BUREAU
VERITAS

	FCC Test Report
Report No.:	RFBVSW-WTW-P20110319B-3
FCC ID:	W23-WMU62XX
Test Model:	WMU6202
Series Model:	WMU6203, WMU6204, WMU6205 (Refer to item 3.1 for more details)
Received Date:	Dec. 05, 2022
Test Date:	Dec. 23 ~ Dec. 30, 2022
Issued Date:	Jan. 30, 2023
Applicant:	jjPlus Corporation
Address:	15F-7, No.2, Jianba Road. Zhonghe Dist., New Taipei City 235, Taiwan (R.O.C.)
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories
Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
Test Location (1):	No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan
Test Location (2):	No. 70, Wenming Rd., Guishan Dist., Taoyuan City 333, Taiwan
FCC Registration /	788550 / TW0003
Designation Number (1):	
FCC Registration / Designation Number(2):	2612707100032
	Testing Laboratory 2021
http://www.bureauveritas.com/home/about-u to or for any other person or entity, or use of respect to the test samples identified herein. test sample was taken or any similar or ide thereof based upon the information that you based on simple acceptance criteria without of this report to notify us of any material error be in writing and shall specifically address th of the completeness of this report, the tests Report No.: RFBVSW-WTW-P2011	
Reference No.: BAYS-WTW-P2104	

Table of Contents

Re	elease Control Record	. 3
1	Certificate of Conformity	. 4
2	Summary of Test Results	. 5
	2.1 Measurement Uncertainty2.2 Modification Record	
3	General Information	. 6
	 3.1 General Description of EUT	. 8 10 10 11 11
4	Test Types and Results	12
	 4.1 Radiated Emission and Bandedge Measurement	12 14 15 15 16 17
5	Pictures of Test Arrangements	24
A	nnex A- Radiated Out of Band Emission (OOBE) Measurement (For U-NII-3 band)	25
Ar	nnex B- Band Edge Measurement	26
A	opendix – Information of the Testing Laboratories	28

Release Control Record

Issue No.	Description	Date Issued
RFBVSW-WTW-P20110319B-3	Original Release	Jan. 30, 2023

1	Certificate of Conformity			
	Product:	11ac 2T2R WIFI & BT Module		
	Brand:	jjPlus		
	Test Model:	WMU6202		
	Series Model:	WMU6203, WMU6204, WMU6205 (Refer to item 3.1 for more details)		
	Sample Status:	Engineering Sample		
	Applicant:	jjPlus Corporation		
	Test Date:	Dec. 23 ~ Dec. 30, 2022		
	Standards:	47 CFR FCC Part 15, Subpart E (Section 15.407) ANSI C63.10:2013		

This report is issued as a supplementary report to BV CPS report no.: RFBAYS-WTW-P20110319A-3. This report shall be used by combining with its original report.

Prepared by :

ina wu

Date: Jan. 30, 2023

Jan. 30, 2023

Date:

Gina Liu / Specialist

Approved by :

Jeremy Lin / Project Engineer

2 Summary of Test Results

47 CFR FCC Part 15, Subpart E (Section 15.407)						
FCC Clause	Test Item		Remarks			
15.407(b)(8)	AC Power Conducted Emissions	N/A	Refer to Note			
15.407(b) (1/2/3/4(i/ii)/8)	Radiated Emissions & Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -2.7 dB at 240.49 MHz.			
15.407(a)(1/2/ 3)	^{/2/} Max Average Transmit Power N/A Refer to Note		Refer to Note			
	Occupied Bandwidth Measurement	N/A	Refer to Note			
15.407(a)(1/2/ 3)	Peak Power Spectral Density I IN/A I Relecto Note		Refer to Note			
15.407(e) 6 dB Bandwidth		N/A	Refer to Note			
15.407(g) Frequency Stability		N/A	Refer to Note			
15.203 Antenna Requirement		Pass	Antenna connector is U.FLx2 not a standard connector.			

Note:

- 1. Only Radiated Emissions test was performed for this addendum. Refer to original report for other test data.
- For U-NII-3 band compliance with rule part 15.407(b)(4)(i), the OOBE test plots were recorded in Annex A.
- 3. For U-NII-1, U-NII-2A, U-NII-2C band compliance with rule 15.407(b) of the band-edge items, the test plots were recorded in Annex B. Test Procedures refer to report 4.1.3.
- 4. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
	9kHz ~ 30MHz	3.00 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	2.91 dB
	200MHz ~1000MHz	2.93 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	1.76 dB
Radiated Emissions above 1 GHz	18GHz ~ 40GHz	1.77 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

