

RRUL 11 B13 – Remote Radio Unit 700MHz Radio Compliance FCC CFR 47 Part 27 Test Report

Version:	1.0
Date:	18 June 2010
Document:	RRUL 11 B13 FCC 47 Part 27_TR
Status:	Approved
Pages:	72
Author:	David Bolzon
File:	RRUL 11 B13 FCC RC_TR_V1.0.doc

CONFIDENTIAL INFORMATION RESTRICTED USE AND DUPLICATION © Ericsson Canada Inc. All Rights Reserved.

The information contained in this document is the property of Ericsson Canada. Except as specifically authorized in writing by Ericsson, the holder of this document shall keep all information contained herein confidential and shall protect same in whole or in part from disclosure and dissemination to all third parties.

Approvals and Key Reviewers

Name	Function	Role	Status
David Bolzon	Regulatory Prime	Author / Ratifier	Approved

Revision History

Issue	Description of change	Changed by	Date
0.1	Draft	David Bolzon	31 May 2010
1.0	Approved	David Bolzon	18 May 2010

Reference Documents

- 1. FCC 47 CFR Part 27 "Wireless Communications Services"
- 2. FCC 47 CFR Part 15 "Unintentional Radiators"
- 3. ICES-003 "Digital Apparatus" EMC
- 4. 3GPP TS 36.104 V9.0.0 (2009-05) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (Release 9)
- EN 50385:2002—Product Standard to Demonstrate the Compliance of Radio Base Stations and Fixed Terminal Stations for Wireless Telecommunication Systems with the Basic Restrictions or the Reference Levels Related to Human Exposure to Radio-Frequency Electromagnetic Fields (110 MHz– 40 GHz)—General Public
- 6. 3GPP TS 36.113 V9.0.0(2009-05) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) and repeater Electro Magnetic Compatibility (EMC) (Release 9)
- EN 55022, Limits and methods of measurement of radio disturbance characteristics of information technology equipment (CISPR22: 1997), 1998, European Committee for Electro-technical Standardization
- 3GPP TS 36.141 V9.0.0 (2009-05): 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) conformance testing (Release 9).
- 9. SM.328: "Spectra and bandwidth of emissions".
- 10. CISPR 22: "Limits and methods of measurement of radio disturbance characteristics of information technology equipment".
- 11. CISPR 16-1-1: "Specification for radio disturbance and immunity measuring apparatus and methods Measuring apparatus".
- 12. ETSI TS 136 141 V8.2.0 (2009-04) LTE; Evolved Universal Radio Access (E-UTRA); Base Station (BS) conformance testing (3GPP TS 36.141 version 8.2.0 Release 8)
- 13. ETSI TS 136 104 V8.5.0 (2009-04) LTE; Evolved Universal Terrestrial Radio Access (E-UTRA);Base Station (BS) radio transmission and reception (3GPP TS 36.104 version 8.5.0 Release 8)
- ETSI TS 136 113 V8.1.0 (2009-01) LTE; Evolved Universal Terrestrial Radio Access (E-UTRA);Base Station (BS) and repeater Electro Magnetic Compatibility (EMC) (3GPP TS 36.113 version 8.1.0 Release 8)
- 15. 3GPP TS 36.211 V8.7.0 (2009-05) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)
- 3GPP TS 36.212 V8.7.0 (2009-05) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 8)
- 17. 3GPP TS 36.213 V8.7.0 (2009-05) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 8)
- 18. 700MHz LTE Remote Radio Unit, System Design Specification (RRUL 11 B13)

Table of Contents

Aŗ	prov	vals and Key Reviewers
Re	visio	n History
Re	ferei	nce Documents
Ta	ble o	of Contents
Li	st of '	Tables
Li	st of]	Figures
Ac	rony	/ms
1	Res	sults Summary9
2	Int	roduction
3	Equ	uipment Under Test
	3.1	Product Identification
	3.2	Technical Specifications of the EUT11
	3.3	Technical Description11
4	Tes	st Conditions14
	4.1	Specifications14
	4.2	Test Environment14
	4.3	Test Equipment14
5	Ap	plicable Tests16
	5.1	FCC Part 27: Test Parameters16
6	Tes	st Results
	6.1	Effective Radiated Power and Antenna Height17
		Physical Channels
	6.2	RF Safety (Reference 27.52)27
	6.3	Occupied Bandwidth
	6.4	Spurious emissions at the antenna terminal
	6.5	Field Strength of Spurious Radiation61
	6.6	Frequency Stability
	6.7	Submission Exhibits

