1 925 462 0304 mLOCK Model: miKEY Fax: +1 925 462 0306 S/N: N/A Test Date(s): 21st September to 14th Website: www.micomlabs.com October 2009 STANDARD(S) TEST RESULTS FCC 47 CFR Part 15.247 & IC RSS-210 EQUIPMENT COMPLIES MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report. #### Notes: - 1. This document reports conditions under which testing was conducted and the results of testing performed. - 2. Details of test methods used have been recorded and kept on file by the laboratory. 3. Test results apply only to the item(s) tested. Approved & Released for MiCOM Labs, Inc. by: CERTIFICATE #2381.01 ACCREDIT Graemé Grieve Quality Manager MiCOM Labs, Gordon Hurst President & CEO MiCOM Labs, Inc. **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 Page: 9 of 78 # 2. REFERENCES AND MEASUREMENT UNCERTAINTY #### 2.1. Normative References | Ref. | Publication | Year | Title | |--------|----------------------------|---------------------------------------|--| | (i) | FCC 47 CFR
Part 15.247 | 2007 | Code of Federal Regulations | | (ii) | Industry Canada
RSS-210 | Issue 7
June 2007 | Low Power License-Exempt Radiocommunication Devices (All Frequency Bands) | | (iii) | Industry Canada
RSS-Gen | Issue 2
June 2007 | General Requirements and Information for the Certification of Radiocommunication Equipment. | | (iv) | ANSI C63.4 | 2003 | American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz | | (v) | CISPR 22/
EN 55022 | 1997
1998 | Limits and Methods of Measurements of Radio
Disturbance Characteristics of Information
Technology Equipment | | (vi) | M 3003 | Edition 1
Dec. 1997 | Expression of Uncertainty and Confidence in Measurements | | (vii) | LAB34 | Edition 1
Aug 2002 | The expression of uncertainty in EMC Testing | | (viii) | ETSI TR 100 028 | 2001 | Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics | | (ix) | A2LA | 14 th
September
2005 | Reference to A2LA Accreditation Status – A2LA Advertising Policy | # 2.2. Test and Uncertainty Procedures Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report. Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2. Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report. **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 10 of 78 # 3. PRODUCT DETAILS AND TEST CONFIGURATIONS # 3.1. Technical Details | Details | Description | |----------------------------------|---| | Purpose: | Test of the iControl, miKEY 802.15.4 to FCC Part 15.247 | | • | and Industry Canada RSS-210 regulations. | | Manufacturer: | As Applicant | | Applicant: | iControl, Incorporated | | | 3235 Kifer, Suite 260 | | | Santa Clara | | | California, 95051 USA | | Laboratory performing the tests: | MiCOM Labs, Inc. | | | 440 Boulder Court, Suite 200 | | | Pleasanton, California 94566 USA | | Test report
reference number: | ICON07-A2 Rev A | | Date EUT received: | 21 st September 2009 | | Standard(s) applied: | FCC 47 CFR Part 15.247 & IC RSS-210 | | Dates of test (from - to): | 21st September to 14th October 2009 | | No of Units Tested: | Single unit used for radiated and conducted testing. | | | Conducted testing, RF connector on miKEY pcb | | | Radiated Measurements, integral antenna connected. | | Type of Equipment: | 802.15.4 Wireless Device | | Model: | miKEY | | Location for use: | Indoor/Outdoor | | Declared Frequency Range(s): | 2400 - 2483.5 MHz | | Type of Modulation: | Per 802.15.4 | | Declared Nominal Average | -4.0 dBm | | Output Power: | | | EUT Modes of Operation: | 802.15.4 | | Transmit/Receive Operation: | Time Division Duplex | | ated Input Voltage and Current: | Battery Operation | | | Nominal: 3.7 Vdc | | | Minimum: 3.3 Vdc | | | Maximum: 4.1 Vdc | | Operating Temperature Range: | -40 to +80°C | | ITU Emission Designator: | 802.15.4 – 2M5G7DFN | | Frequency Stability: | ±20 ppm max | | Equipment Dimensions: | 1.375" W x 2.25" L x 0.5" D | | Weight: | 2 oz | | Primary function of equipment: | Wireless operation of the mLOCK wireless padlock | **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 11 of 78 # 3.2. Scope of Test Program The scope of the test program was to test the iControl 802.15.4 miKEY in the frequency range 2400 - 2483.5 MHz, FCC 47 CFR Part 15.247 and Industry Canada RSS-210 specifications. This equipment is intended for periodic reporting of tracking and lock status. The unit operates via a 3.7 Vdc Lithium battery. Conducted testing utilized a motherboard to exercise a single printed circuit board. Radiated testing utilized final product packaging however was driven through the motherboard. Photographs of both scenarios have been included. # **Conducted Test Configuration** **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 12 of 78 ## iControl miKEY Product - Front To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 13 of 78 # iControl miKEY Product - Rear **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 14 of 78 # 3.3. Equipment Model(s) and Serial Number(s) | Type
(EUT/
Support) | Equipment Description (Including Brand Name) | Mfr | Model No. | Serial No. | |---------------------------|--|---------------------------|---------------------|------------| | EUT | 2.4 GHz ZigBee 802,15.4 | iControl,
Incorporated | miKEY | N/A | | Support | 2.4 GHz Wireless Control PCB | iControl,
Incorporated | iDAC
Motherboard | | | Support | ac Adapter 115Vac 60Hz
9Vdc 1.3A | Unifive | US100913 | 302-004675 | | Support | Laptop | IBM | N/A | N/A | #### 3.4. Antenna Details 1. 2400-2483.5 MHz Company Antenna Factor – Integral Antenna Model: ANT-2.45-CHP-x Antenna Pattern: Omni Directional Max Gain: 0.5 dBi # 3.5. Cabling and I/O Ports Number and type of I/O ports 1. NONE **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 15 of 78 # 3.6. Test Configurations Matrix of Channel test configurations. | Channel