i			
Product	11ac 2T2R WIFI & BT Module		
Brand	ijPlus		
Test Model	WMU6202		
Series Model	WMU6203, WMU6204, WMU6205		
Status of EUT	Engineering Sample		
Power Supply Rating	3.3 Vdc (host equipment)		
Modulation Type	256QAM, 64QAM, 16QAM, QPSK, BPSK		
Modulation Technology	OFDM		
	802.11a: 54.0/ 48.0/ 36.0/ 24.0/ 18.0/ 12.0/ 9.0/ 6.0 Mbps		
Transfer Rate	802.11n: up to 300.0 Mbps		
	802.11ac: up to 866.7 Mbps		
Operating Frequency	5180 ~ 5240 MHz, 5260 ~ 5320 MHz, 5500 ~ 5700 MHz,		
	5745 ~ 5825 MHz		
	5180 ~ 5240 MHz: 4 for 802.11a, 802.11n (HT20)		
	2 for 802.11n (HT40)		
	1 for 802.11ac (VHT80)		
	5260 ~ 5320 MHz: 4 for 802.11a, 802.11n (HT20)		
	2 for 802.11n (HT40)		
Number of Channel	1 for 802.11ac (VHT80)		
	5500 ~ 5700 MHz: 11 for 802.11a, 802.11n (HT20)		
	5 for 802.11n (HT40)		
	2 for 802.11ac (VHT80)		
	5745 ~ 5825 MHz: 5 for 802.11a, 802.11n (HT20)		
	2 for 802.11n (HT40)		
	1 for 802.11ac (VHT80)		
Antenna Type	Refer to Note		
Antenna Connector	Refer to Note		
Accessory Device	N/A		
Data Cable Supplied	N/A		

Note:

1. This report is prepared for FCC class II permissive change. This report is issued as a supplementary report to BV CPS report no. RFBAYS-WTW-P20110319A-3. The difference compared with original report is adding new Antennas. Therefore, only Radiated Emissions test re-test and recorded in this report.

2. The EUT incorporates a MIMO function. Physically, the EUT provides two completed transmitters and two receivers.

Modulation Mode	Tx Function
802.11a	1TX
802.11n (HT20)	2TX
802.11n (HT40)	2TX
802.11ac (VHT20)	2TX
802.11ac (VHT40)	2TX
802.11ac (VHT80)	2TX

* The modulation and bandwidth are similar for 802.11n mode for HT20 / HT40 and 802.11ac mode for VHT20 / VHT40, therefore investigated worst case to representative mode in test report. (Final test mode refer section 3.2.1)

3. All models and antennas are listed as below.

Test Mode	e Model	RF Chip	RF Design	Interface	Antenna type	Antenna connector
v	WMU6202		822BU The Same	mPCle	Dipole PIFA	U.FLx2
	WMU6203	RTL8822BU		M.2		MHF4
	WMU6204			USB Type-A		U.FLx2
	WMU6205			4Pin Wafer		U.FLx2

*The difference Models are pre-tested, because the connector and interface are difference with difference Model, and selected the worst Model for testing.

4. The antennas information is listed as below. (New antenna is marked in boldface.)

Antenna	Antenna Brand Model		Antenna Gain (dBi)			Antenna Connector
Туре	Dianu	Woder	BT	2.4G	5G	Antenna Connector
	LYNwave	AOA160-221020-000000	3.0	3.0	2.0	ipex(MHF)
Dipole	LYNwave	AOA160-221034-000000	3.0	3.0	3.0	ipex(MHF)
	LYNwave	AOA160-221050-000000	5.0	5.0	5.0	ipex(MHF)
PIFA	SINBON	A9706632	4.1	4.1	3.5	MHFI
PIFA	SINBON	A9706633	4.8	4.8	4.1	MHFI
Dinole	ARISTOTLE	RFA-25-AP152R-70-180	3.42	3.42	4.33	ipex(MHF)
	ARISTOTLE	RFA-25-AP152R-70B360	2.55	2.55	2.34	ipex(MHF)

5. Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

6. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

For 5180 ~ 5240 MHz

4 channels are provided for 802.11a, 802.11n (HT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	44	5220
40	5200	48	5240

2 channels are provided for 802.11n (HT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
38	5190	46	5230

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency (MHz)
42	5210

For 5260 ~ 5320 MHz

4 channels are provided for 802.11a, 802.11n (HT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	60	5300
56	5280	64	5320

2 channels are provided for 802.11n (HT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
54	5270	62	5310

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency (MHz)
58	5290

For 5500 ~ 5700 MHz

11 channels are provided for 802.11a, 802.11n (HT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	124	5620
104	5520	128	5640
108	5540	132	5660
112	5560	136	5680
116	5580	140	5700
120	5600		

