

# Variant FCC Test Report

Report No.: RF170419C34B-1

FCC ID: W23-JWX5556

Test Model: JWX6055, JWX6056

Received Date: Aug. 30, 2019

Test Date: Jan. 14, 2020 ~ Jan. 15, 2020

Issued Date: Jan. 22, 2020

Applicant: jjPlus CORP.

Address: 13F.-3, No.120, Qiaohe Rd., Zhonghe Dist., New Taipei City 23584, Taiwan (R.O.C.)

**Issued By:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan

FCC Registration / 788550 / TW0003

**Designation Number:** 



This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.



# Table of Contents

| Re | Release Control Record 3                                                                                                                                     |                                                                                                                                                                                                                                                                               |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1  | 1 Certificate of Conformity                                                                                                                                  | 1 Certificate of Conformity 4                                                                                                                                                                                                                                                 |  |  |
| 2  | 2 Summary of Test Results                                                                                                                                    | 5                                                                                                                                                                                                                                                                             |  |  |
|    | <ul><li>2.1 Measurement Uncertainty</li><li>2.2 Modification Record</li></ul>                                                                                |                                                                                                                                                                                                                                                                               |  |  |
| 3  | 3 General Information                                                                                                                                        |                                                                                                                                                                                                                                                                               |  |  |
|    | <ul> <li>3.1 General Description of EUT</li> <li>3.2 Description of Test Modes</li></ul>                                                                     | 6<br>8<br>Tested Channel Detail                                                                                                                                                                                                                                               |  |  |
| 4  | 4 Test Types and Results                                                                                                                                     |                                                                                                                                                                                                                                                                               |  |  |
|    | <ul> <li>4.1 Radiated Emission and Bandedge<br/>4.1.1 Limits of Radiated Emission<br/>4.1.2 Limits of Unwanted Emission<br/>4.1.3 Test Instruments</li></ul> | Measurement       12         and Bandedge Measurement       12         n Out of the Restricted Bands       13         14       14         15       16         16       16         17       16         19       19         20       20         20       20         21       21 |  |  |
| 5  | 5 Pictures of Test Arrangements                                                                                                                              |                                                                                                                                                                                                                                                                               |  |  |
| A  | Appendix – Information of the Testing                                                                                                                        | aboratories                                                                                                                                                                                                                                                                   |  |  |



#### **Release Control Record**

| Issue No.      | Description      | Date Issued   |
|----------------|------------------|---------------|
| RF170419C34B-1 | Original Release | Jan. 22, 2020 |



# 1 Certificate of Conformity

| Product:       | 802.11ac/abgn 2T2R Half Mini-PCI-Express Module |  |
|----------------|-------------------------------------------------|--|
| Brand:         | jjPlus                                          |  |
| Test Model:    | JWX6055, JWX6056                                |  |
| Sample Status: | Identical Prototype                             |  |
| Applicant:     | jjPlus CORP.                                    |  |
| Test Date:     | Jan. 14, 2020 ~ Jan. 15, 2020                   |  |
| Standards:     | 47 CFR FCC Part 15, Subpart E (Section 15.407)  |  |
|                | ANSI C63.10:2013                                |  |

This report is issued as a supplementary report to BV CPS report no.: RF170419C34A. This report shall be used by combining with its original report.

Prepared by :

hen

Date: Jan. 22, 2020

Jan. 22, 2020

Date:

Rona Chen / Specialist

Approved by :

