

FCC Test Report

Report No.: RF181224C17-1

FCC ID: W23-JWW6051

Test Model: JWW6051

Received Date: Dec. 24, 2018

Test Date: Jan. 24, 2019 ~ Feb. 20, 2019

Issued Date: Feb. 23, 2019

Applicant: jjPlus Corporation

Address: 13F., No.120-3, Qiaohe Rd. Zhonghe Dist., New Taipei City 23584 Taiwan

(R.O.C.)

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

(R.O.C)

Test Location (1): No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City

33383, Taiwan, R.O.C.

Test Location (2): B2F., No.215, Sec. 3, Beixin Rd., Xindian Dist., New Taipei City 231,

Taiwan, R.O.C

FCC Registration /

427177 / TW0011

Designation Number:

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. Afailure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Report No.: RF181224C17-1 Page No. 1 / 37 Report Format Version: 6.1.1

Table of Contents

Re	leas	e Control Record	4
1	Cer	tificate of Conformity	5
2	Sun	nmary of Test Results	6
	2.1	Measurement Uncertainty	6
		Modification Record	
3	Ger	neral Information	7
	3 1	General Description of EUT	7
		Description of Test Modes	
		3.2.1 Test Mode Applicability and Tested Channel Detail	
		Duty Cycle of Test Signal	
	3.4	Description of Support Units	
	2.5	3.4.1 Configuration of System under Test	
		General Description of Applied Standards	
4	Tes	t Types and Results	12
	4.1	Radiated Emission and Bandedge Measurement	12
		4.1.1 Limits of Radiated Emission and Bandedge Measurement	12
		4.1.2 Test Instruments	
		4.1.3 Test Procedures	
		4.1.4 Deviation from Test Standard	
		4.1.6 EUT Operating Conditions	
		4.1.7 Test Results	
	4.2	Conducted Emission Measurement	22
		4.2.1 Limits of Conducted Emission Measurement	
		4.2.2 Test Instruments	
		4.2.3 Test Procedures	
		4.2.4 Deviation from Test Standard	
		4.2.6 EUT Operating Conditions	
		4.2.7 Test Results	
	4.3	6 dB Bandwidth Measurement	
		4.3.1 Limits of 6 dB Bandwidth Measurement	26
		4.3.2 Test Setup	
		4.3.3 Test Instruments	
		4.3.4 Test Procedure	
		4.3.6 EUT Operating Conditions	
		4.3.7 Test Results	
	4.4	Occupied Bandwidth Measurement	
		4.4.1 Test Setup	
		4.4.2 Test Instruments	
		4.4.3 Test Procedure	
		4.4.4 Deviation from Test Standard	
		4.4.5 EUT Operating Conditions	
	45	4.4.6 Test Results Conducted Output Power Measurement	
	٠.٠	4.5.1 Limits of Conducted Output Power Measurement	
		4.5.2 Test Setup	
		4.5.3 Test Instruments	30
		4.5.4 Test Procedures	
		4.5.5 Deviation from Test Standard	
		4.5.6 EUT Operating Conditions	
		4.5.7 Test Results	SU

4.7.7 Test Results	
4.7.6 EUT Operating Condition	
4.7.5 Deviation from Test Standard	
4.7.4 Test Procedure	
4.7.3 Test Instruments	
4.7.2 Test Setup	
4.7.1 Limits of Conducted Out of Band Emission Measurement	
4.7 Conducted Out of Band Emission Measurement	33
4.6.7 Test Results	32
4.6.6 EUT Operating Condition	31
4.6.5 Deviation from Test Standard	31
4.6.4 Test Procedure	
4.6.3 Test Instruments	31
4.6.2 Test Setup	31
4.6 Power Spectral Density Measurement	

Release Control Record

Issue No.	Description	Date Issued
RF181224C17-1	Original Release	Feb. 23, 2019

Report No.: RF181224C17-1 Page No. 4 / 37 Report Format Version: 6.1.1

1 Certificate of Conformity

Product: 11ac wave2/abgn 2T2R WIFI & BT4.2 M.2 Combo Module

Brand: jjPlus

Test Model: JWW6051

Sample Status: Engineering Sample

Applicant: jjPlus Corporation

Test Date: Jan. 24, 2019 ~ Feb. 20, 2019

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :	7	, Date:	Feb. 23, 2019	
	lumana Muu / Cumaminan			