5 channels are provided for 802.11n (HT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
102	5510	126	5630
110	5550	134	5670
118	5590		

2 channels are provided for 802.11ac (VHT80):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
106	5530	122	5610

For 5745 ~ 5825 MHz:

5 channels are provided for 802.11a, 802.11n (HT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	161	5805
153	5765	165	5825
157	5785		

2 channels are provided for 802.11n (HT40):

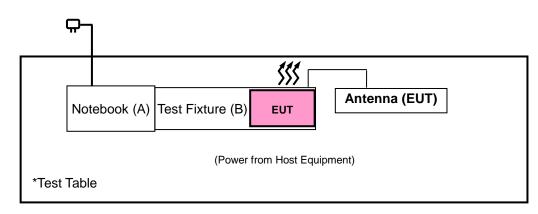
Channel	Frequency (MHz)	Channel	Frequency (MHz)
151	5755	159	5795

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency (MHz)
155	5775

JT Configure		Applicable To			Desc	ription	
Mode	RE	≥1G	RE<1G		2000.	iption	
-		N	\checkmark	-			
nere R	E≥1G: Radiate	d Emission above 1 G	Hz R I	E<1G: Radiated Emis	sion below 1 GH	Z	
te:							
The EUT h	ad been pre-tes	sted on the positioned	of each 3 axis.	The worst case was	found when posi	tioned on Z-plane	э.
"-" means i	no effect.						
		(
		(Above 1 GHz):	ning the we	nat again mada fra			
		onducted to deterr			•		
		, data rates and a was (were) selecte		•	-	architecture)	
Following EUT							
Configure	Frequency	Mode	Available	Tested Channel	Modulation	Modulation	Data Rat
Mode	Band (MHz)		Channel		Technology	Туре	(Mbps)
		802 11 m (LIT 10)	38 to 46	38	OFDM	BPSK	13.5
-	5180-5240	802.11n (HT40)	00 10 40	88	01 811	BIOR	
-	5180-5240 5260-5320	802.111 (HT40) 802.11n (HT40)	54 to 62	62	OFDM	BPSK	13.5
-		· · · ·				-	
-	5260-5320 5500-5700 5745-5825	802.11n (HT40) 802.11ac (VHT80) 802.11ac (VHT80)	54 to 62	62	OFDM	BPSK	13.5
- - - diated En Pre-Scan available	5260-5320 5500-5700 5745-5825 nission Test has been co modulations	802.11n (HT40) 802.11ac (VHT80)	54 to 62 106 to 122 155 nine the wo	62 106 155 rst-case mode fro s (if EUT with ante	OFDM OFDM OFDM om all possible	BPSK BPSK BPSK	13.5 29.3 29.3 s betwee Data Rat
- - - Pre-Scan available Following EUT Configure	5260-5320 5500-5700 5745-5825 has been co modulations channel(s) v Frequency	802.11n (HT40) 802.11ac (VHT80) 802.11ac (VHT80) (Below 1 GHz): onducted to deterr , data rates and a was (were) selecte	54 to 62 106 to 122 155 nine the wo ntenna ports ed for the fir Available	62 106 155 rst-case mode fro s (if EUT with ante nal test as listed b	OFDM OFDM OFDM or all possible enna diversity elow. Modulation	BPSK BPSK BPSK e combination architecture) Modulation	13.5 29.3 29.3 s betwee
- - - Pre-Scan available Following EUT Configure	5260-5320 5500-5700 5745-5825 has been co modulations channel(s) v Frequency Band (MHz)	802.11n (HT40) 802.11ac (VHT80) 802.11ac (VHT80) (Below 1 GHz): onducted to deterr , data rates and a was (were) selecte Mode	54 to 62 106 to 122 155 nine the wo ntenna ports ed for the fir Available Channel	62 106 155 rst-case mode fro s (if EUT with anto nal test as listed b Tested Channel	OFDM OFDM OFDM om all possible enna diversity elow. Modulation Technology	BPSK BPSK e combination architecture) Modulation Type	13.5 29.3 29.3 s betwee Data Ra (Mbps)
- - diated En Pre-Scan available Following EUT Configure Mode -	5260-5320 5500-5700 5745-5825 has been co modulations channel(s) v Frequency Band (MHz) 5180-5240	802.11n (HT40) 802.11ac (VHT80) 802.11ac (VHT80) (Below 1 GHz): onducted to deterr , data rates and a was (were) selecte Mode	54 to 62 106 to 122 155 nine the wo ntenna ports ed for the fir Available Channel	62 106 155 rst-case mode fro s (if EUT with anto nal test as listed b Tested Channel	OFDM OFDM OFDM om all possible enna diversity elow. Modulation Technology	BPSK BPSK e combination architecture) Modulation Type	13.5 29.3 29.3 s betwee Data Ra (Mbps)
- - diated En Pre-Scan available Following EUT Configure Mode -	5260-5320 5500-5700 5745-5825 hission Test has been co modulations channel(s) v Frequency Band (MHz) 5180-5240	802.11n (HT40) 802.11ac (VHT80) 802.11ac (VHT80) (Below 1 GHz): onducted to deterr , data rates and a was (were) selecte Mode	54 to 62 106 to 122 155 nine the wo ntenna ports ed for the fir Available Channel 38 to 46	62 106 155 rst-case mode fro s (if EUT with anto nal test as listed b Tested Channel	OFDM OFDM OFDM ornall possible enna diversity elow. Modulation Technology OFDM	BPSK BPSK e combination architecture) Modulation Type	13.5 29.3 29.3 s betwee . Data Ra (Mbps) 13.5
- - diated En Pre-Scan available Following EUT Configure Mode - -	5260-5320 5500-5700 5745-5825 hission Test has been co modulations channel(s) v Frequency Band (MHz) 5180-5240	802.11n (HT40) 802.11ac (VHT80) 802.11ac (VHT80) (Below 1 GHz): onducted to deterr , data rates and a was (were) selecte Mode 802.11n (HT40)	54 to 62 106 to 122 155 nine the wo ntenna ports ed for the fir Available Channel 38 to 46 itions	62 106 155 rst-case mode fro s (if EUT with ante nal test as listed b Tested Channel 38	OFDM OFDM OFDM or all possible enna diversity elow. Modulation Technology OFDM	BPSK BPSK e combination v architecture) Modulation Type BPSK	13.5 29.3 29.3 s betwee . Data Ra (Mbps) 13.5
- - - - - - - - - - - - - - - - - - -	5260-5320 5500-5700 5745-5825 hission Test has been co modulations channel(s) v Frequency Band (MHz) 5180-5240	802.11n (HT40) 802.11ac (VHT80) 802.11ac (VHT80) (Below 1 GHz): onducted to deterr , data rates and a was (were) selecte Mode 802.11n (HT40)	54 to 62 106 to 122 155 nine the wo ntenna ports ed for the fin Available Channel 38 to 46 itions	62 106 155 rst-case mode fro s (if EUT with ante nal test as listed b Tested Channel 38 Input Powe	OFDM OFDM OFDM or all possible enna diversity elow. Modulation Technology OFDM	BPSK BPSK BPSK e combination architecture) Modulation Type BPSK Tested by	13.5 29.3 29.3 s betwee Data Ra (Mbps) 13.5