Dylan Chiou / Senior Project Engineer



# 2 Summary of Test Results

| 47 CFR FCC Part 15, Subpart E (Section 15.407) |                                               |        |                                                                                          |  |  |
|------------------------------------------------|-----------------------------------------------|--------|------------------------------------------------------------------------------------------|--|--|
| FCC<br>Clause                                  | Test Item                                     | Result | Remarks                                                                                  |  |  |
| 15.407(b)(6)                                   | AC Power Conducted Emissions                  | Pass   | Meet the requirement of limit.<br>Minimum passing margin is -15.82 dB<br>at 1.26825 MHz. |  |  |
| 15.407(b)<br>(1/2/3/4(i/ii)/6)                 | Radiated Emissions & Band Edge<br>Measurement | Pass   | Meet the requirement of limit.<br>Minimum passing margin is -1.3 dB at<br>144.46 MHz.    |  |  |
| 15.407(a)(1/2/<br>3)                           | Max Average Transmit Power                    | N/A    | Refer to Note 2                                                                          |  |  |
|                                                | Occupied Bandwidth<br>Measurement             | N/A    | Refer to Note 2                                                                          |  |  |
| 15.407(a)(1/2/<br>3)                           | Peak Power Spectral Density                   | N/A    | Refer to Note 2                                                                          |  |  |
| 15.407(e)                                      | 6 dB Bandwidth                                | N/A    | Refer to Note 2                                                                          |  |  |
| 15.407(g)                                      | Frequency Stability                           | N/A    | Refer to Note 2                                                                          |  |  |
| 15.203                                         | Antenna Requirement                           | N/A    | Refer to Note 2                                                                          |  |  |

Note:

- 1. N/A: Not Applicable
- 2. Only AC Power Conducted Emission and Radiated Emissions below 1GHz test were performed for this addendum. Refer to original report for other test data.
- 3. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

#### 2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| Measurement                        | Frequency          | Expanded Uncertainty<br>(k=2) (±) |
|------------------------------------|--------------------|-----------------------------------|
| Conducted Emissions at mains ports | 150 kHz ~ 30 MHz   | 2.79 dB                           |
|                                    | 9 kHz ~ 30 MHz     | 3.04 dB                           |
| Radiated Emissions up to 1 GHz     | 30 MHz ~ 200 MHz   | 2.93 dB                           |
|                                    | 200 MHz ~ 1000 MHz | 2.95 dB                           |

#### 2.2 Modification Record

There were no modifications required for compliance.



# 3 General Information

#### 3.1 General Description of EUT

| Product                                         | 802.11ac/abgn 2T2R Half Mini-PCI-Express Module            |  |  |
|-------------------------------------------------|------------------------------------------------------------|--|--|
| Brand                                           | jjPlus                                                     |  |  |
| Test Model                                      |                                                            |  |  |
| Status of EUT                                   | Identical Prototype                                        |  |  |
| Power Supply Rating                             | 3.3 Vdc (Host equipment)                                   |  |  |
| Modulation Type256QAM, 64QAM, 16QAM, QPSK, BPSK |                                                            |  |  |
| Modulation Technology                           | OFDM                                                       |  |  |
|                                                 | 802.11a: 54.0/ 48.0/ 36.0/ 24.0/ 18.0/ 12.0/ 9.0/ 6.0 Mbps |  |  |
| Transfer Rate                                   | 802.11n: up to 300 Mbps                                    |  |  |
|                                                 | 802.11ac: up to 866.7 Mbps                                 |  |  |
| Operating Frequency                             | 5180 ~ 5240 MHz, 5260 ~ 5320 MHz, 5500 ~ 5700 MHz,         |  |  |
|                                                 | 5745 ~ 5825 MHz                                            |  |  |
|                                                 | 5180 ~ 5240 MHz: 4 for 802.11a, 802.11n (HT20)             |  |  |
|                                                 | 2 for 802.11n (HT40)                                       |  |  |
|                                                 | 1 for 802.11ac (VHT80)                                     |  |  |
|                                                 | 5260 ~ 5320 MHz: 4 for 802.11a, 802.11n (HT20)             |  |  |
|                                                 | 2 for 802.11n (HT40)                                       |  |  |
| Number of Channel                               | 1 for 802.11ac (VHT80)                                     |  |  |
| Number of Channel                               | 5500 ~ 5700 MHz: 11 for 802.11a, 802.11n (HT20)            |  |  |
|                                                 | 5 for 802.11n (HT40)                                       |  |  |
|                                                 | 2 for 802.11ac (VHT80)                                     |  |  |
|                                                 | 5745 ~ 5825 MHz: 5 for 802.11a, 802.11n (HT20)             |  |  |
|                                                 | 2 for 802.11n (HT40)                                       |  |  |
|                                                 | 1 for 802.11ac (VHT80)                                     |  |  |
|                                                 | Dipole antenna with 2 dBi gain (5180 ~ 5240 MHz)           |  |  |
| Antonno Tuno                                    | Dipole antenna with 2 dBi gain (5260 ~ 5320 MHz)           |  |  |
| Antenna Type                                    | Dipole antenna with 2 dBi gain (5500 ~ 5700 MHz)           |  |  |
|                                                 | Dipole antenna with 2 dBi gain (5745 ~ 5825 MHz)           |  |  |
| Antenna Connector                               | N/A                                                        |  |  |
| Accessory Device                                | N/A                                                        |  |  |
| Data Cable Supplied N/A                         |                                                            |  |  |