Ivonne Wu / Supervisor

Dylan Chiou / Project Engineer

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)								
FCC Clause	Test Item	Result	Remarks					
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -15.58 dB at 0.64219 MHz.					
15.205 & 209	Radiated Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -12.94 dB at 2484.28 MHz.					
15.247(d)	Band Edge Measurement	Pass	Meet the requirement of limit.					
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.					
15.247(a)(2)	6 dB Bandwidth	Pass	Meet the requirement of limit.					
	Occupied Bandwidth Measurement	Pass	Reference only					
15.247(b)	Conducted Power	Pass	Meet the requirement of limit.					
15.247(e)	Power Spectral Density	Pass	Meet the requirement of limit.					
15.203	Antenna Requirement	Pass	Antenna connector is U.FL not a standard connector.					

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.44 dB
Padiated Emissions up to 1 CHz	30 MHz ~ 200 MHz	2.0153 dB
Radiated Emissions up to 1 GHz	200 MHz ~ 1000 MHz	2.0224 dB
Dedicted Emissions above 4 Clb	1 GHz ~ 18 GHz	1.0121 dB
Radiated Emissions above 1 GHz	18 GHz ~ 40 GHz	1.1508 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	11ac wave2/abgn 2T2R WIFI & BT4.2 M.2 Combo Module
Brand	jjPlus
Test Model	JWW6051
Status of EUT	Engineering Sample
Power Supply Rating	3.3 Vdc (hot equipment)
Modulation Type	GFSK
Transfer Rate	1 Mbps
Operating Frequency	2402 ~ 2480 MHz
Number of Channel	40
Output Power	1.021 mW
Antenna Type	Dipole antenna with 3 dBi gain
Antenna Connector	U.FL
Accessory Device	N/A
Data Cable Supplied	N/A

Note:

1.	The above EUT information is declared by manufacturer and for more detailed features description	on,
	please refers to the manufacturer's specifications or User's Manual.	

Report No.: RF181224C17-1 Page No. 7 / 37 Report Format Version: 6.1.1

3.2 Description of Test Modes

40 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applica	able To		
Mode	RE≥1G	RE<1G	PLC	APCM	Description
-	√	√	V	√	-

Where **RE≥1G**: Radiated Emission above 1 GHz

RE<1G: Radiated Emission below 1 GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

Note: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Z-plane.

Note: "-"means no effect.

Radiated Emission Test (Above 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate (Mbps)
-	0 to 39	0, 19, 39	GFSK	1

Radiated Emission Test (Below 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate (Mbps)
-	0 to 39	39	GFSK	1

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate (Mbps)
-	0 to 39	39	GFSK	1

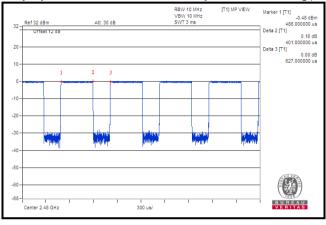
Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate (Mbps)	
-	0 to 39	0, 19, 39	GFSK	1	

Report No.: RF181224C17-1 Page No. 9 / 37 Report Format Version: 6.1.1



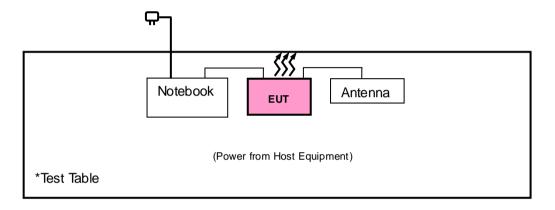
Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested by
RE≥1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Charles Hsiao
RE<1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Charles Hsiao
PLC	25 deg. C, 65 % RH	120 Vac, 60 Hz	Jisyong Wang
APCM	25 deg. C, 60 % RH	3.3 Vdc	Vincent Huang

3.3 Duty Cycle of Test Signal

Duty cycle = 401/627 = 0.640, Duty factor = 10 * log(1/0.640) = 1.94

3.4 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID
1.	Notebook	DELL	E6420	D3T96R1	N/A

No.	Signal Cable Description Of The Above Support Units
1.	N/A

Nota

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) KDB 558074 D01 15.247 Meas Guidance v05

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

Report No.: RF181224C17-1 Page No. 11 / 37 Report Format Version: 6.1.1

^{1.} All power cords of the above support units are non-shielded (1.8m).