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	802.11n (HT40)													8	02.11	ac (\	/HT8	0)				
10 1 </th <th></th> <th></th> <th></th> <th></th> <th>Duty (</th> <th>Cycle Analysis</th> <th></th> <th>Duty</th> <th>Cycle Analysis</th> <th></th> <th></th> <th></th> <th></th>					Duty (Cycle Analysis											Duty	Cycle Analysis				
$ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$																						RBW: 8.000MH
1 1 <td></td> <td>VBW: 50.000M</td>																						VBW: 50.000M
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											t1 @ -8u											t1 @ -8u
12	80-										t2 @ -8u	s										t2 @ -8u
00		t2									Tx on (t2-t1):	(dBu)										Tx on (t2
50 0 0 00ms 100ms 50 0 100ms	60-	for the second	harporente	*****	ulahar may the	and the second second	Mand Amay	mange	-	***		eve	60-	www.	ال بدخة بدار ومعا	and a state of the	-	hand hand has a second	-		-	
Annotation Annotat	50-											_	50-									
30	40-										Duty Cycle:											Duty Cyc
	30-										096		30-									0%
	20-																					



3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
1.	Notebook	DELL	E6420	D3T96R1	N/A	Provided by Lab
2.	Test fixture	N/A	N/A	N/A	N/A	Provided by Client

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard:

FCC Part 15, Subpart E (15.407)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 KDB 662911 D01 Multiple Transmitter Output v02r01

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Limits of Unwanted Emission Out of the Restricted Bands

