Company: iControl Incorporated

Test of: iTAG3.3

To: FCC Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Report No.: ICON12-PCA Rev 2.1 Rev A

CONDUCTED TEST REPORT

CONDUCTED TEST REPORT

Test of: iControl Incorporated iTAG3.3 to

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Test Report Serial No.: ICON12-PCA Rev 2.1 Rev A

This report supersedes: NONE

Applicant: iControl Incorporated

1885 De La Cruz Blvd

Santa Clara, California 95050

USA

Product Function: Asset Tracking

Issue Date: 6th August 2015

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.

575 Boulder Court Pleasanton California 94566 USA

Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 3 of 59

Table of Contents

1.	ACCREDITATION, LISTINGS & RECOGNITION	4
	1.1. TESTING ACCREDITATION	
	1.2. RECOGNITION	
	1.3. PRODUCT CERTIFICATION	6
2.	DOCUMENT HISTORY	7
3.	TEST RESULT CERTIFICATE	8
4.	REFERENCES AND MEASUREMENT UNCERTAINTY	
	4.1. Normative References	9
	4.2. Test and Uncertainty Procedure	10
5.	PRODUCT DETAILS AND TEST CONFIGURATIONS	
	5.1. Technical Details	
	5.2. Scope Of Test Program	12
	5.3. Equipment Model(s) and Serial Number(s)	13
	6.1. Antenna Details	
	6.2. Cabling and I/O Ports	
	6.3. Test Configurations	
	6.4. Equipment Modifications	13
	6.5. Deviations from the Test Standard	
	TEST SUMMARY	
8.	TEST EQUIPMENT CONFIGURATION(S)	
	8.1. Conducted	15
•	8.2. Radiated Emissions - 3m Chamber	
	MEASUREMENT AND PRESENTATION OF TEST DATA	
10	10.1. 6 dB & 99% Bandwidth	
	10.2. Conducted Output Power	
	10.3. Conducted Spurious Emissions	
	10.3.1. Spurious Emissions	20
	10.3.2. Spurious Band-Edge Emissions	
	10.4. Power Spectral Density	
	10.5. Radiated Spurious Emissions.	30
	10.5.1. Radiated Spurious Emissions	
	10.5.2. Radiated Restricted Band-Edge Spurious Emissions	
	10.6. Radiated Digital Emissions	39
A.	APPENDIX - GRAPHICAL IMAGES	41
	A.1. 6 dB & 99% Bandwidth	
	A.2. Conducted Spurious Emissions	
	A.3. Conducted Band-Edge Spurious Emissions	
	A.4. Power Spectral Density	

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 4 of 59

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-01.pdf

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 5 of 59

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.	
USA	Federal Communications Commission (FCC)	TCB	-	US0159 Listing #: 102167	
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3	
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210	
	VCCI			A-0012	
Europe	European Commission	NB	EU MRA	NB 2280	
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1		
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1		
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1		
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159	
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1		
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1		

EU MRA - European Union Mutual Recognition Agreement.

NB - Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

> Page: 6 of 59

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-02.pdf

Accredited Product Certification Body A2LA has accredited

MICOM LABS

Pleasanton, CA for technical competence as a

Product Certification Body

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 -Requirements for bodies certifying products, processes and services. This accreditation demonstrates technical competence for a defined scope and the operation of a quality management system.

Presented this 28th day of February 2014.

President & CEO For the Accreditation Council Certificate Number 2381.02 Valid to November 30, 2015

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe - Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 7 of 59

2. DOCUMENT HISTORY

	Document History						
Revision	Date	Comments					
Draft	3 rd August 2015						
Rev A	6 th August 2015	Initial Release					

In the above table the latest report revision will replace all earlier versions.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 8 of 59

3. TEST RESULT CERTIFICATE

Manufacturer: iControl Incorporated

3235 Kifer Rd, Suite 260

Santa Clara

95051 USA

Telephone: +1 925 462 0304

Fax: +1 925 462 0306

Type Of Equipment: Asset Tracking

S/N's: Not Available

Model: iTAG3.3

Test Date(s): 23rd – 24th July 2015 **Website:** www.micomlabs.com

STANDARD(S)

FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

TEST RESULTS

Tested By: MiCOM Labs, Inc.

Pleasanton

575 Boulder Court

California 94566 USA

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve

Quality Manager MiCOM Labs, Inc.

ACCREDITED
TESTING CERT #2381.01

Gordon Hurst

President & CEO MiCOM Labs, Inc.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 9 of 59

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	KDB 662911	Oct 31 2013	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency band
II	KDB 558074 D01 v03r03	9th June 2015	Guidance for performing compliance measurements on Digital Transmission Systems (DTS) operating under section 15.247.
III	A2LA	June 2015	R105 - Requirement's When Making Reference to A2LA Accreditation Status
IV	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
V	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
VI	CISPR 22	2008	Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
VII	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VIII	FCC 47 CFR Part 15.247	2014	Radio Frequency Devices; Subpart C – Intentional Radiators
IX	ICES-003	Issue 5 2012	Spectrum Management and Telecommunications; Interference-Causing Equipment Standard. Information Technology Equipment (ITE) – Limits and methods of measurement.
Х	M 3003	Edition 3 Nov. 2012	Expression of Uncertainty and Confidence in Measurements
ΧI	RSS-247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
XII	RSS-Gen Issue 4	November 2014	General Requirements and Information for the Certification of Radiocommunication Equipment
XIII	KDB 644545 D03 v01	August 14th 2014	Guidance for IEEE 802.11ac New Rules
XIV	FCC 47 CFR Part 2.1033	2014	FCC requirements and rules regarding photographs and test setup diagrams.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 10 of 59

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 11 of 59

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. <u>Technical Details</u>

Details	Description
Purpose:	Test of the iControl Incorporated iTAG3.0 to FCC CFR 47 Part 15
	Subpart C 15.247 (DTS) & IC RSS-247.
	Radio Frequency Devices; Subpart C – Intentional Radiators
Applicant:	iControl Incorporated 1885 De La Cruz Blyd
	Santa Clara, California 95050 USA
Manufacturer:	
Laboratory performing the tests:	
Laboratory performing the tests.	575 Boulder Court
	Pleasanton California 94566 USA
Test report reference number:	
Date EUT received:	7th July 2015
Standard(s) applied:	FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & RSS-247
Dates of test (from - to):	23 rd July 2015
No of Units Tested:	2
Type of Equipment:	Asset Tracking
Product Family Name:	
Model(s):	iTAG3.3
Location for use:	Indoor
Declared Frequency Range(s):	2400 - 2483.5 MHz;
Primary function of equipment:	Asset Tracking
Secondary function of equipment:	None Provided
Type of Modulation:	O-QPSK
EUT Modes of Operation:	
Declared Nominal Output Power (Ave):	
Transmit/Receive Operation:	<u>'</u>
Rated Input Voltage and Current:	DC only (Battery operated / external supply)
	External Supply: 5Vdc @ 500mA
Operating Temperature Description	Battery: 4.2Vdc @ 120mA
Operating Temperature Range:	•
ITU Emission Designator:	
Equipment Dimensions:	
Weight:	· ·
Hardware Rev:	
Software Rev:	/6/1