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Report No.: RF181224C17-1 Page No. 12 / 37 Report Format Version: 6.1.1

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent Technologies	N9038A	MY52260177	Aug. 20, 2018	Aug. 19, 2019
Spectrum Analyzer ROHDE & SCHWARZ	FSV40	100980	Apr. 17, 2018	Apr. 16, 2019
HORN Antenna ETS-Lindgren	3117	00143293	Nov. 25, 2018	Nov. 24, 2019
BILOG Antenna SCHWARZBECK	VULB 9168	9168-616	Nov. 27, 2018	Nov. 26, 2019
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Nov. 25, 2018	Nov. 24, 2019
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 16, 2018	Apr. 15, 2019
Loop Antenna	EM-6879	269	Sep. 07, 2018	Sep. 06, 2019
Preamplifier Agilent	310N	187226	Jun. 19, 2018	Jun. 18, 2019
Preamplifier Agilent	83017A	MY39501357	Jun. 19, 2018	Jun. 18, 2019
Preamplifier EMCI	EMC 184045	980116	Oct. 12, 2018	Oct. 11, 2019
Power Meter Anritsu	ML2495A	1012010	Sep. 05, 2018	Sep. 04, 2019
Power Sensor Anritsu	MA2411B	1315050	Sep. 04, 2018	Sep. 03, 2019
RF signal cable ETS-LINDGREN	5D-FB	Cable-CH1-01(R FC-SMS-100-SM S-120+RFC-SMS -100-SMS-400)	Jun. 19, 2018	Jun. 18, 2019
RF signal cable ETS-LINDGREN	8D-FB	Cable-CH1-02(R FC-SMS-100-SM S-24)	Jun. 19, 2018	Jun. 18, 2019
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Software BV ADT	E3 8.130425b	NA	NA	NA
Antenna Tower MF	NA	NA	NA	NA
Turn Table MF	NA	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HsinTien Chamber 1.
- 3. The horn antenna and preamplifier (model: 83017A) are used only for the measurement of emission frequency above 1 GHz if tested.
- 4. The IC Site Registration No. is 7450I-1.

4.1.3 Test Procedures

For Radiated Emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

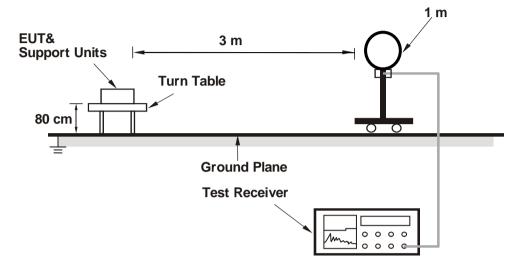
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30 MHz.

For Radiated Emission above 30 MHz

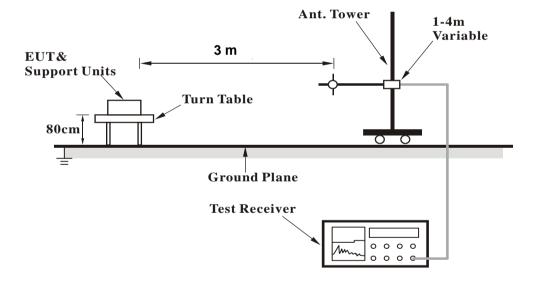
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30 MHz ~ 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is \geq 1/T (Duty cycle < 98 %) or 10 Hz (Duty cycle \geq 98 %) for Average detection (AV) at frequency above 1 GHz. (RBW = 1 MHz, VBW = 3 kHz)
- 4. All modes of operation were investigated and the worst-case emissions are reported.