Operational Mode
(802.15.4) | Frequencies
(MHz) | |---|----------------------| | 11 | 2405 | | 19 | 2445 | | 26 | 2480 | # 3.7. Equipment Modifications The following modifications were required to bring the equipment into compliance: 1. Power reduced on Channel 26 EUT to meet band edge requirements. Power setting reduced from 95 (nominal) to 70 in test utility (-22.21 dBm) #### 3.8. Deviations from the Test Standard The following deviations from the test standard were required in order to complete the test program: 1. NONE **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 16 of 78 # 4. TEST SUMMARY ## **List of Measurements** The following table represents the list of measurements required under the FCC CFR47 Part 15.247 and Industry Canada RSS-210 and Industry Canada RSS-Gen. | Section(s) | Test Items | Description | Condition | Result | Test
Report
Section | |---|--|---|-----------|----------|---------------------------| | 15.247(a)(2)
A8.2(1)
4.4 | 6 dB and
99 %
Bandwidths | ≥500 kHz | Conducted | Complies | 5.1.1 | | 15.247(b)(3)
15.31(e)
A8.4(4) | Peak Output
Power
Voltage
Variation | Shall not exceed 1W Variation of supply voltage 85 % -115 % | Conducted | Complies | 5.1.2 | | 15.247(e)
A8.2 | Peak Power
Spectral
Density | Shall not be
greater than
+8 dBm in any
3 kHz band | Conducted | Complies | 5.1.3 | | 15.247(i)
5.5 | Maximum
Permissible
Exposure | Exposure to radio frequency energy levels | Conducted | Complies | 5.1.4 | | 15.247(d)
15.205 /
15.209
A8.5
2.2
4.7 | Spurious
Emissions
(30MHz -
26 GHz b/g
and 30 MHz –
40 GHz a) | The radiated emission in any 100 kHz of outband shall be at least 20 dB below the highest inband spectral density | Conducted | Complies | 5.1.5 | To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 17 of 78 ## **List of Measurements (continued)** The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210, and Industry Canada RSS-Gen. | Section(s) | Test Items | Description | Condition | Result | Test
Report
Section | |---|---|--|-----------|-------------------|---------------------------| | 15.247(d)
15.205 /
15.209
A8.5
2.2
2.6 | Radiated
Emissions | Restricted Bands | Radiated | Complies | 5.1.6 | | 4.7 | Transmitter
Radiated
Spurious
Emissions | Emissions above
1 GHz | | Complies | 5.1.6.1 | | | Radiated
Band Edge | Band-edge
results
Peak Emissions | | Complies | 5.1.6.2. | | Industry
Canada only
RSS-Gen
§4.8, §6 | Receiver
Radiated
Spurious
Emissions | Emissions above
1 GHz | | N/A | 5.1.6.3 | | 15.205 /
15.209
2.2 | Radiated
Spurious
Emissions | Emissions
<1 GHz (30M-
1 GHz) | Radiated | Complies | 5.1.6.4 | | 15.207
7.2.2 | AC Wireline
Conducted
Emissions
150 kHz–
30 MHz | Conducted
Emissions | Conducted | Not
Applicable | 5.1.7 | Note 1: Test results reported in this document relate only to the items tested **Note 2:** The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria **Note 3:** Section 3.7 'Equipment Modifications' highlights the modifications that were required to bring the product into compliance with the above test matrix **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 18 of 78 # 5. TEST RESULTS ## 5.1. Device Characteristics #### 5.1.1. 6 dB and 99 % Bandwidth FCC, Part 15 Subpart C §15.247(a)(2) Industry Canada RSS-210 §A8.2 Industry Canada RSS-Gen §4.4 #### **Test Procedure** The bandwidth at 6 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. #### **Test Measurement Set up** Measurement set up for 6 dB and 99 % bandwidth test #### Measurement Results for 6 dB & 99% Bandwidth Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar Radio Parameters Duty Cycle: 100% **Output: Modulated Carrier** Power: Maximum **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 19 of 78 # Measurement Results for 6 dB and 99% Operational Bandwidth(s) Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar ## TABLE OF RESULTS | Center Frequency
(MHz) | 6 dB Bandwidth
(MHz) | 99% Bandwidth
(MHz) | |---------------------------|-------------------------|------------------------| | 2,405 | 1.623 | 2.525 | | 2,445 | 1.643 | 2.525 | | 2,480 | 1.643 | 2.525 | **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 20 of 78 #### 2,405 MHz 802.15.4 6 dB and 99% Bandwidth Date: 21.SEP.2009 12:48:24 **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 21 of 78 #### 2,445 MHz 802.15.4 6 dB and 99% Bandwidth Date: 21.SEP.2009 12:50:57 **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 22 of 78 #### 2,480 MHz 802.15.4 6 dB and 99% Bandwidth Date: 21.SEP.2009 12:53:04 **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 23 of 78 ## **Specification** #### Limits ## §15.247 (a)(2) & RSS-210 §A8.2(1) The minimum 6 dB bandwidth shall be at least 500 kHz. § IC RSS-Gen 4.4.1 Occupied Bandwidth When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured. § IC RSS-Gen 4.4.2 6 dB Bandwidth Where indicated, the 6 dB bandwidth is measured at the points when the spectral density of the signal is 6 dB down from the in –band spectral density of the modulated signal, with the transmitter modulated by a representative signal. ## **Laboratory Measurement Uncertainty for