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 12 of 59

5.2. Scope Of Test Program

iControl Incorporated iTAG3.0

The scope of the test program was to test the iControl Incorporated iTAG3.0, configurations in the frequency ranges 2400 - 2483.5 MHz; for compliance against the following specification:

FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Radio Frequency Devices; Subpart C – Intentional Radiators

Industry Canada RSS-247

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices

iControl Incorporated iTAG3.0

iTAG3.0 - Bottom View

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 13 of 59

5.3. Equipment Model(s) and Serial Number(s)

Туре	Description	Manufacturer	Model	Serial no.	Delivery Date
EUT	Asset Tracking RFID	iControl Inc.	iTAG3.3	Unknown	23 rd July 2015

5.4. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
integral	Meander	PCB Trace	OMNI	3.5	-	360	-	2400 - 2483.5

BF Gain - Beamforming Gain

Dir BW - Directional BeamWidth

X-Pol - Cross Polarization

5.5. Cabling and I/O Ports

1. NONE

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational		Channel Frequency (MHz)			
Mode(s)	Low	Mid	High		
	2400 - 2483.5 MHz				
Test Mode	2405 2445 2480				

5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 14 of 59

6. TEST SUMMARY

List of Measurements

Test Header	Result	Data Link
Conducted Testing		
15.247(a)(2) 6 dB & 99% Bandwidth	Complies	View Data
15.247(b), 15.31(e) Conducted Output Power	Complies	View Data
15.247(d) Emissions	-	-
(1) Conducted Emissions	-	-
(i) Conducted Spurious Emissions	Complies	View Data
(ii) Conducted Band-Edge Emissions	Complies	View Data
15.247(e) Power Spectral Density	Complies	View Data
ac Wireline Emissions	*Not Tested	
Radiated Testing		
Radiated Spurious Emissions	Complies	View Data
Radiated Band-Edge	Complies	View Data

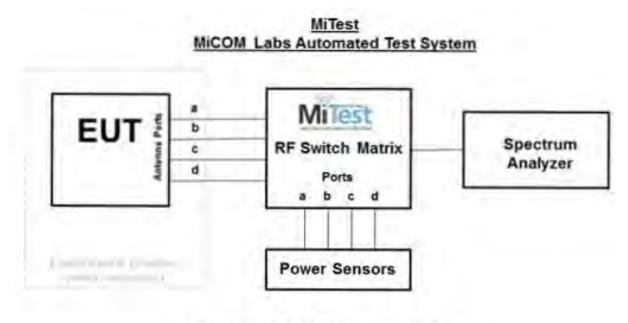
^{*} Device is Vdc powered

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 15 of 59


7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Conducted

Conducted RF Emission Test Set-up(s)

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. 6 dB & 99% Bandwidth
- 2. Conducted Output Power
- 3. Conducted Emissions (Band Edge & Non-Restricted Band Emissions)

Conducted Test Measurement Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

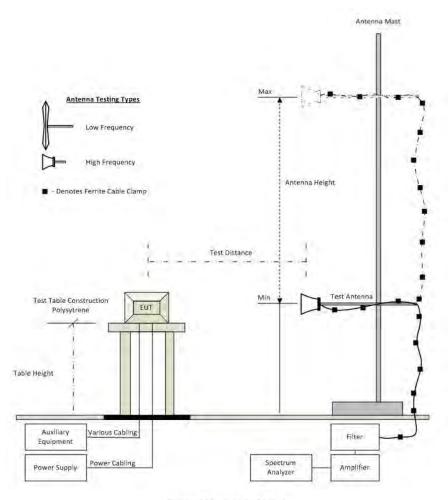
Issue Date: 6th August 2015

Page: 16 of 59

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
127	Power Supply	HP	6674A	US36370530	Cal when used
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	31 Jul 2015
376	USB 10MHz - 18GHz Average Power Sensor	Agilent	U2000A	MY51440005	28 Oct 2015
381	4x4 RF Switch Box	MiCOM Labs	MiTest RF Switch Box	MIC002	20 Dec 2015
419	Laptop with Labview Software	Lenova	W520	TS02	Not Required
420	USB to GPIB Interface	National Instruments	GPIB-USB HS	1346738	Not Required
460	Dell Computer with installation of MiTest executable.	Dell	Optiplex330	BC944G1	Not Required
74	Environmental Chamber Chamber 3	Tenney	TTC	12808-1	30 Sep 2015
RF#2 GPIB#1	GPIB cable to Power Supply	HP	GPIB	None	Not Required
RF#2 SMA#1	EUT to Mitest box port 1	Flexco	SMA Cable port1	None	20 Dec 2015
RF#2 SMA#SA	Mitest box to SA	Flexco	SMA Cable SA	None	20 Dec 2015
RF#2 USB#1	USB Cable to Mitest Box	Dynex	USB Cable	None	Not Required

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A


Issue Date: 6th August 2015

Page: 17 of 59

7.2. Radiated Emissions - 3m Chamber

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. Radiated Spurious Emissions
- 2. Restricted Band-Edge Emissions
- 3. Digital Emissions

Radiated Emission Test Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 18 of 59

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CY101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	31 Jul 2015
310	SMA Cable	Micro-Coax	UFA210A-0- 0787-3G03G0	209089-001	30 Oct 2015
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	14 Aug 2015
393	DC - 1050 MHz Low Pass Filter	Microcircuits	VLFX-1050	N/A	08 Oct 2015
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	23 Oct 2015
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	10 Oct 2015
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	28 May 2016
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	25 Aug 2015
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	25 Aug 2015
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	25 Aug 2015

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 19 of 59

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 20 of 59

9. TEST RESULTS

9.1. 6 dB & 99% Bandwidth

Conducted Test Conditions for 6 dB and 99% Bandwidth					
Standard:	FCC CFR 47:15.247	24.0 - 27.5			
Test Heading:	6 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45		
Standard Section(s):	15.247 (a)(2) IC RSS-247 5.2 (1) Pressure (mBars): 999 - 1001				
Reference Document(s):	See Normative References				

Test Procedure for 6 dB and 99% Bandwidth Measurement

The bandwidth at 6 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for 6 dB and 99% Bandwidth

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(2) Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 21 of 59

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.15.4	Duty Cycle (%):	100		
Data Rate:	250 kBit/s	Antenna Gain (dBi):	3.50		
Modulation:	O-QPSK	Beam Forming Gain (Y)(dB):	Not Applicable		
TPC:	Not Applicable	Tested By:	SB		
Engineering Test Notes:	Tera Term software script setup				

Test Measurement Results

Test	M	easured 6 dB E	Bandwidth (MF	łz)	6 dB Bandwidth (MHz)		Limit	Lowest
Frequency	Port(s)				Port(s)		Lillin	Margin
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2405.0	<u>1.587</u>				1.587	1.587	≥500.0	-1.09
2445.0	<u>1.587</u>				1.587	1.587	≥500.0	-1.09
2480.0	<u>1.603</u>				1.603	1.603	≥500.0	-1.10

Test		Measured 99% E	Bandwidth (MHz	Maximum		
Frequency	Port(s)				99% Bandwidth	
MHz	а	b	С	d	(MHz)	
2405.0	<u>2.902</u>				2.902	
2445.0	<u>2.725</u>				2.725	
2480.0	<u>2.645</u>				2.645	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 22 of 59

9.2. Conducted Output Power

Conducted Test Conditions for Fundamental Emission Output Power							
Standard:	CC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5						
Test Heading:	Output Power	Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.247 (b) & (c) Pressure (mBars): 999 - 1001						
Reference Document(s):	See Normative References						

Test Procedure for Fundamental Emission Output Power Measurement

In the case of average power measurements an average power sensor was utilized.