#### Note:

- This report is issued as a supplementary report to BV CPS report no.: RF170419C34A. The difference compared with original report is changing Voltage stabilizing capacitor model from 0603 to 0402. Therefore, only AC Power Conducted Emission and Radiated Emissions below 1GHz tests were verified on the worst case of original report.
- 2. The EUT incorporates a MIMO function. Physically, the EUT provides two completed transmitters and two receivers.

| Modulation Mode  | Tx Function |  |
|------------------|-------------|--|
| 802.11a          | 1TX (SISO)  |  |
| 802.11n (HT20)   | 2TX (MIMO)  |  |
| 802.11n (HT40)   | 2TX (MIMO)  |  |
| 802.11ac (VHT80) | 2TX (MIMO)  |  |



#### 3. All models are listed as below.

| Brand  | Model   | Difference                                             |
|--------|---------|--------------------------------------------------------|
| i      | JWX6055 | The difference between two model names is temperature  |
| JJPlus | JWX6056 | operating range only. Other specification is the same. |

\* JWX6056 was chosen for the final test and only its test result was recorded in this report.

4. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.



# 3.2 Description of Test Modes

#### For 5180 ~ 5240 MHz

4 channels are provided for 802.11a, 802.11n (HT20):

| Channel | Frequency (MHz) | Channel | Frequency (MHz) |
|---------|-----------------|---------|-----------------|
| 36      | 5180            | 44      | 5220            |
| 40      | 5200            | 48      | 5240            |

2 channels are provided for 802.11n (HT40):

| Channel Frequency (MHz) |  | Channel | Frequency (MHz) |
|-------------------------|--|---------|-----------------|
| 38 5190                 |  | 46      | 5230            |

1 channel is provided for 802.11ac (VHT80):

| Channel | Frequency (MHz) |  |
|---------|-----------------|--|
| 42      | 5210            |  |

#### For 5260 ~ 5320 MHz

4 channels are provided for 802.11a, 802.11n (HT20):

| Channel Frequency (MHz) |      | Channel | Frequency (MHz) |
|-------------------------|------|---------|-----------------|
| 52                      | 5260 | 60      | 5300            |
| 56                      | 5280 | 64      | 5320            |

#### 2 channels are provided for 802.11n (HT40):

| Channel | Frequency (MHz) | Channel | Frequency (MHz) |  |
|---------|-----------------|---------|-----------------|--|
| 54      | 5270            | 62      | 5310            |  |

# 1 channel is provided for 802.11ac (VHT80):

| Channel | Frequency (MHz) |  |
|---------|-----------------|--|
| 58      | 5290            |  |



#### For 5500 ~ 5700 MHz

11 channels are provided for 802.11a, 802.11n (HT20):

| Channel | Frequency (MHz) | Channel | Frequency (MHz) |  |
|---------|-----------------|---------|-----------------|--|
| 100     | 5500            | 124     | 5620            |  |
| 104     | 5520            | 128     | 5640            |  |
| 108     | 5540            | 132     | 5660            |  |
| 112     | 5560            | 136     | 5680            |  |
| 116     | 5580            | 140     | 5700            |  |
| 120     | 5600            |         |                 |  |

# 5 channels are provided for 802.11n (HT40):

| Channel | Frequency (MHz) | Channel | Frequency (MHz) |
|---------|-----------------|---------|-----------------|
| 102     | 5510            | 126     | 5630            |
| 110     | 5550            | 134     | 5670            |
| 118     | 5590            |         |                 |

#### 2 channels are provided for 802.11ac (VHT80):

| Channel | Frequency (MHz) | Channel | Frequency (MHz) |
|---------|-----------------|---------|-----------------|
| 106     | 5530            | 122     | 5610            |