List of Tables

Table 3-1: Applicable FCC 700MHz Blocks	. 13
Table 4-1: Conducted Emissions - List of Test Equipment	. 14
Table 4-2 Radiated Emissions - List of Test Equipment	. 15
Table 5-1: Applicable Test Parameters / Results Summary	. 16
Table 6-1: Setting / Measurement Results – Channel Power	. 20
Table 6-2: Setting / Measurement Results – Occupied Bandwidth	. 29
Table 6-3: Setting / Measurement Results – Spurious Emissions Band Edge BW=10MHz	. 34
Table 6-4: Setting Remarks / Measurement Results – Spurious Emissions <1GHz	. 34
Table 6-5: Setting Remarks / Measurement Results – Spurious Emissions > 1GHz	. 35
Table 6-6: Setting Remarks / Measurement Results – Spurious Emissions 763 – 775MHz	. 35
Table 6-7: Setting Remarks / Measurement Results – Spurious Emissions 793 – 805MHz	. 35
Table 6-8: Setting Remarks / Measurement Results: Spurious Emissions 1559 – 1610MHz	. 36
Table 6-9 Radiated Emissions	. 64
Table 6-10: Frequency Stability vs. Temperature / Voltage Variation	. 66

List of Figures

Figure 3-1: FCC Revised 700MHz Frequency Band	. 12
Figure 3-2: UUT – Block Diagram RRUL 700MHz	. 13
Figure 6-1 RRU Radio Compliance Set Up / Configuration	. 19
Figure 6-2 : 10MHz BW Modulation TX1_QPSK at 751.0MHz	. 21
Figure 6-3 : 10MHz BW Channel Power TX1_QPSK at 751.0MHz	. 21
Figure 6-4 : 10MHz BW Modulation TX2_QPSK at 751.0MHz	. 22
Figure 6-5 : 10MHz BW Channel Power TX2_QPSK at 751.0MHz	. 22
Figure 6-6: 10MHz BW Modulation TX1_16QAM at 751.0MHz	. 23
Figure 6-7 : 10MHz BW Channel Power TX1_16QAM at 751.0MHz	. 23
Figure 6-8 : 10MHz BW Modulation TX2_16QAM at 751.0MHz	. 24
Figure 6-9 : 10MHz BW Channel Power TX2_16QAM at 751.0MHz	. 24
Figure 6-10 : 10MHz BW Modulation TX1_64QAM at 751.0MHz	. 25
Figure 6-11 : 10MHz BW Channel Power TX1_64QAM at 751.0MHz	. 25
Figure 6-12 : 10MHz BW Modulation TX2_64QAM at 751.0MHz	. 26
Figure 6-13 : 10MHz BW Channel Power TX2_64QAM at 751.0MHz	. 26
Figure 6-14 RRU Radio Compliance Set Up / Configuration	. 28
Figure 6-15: 10MHz Occupied Bandwidth TX1_QPSK at 751.0MHz	. 30
Figure 6-16: 10MHz Occupied Bandwidth TX2_QPSK at 751.0MHz	. 30
Figure 6-17: 10MHz Occupied Bandwidth TX1_16QAM at 751.0MHz	. 31
Figure 6-18: 10MHz Occupied Bandwidth TX2_16QAM at 751.0MHz	. 31
Figure 6-19: 10MHz Occupied Bandwidth TX1_64QAM at 751.0MHz	. 32
Figure 6-20: 10MHz Occupied Bandwidth TX2_64QAM at 751.0MHz	. 32
Figure 6-21 RRU Radio Compliance Set Up / Configuration	. 33
Figure 6-22: Spurious Emissions TX1_QPSK Band Edge (ACP 15kHz - 550kHz)	. 37
Figure 6-23: Spurious Emissions TX1_QPSK Band Edge (ACP 650kHz - 2MHz)	. 37
Figure 6-24: Spurious Emissions TX1_QPSK (30MHz - 1GHz)	. 38
Figure 6-25: Spurious Emissions TX1_QPSK (1GHz-5GHz)	. 38
Figure 6-26: Spurious Emissions TX1_QPSK (5GHz-8.5GHz)	. 39
Figure 6-27: Spurious Emissions TX1_QPSK (763 – 775MHz)	. 39
Figure 6-28: Spurious Emissions TX1_QPSK (793 – 805MHz)	. 40
Figure 6-29: Spurious Emissions TX1_QPSK (1559 – 1610MHz)	. 40
Figure 6-30: Spurious Emissions TX1_16 QAM Band Edge (ACP 15kHz - 550kHz)	. 41
Figure 6-31: Spurious Emissions TX1_16 QAM Band Edge (ACP 650kHz - 2MHz)	. 41
Figure 6-32: Spurious Emissions TX1_16 QAM (30MHz – 1GHz)	. 42
Figure 6-33: Spurious Emissions TX1_16 QAM (1GHz-5GHz)	. 42
Figure 6-34: Spurious Emissions TX1_16 QAM (5GHz-8.5GHz)	. 43
Figure 6-35: Spurious Emissions TX1_16 QAM (763 – 775MHz)	. 43
Figure 6-36: Spurious Emissions TX1_16 QAM (793 – 805MHz)	. 44
Figure 6-37: Spurious Emissions TX1_16 QAM (1559 – 1610MHz)	. 44
Figure 6-38: Spurious Emissions TX1_64 QAM Band Edge (ACP 15kHz - 550kHz)	. 45
Figure 6-39: Spurious Emissions TX1_64 QAM Band Edge (ACP 650kHz - 2MHz)	. 45