Spectrum Measurement** | Measurement uncertainty | ±2.81 dB | |-------------------------|----------| ## **Traceability** | Method | Test Equipment Used | |--------------------------------------|--| | Measurements were made per work | 0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117 | | instruction WI-03 'Measurement of RF | | | Spectrum Mask' | | **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 24 of 78 ### 5.1.2. Peak Output Power FCC, Part 15 Subpart C §15.247(b)(3), §15.31(e) Industry Canada RSS-210 §A8.4(4) #### **Test Procedure** The transmitter terminal of EUT was connected to the input of the spectrum analyzer set to measure peak power. The resolution filter bandwidth was set to 6 dB, peak detector selected and the analyzer built-in power function was used to measure peak power over the 99 % bandwidth. ## **Test Measurement Set up** Measurement set up for Transmitter Peak Output Power Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar Maximum Antenna Gain: 0.5 dBi **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 25 of 78 # TABLE OF RESULTS Maximum Conducted Power | Center
Frequency
(MHz) | 99% Measurement
Bandwidth
(MHz) | Average
Power
(dBm) | Peak
Power
(dBm) | Peak Power EIRP
0.5 dBi Integral
Antenna
(dBm) | |------------------------------|---------------------------------------|---------------------------|------------------------|---| | 2,405 | 2.525 | -7.37 | -4.39 | -3.89 | | 2,445 | 2.525 | -7.16 | -4.36 | -3.86 | | 2,480 | 2.525 | -6.99 | -4.06 | -3.56 | **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 26 of 78 # 2,405 MHz 802.15.4 Peak Power (dBm) Date: 21.SEP.2009 15:22:23 **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 27 of 78 # 2,445 MHz 802.15.4 Peak Power (dBm) Date: 21.SEP.2009 15:23:19 To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 28 of 78 # 2,480 MHz 802.15.4 Peak Power (dBm) Date: 21.SEP.2009 15:24:09 **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 29 of 78 ## **Specification** #### Limits **§15.247 (b)** The maximum peak output power of the intentional radiator shall not exceed the following: **§15.247 (b) (3)** For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1.0 watt. **15.247 (b) (4)** The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. 15.247 (c) Operation with directional antenna gains greater than 6 dBi. - (1) Fixed point-to-point operation: - (i) Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. - (ii) Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power. **§15.31 (e)** For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery. § RSS-210 A8.4(4) For systems employing digital modulation techniques operating in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands the maximum peak conducted power shall not exceed 1 watt. **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 30 of 78 # **Laboratory Measurement Uncertainty for Power Measurements** Measurement uncertainty ±1.33 dB # **Traceability** | Method | Test Equipment Used | | | | |---|--|--|--|--| | Measurements were made per work instruction WI-01 'Measuring RF Output Power' | 0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117 | | | | **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 31 of 78 ## 5.1.3. Peak Power Spectral Density FCC, Part 15 Subpart C §15.247(e) Industry Canada RSS-210 §A8.2 #### **Test Procedure** The transmitter output was connected to a spectrum analyzer and the maximum level in a 3 kHz bandwidth was measured. A peak value was found over the full emission bandwidth and the frequency span reduced to obtain enhanced resolution. Sweep time ≥ span / 3 kHz with video averaging turned off. The Peak Power Spectral Density is the highest level found across the emission in a 3 kHz resolution bandwidth. ## **Test Measurement Set up** Measurement set up for Peak Power Spectral Density # Measurement Results for Peak Power Spectral Density Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar Radio Parameters Duty Cycle: 100% **Output: Modulated Carrier** **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 32 of 78 ## TABLE OF RESULTS | Center Frequency
(MHz) | Peak Frequency
(MHz) | PPSD
(dBm) | Limit
(dBm) | Margin
(dBm) | |---------------------------|-------------------------|---------------|----------------|-----------------| | 2,405 | 2405.35271 | -21.39 | +8.00 | -29.39 | | 2,445 | 2445.35070 | -20.28 | +8.00 | -28.28 | | 2,480 | 2480.34970 | -20.23 | +8.00 | -28.23 | **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 33 of 78 ## 2,405 MHz 802.15.4 Peak Power Spectral Density Date: 21.SEP.2009 15:21:01 **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 34 of 78 # 2,445 MHz 802.15.4 Peak Power Spectral Density Date: 21.SEP.2009 15:10:51 **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 35 of 78 ## 2,480 MHz 802.11b Peak Power Spectral Density Date: 21.SEP.2009 13:04:20 **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 36 of 78 # **Specification Peak Power Spectral Density Limits** §15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission RSS-210 §A8.2(2) The transmitter power spectral density (into the antenna) shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0 second duration. ## **Laboratory Measurement Uncertainty for Spectral Density** | Measurement uncertainty | ±1.33 dB | |-------------------------|----------| ## **Traceability** | Method | Test Equipment Used | |---|--| | Measurements were made per work instruction WI-01 'Measuring RF Output Power' | 0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117 | To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 Page: 37 of 78 ## 5.1.4. Maximum Permissible Exposure FCC, Part 15 Subpart C §15.247(i) Industry Canada RSS-Gen §5.5 #### **Calculations for Maximum Permissible Exposure Levels** Power Density = Pd (mW/cm²) = EIRP/ $(4\pi d^2)$ EIRP = P * G P = Peak output power (mW) G = Antenna numeric gain (numeric) d = Separation distance (cm) Numeric Gain = 10 ^ (G (dBi)/10) Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 1.0 mW/cm² | Freq.