Ар	plicab	le To	Limi	t			
789033 D02 Genera	al UNII	Test Procedures New	Field Strength at 3 m				
Ru	les v02	2r01	PK: 74 (dBµV/m)	AV: 54 (dBµV/m)			
Frequency Band		Applicable To	EIRP Limit	Equivalent Field Strength at 3 m			
5150~5250 MHz	50~5250 MHz 15.407(b)(1)						
5250~5350 MHz	(-)()		PK: -27 (dBm/MHz)	PK: 68.2 (dBµV/m)			
5470~5725 MHz							
			PK:-27 (dBm/MHz) *1	PK: 68.2 (dBµV/m) *1			
		15 407(b)(4)(i)	PK:10 (dBm/MHz) *2	PK:105.2 (dBµV/m) *2			
5725~5850 MHz		15.407(b)(4)(i)	PK:15.6 (dBm/MHz) *3	PK: 110.8 (dBµV/m) *3			
			PK:27 (dBm/MHz) *4	PK:122.2 (dBµV/m) *4			
	15.407(b)(4)(ii)		Emission limits in section 15.247(d)				

^{*1} beyond 75 MHz or more above of the band edge.

^{*2} below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

 $^{\rm *3}$ below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

 *4 from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \quad \mu V/m, \text{ where P is the eirp (Watts).}$$

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver KEYSIGHT	N9038B	MY60180018	Feb. 18, 2022	Feb. 17, 2023
Spectrum Analyzer	N9020B	MY60110513	Dec. 24, 2021	Dec. 23, 2022
KEYSIGHT	100200		Dec. 26, 2022	Dec. 25, 2023
BILOG Antenna SCHWARZBECK	VULB9168	9168-1214	Oct. 20, 2022	Oct. 19, 2023
HORN Antenna RF SPIN	DRH18-E	210101A18E	Nov. 13, 2022	Nov. 12, 2023
HORN Antenna SCHWARZBECK	BBHA 9170	9170-1048	Nov. 13, 2022	Nov. 12, 2023
Loop Antenna TESEQ	HLA 6121	45745	Jul. 27, 2022	Jul. 26, 2023
Preamplifier EMCI	EMC330N	980798	Jan. 17, 2022	Jan. 16, 2023
Preamplifier	EMC118A45SE	980808	Dec. 30, 2021	Dec. 29, 2022
EMCI	EMCTIOR433E	900000	Dec. 29, 2022	Dec. 28, 2023
Preamplifier EMCI	EMC184045SE	980786	Jan. 17, 2022	Jan. 16, 2023
RF signal cable EMCI	EMC104-SM-SM-(9 000+3000+1000)	201244+ 201232+ 210103	Jan. 17, 2022	Jan. 16, 2023
RF signal cable EMCI	EMCCFD400-NM-N M-(9000+300+500)	201251+ 201249+ 201248	Jan. 17, 2022	Jan. 16, 2023
RF signal cable EMCI	EMC101G-KM-KM- (5000+3000+2000)	201261+201258+ 201255	Jan. 17, 2022	Jan. 16, 2023
Software BV ADT	ADT_Radiated_V7. 6.15.9.5	NA	NA	NA
Antenna Tower Max-Full	MFA-515BSN	NA	NA	NA
Turn Table Max-Full	MFT-201SS	NA	NA	NA
Turn Table Controller Max-Full	MF-7802BS	MF780208676	NA	NA
Radio Communication Analyzer Anritsu	MT8821C	6201462755	Mar. 03, 2022	Mar. 02, 2023
DC power supply Keysight	U8002A	MY56330015	NA	NA
Digital Multimeter Fluke	87-III	70360742	Jun. 23, 2022	Jun. 22, 2023
Spectrum Analyzer KEYSIGHT	N9030B	MY57140953	Jul. 01, 2022	Jun. 30, 2023
Temperature & Humidity Chamber TERCHY Note: 1 The calibration interv	HRM-120RF	931022	Jan. 03, 2022	Jan. 02, 2023

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in WM Chamber 9.

4.1.3 Test Procedures

For Radiated Emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30 MHz.

For Radiated Emission above 30 MHz

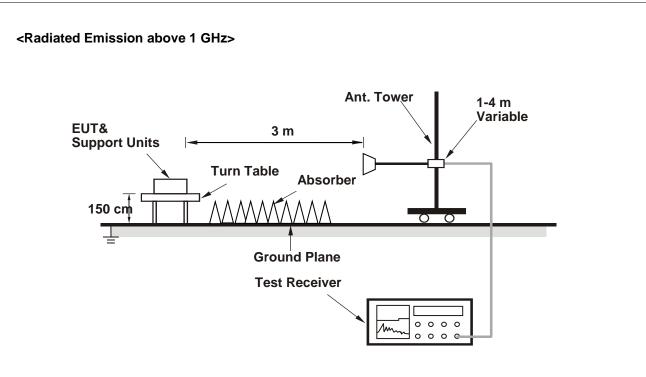
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30 MHz ~ 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) or Peak detection (PK) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98 %) or 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz. (11n (HT40): RBW = 1 MHz, VBW = 10 Hz, 11ac (VHT80): RBW = 1 MHz, VBW = 10 Hz)
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Set Up