# For 5745 ~ 5825 MHz:

5 channels are provided for 802.11a, 802.11n (HT20):

| Channel | Frequency (MHz) | Channel | Frequency (MHz) |
|---------|-----------------|---------|-----------------|
| 149     | 5745            | 161     | 5805            |
| 153     | 5765            | 165     | 5825            |
| 157     | 5785            |         |                 |

## 2 channels are provided for 802.11n (HT40):

| Channel | Frequency (MHz) | Channel | Frequency (MHz) |  |
|---------|-----------------|---------|-----------------|--|
| 151     | 5755            | 159     | 5795            |  |

# 1 channel is provided for 802.11ac (VHT80):

| Channel | Frequency (MHz) |  |
|---------|-----------------|--|
| 155     | 5775            |  |



| EUT Configure                                                                                                                                                                                                                                                                                                                                                |                         | Applicable          | То                   |                  |         | D.                       |                                       |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|----------------------|------------------|---------|--------------------------|---------------------------------------|---------------------|
| Mode                                                                                                                                                                                                                                                                                                                                                         | R                       | E<1G                | PLC                  | ;                |         | Des                      | scription                             |                     |
| -                                                                                                                                                                                                                                                                                                                                                            |                         |                     |                      |                  | -       |                          |                                       |                     |
| Where RE<                                                                                                                                                                                                                                                                                                                                                    | :1G: Radiated E         | mission below 1 GHz | PLC:                 | Power Line Cor   | nducter | d Emission               |                                       |                     |
|                                                                                                                                                                                                                                                                                                                                                              |                         |                     |                      |                  |         |                          |                                       |                     |
| Radiated Em                                                                                                                                                                                                                                                                                                                                                  | ission Test             | (Below 1 GHz):      | ·····                |                  | 1. 6    |                          | · · · · · · · · · · · · · · · · · · · |                     |
| Yre-Scan                                                                                                                                                                                                                                                                                                                                                     | has been co             | nducted to deterr   | nine the wo          | rst-case mod     | le tro  | m all possible           | e complinations                       | between             |
| available                                                                                                                                                                                                                                                                                                                                                    | modulations             | , data rates and a  | ntenna port          | s (if EUT with   | 1 ante  | enna diversity           | / architecture).                      |                     |
| 🛛 Following                                                                                                                                                                                                                                                                                                                                                  | channel(s) v            | vas (were) selecte  | ed for the fir       | hal test as list | ted be  | elow.                    |                                       |                     |
| EUT<br>Configure<br>Mode                                                                                                                                                                                                                                                                                                                                     | Frequency<br>Band (MHz) | Mode                | Available<br>Channel | Tested Chan      | inel    | Modulation<br>Technology | Modulation<br>Type                    | Data Rate<br>(Mbps) |
| -                                                                                                                                                                                                                                                                                                                                                            | 5500-5700               | 802.11n (HT20)      | 100 to 140           | 140              |         | OFDM                     | BPSK                                  | 6.5                 |
| <ul> <li>Power Line Conducted Emission Test:</li> <li>Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).</li> <li>Following channel(s) was (were) selected for the final test as listed below.</li> </ul> |                         |                     |                      |                  |         |                          |                                       |                     |
| EUT<br>Configure                                                                                                                                                                                                                                                                                                                                             | Frequency<br>Band (MHz) | Mode                | Available<br>Channel | Tested Chan      | nel     | Modulation<br>Technology | Modulation<br>Type                    | Data Rate<br>(Mbps) |
| NIOGE                                                                                                                                                                                                                                                                                                                                                        |                         |                     |                      |                  |         |                          |                                       |                     |

# Test Condition:

| Applicable To | Environmental Conditions | Input Power    | Tested by    |  |
|---------------|--------------------------|----------------|--------------|--|
| RE<1G         | 25 deg. C, 65 % RH       | 120 Vac, 60 Hz | Getaz Yang   |  |
| PLC           | 25 deg. C, 65 % RH       | 120 Vac, 60 Hz | Jisyong Wang |  |