For peak power measurements the spectrum analyzer built-in power function was used to integrate peak power over the 20 dB bandwidth.

Testing was performed under ambient conditions at nominal voltage only. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured, summed (Σ) and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document. Supporting Information

Calculated Power = $A + G + Y + 10 \log (1/x) dBm$

A = Total Power [$10*Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})$]

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits for Fundamental Emission Output Power

- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following for non-frequency hopping systems:
 - (3) For systems using digital modulation in the 902-928 MHz and 2400-2483.5 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
 - (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (c) Operation with directional antenna gains greater than 6 dBi.
 - (1) Fixed point-to-point operation:
 - (i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.
 - (iii) Fixed, point-to-point operation, as used in paragraphs (c)(1)(i) and (c)(1)(ii) of this section, excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 23 of 59

instructions informing the operator and the installer of this responsibility.

(2) In addition to the provisions in paragraphs (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

- (i) Different information must be transmitted to each receiver.
- (ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:
 - (A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.
 - (B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.
- (iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB
- (iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 24 of 59

Equipment Configuration for Average Output Power

Variant:	802.15.4	Duty Cycle (%):	100.0
Data Rate:	250 kBit/s	Antenna Gain (dBi):	3.50
Modulation:	O-QPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:	Tera Term software script setup		

Test Measurement Results

	N	leasured Outp	ut Power (dBn	n)	Calculated Total Power			
Test Frequency		Port(s)				Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	
2405.0	19.77				19.77	30.00	-10.23	max
2445.0	18.20				18.20	30.00	-11.80	max
2480.0	17.23				17.23	30.00	-12.77	max

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

DCCF - Duty Cycle Correction Factor

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 25 of 59

9.3. Conducted Spurious Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions							
Standard:	FCC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5						
Test Heading:	Max Unwanted Emission Levels	Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.247 (d) IC RSS-247 5.5 Pressure (mBars): 999 - 1001						
Reference Document(s):	See Normative References						

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 26 of 59

9.3.1. Spurious Emissions

Equipment Configuration for Transmitter Conducted Spurious Emissions

Variant:	802.15.4	Duty Cycle (%):	100
Data Rate:	250 kBit/s	Antenna Gain (dBi):	3.50
Modulation:	O-QPSK	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:	Tera Term software script setup		

Test Measurement Results

Frequency		Transmitter Conducted Spurious Emissions (dBm)						
Range	Port	а	Por	t b	Po	rt c	Po	rt d
MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
30.0 - 26000.0	<u>-60.956</u>	-50.00						
30.0 - 26000.0	<u>-59.990</u>	-52.00						
30.0 - 26000.0	<u>-61.483</u>	-53.00						
	Range MHz 30.0 - 26000.0 30.0 - 26000.0	Range Port MHz SE 30.0 - 26000.0 -60.956 30.0 - 26000.0 -59.990	MHz SE Limit 30.0 - 26000.0 -60.956 -50.00 30.0 - 26000.0 -59.990 -52.00	MHz SE Limit SE 30.0 - 26000.0 -60.956 -50.00 30.0 - 26000.0 -59.990 -52.00	MHz SE Limit SE Limit 30.0 - 26000.0 -60.956 -50.00 30.0 - 26000.0 -59.990 -52.00	Range Port a Port b Po MHz SE Limit SE Limit SE 30.0 - 26000.0 -60.956 -50.00 30.0 - 26000.0 -59.990 -52.00	MHz SE Limit SE Limit SE Limit 30.0 - 26000.0 -60.956 -50.00 30.0 - 26000.0 -59.990 -52.00	Range Port a Port b Port c Port c MHz SE Limit SE Limit SE 30.0 - 26000.0 -60.956 -50.00 30.0 - 26000.0 -59.990 -52.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 27 of 59

9.3.2. Spurious Band-Edge Emissions

Equipment Configuration for Conducted Low Band-Edge Emissions - Average

Variant:	802.15.4	Duty Cycle (%):	100.0
Data Rate:	250 kBit/s	Antenna Gain (dBi):	3.50
Modulation:	O-QPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:	Tera Term software script setup		

Test Measurement Results

Channel Frequency:	2405.0 MHz					
Band-Edge Frequency:	2400.0 MHz					
Test Frequency Range:	2350.0 - 2422.0	MHz				
	Band-E	dge Markers	and Limit	Revise	d Limit	Margin
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-51.62</u>	-22.00	2402.40			-2.400

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS		
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB		

Equipment Configuration for Conducted High Band-Edge Emissions - Average

Variant:	802.15.4	Duty Cycle (%):	100.0
Data Rate:	250 kBit/s	Antenna Gain (dBi):	3.50
Modulation:	O-QPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:	Tera Term software script setup		

Test Measurement Results

Channel Frequency:	2480.0 MHz					
Band-Edge Frequency:	2483.5 MHz					
Test Frequency Range:	2452.0 - 2524.0	MHz				
	Band-E	dge Markers a	nd Limit	Revise	d Limit	Margin
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
						-0.800

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 28 of 59

9.4. Power Spectral Density

	Conducted Test Conditions for Power Spectral Density				
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	24.0 - 27.5		
Test Heading:	Power Spectral Density	Rel. Humidity (%):	32 - 45		
Standard Section(s):	15.247 (e) IC RSS-247 5.2 (2)	Pressure (mBars):	999 - 1001		
Reference Document(s):	See Normative References				

Test Procedure for Power Spectral Density

The transmitter output was connected to a spectrum analyzer and the measured made in a 3 kHz resolution bandwidth using the analyzer auto-coupled sweep-time. A peak value was found over the full emission bandwidth and the spectrum downloaded for post processing purposes.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. The Peak Power Spectral Density is the highest level found across the emission bandwidth. With multiple antenna port measurements the numerical analyzer data from each port is summed (å) and a link to this additional graphic is provided.

Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Measure and sum the spectra across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with multiple transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 0 is summed with that in the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were post processed and the resulting numerical and graphical data presented.

NOTE

It may be observed that the spectrum in some antenna port plots break the limit line however this in itself does NOT constitute a failure. In all cases a spectrum summation plot is provided in order to prove compliance. A failure occurs only after the summation of all spectrum plots have been summed and are found to be greater than the limit line.