Figure 6-40: Spurious Emissions TX1_64 QAM (30MHz – 1GHz)	. 46
Figure 6-41: Spurious Emissions TX1_64 QAM (1GHz – 5GHz)	. 46
Figure 6-42: Spurious Emissions TX1_64 QAM (5GHz – 8.5GHz)	. 47
Figure 6-43: Spurious Emissions TX1_64 QAM (763 – 775MHz)	. 47
Figure 6-44: Spurious Emissions TX1_64 QAM (793 – 805MHz)	. 48
Figure 6-45: Spurious Emissions TX1_64 QAM (1559 – 1610MHz)	. 48
Figure 6-46: Spurious Emissions TX2_QPSK Band Edge (ACP 15kHz – 550kHz)	. 49
Figure 6-47: Spurious Emissions TX2_QPSK Band Edge (ACP 650kHz – 2MHz)	. 49
Figure 6-48: Spurious Emissions TX2_QPSK (30MHz – 1GHz)	. 50
Figure 6-49: Spurious Emissions TX2_QPSK (1GHz-5GHz)	. 50
Figure 6-50: Spurious Emissions TX2_QPSK (5GHz-8.5GHz)	. 51
Figure 6-51: Spurious Emissions TX2_QPSK (763 – 775MHz)	. 51
Figure 6-52: Spurious Emissions TX2_QPSK (793 – 805MHz)	. 52
Figure 6-53: Spurious Emissions TX2_QPSK (1559 – 1610MHz)	. 52
Figure 6-54: Spurious Emissions TX2_16 QAM Band Edge (ACP 15kHz – 550kHz)	. 53
Figure 6-55: Spurious Emissions TX2_16 QAM Band Edge (ACP 650kHz - 2MHz)	. 53
Figure 6-56: Spurious Emissions TX2_16 QAM (30MHz – 1GHz)	. 54
Figure 6-57: Spurious Emissions TX2_16 QAM (1GHz – 5GHz)	. 54
Figure 6-58: Spurious Emissions TX2_16 QAM (5GHz – 8.5GHz)	. 55
Figure 6-59: Spurious Emissions TX2_16 QAM (763 – 775MHz)	. 55
Figure 6-60: Spurious Emissions TX2_16 QAM (793 – 805MHz)	. 56
Figure 6-61: Spurious Emissions TX2_16 QAM (1559 – 1610MHz)	. 56
Figure 6-62: Spurious Emissions TX2_64 QAM Band Edge (ACP 15kHz - 550kHz)	. 57
Figure 6-63: Spurious Emissions TX2_64 QAM Band Edge (ACP 650kHz - 2MHz)	. 57
Figure 6-64: Spurious Emissions TX2_64 QAM (30MHz – 1GHz)	. 58
Figure 6-65: Spurious Emissions TX2_64 QAM (1GHz – 5GHz)	. 58
Figure 6-66: Spurious Emissions TX2_64 QAM (5GHz – 8.5GHz)	. 59
Figure 6-67: Spurious Emissions TX2_64 QAM (763 – 775MHz)	. 59
Figure 6-68: Spurious Emissions TX2_64 QAM (793 – 805MHz)	. 60
Figure 6-69: Spurious Emissions TX2_64 QAM (1559 – 1610MHz)	. 60
Figure 6-70 RRU EMC Set Up / Configuration	. 63
Figure 6-71 Radiated Emissions Set Up Photo's	. 64
Figure 6-72 RRU Stability Set Up / Configuration	. 65
Figure 6-73: Stability -30°C	. 67
Figure 6-74: Stability -20°C	. 67
Figure 6-75: Stability -10°C	. 68
Figure 6-76: Stability 0°C	. 68
Figure 6-77: Stability 10°C	. 69
Figure 6-78: Stability 20°C	. 69
Figure 6-79: Stability 30°C	. 70
Figure 6-80: Stability 40°C	. 70
Figure 6-81: Stability 50°C	. 71