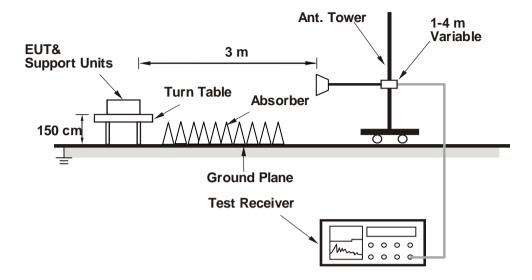

4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Set Up

<Radiated Emission below 30 MHz>



<Radiated Emission 30 MHz to 1 GHz>

<Radiated Emission above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1 GHz Data:

EUT Test Condition		Measurement Detail		
Channel	Channel 0	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

	Antennal Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2387.04	40.39	33.95	54	-13.61	31.8	5.4	30.76	100	202	Average
2387.04	51.49	45.05	74	-22.51	31.8	5.4	30.76	100	202	Peak
2402	89.09	82.62			31.8	5.4	30.73	100	202	Average
2402	90.15	83.68			31.8	5.4	30.73	100	202	Peak
4804	39.85	27.43	54	-14.15	33.96	8.25	29.79	123	187	Average
4804	50.1	37.68	74	-23.9	33.96	8.25	29.79	123	187	Peak
		Α	ntennal P	olarity &	Test Dist	ance: Ver	tical at 3	m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2386.23	40.37	33.93	54	-13.63	31.8	5.4	30.76	107	290	Average
2386.23	51.5	45.06	74	-22.5	31.8	5.4	30.76	107	290	Peak
2402	99.05	92.58			31.8	5.4	30.73	107	290	Average
2402	100.05	93.58			31.8	5.4	30.73	107	290	Peak
4804	39.12	26.7	54	-14.88	33.96	8.25	29.79	165	94	Average
4804	49.28	36.86	74	-24.72	33.96	8.25	29.79	165	94	Peak

- Emission Level = Read Level + Antenna Factor + Cable Loss Preamp Factor Margin value = Emission level – Limit value
- 2. 2402 MHz: Fundamental frequency.
- 3. The emission levels of other frequencies were very low against the limit.

EUT Test Condition		Measurement Detail		
Channel	Channel 19	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

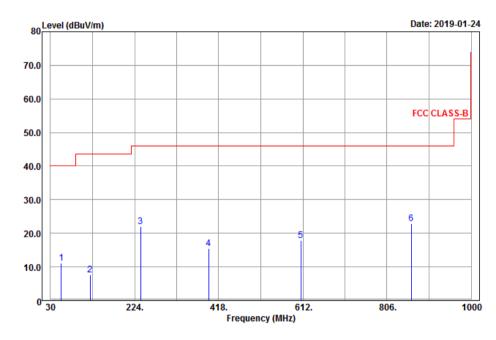
	Antennal Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2384.88	40.44	34.02	54	-13.56	31.78	5.4	30.76	100	202	Average
2384.88	51.68	45.26	74	-22.32	31.78	5.4	30.76	100	202	Peak
2440	88.96	82.34			31.85	5.46	30.69	100	202	Average
2440	90.1	83.48			31.85	5.46	30.69	100	202	Peak
2487.24	40.82	34.03	54	-13.18	31.88	5.53	30.62	100	202	Average
2487.24	51.91	45.12	74	-22.09	31.88	5.53	30.62	100	202	Peak
4880	40.21	27.72	54	-13.79	33.98	8.27	29.76	139	126	Average
4880	50.41	37.92	74	-23.59	33.98	8.27	29.76	139	126	Peak
		A	ntennal P	olarity &	Test Dist	ance: Ver	tical at 3	m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2381.64	40.45	34.03	54	-13.55	31.78	5.4	30.76	107	290	Average
2381.64	51.77	45.35	74	-22.23	31.78	5.4	30.76	107	290	Peak
2440	98.98	92.36			31.85	5.46	30.69	107	290	Average
2440	100.05	93.43			31.85	5.46	30.69	107	290	Peak
2496.24	41	34.15	54	-13	31.9	5.53	30.58	107	290	Average
2496.24	52.3	45.45	74	-21.7	31.9	5.53	30.58	107	290	Peak
4880	38.75	26.26	54	-15.25	33.98	8.27	29.76	157	121	Average
4880	48.92	36.43	74	-25.08	33.98	8.27	29.76	157	121	Peak