Band
(GHz) | Antenna
Gain
(dBi) | Numeric
Gain
(numeric) | Peak
Output
Power
(dBm) | Peak
Output
Power
(mW) | Calculated
Safe
Distance @
1mW/cm ²
Limit(cm) | Minimum
Separation
Distance
(cm) | |------------------------|--------------------------|------------------------------|----------------------------------|---------------------------------|--|---| | 2.4 | 0.5 | 1.12 | -4.06 | 0.4 | 0.19 | 20.0 | *Note: for mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculations indicate the MPE distance to be less. #### **Specification** #### **Maximum Permissible Exposure Limits** §15.247(i) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency levels in excess of the Commission's guidelines. FCC §1.1310 Limit = 1mW / cm² from 1.310 Table 1 RSS-Gen §5.5 Before equipment certification is granted, the applicable
requirements of RSS-102 shall be met. ## **Laboratory Measurement Uncertainty for Power Measurements** | Measurement uncertainty | ±1.33 dB | |-------------------------|----------| **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 38 of 78 ### **5.1.5. Conducted Spurious Emissions** FCC, Part 15 Subpart C §15.247(d); 15.205; 15.209 Industry Canada RSS-210 §A8.5, §2.2 Industry Canada RSS-Gen 4.7 #### **Test Procedure** Conducted emissions were measured at a limit of 20 dB below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Emissions at the band edge were measured and recorded. Measurements were made while EUT was operating in transmit mode of operation at the appropriate center frequency. ## **Test Measurement Set up** Band-edge measurement test configuration #### **Measurement Results of Conducted Spurious Emissions** Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar Radio Parameters Duty Cycle: 100% **Output: Modulated Carrier** **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 39 of 78 ## **Conducted Band-Edge Results** Measurements were performed with the transmitter tuned to the channel closest to the bandedge being measured. All emissions were maximized during measurement. Limits which were derived from the band-edge measurements provided below are drawn on each plot. #### **TABLE OF RESULTS** | Center
Frequency
(MHz) | Band edge
Frequency
(MHz) | Limit (20 dB below
peak of
fundamental) | Amplitude @
Band edge
(dBm) | Margin
(dB) | |------------------------------|---------------------------------|---|-----------------------------------|----------------| | 2,405 | 2,400.0 | -29.57 | -50.71 | -21.14 | | 2,480 | 2,483.5 | -29.49 | -46.17 | -16.68 | **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 40 of 78 ## Conducted Spurious Emissions at the 2,400 MHz Band Edge Date: 21.SEP.2009 12:02:35 **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 41 of 78 ## Conducted Spurious Emissions at the 2,483.5 MHz Band Edge Date: 21.SEP.2009 12:08:15 **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 42 of 78 ## Spurious Emissions (30 - 26,000 MHz) ## TABLE OF RESULTS | Channel
Centre
Frequency
(MHz) | Start
Frequency
(MHz) | Stop
Frequency
(MHz) | Maximum
Emission
Observed
(dBm) | Limit
(dBm) | Margin
(dB) | |---|-----------------------------|----------------------------|--|----------------|----------------| | 2,405 | | | -31.24 | -42.82 | -11.58 | | 2,445 | 30 | 26,000 | -30.98 | -42.56 | -11.58 | | 2,480 | | | -30.79 | -42.33 | -11.54 | **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 43 of 78 ## 2,405 MHz Conducted Spurious Emissions 30 to 26,000 MHz **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 44 of 78 ## 2,445 MHz Conducted Spurious Emissions 30 to 26,000 MHz **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 45 of 78 ## 2,480 MHz Conducted Spurious Emissions 30 to 26,000 MHz Date: 21.SEP.2009 12:10:28 **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 46 of 78 #### **Specification** ## **Limits Band-Edge** | Lower Limit
Band-edge | Upper Limit
Band-edge | Limit below highest level of desired power | |--------------------------|--------------------------|--| | 2,400 MHz | 2,483.5 MHz | ≥ 20 dB | §15.247(d) and RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ## §15.247(d) If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)). RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3. #### RSS-Gen §4.7 The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz. ## **Laboratory Measurement Uncertainty for Conducted Spurious Emissions** | Measurement uncertainty | ±2.37 dB | |---------------------------|-------------------------| | Wicasarchient andertainty | ±2.07 GD | | | Measurement uncertainty | #### **Traceability** | Method | Test Equipment Used | |-----------------------------------|---| | Measurements were made per work | 0088, 0158, 0193, 0252, 0313, 0314, 0070, | | instruction WI-05 'Measurement of | 0116, 0117. | | Spurious Emissions' | | To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 47 of 78 #### 5.1.6. Radiated Emissions ## 5.1.6.1. Transmitter Radiated Spurious Emissions (above 1 GHz) FCC, Part 15 Subpart C §15.247(d) 15.205; 15.209 Industry Canada RSS-210 §A8.5, §2.2, §2.6 Industry Canada RSS-Gen §4.7 #### **Test Procedure** Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned. All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz. ## **Test Measurement Set up** Measurement set up for Radiated Emission Test #### **Field Strength Calculation** The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data. FS = R + AF + CORR - FO where: FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL - AG + NFL CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report. **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 48 of 78 #### For example: Given receiver input reading of $51.5~dB_{\mu}V$; Antenna Factor of 8.5~dB; Cable Loss of 1.3~dB; Falloff Factor of 0~dB, an Amplifier Gain of 26~dB and Notch Filter Loss of 1~dB. The Field Strength of the measured emission is: $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$ Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as: Level (dB μ V/m) = 20 * Log (level (μ V/m)) $40 \text{ dB}\mu\text{V/m} = 100 \mu\text{V/m}$ $48 \text{ dB}\mu\text{V/m} = 250 \mu\text{V/m}$ Ambient conditions. Temperature: 17 to 