Supporting Information

Calculated Power = A + 10 log (1/x) dBm A = Total Power Spectral Density [10 Log10 ($10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10}$)] x = Duty Cycle

Limits Power Spectral Density

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 29 of 59

Equipment Configuration for Power Spectral Density - Average

Variant:	802.15.4	Duty Cycle (%):	100.0
Data Rate:	250 kBit/s	Antenna Gain (dBi):	3.50
Modulation:	O-QPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurem	nent Results						
Test	N	leasured Power	Spectral Densit	у	Amplitude	Limit	Manain
Frequency		Port(s) (d	Bm/3KHz)		Summation + DCCF (+0 dB)	Limit	Margin
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB
2405.0	<u>-4.233</u>				<u>-4.233</u>	8.0	-12.2
2445.0	<u>-6.101</u>				<u>-6.101</u>	8.0	-14.1
2480.0	<u>-6.354</u>				<u>-6.354</u>	8.0	-14.4

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 30 of 59

9.5. Radiated Spurious Emissions

Radiated Test Conditions for Radiated Spurious and Band-Edge Emissions (Restricted Bands)				
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	20.0 - 24.5	
Test Heading:	Radiated Spurious and Band- Edge Emissions	Rel. Humidity (%):	32 - 45	
Standard Section(s):	15.205, 15.209	Pressure (mBars):	999 - 1001	
Reference Document(s):	See Normative References			

Test Procedure for Radiated Spurious and Band-Edge Emissions (Restricted Bands)

Radiated emissions for restricted bands above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned. Measurements on any restricted band frequency or frequencies above 1 GHz are based on the use of measurement instrumentation employing peak and average detectors. All measurements were performed using a resolution bandwidth of 1 MHz.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document

Limits for Restricted Bands Peak emission: 74 dBuV/m Average emission: 54 dBuV/m

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where:

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Example

Given receiver input reading of 51.5 dBmV; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength (FS) of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 +1 = 36.3 dBmV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are as follows: Level (dBmV/m) = 20 * Log (level (mV/m))

40 dBmV/m = 100 mV/m

48 dBmV/m = 250 mV/m

Restricted Bands of Operation (15.205)

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 31 of 59

Frequency Band				
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	Above 38.6	
13.36-13.41				

- (b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.
- (c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.
- (d) The following devices are exempt from the requirements of this section:
 - (1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section more than 99% of the time the device is actively transmitting, without compensation for duty cycle.
 - (2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.
 - (3) Cable locating equipment operated pursuant to §15.213.
 - (4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.
 - (5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.
 - (6) Transmitters operating under the provisions of subparts D or F of this part.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 32 of 59

(7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

- (8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).
- (9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).
- (e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

For example:

Given receiver input reading of 51.5 dB $_{\mu}$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

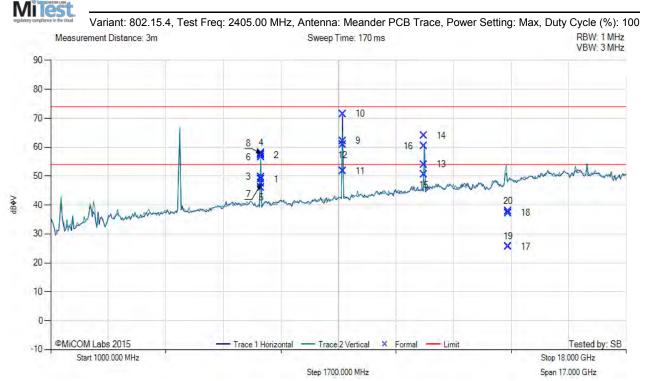
$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247


Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 33 of 59

9.5.1. Radiated Spurious Emissions

RADIATED SPURIOUS - RESTRICTED BAND EMISSIONS

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	7213.63	48.94	7.33	-7.35	48.92	Max Avg	Vertical	152	191	54.0	-5.1	Pass
2	7213.63	57.27	7.33	-7.35	57.25	Max Peak	Vertical	152	191	74.0	-16.8	Pass
3	7213.63	49.72	7.33	-7.35	49.70	Max Avg	Horizontal	191	261	54.0	-4.3	Pass
4	7213.63	57.92	7.33	-7.35	57.90	Max Peak	Horizontal	191	261	74.0	-16.1	Pass
5	7216.51	46.11	7.35	-7.35	46.11	Max Avg	Vertical	129	191	54.0	-7.9	Pass
6	7216.51	56.57	7.35	-7.35	56.57	Max Peak	Vertical	129	191	74.0	-17.4	Pass
7	7216.51	47.39	7.35	-7.35	47.39	Max Avg	Horizontal	191	262	54.0	-6.6	Pass
8	7216.51	57.74	7.35	-7.35	57.74	Max Peak	Horizontal	191	262	74.0	-16.3	Pass
9	9621.89	59.42	8.74	-6.03	62.13	Max Avg	Horizontal	127	167	54.0	8.1	Pass
10	9621.89	68.80	8.74	-6.03	71.51	Max Peak	Horizontal	127	167	74.0	-2.5	Pass
11	9621.89	49.04	8.74	-6.03	51.75	Max Avg	Vertical	100	324	54.0	-2.3	Pass
12	9621.89	58.11	8.74	-6.03	60.82	Max Peak	Vertical	100	324	74.0	-13.2	Pass
13	12027.42	49.37	9.80	-5.20	53.97	Max Avg	Horizontal	109	233	54.0	0.0	Pass
14	12027.42	59.38	9.80	-5.20	63.98	Max Peak	Horizontal	109	233	74.0	-10.0	Pass
15	12027.42	45.91	9.80	-5.20	50.51	Max Avg	Vertical	105	158	54.0	-3.5	Pass
16	12027.42	55.79	9.80	-5.20	60.39	Max Peak	Vertical	105	158	74.0	-13.6	Pass
17	14514.38	18.66	11.00	-4.01	25.65	Max Avg	Vertical	129	15	54.0	-28.4	Pass

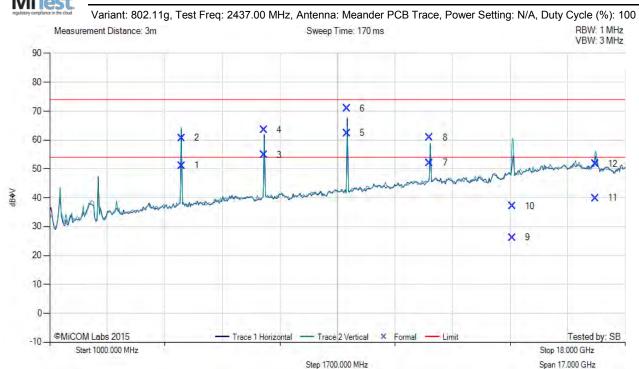
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 34 of 59

1	18	14514.38	30.23	11.00	-4.01	37.22	Max Peak	Vertical	129	15	74.0	-36.8	Pass
1	9	14514.38	18.58	11.00	-4.01	25.57	Max Avg	Horizontal	100	173	54.0	-28.4	Pass
2	20	14514.38	30.90	11.00	-4.01	37.89	Max Peak	Horizontal	100	173	74.0	-36.1	Pass