# 3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| No. | Product  | Brand | Model No.    | Serial No. | FCC ID |
|-----|----------|-------|--------------|------------|--------|
| 1.  | Notebook | DELL  | Inspiron 14R | 9LRKKW1    | N/A    |

| No. | Signal Cable Description Of The Above Support Units |
|-----|-----------------------------------------------------|
| 1.  | N/A                                                 |

Note:

1. All power cords of the above support units are non-shielded (1.8m).

#### 3.3.1 Configuration of System under Test



#### 3.4 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

#### Test Standard:

#### FCC Part 15, Subpart E (15.407)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

#### **References Test Guidance:**

# KDB 789033 D02 General UNII Test Procedures New Rules v02r01 KDB 662911 D01 Multiple Transmitter Output v02r01

All test items have been performed as a reference to the above KDB test guidance.



# 4 Test Types and Results

## 4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

| Frequencies<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance<br>(meters) |  |  |
|----------------------|--------------------------------------|----------------------------------|--|--|
| 0.009 ~ 0.490        | 2400/F (kHz)                         | 300                              |  |  |
| 0.490 ~ 1.705        | 24000/F (kHz)                        | 30                               |  |  |
| 1.705 ~ 30.0         | 30                                   | 30                               |  |  |
| 30 ~ 88              | 100                                  | 3                                |  |  |
| 88 ~ 216             | 150                                  | 3                                |  |  |
| 216 ~ 960            | 200                                  | 3                                |  |  |
| Above 960            | 500                                  | 3                                |  |  |

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.



# 4.1.2 Limits of Unwanted Emission Out of the Restricted Bands

| Арј                                         | olicab                       | le To            | Limit                                |                       |              |  |
|---------------------------------------------|------------------------------|------------------|--------------------------------------|-----------------------|--------------|--|
| 789033 D02 General UNII Test Procedures New |                              |                  | Field Strengt                        | h at 3 m              |              |  |
| Ru                                          | les v02                      | 2r01             | PK: 74 (dBµV/m)                      | AV: 54 (dBµV/m)       |              |  |
| Frequency Band Applicable To                |                              | EIRP Limit       | Equivalent Field<br>Strength at 3 m  |                       |              |  |
| 5150~5250 MHz                               | 15.407(b)(1)<br>15.407(b)(2) |                  |                                      |                       |              |  |
| 5250~5350 MHz                               |                              |                  | 15.407(b)(2)                         |                       | 15.407(b)(2) |  |
| 5470~5725 MHz                               |                              | 15.407(b)(3)     |                                      |                       |              |  |
|                                             |                              |                  | PK:-27 (dBm/MHz) *1                  | PK: 68.2 (dBµV/m) *1  |              |  |
|                                             |                              | 15 407(b)(4)(i)  | PK:10 (dBm/MHz) *2                   | PK:105.2 (dBµV/m) *2  |              |  |
| 5725~5850 MHz                               |                              | 15.407(D)(4)(I)  | PK:15.6 (dBm/MHz) *3                 | PK: 110.8 (dBµV/m) *3 |              |  |
|                                             |                              |                  | PK:27 (dBm/MHz) *4                   | PK:122.2 (dBµV/m) *4  |              |  |
|                                             |                              | 15.407(b)(4)(ii) | Emission limits in section 15.247(d) |                       |              |  |

<sup>\*1</sup> beyond 75 MHz or more above of the band edge.

<sup>\*2</sup> below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

<sup>\*3</sup> below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

<sup>\*4</sup> from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \quad \mu V/m, \text{ where P is the eirp (Watts).}$$