23°C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar Radio Parameters Duty Cycle: 100% **Output: Modulated Carrier** **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 49 of 78 ## Radiated Spurious Emissions above 1 GHz **Test Setup Description** Both Vertical and Horizontal EUT positions were investigated during preliminary testing. EUT was setup in the worst case position for final tests (i.e. Horizontal; EUT case laying flat on table) EUT was connected to demonstration board to provide DC power and control. HP 6274B DC Power Supply was connected during test, and placed on the ground plane next to EUT. Hyperterminal was used for setup and control of the EUT (i.e.changing the transmit and receive frequencies, changing output power, change Tx/Rx modes) The computer was connected via RS-232 control. The RS-232 cable and computer was removed from chamber before prescans or final measurements were performed. To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev
A Issue Date: 16th December 2009 **Page:** 50 of 78 | Test Freq. | 2405 MHz (CH11) | Engineer | CSB | | | | | |---------------|---|----------------|-----|--|--|--|--| | Variant | Tx in Test Utility | Temp (°C) | 23 | | | | | | Freq. Range | 1000 MHz - 18000 MHz | Rel. Hum.(%) | 32 | | | | | | Power Setting | 95 in test utility | Press. (mBars) | 999 | | | | | | Antenna | Integral Trace Antenna included on PCB active during testing | | | | | | | | Test Notes 1 | EUT board sitting horizontal (i.e. case laying flat) on table | | | | | | | | Test Notes 2 | Duty cycle = 100% | | | | | | | ## Formally measured emission peaks | Frequency
MHz | Raw
dBuV | Cable
Loss | AF
dB | Level
dBuV | Measurement
Type | Pol | Hgt
cm | Azt
Deg | Limit
dBuV | Margin
dB | Pass
/Fail | Comments | |------------------|-------------|---------------|----------|---------------|---------------------|-----|-----------|------------|---------------|--------------|---------------|----------| | 4809.858 | 59.6 | 4.5 | -8.7 | 55.4 | Peak Max | Η | 98 | 365 | 74 | -18.6 | Pass | RB | | 4809.858 | 54.9 | 4.5 | -8.7 | 50.6 | Average Max | Н | 98 | 365 | 54 | -3.4 | Pass | RB | | 2383.527 | - | | | 58.8 | Peak | Н | 119 | 2 | 74 | -15.2 | Pass | BE | | 2382.385 | - | - | | 45.5 | Average | Н | 119 | 2 | 54 | -8.5 | Pass | BE | Legend: RB = Restricted Band; NRB = Non-Restricted Band - Limit is 20dB below carrier - See conducted results BE = Emission in Restricted Band Nearest Transmission Band Edge; FUND = Fundamental Freq. **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 51 of 78 ## Band-Edge 2405 MHz Date: 15.OCT.2009 15:52:21 To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 52 of 78 | Test Freq. | 2445 MHz (CH19) | Engineer | CSB | | | | | | |---------------|---|--|-----|--|--|--|--|--| | Variant | Tx in Test Utility | Temp (°C) | 23 | | | | | | | Freq. Range | 1000 MHz - 18000 MHz | Rel. Hum.(%) | 32 | | | | | | | Power Setting | 95 in test utility | Press. (mBars) | 999 | | | | | | | Antenna | Integral Trace Antenna included on PCB ac | Integral Trace Antenna included on PCB active during testing | | | | | | | | Test Notes 1 | EUT board sitting horizontal (i.e. case laying flat) on table | | | | | | | | | Test Notes 2 | Duty cycle = 100% | | | | | | | | #### Formally measured emission peaks | Frequency
MHz | Raw
dBuV | Cable
Loss | AF
dB | Level
dBuV | Measurement
Type | Pol | Hgt
cm | Azt
Deg | Limit
dBuV | Margin
dB | Pass
/Fail | Comments | |------------------|-------------|---------------|----------|---------------|---------------------|-----|-----------|------------|---------------|--------------|---------------|----------| | 4889.856 | 60.89 | 4.52 | -8.73 | 56.69 | Peak Max | Н | 98 | 284 | 74 | -17.31 | Pass | RB | | 4889.856 | 56.71 | 4.52 | -8.73 | 52.5 | Average Max | Н | 98 | 284 | 54 | -1.5 | Pass | RB | Legend: RB = Restricted Band; NRB = Non-Restricted Band - Limit is 20dB below carrier - See conducted results BE = Emission in Restricted Band Nearest Transmission Band Edge; FUND = Fundamental Freq. To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 53 of 78 | Test Freq. | 2480 MHz (CH 26) | Engineer | CSB | | | | | | |---------------|--|--|-----|--|--|--|--|--| | Variant | Tx in Test Utility | Temp (°C) | 23 | | | | | | | Freq. Range | 1000 MHz - 18000 MHz | Rel. Hum.(%) | 32 | | | | | | | Power Setting | 70 in test utility (-22.21 dBm) | Press. (mBars) | 999 | | | | | | | Antenna | Integral Trace Antenna included on PCB ac | Integral Trace Antenna included on PCB active during testing | | | | | | | | Test Notes 1 | EUT board sitting horizontal (i.e. case laying flat) on table; Duty cycle = 100% | | | | | | | | | Test Notes 2 | Power reduced on Channel 26 EUT to meet band edge requirements | | | | | | | | ### Formally measured emission peaks | Frequency
MHz | Raw
dBuV | Cable
Loss | AF
dB | Level
dBuV | Measurement
Type | Pol | Hgt
cm | Azt
Deg | Limit
dBuV | Margin
dB | Pass
/Fail | Comments | |------------------|-------------|---------------|----------|---------------|---------------------|-----|-----------|------------|---------------|--------------|---------------|----------| | 4959.813 | 55.21 | 4.59 | -8.73 | 51.07 | Peak Max | Н | 98 | 283 | 74 | -22.93 | Pass | RB | | 4959.813 | 49.2 | 4.59 | -8.73 | 45.05 | Average Max | Η | 98 | 283 | 54 | -8.95 | Pass | RB | | 2483.533 | | 1 | ı | 62.7 | Peak | Η | 118 | 163 | 74 | -11.3 | Pass | BE | | 2483.831 | | 1 | ı | 52.5 | Average | Η | 118 | 163 | 54 | -1.5 | Pass | BE | Legend: RB = Restricted Band; NRB = Non-Restricted Band - Limit is 20dB below carrier - See conducted results BE = Emission in Restricted Band Nearest Transmission Band Edge; FUND = Fundamental Freq. **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 54 of 78 ## Band-Edge 2480 MHz Date: 15.OCT.2009 15:42:48 **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 55 of 78 ## **Specification Limits** FCC §15.247(d) and RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. #### FCC §15.247(d) If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)). IC RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3. #### IC RSS-Gen §4.7 The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz. **FCC §15.205 (a)** Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed. **FCC §15.205 (a)** Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements. FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table. **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 56 of 78 ## §15.209 (a) Limit Matrix | Frequency(MHz) | Field Strength