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 35 of 59

RADIATED SPURIOUS - RESTRICTED BAND EMISSIONS

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	4889.14	56.53	5.89	-11.28	51.14	Max Avg	Vertical	100	169	54.0	-2.9	Pass
2	4889.14	66.07	5.89	-11.28	60.68	Max Peak	Vertical	100	169	74.0	-13.3	Pass
3	7333.62	54.69	7.37	-7.24	54.82	Max Avg	Horizontal	174	259	54.0	0.8	Pass
4	7333.62	63.26	7.37	-7.24	63.39	Max Peak	Horizontal	174	259	74.0	-10.6	Pass
5	9782.09	59.77	8.77	-6.16	62.38	Max Avg	Horizontal	123	166	54.0	8.4	Pass
6	9782.09	68.35	8.77	-6.16	70.96	Max Peak	Horizontal	123	166	74.0	-3.0	Pass
7	12222.44	47.13	9.93	-4.99	52.07	Max Avg	Vertical	104	162	54.0	-1.9	Pass
8	12222.44	55.95	9.93	-4.99	60.89	Max Peak	Vertical	104	162	74.0	-13.1	Pass
9	14667.01	18.66	11.13	-3.57	26.22	Max Avg	Vertical	185	239	54.0	-27.8	Pass
10	14667.01	29.52	11.13	-3.57	37.08	Max Peak	Vertical	185	239	74.0	-36.9	Pass
11	17111.91	26.96	12.43	0.50	39.89	Max Avg	Vertical	100	244	54.0	-14.1	Pass
12	17111.91	38.72	12.43	0.50	51.65	Max Peak	Vertical	100	244	74.0	-22.4	Pass

Start 1000.000 MHz

Title: iControl Incorporated iTAG3.3

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Stop 18.000 GHz

Span 17.000 GHz

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 36 of 59

RADIATED SPURIOUS - RESTRICTED BAND EMISSIONS

Variant: 802.11g, Test Freq: 2462.00 MHz, Antenna: Meander PCB Trace, Power Setting: N/A, Duty Cycle (%): 100 RBW: 1 MHz Measurement Distance: 3m Sweep Time: 170 ms VBW: 3 MHz 90-80 70 -× 8 X 4 7 3 60 -50-10 × 9 X 6 20-X 5 10-0-Trace 2 Vertical X Formal -@MiCOM Labs 2015 Trace 1 Horizontal -Tested by: SB

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1330.14	39.06	2.95	-15.01	27.00	Max Avg	Vertical	100	342	54.0	-27.0	Pass
2	1330.14	53.23	2.95	-15.01	41.17	Max Peak	Vertical	100	342	74.0	-32.8	Pass
3	4959.03	66.93	5.94	-11.48	61.39	Max Avg	Horizontal	156	266	54.0	7.4	Pass
4	4959.03	71.72	5.94	-11.48	66.18	Max Peak	Horizontal	156	266	74.0	-7.8	Pass
5	7441.28	18.67	7.44	-7.13	18.98	Max Avg	Horizontal	135	18	54.0	-35.0	Pass
6	7441.28	31.45	7.44	-7.13	31.76	Max Peak	Horizontal	135	18	74.0	-42.2	Pass
7	9917.99	59.81	8.86	-5.59	63.08	Max Avg	Horizontal	113	157	54.0	9.1	Pass
8	9917.99	65.70	8.86	-5.59	68.97	Max Peak	Horizontal	113	157	74.0	-5.0	Pass
9	15480.80	25.01	11.47	-0.84	35.64	Max Avg	Vertical	100	10	54.0	-18.4	Pass
10	15480.80	36.69	11.47	-0.84	47.32	Max Peak	Vertical	100	10	74.0	-26.7	Pass

Step 1700.000 MHz

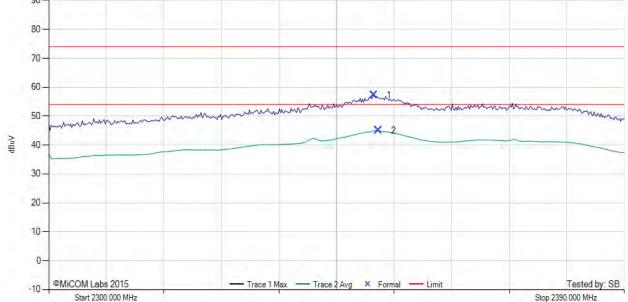
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 37 of 59

9.5.2. Radiated Restricted Band-Edge Spurious Emissions


Equipment Configuration for Radiated - Lower Restricted Band-Edge Emissions

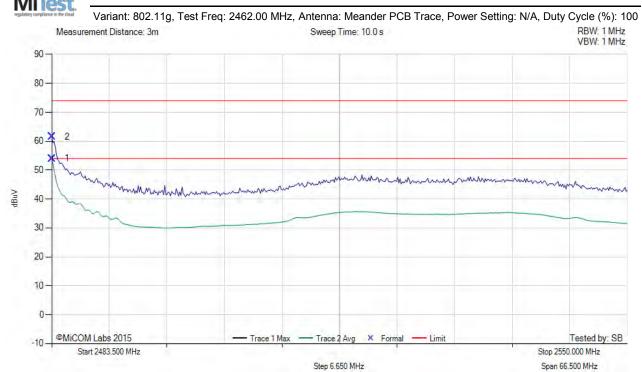
Antenna:	Meander PCB Trace	Variant:	802.15.4
Antenna Gain (dBi):	3.50	Modulation:	O-QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	100
Channel Frequency (MHz):	2405.00	Data Rate:	6.00 MBit/s
Power Setting:	N/A	Tested By:	SB

Test Measurement Results

RADIATED - LOWER RESTRICTED BAND-EDGE EMISSIONS

	Chap Educate Innie
Step 9.000 MHz	Span 90.000 MHz
The state of the s	

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2350.86	65.43	4.00	-12.25	57.18	Max Peak	Vertical	135	254	74.0	-16.8	Pass
2	2351.58	53.28	4.00	-12.24	45.04	Max Avg	Vertical	135	254	54.0	-9.0	Pass


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 38 of 59

RADIATED - UPPER RESTRICTED BAND-EDGE EMISSIONS

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2483.50	61.52	4.10	-11.64	53.98	Max Avg	Vertical	110	157	54.0	0.0	Pass
2	2483.50	69.01	4.10	-11.64	61.47	Max Peak	Vertical	110	157	74.0	-12.5	Pass

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 39 of 59

9.6. Radiated Digital Emissions

FCC, Part 15 Subpart C §15.205/ §15.209

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

where:

FS = Field Strength
R = Measured Receiver Input Amplitude
AF = Antenna Factor
CORR = Correction Factor = CL – AG + NFL
CL = Cable Loss
AG = Amplifier Gain

For example:

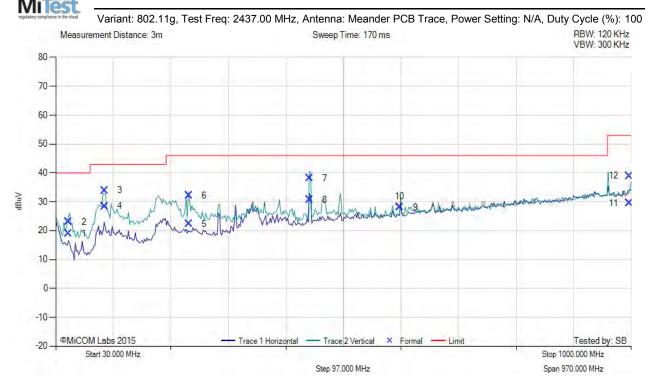
Given a Receiver input reading of $51.5 dB_{\mu}V$; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 $dB\mu V/m = 100\mu V/m$ 48 $dB\mu V/m = 250\mu V/m$