#### 4.1.3 Test Instruments

| Description &<br>Manufacturer                 | Model No.      | Serial No.    | Date of<br>Calibration | Due Date of<br>Calibration |  |
|-----------------------------------------------|----------------|---------------|------------------------|----------------------------|--|
| Test Receiver<br>Agilent                      | N9038A         | MY51210203    | Mar. 18, 2019          | Mar. 17, 2020              |  |
| Spectrum Analyzer<br>Agilent                  | N9010A         | MY52220314    | Dec. 12, 2019          | Dec. 11, 2020              |  |
| BILOG Antenna<br>SCHWARZBECK                  | VULB 9168      | 9168-472      | Nov. 08, 2019          | Nov. 07, 2020              |  |
| Fixed Attenuator<br>WORKEN                    | MDCS18N-10     | MDCS18N-10-01 | Apr. 15, 2019          | Apr. 14, 2020              |  |
| Loop Antenna<br>TESEQ                         | HLA 6121       | 45745         | Jul. 01, 2019          | Jun. 30, 2020              |  |
| Preamplifier<br>EMCI                          | EMC001340      | 980201        | Oct. 14, 2019          | Oct. 13, 2020              |  |
| Preamplifier<br>EMCI                          | EMC 330H       | 980112        | Oct. 08, 2019          | Oct. 07, 2020              |  |
| RF Coaxial Cable<br>WOKEN                     | 8D-FB          | Cable-Ch10-01 | Oct. 08, 2019          | Oct. 07, 2020              |  |
| Boresight Antenna Fixture                     | FBA-01         | FBA-SIP01     | NA                     | NA                         |  |
| Software<br>BV ADT                            | E3<br>6.120103 | NA            | NA                     | NA                         |  |
| Antenna Tower<br>MF                           | MFA-440H       | NA            | NA                     | NA                         |  |
| Turn Table<br>MF                              | MFT-201SS      | NA            | NA                     | NA                         |  |
| Antenna Tower &Turn<br>Table Controller<br>MF | MF-7802        | NA            | NA                     | NA                         |  |

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 10.



# 4.1.4 Test Procedures

#### For Radiated Emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

#### Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30 MHz.

#### For Radiated Emission above 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30 MHz ~ 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

#### Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) or Peak detection (PK) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98 %) or 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz. (Duty cycle ≥ 98 %, 11n (HT20): RBW = 1 MHz, VBW = 10 Hz)</li>
- 4. All modes of operation were investigated and the worst-case emissions are reported.

# 4.1.5 Deviation from Test Standard

No deviation.



#### 4.1.6 Test Setup

#### <Radiated Emission below 30 MHz>



- a. Placed the EUT on a testing table.
- b. Use the software to control the EUT under transmission condition continuously at specific channel frequency.



# 4.1.8 Test Results

# 9 kHz ~ 30 MHz Data:

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

#### 30 MHz ~ 1 GHz Worst-Case Data:

# 802.11n (HT20)

| EUT Test Condition                             |                | Measurement Detail |                              |  |  |
|------------------------------------------------|----------------|--------------------|------------------------------|--|--|
| Channel                                        | Channel 140    | Frequency Range    | 30 MHz ~ 1 GHz               |  |  |
| Input Power                                    | 120 Vac, 60 Hz | Detector Function  | Peak (PK)<br>Quasi-peak (QP) |  |  |
| Environmental<br>Conditions 25 deg. C, 65 % RH |                | Tested By          | Getaz Yang                   |  |  |

#### Horizontal



#### Vertical





| Antonna Polarity & Tost Distance: Horizontal at 3 m                   |                               |                      |                   |                   |                        |                         |                  |      |  |
|-----------------------------------------------------------------------|-------------------------------|----------------------|-------------------|-------------------|------------------------|-------------------------|------------------|------|--|
| Frequency<br>(MHz) Emission<br>Level<br>(dBuV/m) Read Level<br>(dBuV) |                               | Factor<br>(dB/m)     | Limit<br>(dBuV/m) | Margin (dB)       | Antenna<br>Height (cm) | Table Angle<br>(Degree) | Remark           |      |  |
| 99.84                                                                 | 39.98                         | 56.01                | -16.03            | 43.5              | -3.52                  | 116                     | 61               | Peak |  |
| 144.46                                                                | 42.2                          | 54.04                | -11.84            | 43.5              | -1.3                   | 109                     | 321              | Peak |  |
| 232.73                                                                | 36.44                         | 50.56                | -14.12            | 46                | -9.56                  | 135                     | 119              | Peak |  |
| 365.62                                                                | 39.37                         | 48.58                | -9.21             | 46                | -6.63                  | 139                     | 204              | Peak |  |
| 601.33                                                                | 30.63                         | 33.32                | -2.69             | 46                | -15.37                 | 122                     | 63               | Peak |  |
| 853.53                                                                | 35.94                         | 33.46                | 2.48              | 46                | -10.06                 | 108                     | 223              | Peak |  |
|                                                                       |                               | Antenna              | a Polarity &      | Test Dista        | nce: Vertica           | l at 3 m                |                  |      |  |
| Frequency<br>(MHz)                                                    | Emission<br>Level<br>(dBuV/m) | Read Level<br>(dBuV) | Factor<br>(dB/m)  | Limit<br>(dBuV/m) | Margin (dB)            | Antenna<br>Height (cm)  | n) (Degree) Rema |      |  |
| 66.86                                                                 | 33.9                          | 47.09                | -13.19            | 40                | -6.1                   | 120                     | 85               | Peak |  |
| 144.46                                                                | 36.73                         | 48.57                | -11.84            | 43.5              | -6.77                  | 119                     | 185              | Peak |  |
| 232.73                                                                | 30.73                         | 44.85                | -14.12            | 46                | -15.27                 | 100                     | 193              | Peak |  |
| 365.62                                                                | 34.46                         | 43.67                | -9.21             | 46                | -11.54                 | 138                     | 101              | Peak |  |
| 431.58                                                                | 35.05                         | 42.08                | -7.03             | 46                | -10.95                 | 135                     | 37               | Peak |  |
| 790.48                                                                | 34.67                         | 33.15                | 1.52              | 46                | -11.33                 | 100                     | 243              | Peak |  |