(μV/m) | Field Strength
(dBμV/m) | Measurement Distance (meters) | |----------------|--------------------------|----------------------------|-------------------------------| | 30-88 | 100 | 40.0 | 3 | | 88-216 | 150 | 43.5 | 3 | | 216-960 | 200 | 46.0 | 3 | | Above 960 | 500 | 54.0 | 3 | ## **Laboratory Measurement Uncertainty for Radiated Emissions** | Measurement uncertainty | +5.6/ -4.5 dB | |-------------------------|---------------| ## **Traceability** | Method | Test Equipment Used | |---|--| | Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions' | 0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312 | To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 57 of 78 ### 5.1.6.2. Receiver Radiated Spurious Emissions ### Industry Canada RSS-Gen §4.8, §6 #### **Test Procedure** Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions
relative to the limit are listed for each frequency spanned. All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz. #### **Test Measurement Set up** Measurement set up for Radiated Emission Test #### **Field Strength Calculation** The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data. FS = R + AF + CORR - FO where: FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL - AG + NFL CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 58 of 78 #### For example: Given receiver input reading of 51.5 dB $_{\mu}$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is: $$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$ Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as: Level (dB μ V/m) = 20 * Log (level (μ V/m)) 40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 59 of 78 **Test Setup Description** Both Vertical and Horizontal EUT positions were investigated during preliminary testing. EUT was setup in the worst case position for final tests (i.e. Horizontal; EUT case laying flat on table) EUT was connected to demonstration board to provide DC power and control. HP 6274B DC Power Supply was connected during test, and placed on the ground plane next to EUT. Hyperterminal was used for setup and control of the EUT (i.e.changing the transmit and receive frequencies, changing output power, change Tx/Rx modes) The computer was connected via RS-232 control. The RS-232 cable and computer was removed from chamber before prescans or final measurements were performed. To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 60 of 78 ## Receiver Radiated Spurious Emissions above 1 GHz | Test Freq. | Channel 19 | Engineer | CSB | | | | |---------------|---|-------------------|-----|--|--|--| | Variant | Receive in Test Utility | Temp (°C) | 23 | | | | | Freq. Range | 1000 MHz - 18000 MHz | Rel. Hum.(%) | 32 | | | | | Power Setting | Not Applicable in Receive Mode | Press. (mBars) | 999 | | | | | Antenna | Integral Trace Antenna included on PCB acti | ve during testing | | | | | | Test Notes 1 | EUT board sitting horizontal on table | | | | | | | Test Notes 2 | | | | | | | ## Formally measured emission peaks | Frequency
MHz | Raw
dBuV | Cable
Loss | AF
dB | Level
dBuV/m | Measurement
Type | Pol | Hgt
cm | Azt
Deg | Limit
dBuV/m | Margin
dB | Pass
/Fail | Comments | |------------------|-------------|---------------|----------|-----------------|---------------------|-----|-----------|------------|-----------------|--------------|---------------|----------| No Receiver Emissions within 6dB of limit. Legend: DIG = Digital Emissions; RX = Receiver Emission **To**: FCC 47 CFR Part 15.247 & IC RSS-210 **Serial #:** ICON07-A2 Rev A **Issue Date:** 16th December 2009 **Page:** 61 of 78 ## Receiver Radiated Spurious Emissions below 1 GHz | Test Freq. | Channel 19 | Engineer | CSB | | | | | |---------------------------------|--|-------------------|-----|--|--|--|--| | Variant Receive in Test Utility | | Temp (°C) | 23 | | | | | | Freq. Range | 30 MHz - 1000 MHz | Rel. Hum.(%) | 32 | | | | | | Power Setting | Power Setting Not Applicable in Receive Mode | | 999 | | | | | | Antenna | Integral Trace Antenna included on PCB acti | ve during testing | | | | | | | Test Notes 1 | EUT board sitting horizontal on table | | | | | | | | Test Notes 2 | | | | | | | | ## Formally measured emission peaks | Frequency
MHz | Raw
dBuV | Cable
Loss | AF
dB | Level
dBuV/m | Measurement
Type | Pol | Hgt
cm | Azt
Deg | Limit
dBuV/m | Margin
dB | Pass
/Fail | Comments | |------------------|-------------|---------------|----------|-----------------|---------------------|-----|-----------|------------|-----------------|--------------|---------------|----------| | 40.870 | 39.5 | 3.6 | -18.0 | 25.1 | Quasi Peak | V | 104 | 182 | 40 | -14.9 | Pass | DIG | | 101.708 | 42.8 | 4.2 | -20.5 | 26.6 | Peak [Scan] | V | 98 | 0 | 43.5 | -16.9 | Pass | DIG | | 200.460 | 40.4 | 4.8 | -17.7 | 27.5 | Peak [Scan] | V | 98 | 0 | 43.5 | -16.1 | Pass | RX | | 300.658 | 34.5 | 5.2 | -16.9 | 22.8 | Peak [Scan] | V | 98 | 0 | 46 | -23.2 | Pass | DIG | | 372.265 | 35.3 | 5.6 | -15.1 | 25.7 | Peak [Scan] | V | 98 | 0 | 46 | -20.3 | Pass | DIG | | 486.812 | 34.1 | 6.0 | -12.5 | 27.5 | Peak [Scan] | ٧ | 98 | 0 | 46 | -18.5 | Pass | DIG | Legend: DIG = Digital Emissions; RX = Receiver Emission **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 62 of 78 ## **Specification** ## **Receiver Radiated Spurious Emissions** ## Industry Canada RSS-Gen §4.8, The search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tunable or local oscillator frequency, whichever is the higher, without exceeding 40 GHz. ## **RSS-Gen §6** The following receiver spurious emission limits shall be complied with; (a) If a radiated measurement is made, all spurious emissions hall comply with the limits of Table 1. | Frequency
(MHz) | Field Strength
(μV/m) | Field Strength