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 40 of 59

DIGITAL EMISSIONS (0.03 - 1 GHz)

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	51.67	38.97	3.59	-23.53	19.03	MaxQP	Vertical	100	160	40.0	-21.0	Pass
2	51.67	43.00	3.59	-51.67	23.06	Peak (Scan)	Vertical	100	1		-	
3	112.13	48.41	3.94	-46.10	33.93	Peak (Scan)	Vertical	100	1		-	
4	112.13	42.88	3.94	-18.42	28.40	MaxQP	Vertical	100	2	43.0	-14.6	Pass
5	254.38	36.71	4.54	-18.96	22.29	MaxQP	Vertical	103	74	46.0	-23.7	Pass
6	254.38	46.52	4.54	-45.66	32.10	Peak (Scan)	Vertical	100	1		-	
7	458.18	46.54	5.20	-13.68	38.06	MaxQP	Vertical	100	86	46.0	-7.9	Pass
8	458.18	39.12	5.20	-39.52	30.64	Peak (Scan)	Vertical	99	1			
9	610.31	33.87	5.62	-36.74	28.01	Peak (Scan)	Vertical	100	1		-	
10	610.31	34.01	5.62	-11.48	28.15	MaxQP	Vertical	100	42	46.0	-17.9	Pass
11	996.79	29.34	6.59	-6.47	29.46	MaxQP	Vertical	100	189	53.0	-23.5	Pass
12	996.79	38.87	6.59	-30.39	38.99	Peak (Scan)	Vertical	100	1			

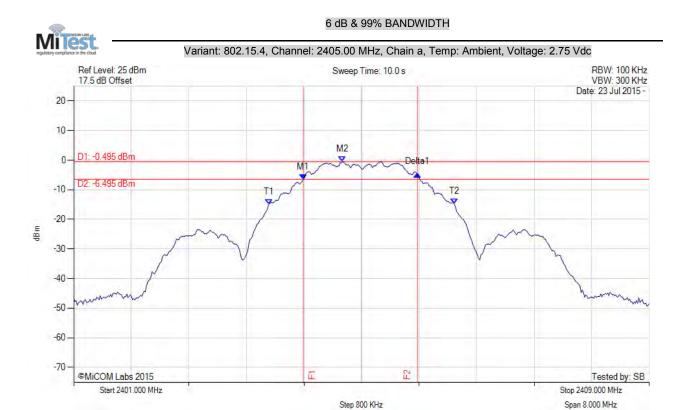
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 41 of 59

A. <u>APPENDIX - GRAPHICAL IMAGES</u>


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

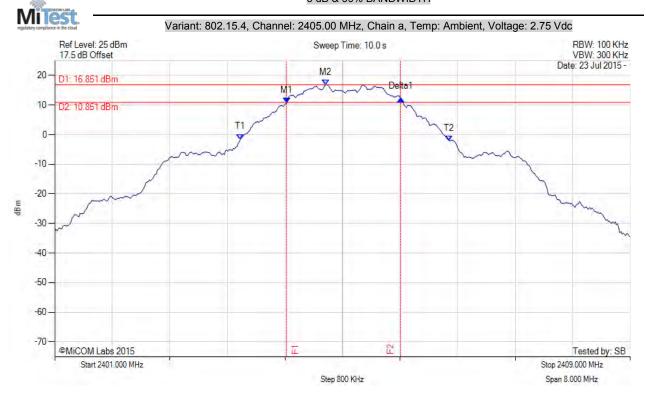
Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 42 of 59

A.1. 6 dB & 99% Bandwidth

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M2: 2404.735 MHz: -0.495 dBm	Measured 6 dB Bandwidth: 1.587 MHz Limit: ≥500.0 kHz Margin: -1.09 MHz


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

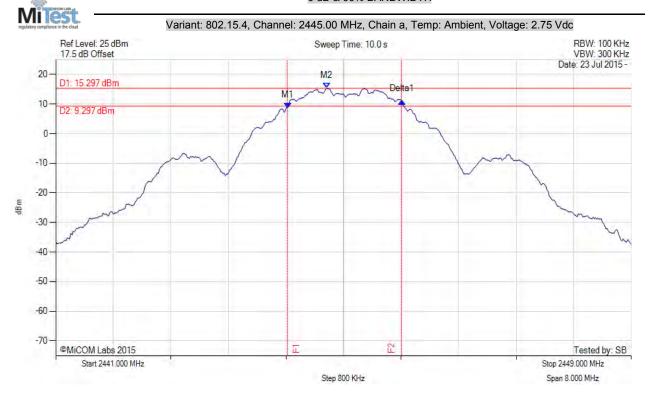
Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 43 of 59

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M2: 2404.768 MHz: 16.851 dBm	Measured 6 dB Bandwidth: 1.587 MHz Limit: ≥500.0 kHz Margin: -1.09 MHz


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

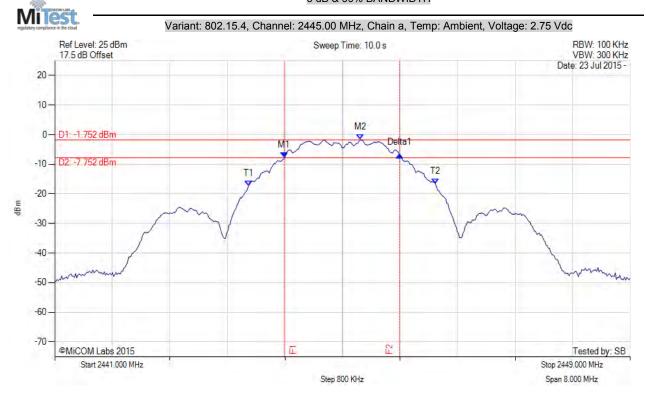
Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 44 of 59

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
	M1: 2444.222 MHz: 8.740 dBm M2: 2444.768 MHz: 15.297 dBm Delta1: 1.587 MHz: 2.241 dB T1: 0 Hz: 500.000 dBm T2: 0 Hz: 500.000 dBm OBW: 2.725 MHz	Measured 6 dB Bandwidth: 1.587 MHz Limit: ≥500.0 kHz Margin: -1.09 MHz


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

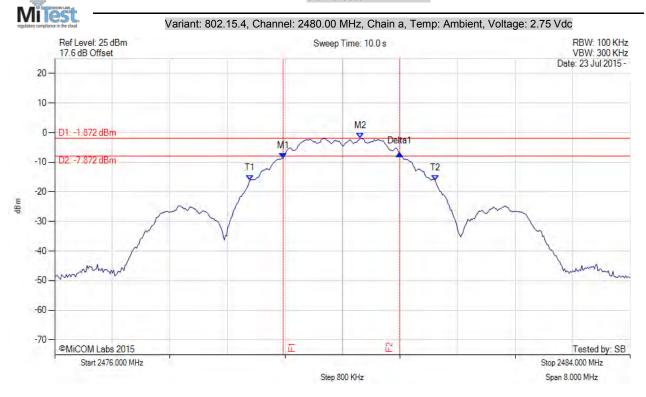
Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 45 of 59