- Emission Level = Read Level + Antenna Factor + Cable Loss Preamp Factor Margin value = Emission level – Limit value
- 2. 2440 MHz: Fundamental frequency.
- 3. The emission levels of other frequencies were very low against the limit.

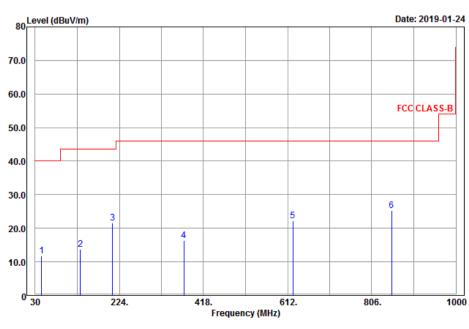
EUT Test Condition		Measurement Detail		
Channel	Channel 39	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

		An	tennal Po	larity & T	est Dista	nce: Horiz	ontal at 3	3 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2480	89.19	82.43			31.88	5.5	30.62	100	202	Average
2480	90.11	83.35			31.88	5.5	30.62	100	202	Peak
2490.88	40.83	34.02	54	-13.17	31.9	5.53	30.62	100	202	Average
2490.88	51.64	44.83	74	-22.36	31.9	5.53	30.62	100	202	Peak
4960	40.95	28.39	54	-13.05	33.99	8.29	29.72	157	106	Average
4960	51.32	38.76	74	-22.68	33.99	8.29	29.72	157	106	Peak
		Α	ntennal P	olarity &	Test Dist	ance: Ver	tical at 3	m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2480	99.32	61.94			31.88	5.5	0	107	290	Average
2480	100.37	62.99			31.88	5.5	0	107	290	Peak
2484.28	41.06	34.27	54	-12.94	31.88	5.53	30.62	107	290	Average
2484.28	53.32	46.53	74	-20.68	31.88	5.53	30.62	107	290	Peak
4960	40.36	27.8	54	-13.64	33.99	8.29	29.72	129	164	Average
4960	50.54	37.98	74	-23.46	33.99	8.29	29.72	129	164	Peak

- Emission Level = Read Level + Antenna Factor + Cable Loss Preamp Factor Margin value = Emission level – Limit value
- 2. 2480 MHz: Fundamental frequency.
- 3. The emission levels of other frequencies were very low against the limit.


9 kHz ~ 30 MHz Data:

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.


30 MHz ~ 1 GHz Worst-Case Data:

EUT Test Condition		Measurement Detail			
Channel	Channel 39	Frequency Range	30 MHz ~ 1 GHz		
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Quasi-peak (QP)		
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao		

Horizontal

Vertical

Report No.: RF181224C17-1 Page No. 20 / 37 Report Format Version: 6.1.1

	Antennal Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
54.84	11.11	28.3	40	-28.89	14.14	0.9	32.23	133	150	Peak
121.26	7.56	28.39	43.5	-35.94	10.04	1.38	32.25	164	128	Peak
237.9	21.98	40.26	46	-24.02	12.02	1.85	32.15	174	197	Peak
394.5	15.55	30.53	46	-30.45	14.89	2.34	32.21	130	49	Peak
607.3	17.8	29.12	46	-28.2	18	2.87	32.19	100	188	Peak
862.1	22.82	29.92	46	-23.18	21.18	3.44	31.72	165	231	Peak
		А	ntennal P	olarity &	Test Dist	ance: Ver	tical at 3	m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
45.12	11.75	28.66	40	-28.25	14.41	0.9	32.22	172	241	Peak
134.49	13.67	35.84	43.5	-29.83	8.7	1.38	32.25	105	77	Peak
208.2	21.57	41.03	43.5	-21.93	11.15	1.65	32.26	168	253	Peak
372.8	16.3	31.68	46	-29.7	14.5	2.26	32.14	125	170	Peak
624.1	22.21	33.29	46	-23.79	18.16	2.93	32.17	164	129	Peak
851.6	25.31	32.61	46	-20.69	21.04	3.44	31.78	134	105	Peak