(dBμV/m) | Measurement Distance (meters) | |--------------------|--------------------------|----------------------------|-------------------------------| | 30-88 | 100 | 40.0 | 3 | | 88-216 | 150 | 43.5 | 3 | | 216-960 | 200 | 46.0 | 3 | | Above 960 | 500 | 54.0 | 3 | ## **Laboratory Measurement Uncertainty for Radiated Emissions** | Measurement uncertainty | +5.6/ -4.5 dB | |-------------------------|---------------| ## **Traceability** | Method | Test Equipment Used | |---|--| | Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions' | 0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312 | **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 63 of 78 #### 5.1.6.3. Radiated Spurious Emissions (30M-1 GHz) FCC, Part 15 Subpart C §15.205/ §15.209 Industry Canada RSS-210 §2.2 #### **Test Procedure** Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs. The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz. #### **Test Measurement Set up** #### **Field Strength Calculation** The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver. FS = R + AF + CORR where: FS = Field Strength R = Measured Receiver Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 64 of 78 #### For example: Given a Receiver input reading of $51.5 dB_{\mu}V$; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is: $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$ Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as: Level (dB μ V/m) = 20 * Log (level (μ V/m)) $40 \text{ dB}\mu\text{V/m} = 100\mu\text{V/m}$ $48 \text{ dB}\mu\text{V/m} = 250\mu\text{V/m}$ ## Measurement Results for Spurious Emissions (30 MHz – 1 GHz) Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 65 of 78 **Test Setup Description** Both Vertical and Horizontal EUT positions were investigated during preliminary testing. EUT was setup in the worst case position for final tests (i.e. Horizontal; EUT case laying flat on table) EUT was connected to demonstration board to provide DC power and control. HP 6274B DC Power Supply was connected during test, and placed on the ground plane next to EUT. Hyperterminal was used for setup and control of the EUT (i.e.changing the transmit and receive frequencies, changing output power, change
Tx/Rx modes) The computer was connected via RS-232 control. The RS-232 cable and computer was removed from chamber before prescans or final measurements were performed. To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 66 of 78 | Test Freq. | 2405 MHz (CH11) | Engineer | CSB | | | | | | |---------------|---|---------------------------------------|-----|--|--|--|--|--| | Variant | Tx in Test Utility | Temp (°C) | 23 | | | | | | | Freq. Range | 30 MHz - 1000 MHz | Rel. Hum.(%) | 32 | | | | | | | Power Setting | 95 in test utility | Press. (mBars) | 999 | | | | | | | Antenna | Integral Trace Antenna included on PCB acti | ve during testing | | | | | | | | Test Notes 1 | EUT board sitting horizontal on table | EUT board sitting horizontal on table | | | | | | | | Test Notes 2 | Duty cycle = 100% | | | | | | | | ## Formally measured emission peaks | Frequency
MHz | Raw
dBuV | Cable
Loss | AF
dB | Level
dBuV/
m | Measurement
Type | Pol | Hgt
cm | Azt
Deg | Limit
dBuV/m | Margin
dB | Pass
/Fail | Comments | |------------------|-------------|---------------|----------|---------------------|---------------------|-----|-----------|------------|-----------------|--------------|---------------|----------| | 33.547 | 40.6 | 3.5 | -12.5 | 31.6 | Peak [Scan] | V | 98 | 360 | 40 | -8.4 | Pass | | | 111.487 | 42.3 | 4.3 | -18.2 | 28.3 | Peak [Scan] | V | 98 | 360 | 43.5 | -15.2 | Pass | | | 159.991 | 41.8 | 4.5 | -18.5 | 27.9 | Peak [Scan] | V | 98 | 360 | 43.5 | -15.7 | Pass | | | 200.463 | 38.3 | 4.8 | -17.7 | 25.3 | Peak [Scan] | V | 98 | 360 | 43.5 | -18.2 | Pass | | | 327.305 | 45.4 | 5.3 | -16.2 | 34.4 | Peak [Scan] | Н | 98 | 360 | 46 | -11.6 | Pass | | | 479.974 | 40.0 | 5.9 | -12.5 | 33.4 | Peak [Scan] | Н | 98 | 360 | 46 | -12.6 | Pass | | No Emissions within 6dB of limit. Legend: RB = Restricted Band; NRB = Non-Restricted Band; FUND = Fundamental Freq.; WB = Wideband BE = Emission in Restricted Band Nearest Transmission Band Edge; To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 67 of 78 | Test Freq. | 2445 MHz (CH19) | Engineer | CSB | | | |---------------|--|----------------|-----|--|--| | Variant | Tx in Test Utility | Temp (°C) | 23 | | | | Freq. Range | 30 MHz - 1000 MHz | Rel. Hum.(%) | 32 | | | | Power Setting | 95 in test utility | Press. (mBars) | 999 | | | | Antenna | Integral Trace Antenna included on PCB active during testing | | | | | | Test Notes 1 | EUT board sitting horizontal on table | | | | | | Test Notes 2 | tes 2 Duty cycle = 100% | | | | | ## Formally measured emission peaks | Frequency
MHz | Raw
dBuV | Cable
Loss | AF dB | Level
dBuV/m | Measurement
Type | Pol | Hgt
cm | Azt
Deg | Limit
dBuV/m | Margin
dB | Pass
/Fail | Comments | |------------------|-------------|---------------|-------|-----------------|---------------------|-----|-----------|------------|-----------------|--------------|---------------|----------| | 33.336 | 38.99 | 3.45 | -12.3 | 30.12 | Peak [Scan] | V | 98 | 360 | 40 | -9.88 | Pass | | | 105.653 | 43.27 | 4.21 | -19.4 | 28.1 | Peak [Scan] | V | 98 | 360 | 43.5 | -15.4 | Pass | | | 160.497 | 40.5 | 4.5 | -18.5 | 26.5 | Peak [Scan] | V | 98 | 360 | 43.5 | -17.0 | Pass | | | 200.538 | 37.5 | 4.8 | -17.7 | 24.5 | Peak [Scan] | V | 98 | 360 | 43.5 | -19.0 | Pass | | | 299.548 | 45.8 | 5.2 | -16.9 | 34.1 | Peak [Scan] | Н | 98 | 360 | 46 | -11.9 | Pass | | | 326.242 | 45.4 | 5.3 | -16.2 | 34.5 | Peak [Scan] | Н | 98 | 360 | 46 | -11.5 | Pass | | No Emissions within 6dB of limit. | Legend: | RB = Restricted Band; NRB = Non-Restricted Band; FUND = Fundamental Freq.; WB = Wideband | | |---------|--|--| | | BE = Emission in Restricted Band Nearest Transmission Band Edge; | | **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 68 of 78 | Test Freq. | 2480 MHz (CH26) | Engineer | CSB | | | |---------------|--|----------------|-----|--|--| | Variant | Tx in Test Utility | Temp (°C) | 23 | | | | Freq. Range | 30 MHz - 1000 MHz | Rel. Hum.(%) | 32 | | | | Power Setting | 95 in test utility | Press. (mBars) | 999 | | | | Antenna | Integral Trace Antenna included on PCB active during testing | | | | | | Test Notes 1 | EUT board sitting horizontal on table | | | | | | Test Notes 2 | Duty cycle = 100% | | | | | ### Formally measured emission peaks | Frequency