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M2: 2445.248 MHz: -1.752 dBm	Measured 6 dB Bandwidth: 1.603 MHz Limit: ≥500.0 kHz Margin: -1.10 MHz


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

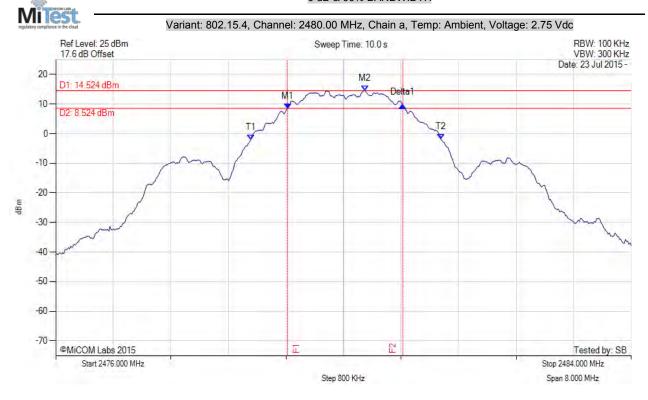
Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 46 of 59

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M2: 2480.248 MHz: -1.872 dBm	Measured 6 dB Bandwidth: 1.619 MHz Limit: ≥500.0 kHz Margin: -1.12 MHz


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

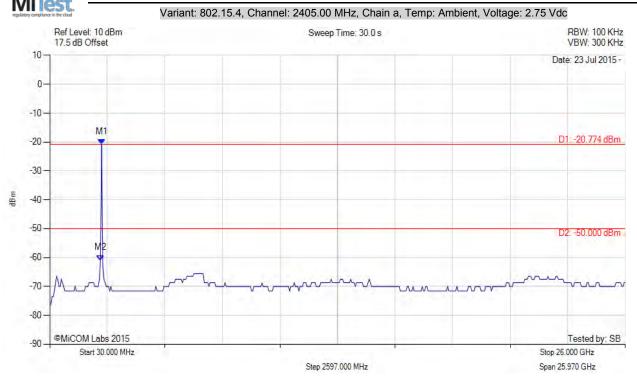
Issue Date: 6th August 2015

Page: 47 of 59

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M2: 2480.297 MHz: 14.524 dBm	Measured 6 dB Bandwidth: 1.603 MHz Limit: ≥500.0 kHz Margin: -1.10 MHz

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247


Serial #: ICON12-Rev PCA 2.1 Rev A

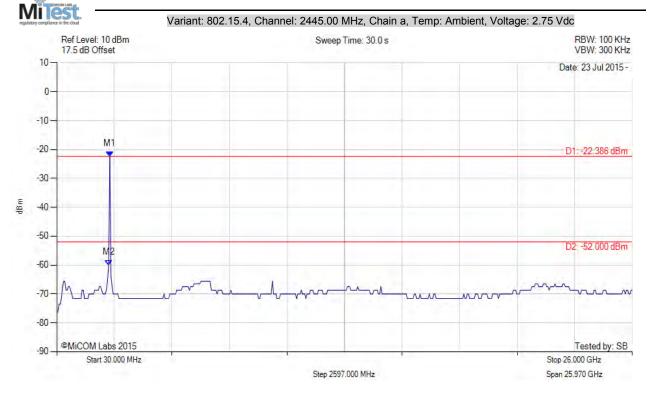
Issue Date: 6th August 2015

Page: 48 of 59

A.2. Conducted Spurious Emissions

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2371.984 MHz: -20.774 dBm	Limit: -50.00 dBm
Sweep Count = 0	M2: 2319.940 MHz: -60.956 dBm	Margin: -10.96 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

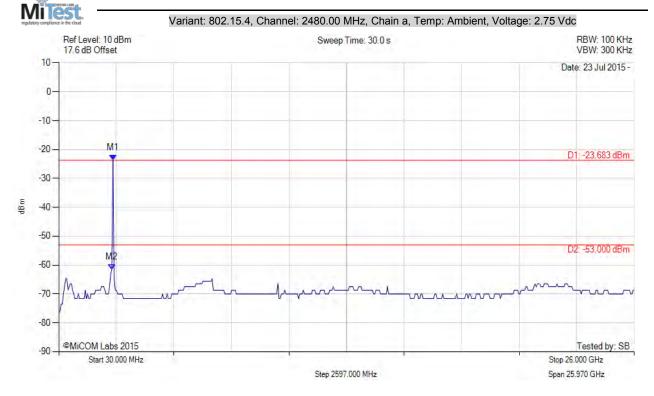
Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 49 of 59

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 2424.028 MHz : -22.386 dBm M2 : 2371.984 MHz : -59.990 dBm	Limit: -52.00 dBm Margin: -7.99 dB
RF Atten (dB) = 10 Trace Mode = VIEW		


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

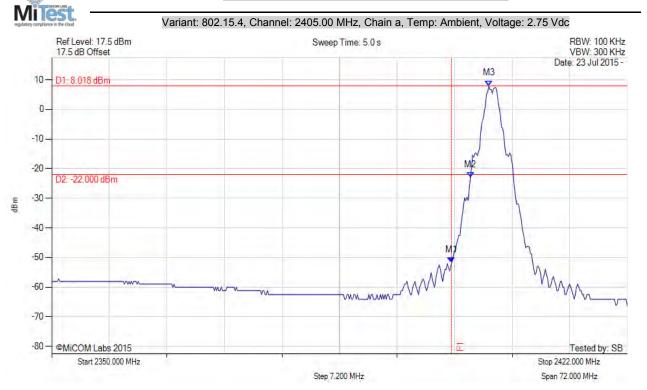
Issue Date: 6th August 2015

Page: 50 of 59

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 2476.072 MHz : -23.683 dBm M2 : 2424.028 MHz : -61.483 dBm	Limit: -53.00 dBm Margin: -8.48 dB
RF Atten (dB) = 10 Trace Mode = VIEW		

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247


Serial #: ICON12-Rev PCA 2.1 Rev A

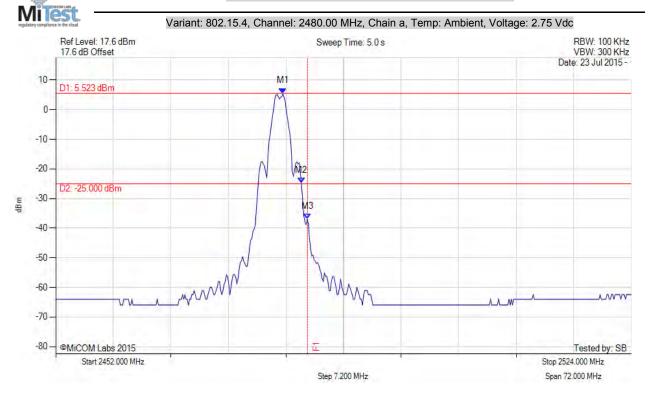
Issue Date: 6th August 2015

Page: 51 of 59

A.3. Conducted Band-Edge Spurious Emissions

CONDUCTED LOW BAND-EDGE EMISSIONS - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2400.000 MHz: -51.621 dBm	Channel Frequency: 2405.00 MHz
Sweep Count = 0	M2: 2402.377 MHz: -23.009 dBm	
RF Atten (dB) = 10	M3: 2404.685 MHz: 8.018 dBm	
Trace Mode = VIEW		