Remarks:

1. Emission Level = Read Level + Factor

Margin value = Emission level – Limit value.

2. The emission levels of other frequencies were very low against the limit.



# 4.2 Conducted Emission Measurement

|       |                                              |  | Conducted Limit (d |  |  |  |  |
|-------|----------------------------------------------|--|--------------------|--|--|--|--|
| 4.2.1 | 2.1 Limits of Conducted Emission Measurement |  |                    |  |  |  |  |

|                 | Conducted Limit (dBuV) |         |  |  |  |  |  |
|-----------------|------------------------|---------|--|--|--|--|--|
| Frequency (MHZ) | Quasi-Peak             | Average |  |  |  |  |  |
| 0.15 - 0.5      | 66 - 56                | 56 - 46 |  |  |  |  |  |
| 0.50 - 5.0      | 56                     | 46      |  |  |  |  |  |
| 5.0 - 30.0      | 60                     | 50      |  |  |  |  |  |

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

#### 4.2.2 Test Instruments

| Description &<br>Manufacturer               | Model No.                | Serial No.     | Date of<br>Calibration | Due Date of<br>Calibration |
|---------------------------------------------|--------------------------|----------------|------------------------|----------------------------|
| Test Receiver<br>ROHDE & SCHWARZ            | ESR3                     | 102412         | Feb. 14, 2019          | Feb. 13, 2020              |
| RF signal cable (with<br>10dB PAD)<br>Woken | 5D-FB                    | Cable-cond2-01 | Sep. 05, 2019          | Sep. 04, 2020              |
| LISN<br>ROHDE & SCHWARZ<br>(EUT)            | ESH2-Z5                  | 100100         | Jan. 30, 2019          | Jan. 29, 2020              |
| LISN<br>ROHDE & SCHWARZ<br>(Peripheral)     | ESH3-Z5                  | 100312         | Aug. 13, 2019          | Aug. 12, 2020              |
| Software<br>ADT                             | BV ADT_Cond_<br>V7.3.7.4 | NA             | NA                     | NA                         |

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 2.
- 3. The VCCI Site Registration No. is C-12047.



# 4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit -20 dB) was not recorded.

Note: All modes of operation were investigated and the worst-case emissions are reported.

#### 4.2.4 Deviation from Test Standard

No deviation.

#### 4.2.5 Test Setup



2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

#### 4.2.6 EUT Operating Conditions

- a. Placed the EUT on a testing table.
- b. Use the software to control the EUT under transmission condition continuously at specific channel frequency.