<Radiated Emission below 30 MHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

- 4.1.6 EUT Operating Conditions
- a. Placed the EUT on a testing table.
- b. Use the software to control the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1 GHz Data :

802.11n (HT40)

Channel	CH 38:5190 MHz	Frequency Range	1 GHz ~ 40 GHz
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)
Tested By	Noah Chang	Environmental Conditions	20°C, 71% RH

		Ante	enna Polarity	/ & Test Dist	ance : Horizo	ontal at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	5150.00	59.0 PK	74.0	-15.0	1.00 H	27	56.2	2.8
2	5150.00	48.9 AV	54.0	-5.1	1.00 H	27	46.1	2.8
3	*5190.00	98.5 PK			1.00 H	27	57.2	41.3
4	*5190.00	91.9 AV			1.00 H	27	50.6	41.3
5	#10380.00	53.4 PK	68.2	-14.8	3.00 H	200	46.5	6.9
		An	tenna Polari	ty & Test Dis	stance : Verti	ical at 3 m		

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	5150.00	62.3 PK	74.0	-11.7	1.02 V	162	59.5	2.8
2	5150.00	49.7 AV	54.0	-4.3	1.02 V	162	46.9	2.8
3	*5190.00	103.5 PK			1.02 V	162	62.2	41.3
4	*5190.00	96.2 AV			1.02 V	162	54.9	41.3
5	#10380.00	54.1 PK	68.2	-14.1	3.00 V	255	47.2	6.9

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

6. " # ": The radiated frequency is out of the restricted band.

Channel	CH 62:5310 MHz	Frequency Range	1 GHz ~ 40 GHz		
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)		
Tested By	Noah Chang	Environmental Conditions	20°C, 71% RH		

	Antenna Polarity & Test Distance : Horizontal at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	*5310.00	96.7 PK			1.15 H	27	55.7	41.0				
2	*5310.00	89.3 AV			1.15 H	27	48.3	41.0				
3	5350.00	55.8 PK	74.0	-18.2	1.15 H	27	53.4	2.4				
4	5350.00	47.3 AV	54.0	-6.7	1.15 H	27	44.9	2.4				
5	10620.00	53.7 PK	74.0	-20.3	1.00 H	152	46.5	7.2				
6	10620.00	43.8 AV	54.0	-10.2	1.00 H	152	36.6	7.2				
	Antenna Polarity & Test Distance : Vertical at 3 m											
		Emile allow			Antenna	Table	Raw	Correction				
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Height (m)	Angle (Degree)	Value (dBuV)	Factor (dB/m)				
No		Level		-	Height	Angle	Value	Factor				
	(MHz)	Level (dBuV/m)		-	Height (m)	Angle (Degree)	Value (dBuV)	Factor (dB/m)				
1	(MHz) *5310.00	Level (dBuV/m) 104.4 PK		-	Height (m) 1.26 V	Angle (Degree) 183	Value (dBuV) 63.4	Factor (dB/m) 41.0				
1	(MHz) *5310.00 *5310.00	Level (dBuV/m) 104.4 PK 97.5 AV	(dBuV/m)	(dB)	Height (m) 1.26 V 1.26 V	Angle (Degree) 183 183	Value (dBuV) 63.4 56.5	Factor (dB/m) 41.0 41.0				
1 2 3	(MHz) *5310.00 *5310.00 5350.00	Level (dBuV/m) 104.4 PK 97.5 AV 61.8 PK	(dBuV/m) 74.0	(dB) -12.2	Height (m) 1.26 V 1.26 V 1.26 V	Angle (Degree) 183 183 183	Value (dBuV) 63.4 56.5 59.4	Factor (dB/m) 41.0 41.0 2.4				
1 2 3 4	(MHz) *5310.00 *5310.00 5350.00 5350.00	Level (dBuV/m) 104.4 PK 97.5 AV 61.8 PK 49.6 AV	(dBuV/m) 74.0 54.0	(dB) -12.2 -4.4	Height (m) 1.26 V 1.26 V 1.26 V 1.26 V	Angle (Degree) 183 183 183 183	Value (dBuV) 63.4 56.5 59.4 47.2	Factor (dB/m) 41.0 41.0 2.4 2.4				

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

802.11ac (VHT80)

Channel	CH 106:5530 MHz	Frequency Range	1 GHz ~ 40 GHz
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)
Tested By	Noah Chang	Environmental Conditions	20°C, 71% RH