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

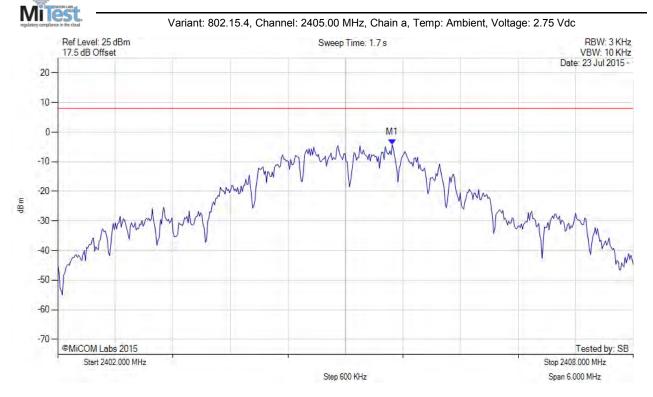
Issue Date: 6th August 2015

Page: 52 of 59

CONDUCTED HIGH BAND-EDGE EMISSIONS - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0	M1: 2480.425 MHz: 5.523 dBm M2: 2482.733 MHz: -24.805 dBm M3: 2483.500 MHz: -36.981 dBm	Channel Frequency: 2480.00 MHz

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247


Serial #: ICON12-Rev PCA 2.1 Rev A

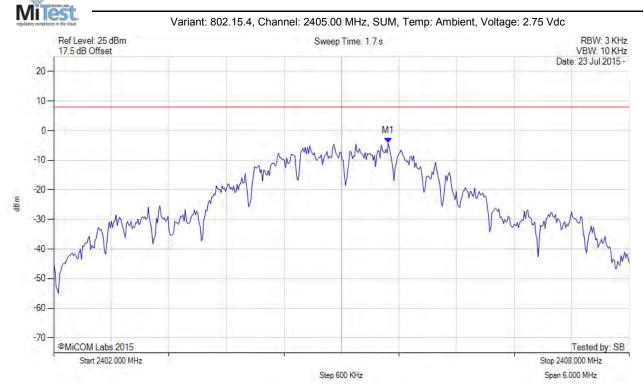
Issue Date: 6th August 2015

Page: 53 of 59

A.4. Power Spectral Density

POWER SPECTRAL DENSITY - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
	M1: 2405.487 MHz: -4.233 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

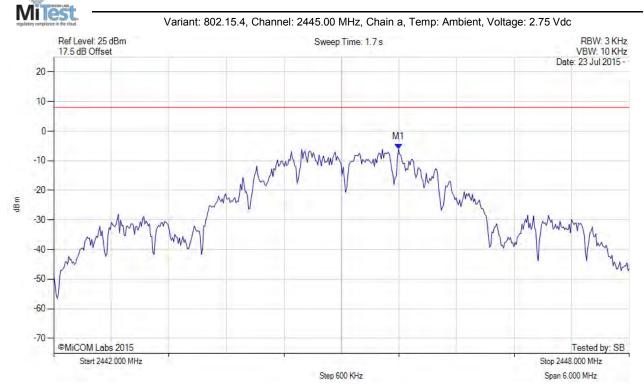
Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 54 of 59

POWER SPECTRAL DENSITY - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 2405.500 MHz : -4.233 dBm M1 + DCCF : 2405.500 MHz : -4.233 dBm Duty Cycle Correction Factor : +0 dB	Limit: ≤ 8.0 dBm Margin: -12.2 dB


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

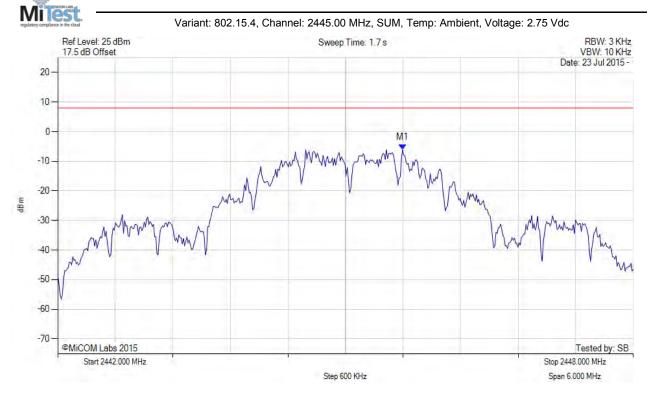
Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 55 of 59

POWER SPECTRAL DENSITY - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2445.595 MHz: -6.101 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

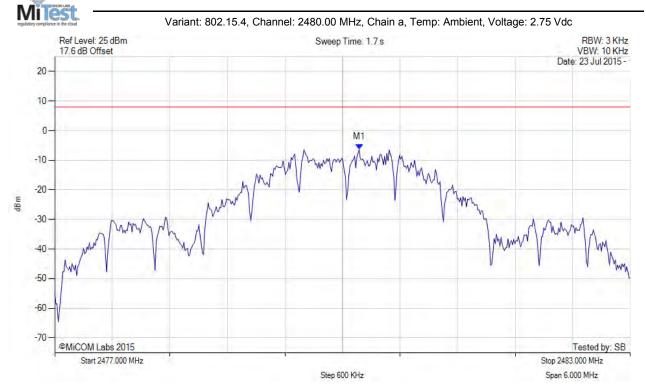
Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 56 of 59

POWER SPECTRAL DENSITY - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2445.600 MHz: -6.101 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2445.600 MHz : -6.101 dBm	Margin: -14.1 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor: +0 dB	
Trace Mode = VIEW		


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

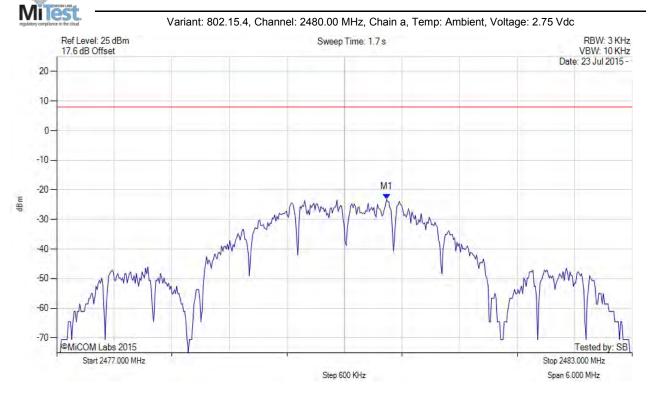
Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 57 of 59

POWER SPECTRAL DENSITY - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2480.174 MHz : -6.354 dBm	Limit: ≤ 8.000 dBm


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Serial #: ICON12-Rev PCA 2.1 Rev A

Issue Date: 6th August 2015

Page: 58 of 59

POWER SPECTRAL DENSITY - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2480.439 MHz : -23.144 dBm	Limit: ≤ 8.000 dBm

575 Boulder Court
Pleasanton, California 94566, USA
Tel: +1 (925) 462 0304
Fax: +1 (925) 462 0306
www.micomlabs.com