# 4.2.7 Test Results

| Frequency Range | 150kHz ~ 30MHz | Detector Function &<br>Resolution<br>Bandwidth | Quasi-Peak (QP) /<br>Average (AV), 9kHz |
|-----------------|----------------|------------------------------------------------|-----------------------------------------|
| Input Power     | 120Vac, 60Hz   | Environmental<br>Conditions                    | 25℃, 65%RH                              |
| Tested by       | Jisyong Wang   | Test Date                                      | 2020/1/15                               |

|    | Phase Of Power : Line (L) |            |        |               |       |                |       |       |        |        |
|----|---------------------------|------------|--------|---------------|-------|----------------|-------|-------|--------|--------|
|    | Frequency                 | Correction | Readin | Reading Value |       | Emission Level |       | nit   | Margin |        |
| NO |                           | Factor     | (dB    | uv)           | (dB   | uv)            | (dB   | uV)   | (d     | В)     |
|    | (MHz)                     | (dB)       | Q.P.   | AV.           | Q.P.  | AV.            | Q.P.  | AV.   | Q.P.   | AV.    |
| 1  | 0.17925                   | 10.12      | 29.33  | 27.08         | 39.45 | 37.20          | 64.52 | 54.52 | -25.07 | -17.32 |
| 2  | 0.23600                   | 10.13      | 24.61  | 23.69         | 34.74 | 33.82          | 62.24 | 52.24 | -27.50 | -18.42 |
| 3  | 0.26700                   | 10.13      | 22.34  | 21.07         | 32.47 | 31.20          | 61.21 | 51.21 | -28.74 | -20.01 |
| 4  | 1.25201                   | 10.23      | 16.97  | 13.02         | 27.20 | 23.25          | 56.00 | 46.00 | -28.80 | -22.75 |
| 5  | 2.10075                   | 10.26      | 20.86  | 15.83         | 31.12 | 26.09          | 56.00 | 46.00 | -24.88 | -19.91 |
| 6  | 19.14450                  | 10.63      | 19.76  | 15.79         | 30.39 | 26.42          | 60.00 | 50.00 | -29.61 | -23.58 |

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value





| Frequency Range | 150kHz ~ 30MHz | Detector Function &<br>Resolution<br>Bandwidth | Quasi-Peak (QP) /<br>Average (AV), 9kHz |
|-----------------|----------------|------------------------------------------------|-----------------------------------------|
| Input Power     | 120Vac, 60Hz   | Environmental<br>Conditions                    | 25℃, 65%RH                              |
| Tested by       | Jisyong Wang   | Test Date                                      | 2020/1/15                               |

|    | Phase Of Power : Neutral (N) |            |        |         |         |                |       |       |        |        |
|----|------------------------------|------------|--------|---------|---------|----------------|-------|-------|--------|--------|
|    | Frequency                    | Correction | Readin | g Value | Emissio | Emission Level |       | nit   | Margin |        |
| No |                              | Factor     | (dB    | uV)     | (dB     | uV)            | (dB   | uV)   | (dB)   |        |
|    | (MHz)                        | (dB)       | Q.P.   | AV.     | Q.P.    | AV.            | Q.P.  | AV.   | Q.P.   | AV.    |
| 1  | 0.15900                      | 10.16      | 30.97  | 26.91   | 41.13   | 37.07          | 65.52 | 55.52 | -24.39 | -18.45 |
| 2  | 0.21975                      | 10.18      | 26.91  | 24.76   | 37.09   | 34.94          | 62.83 | 52.83 | -25.74 | -17.89 |
| 3  | 0.32100                      | 10.20      | 22.16  | 20.19   | 32.36   | 30.39          | 59.68 | 49.68 | -27.32 | -19.29 |
| 4  | 1.26825                      | 10.29      | 21.32  | 19.89   | 31.61   | 30.18          | 56.00 | 46.00 | -24.39 | -15.82 |
| 5  | 2.21325                      | 10.33      | 21.25  | 18.85   | 31.58   | 29.18          | 56.00 | 46.00 | -24.42 | -16.82 |
| 6  | 19.01400                     | 10.78      | 18.66  | 15.05   | 29.44   | 25.83          | 60.00 | 50.00 | -30.56 | -24.17 |

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value





# 5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).



# Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <a href="mailto:service.adt@tw.bureauveritas.com">service.adt@tw.bureauveritas.com</a> Web Site: <a href="mailto:www.bureauveritas-adt.com">www.bureauveritas-adt.com</a>

The address and road map of all our labs can be found in our web site also.

--- END ----