		Ante	enna Polarity	/ & Test Dist	ance : Horizo	ontal at 3 m					
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	5460.00	58.1 PK	74.0	-15.9	1.15 H	39	55.8	2.3			
2	5460.00	47.1 AV	54.0	-6.9	1.15 H	39	44.8	2.3			
3	3 #5470.00 56.1 PK 68.2 -12.1 1.15 H 39 53.6 2.5										
4	*5530.00	90.5 PK			1.15 H	39	49.1	41.4			
5	*5530.00	83.6 AV			1.15 H	39	42.2	41.4			
6	11060.00	54.3 PK	74.0	-19.7	1.11 H	105	47.2	7.1			
7	7 11060.00 44.3 AV 54.0 -9.7 1.11 H 105 37.2 7.1										
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m					
Na	Frequency	Emission	Limit	Margin	Antenna	Table	Raw	Correction			

No	Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Height (m)	Angle (Degree)	Value (dBuV)	Factor (dB/m)
1	5460.00	60.6 PK	74.0	-13.4	1.25 V	186	58.3	2.3
2	5460.00	47.3 AV	54.0	-6.7	1.25 V	186	45.0	2.3
3	#5470.00	60.1 PK	68.2	-8.1	1.25 V	186	57.6	2.5
4	*5530.00	100.2 PK			1.25 V	186	58.8	41.4
5	*5530.00	93.8 AV			1.25 V	186	52.4	41.4
6	11060.00	54.0 PK	74.0	-20.0	2.00 V	155	46.9	7.1
7	11060.00	43.9 AV	54.0	-10.1	2.00 V	155	36.8	7.1

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

6. " # ": The radiated frequency is out of the restricted band.

Channel	CH 155:5775 MHz	Frequency Range	1 GHz ~ 40 GHz
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)
Tested By	Noah Chang	Environmental Conditions	20°C, 71% RH

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*5775.00	90.3 PK			1.15 H	39	47.6	42.7		
2	*5775.00	83.4 AV			1.15 H	39	40.7	42.7		
3	11550.00	54.4 PK	74.0	-19.6	1.55 H	333	46.5	7.9		
4	11550.00	44.8 AV	54.0	-9.2	1.55 H	333	36.9	7.9		
		An	tenna Polari	tv & Test Di	stance : Verti	ical at 3 m				

No Hrequency Level Limit Margin Height Angle Value Facto							Correction Factor	
	(11112)	(dBuV/m)		(ub)	(m)	(Degree)	(dBuV)	(dB/m)
1	*5775.00	98.2 PK			1.02 V	47	55.5	42.7
2	*5775.00	91.5 AV			1.02 V	47	48.8	42.7
3	11550.00	55.0 PK	74.0	-19.0	2.11 V	22	47.1	7.9
4	11550.00	45.4 AV	54.0	-8.6	2.11 V	22	37.5	7.9

Remarks:

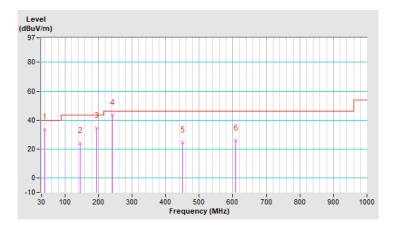
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

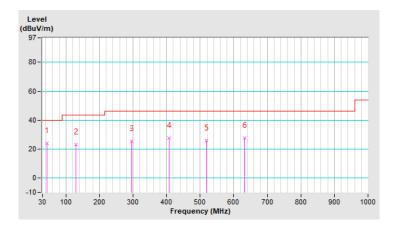

9 kHz ~ 1 GHz Worst-Case Data:

802.11n (H140)	302.11h (H140)								
RF Mode	802.11n (HT40)	Channel	CH 38:5190 MHz						
Frequency Range		Detector Function & Bandwidth	(QP) RB = 120kHz						
Environmental Conditions	20°C, 71% RH	Tested By	Noah Chang						

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	40.67	33.7 QP	40.0	-6.3	1.50 H	3	47.4	-13.7		
2	144.46	24.2 QP	43.5	-19.3	1.00 H	186	37.4	-13.2		
3	193.93	34.3 QP	43.5	-9.2	1.00 H	340	50.5	-16.2		
4	240.49	43.3 QP	46.0	-2.7	1.50 H	334	57.9	-14.6		
5	450.01	24.6 QP	46.0	-21.4	1.00 H	329	33.3	-8.7		
6	609.09	25.9 QP	46.0	-20.1	2.00 H	99	31.3	-5.4		

Remarks:

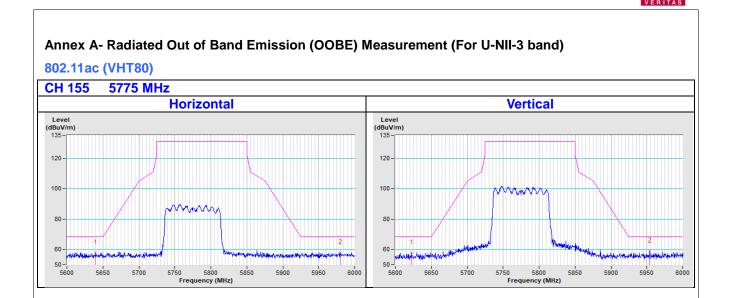
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

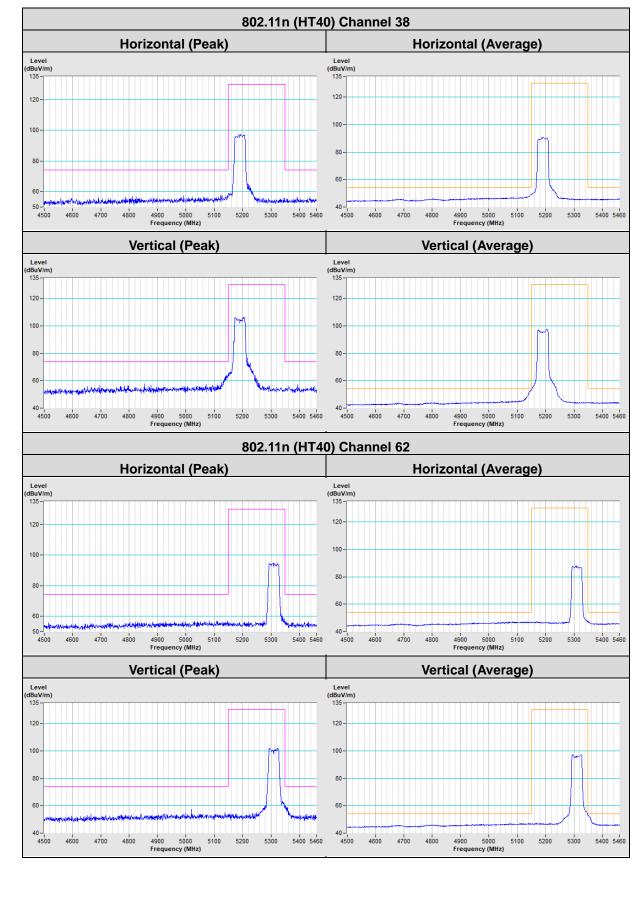


RF Mode	802.11n (HT40)	Channel	CH 38:5190 MHz
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz
Environmental Conditions	20°C, 71% RH	Tested By	Noah Chang

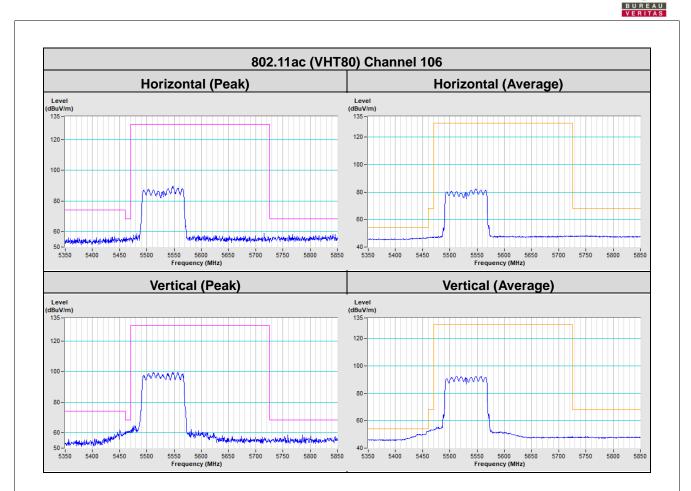
	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	44.55	24.1 QP	40.0	-15.9	2.00 V	2	37.5	-13.4		
2	128.94	22.9 QP	43.5	-20.6	1.00 V	200	37.4	-14.5		
3	296.75	25.5 QP	46.0	-20.5	1.00 V	18	38.0	-12.5		
4	408.30	27.5 QP	46.0	-18.5	1.00 V	286	37.4	-9.9		
5	519.85	26.0 QP	46.0	-20.0	1.50 V	233	33.6	-7.6		
6	631.40	27.6 QP	46.0	-18.4	1.00 V	142	32.6	-5.0		

Remarks:


- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



5 Pictures of Test Arrangements


Please refer to the attached file (Test Setup Photo).

Annex B- Band Edge Measurement

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----