- Emission Level = Read Level + Antenna Factor + Cable Loss Preamp Factor Margin value = Emission level – Limit value
- 2. The emission levels of other frequencies were very low against the limit.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Fraguency (MU=)	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-Peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

4.2.2 Test Instruments

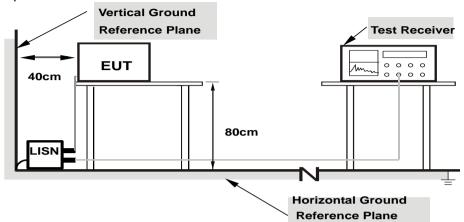
Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Dec. 10, 2018	Dec. 09, 2019
RF signal cable Woken	5D-FB	Cable-cond1-01	Sep. 05, 2018	Sep. 04, 2019
LISWAMN ROHDE & SCHWARZ (EUT)	ENV216	101826	Feb. 26, 2018	Feb. 25, 2019
LISWAMN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Aug. 19, 2018	Aug. 18, 2019
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 1.
- 3. The VCCI Site Registration No. is C-2040.

4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.


Note: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz - 30 MHz.

4.2.4 Deviation from Test Standard

No deviation.

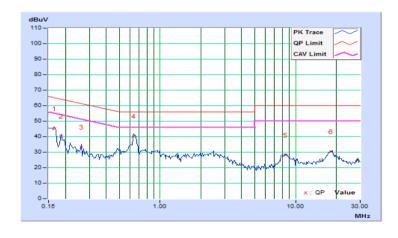
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

4.2.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

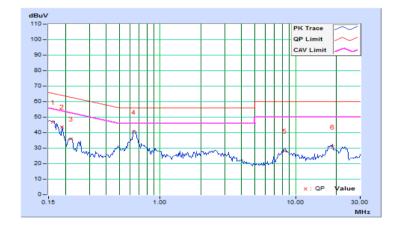


4.2.7 Test Results

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Thomas Wei	Test Date	2019/2/20

	Phase Of Power : Line (L)									
	•			g Value		n Level	Limit		Margin	
No		Factor	(dB	uV)	(dB	⊌uV)	(dE	luV)	(d	B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16562	9.67	35.66	17.96	45.33	27.63	65.18	55.18	-19.85	-27.55
2	0.18516	9.67	30.61	15.98	40.28	25.65	64.25	54.25	-23.97	-28.60
3	0.26328	9.67	23.56	5.72	33.23	15.39	61.33	51.33	-28.10	-35.94
4	0.64219	9.66	30.67	11.47	40.33	21.13	56.00	46.00	-15.67	-24.87
5	8.41406	9.82	18.45	4.45	28.27	14.27	60.00	50.00	-31.73	-35.73
6	18.23047	9.90	20.48	5.31	30.38	15.21	60.00	50.00	-29.62	-34.79

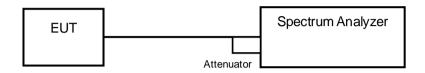
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Thomas Wei	Test Date	2019/2/20

	Phase Of Power : Neutral (N)									
	Frequency	Correction	n Reading Value		Emission Level		Liı	mit	Margin	
No		Factor	(dB	uV)	(dB	uV)	(dE	luV)	(d	B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16172	9.68	36.93	19.80	46.61	29.48	65.38	55.38	-18.77	-25.90
2	0.18906	9.67	33.99	18.66	43.66	28.33	64.08	54.08	-20.42	-25.75
3	0.22031	9.67	26.23	12.38	35.90	22.05	62.81	52.81	-26.91	-30.76
4	0.64219	9.66	30.76	11.66	40.42	21.32	56.00	46.00	-15.58	-24.68
5	8.30859	9.82	18.34	3.69	28.16	13.51	60.00	50.00	-31.84	-36.49
6	18.63672	9.99	20.79	5.66	30.78	15.65	60.00	50.00	-29.22	-34.35