MHz | Raw
dBuV | Cable
Loss | AF
dB | Level
dBuV/
m | Measurement
Type | Pol | Hgt
cm | Azt
Deg | Limit
dBuV/m | Margin
dB | Pass
/Fail | Comments | |------------------|-------------|---------------|----------|---------------------|---------------------|-----|-----------|------------|-----------------|--------------|---------------|----------| | 32.185 | 37.94 | 3.42 | -11.4 | 29.94 | Peak [Scan] | V | 98 | 360 | 40 | -10.06 | Pass | | | 111.564 | 42.85 | 4.25 | -18.2 | 28.9 | Peak [Scan] | V | 98 | 360 | 43.5 | -14.6 | Pass | | | 159.995 | 41.2 | 4.5 | -18.5 | 27.2 | Peak [Scan] | V | 98 | 360 | 43.5 | -16.3 | Pass | | | 200.466 | 39.6 | 4.8 | -17.7 | 26.6 | Peak [Scan] | V | 98 | 360 | 43.5 | -16.9 | Pass | | | 299.276 | 45.38 | 5.22 | -16.9 | 33.67 | Peak [Scan] | Н | 98 | 360 | 46 | -12.33 | Pass | | | 325.863 | 45.8 | 5.3 | -16.2 | 34.9 | Peak [Scan] | Н | 98 | 360 | 46 | -11.1 | Pass | | No Emissions within 6dB of limit. | Legend: | RB = Restricted Band; NRB = Non-Restricted Band; FUND = Fundamental Freq.; WB = Wideband | |--|--| | BE = Emission in Restricted Band Nearest Transmission Band Edge; | | To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 69 of 78 #### **Specification** ### Limits **§15.205 (a)** Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed. §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements. §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table. #### §15.209 (a) and RSS-Gen §2.2 Limit Matrix | Frequency(MHz) | Field Strength
(μV/m) | Field Strength
(dBμV/m) | Measurement Distance (meters) | |----------------|--------------------------|----------------------------|-------------------------------| | 30-88 | 100 | 40.0 | 3 | | 88-216 | 150 | 43.5 | 3 | | 216-960 | 200 | 46.0 | 3 | | Above 960 | 500 | 54.0 | 3 | #### **Laboratory Measurement Uncertainty for Radiated Emissions** | Measurement uncertain | у | +5.6/ -4.5 dB | |-----------------------|---|---------------| |-----------------------|---|---------------| #### **Traceability** | Method | Test Equipment Used | |---|--| | Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions' | 0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312 | **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 70 of 78 ## 5.1.7. AC Wireline Conducted Emissions (150 kHz - 30 MHz) FCC, Part 15 Subpart C §15.207 Industry Canada RSS-Gen §7.2.2 Test is not applicable as the device is battery operated **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 71 of 78 ## **Specification** #### Limit §15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. ## **RSS-Gen §7.2.2** The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries. ## §15.207 (a) and RSS-Gen §7.2.2 Limit Matrix The lower limit applies at the boundary between frequency ranges | Frequency of Emission (MHz) | Conducted Limit (dBμV) | | | | |-----------------------------|------------------------|-----------|--|--| | | Quasi-peak | Average | | | | 0.15-0.5 | 66 to 56* | 56 to 46* | | | | 0.5-5 | 56 | 46 | | | | 5-30 | 60 | 50 | | | ^{*} Decreases with the logarithm of the frequency ## **Laboratory Measurement Uncertainty for Conducted Emissions** | Measurement uncertainty | ±2.64 dB | |-------------------------|----------| |-------------------------|----------| ####
Traceability | Method | Test Equipment Used | | |---|------------------------------------|--| | Measurements were made per
work instruction WI-EMC-01
'Measurement of Conducted
Emissions' | 0158, 0184, 0193, 0190, 0293, 0307 | | To: FCC 47 CFR Part 15.247 & IC RSS-210 **Page:** 72 of 78 # 6. PHOTOGRAPHS #### 6.1. **Radiated Spurious Emissions – Test Configuration** This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report. **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 73 of 78 ## 6.2. Radiated Spurious Emissions - below 1 GHz **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 74 of 78 ## 6.3. Radiated Spurious Emissions - above 1 GHz To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 75 of 78 ## 6.4. Conducted Measurement Test Set-Up To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 76 of 78 ## 6.5. Conducted Measurement Test Equipment **To:** FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: ICON07-A2 Rev A Issue Date: 16th December 2009 **Page:** 77 of 78 # 7. TEST EQUIPMENT DETAILS | Asset # | Instrument | Manufacturer | Part # | Serial # | |---------|---------------------------|------------------|---------------------------|-------------| | 0088 | Spectrum Analyzer | Hewlett Packard | 8564E | 3410A00141 | | 0134 | Amplifier | Com Power | PA 122 | 181910 | | 0158 | Barometer
/Thermometer | Control Co. | 4196 | E2846 | | 0193 | EMI Receiver | Rhode & Schwartz | ESI 7 | 838496/007 | | 0252 | SMA Cable | Megaphase | Sucoflex 104 | None | | 0310 | 2m SMA Cable | Micro-Coax | UFA210A-0-0787-
3G03G0 | 209089-001 | | 0312 | 3m SMA Cable | Micro-Coax | UFA210A-1-1181-
3G0300 | 209092-001 | | 0313 | Coupler | Hewlett Packard | 86205A | 3140A01285 | | 0314 | 30dB N-Type
Attenuator | ARRA | N9444-30 | 1623 | | 0070 | Power Meter | Hewlett Packard | 437B | 3125U11552 | | 0116 | Power Sensor | Hewlett Packard | 8485A | 3318A19694 | | 0117 | Power Sensor | Hewlett Packard | 8487D | 3318A00371 | | 0184 | Pulse Limiter | Rhode & Schwartz | ESH3Z2 | 357.8810.52 | | 0190 | LISN | Rhode & Schwartz | ESH3Z5 | 836679/006 | | 0293 | BNC Cable | Megaphase | 1689 1GVT4 | 15F50B001 | | 0301 | 5.6 GHz Notch Filter | Micro-Tronics | RBC50704 | 001 | | 0302 | 5.25 GHz Notch Filter | Micro-Tronics | BRC50703 | 002 | | 0303 | 5.8 GHz Notch Filter | Micro-Tronics | BRC50705 | 003 | | 0304 | 2.4GHzHz Notch Filter | Micro-Tronics | | 001 | | 0307 | BNC Cable | Megaphase | 1689 1GVT4 | 15F50B002 | | 0335 | 1-18GHz Horn Antenna | ETS- Lindgren | 3117 | 00066580 | | 0337 | Amplifier | MiCOM Labs | | | | 0338 | Antenna | Sunol Sciences | JB-3 | A052907 | 440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com