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 6 dB Bandwidth Measurement

4.3.1 Limits of 6 dB Bandwidth Measurement

The minimum of 6 dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100 kHz
- b. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

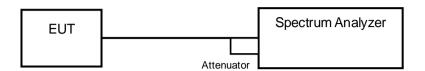
4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Results


Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
0	2402	0.68	0.5	Pass
19	2440	0.68	0.5	Pass
39	2480	0.68	0.5	Pass

4.4 Occupied Bandwidth Measurement

4.4.1 Test Setup

4.4.2 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

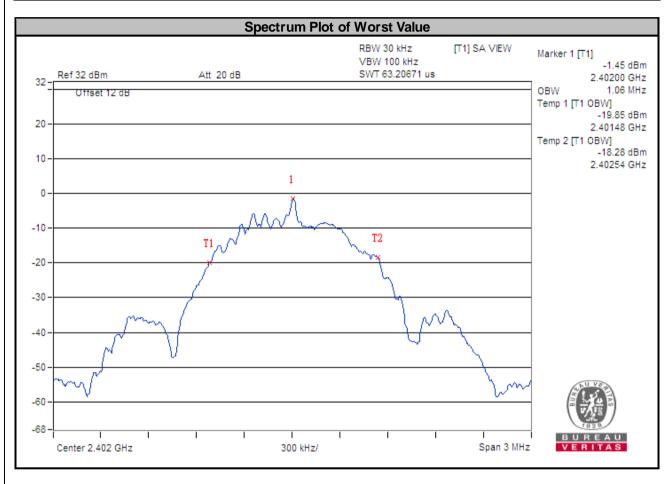
4.4.3 Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with resolution bandwidth in the range of 1 % to 5 % of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth and set the detector to PEAK. The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

4.4.4 Deviation from Test Standard

No deviation.

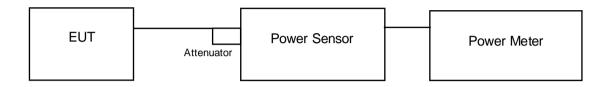
4.4.5 EUT Operating Conditions


The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

Report No.: RF181224C17-1 Page No. 28 / 37 Report Format Version: 6.1.1

4.4.6 Test Results

Channel	Frequency (MHz)	Occupied Bandwidth (MHz)	Pass / Fail
0	2402	1.06	Pass
19	2440	1.06	Pass
39	2480	1.06	Pass



4.5 Conducted Output Power Measurement

4.5.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400-2483.5 MHz bands: 1 Watt (30 dBm)

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

4.5.5 Deviation from Test Standard

No deviation.

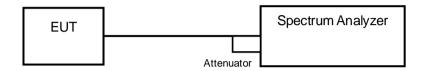
4.5.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass / Fail
0	2402	0.9376	-0.28	30	Pass
19	2440	1.014	0.06	30	Pass
39	2480	1.021	0.09	30	Pass

Report No.: RF181224C17-1 Page No. 30 / 37 Report Format Version: 6.1.1



4.6 Power Spectral Density Measurement

4.6.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8 dBm.

4.6.2 Test Setup

4.6.3 Test Instruments

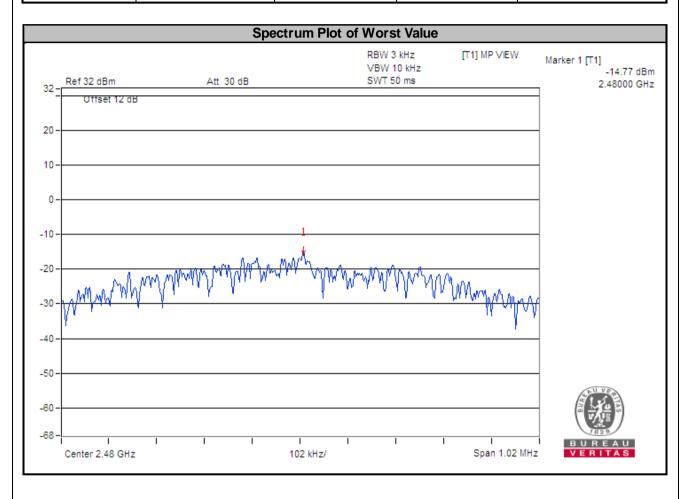
Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d. Set the VBW $\geq 3 \times RBW$.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.6.5 Deviation from Test Standard

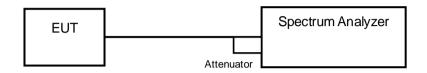
No deviation.


4.6.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.6.7 Test Results

Channel	Frequency (MHz)	PSD (dBm/3 kHz)	Limit (dBm/3 kHz)	Pass / Fail
0	2402	-15.12	8	Pass
19	2440	-14.80	8	Pass
39	2480	-14.77	8	Pass



4.7 Conducted Out of Band Emission Measurement

4.7.1 Limits of Conducted Out of Band Emission Measurement

Below -20 dB of the highest emission level of operating band (in 100 kHz Resolution Bandwidth).

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.7.4 Test Procedure

MEASUREMENT PROCEDURE REF

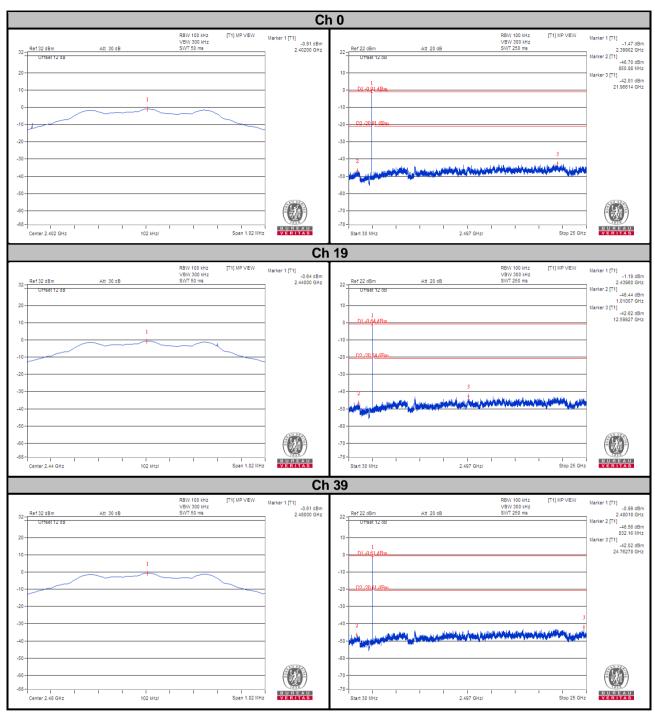
- 1. Set the RBW = 100 kHz.
- 2. Set the VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

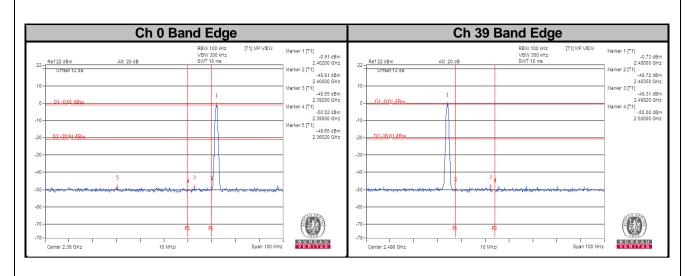
- 1. Set RBW = 100 kHz.
- 2. Set VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.7.5 Deviation from Test Standard

No deviation.


4.7.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.


Report No.: RF181224C17-1 Page No. 33 / 37 Report Format Version: 6.1.1

4.7.7 Test Results

5 Pictures of Test Arrangements					
Please refer to the attached file (Test Setup Photo).					

Report No.: RF181224C17-1 Page No. 36 / 37 Report Format Version: 6.1.1

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RF181224C17-1 Page No. 37 / 37 Report Format Version: 6.1.1