Acronyms

RRU	Remote Radio Unit
RRUL	Remote Radio Unit LTE
UDM	Universal Digital Module
DDM	Dual Duplexer Module
BTS	Base Station Transceiver
EUT	Equipment Under Test
LTE	Long Term Evolution
ACP	Adjacent Channel Power
CPRI	Common Public Radio Interface
NIST	National Institute of Standards and Technology
NRTL	National Recognized Testing Laboratory
NVLAP	National Voluntary Laboratory Accreditation Program
LAP	Laboratory Accreditation Programs
IC	Industry Canada
FCC	Federal Communication Commission
CFR	Code of Federal Regulations (US)
CAB	Conformity assessment body
EMC	Electromagnetic Compatibility
EMI	Electromagnetic interference
RTTE	Radio and Telecommunications Terminal Equipment
TTE	Telecommunications equipment
TCB	Telecom Certification Body
CCB	Canadian Certification Body
IECEE	International Electro-technical Committee for Conformity Testing to Standards for Electrical Equipment
NCB	National Certification Bodies
CBTL	CB Test Laboratory
ITL	Independent Test Laboratory
ITE	Information Technology Equipment

1 Results Summary

Applicant:	Ericsson Canada 3500 Carling Ave. Ottawa, On Canada K2H 8E9
Apparatus: Application:	KRC 131 145/1 (RRUL 11 B13 700MHz Upper C) Fixed Wireless Base Station Transceiver
FCC ID:	VZTAKRC131145-1
In Accordance With:	FCC CFR 47 Part 27 Miscellaneous Wireless Communications Services

This test report has been prepared for the purpose of demonstrating compliance with FCC CFR Title 47 Part 27. Conducted measurements have been performed in accordance with ANSI TIA-603-B-2002. Radiated tests have been conducted is accordance with ANSI C63.4-2003. Radiated emissions are assessed and measured at an accredited ITL in a 3 meter or 10 meter Semi-Anechoic chamber. Conducted Emissions have been assessed at Ericsson Carling facilities using calibrated equipment in accordance with Part 27 Requirements.

The assessment summary is as follows:

Apparatus Assessed:	KRC 131 145/1 (700MHz RRUL 11 B13 Remote Radio Unit)
Specification:	FCC CFR 47 Part 27 Miscellaneous Wireless Communications Services
Compliance Status:	Compliant
Exclusions:	None
Non-compliances:	None
Report Release History:	Original Release

2 Introduction

This document supports the FCC test process and filing requirements for North American approvals. Measurements are conducted to satisfy and demonstrate compliance to the Essential parameters for Radio Compliance and Conformance to the following standards:

- FCC CFR 47 Part 27 Subpart C, Miscellaneous Wireless Communications Services.
- FCC CFR 47, Subpart 2, Subpart J, Equipment Authorization Procedures Equipment Authorization.

The initial RRUL B13 deployment will support a 10MHz BW for Fixed Wireless Base Station (BTS) applications with a rated output of 30W (44.8dBm) in a 2 x 2 MIMO configuration. Frequency band for authorization will address the US 700MHz Band 13 (Upper C Block).

Hardware Description

The BTS equipment is comprised of the following:

- 1) KRC 131 145/1 RRUL 11 B13: LTE Remote Radio Unit [RRUL] EUT
- 2) CPRI Modem Emulator (RU-Master LPC 102 400/5 R1B S/N T01E684487)

RRU Details

Frequency: FCC 700MHz Band

Transmit / Downlink: 746 – 757MHz – Upper Block C: 751MHz

- Modulation: OFDMA, QPSK, 16QAM, 64QAM
- BW: 10 MHz
- MIMO, 2 x 2 (Spatial Multiplexing)
- Diversity, 2 Way Transmit
- Throughput: Up to 60 Mbps
- Power: 44.8dBm (30W)
- PAPR: 7dB

Duplex: FDD (31MHz)

Frequency Stability: +/-0.05ppm

Channel Raster: 100 kHz

Receive / Uplink: 776 - 787MHz – Upper Block C: 782MHz

- Modulation: SC-FDMA, QPSK, 16QAM
- BW: 10 MHz
- MIMO, 2 x 2, Multi-User
- Throughput: Up to 20Mbps
- Diversity, 2 and (4 Branch Receive)

RRU Physical Details:

PWR: -48V (typical) DC 350W (max), Size: 17" x 11.3" x 8.7" (H x W x D), Weight: 53lbs

3 Equipment Under Test

3.1 Product Identification

The Equipment Under Test (UUT) is identified for Fixed Base Station operation as follows: Ericsson Remote Radio Unit RRUL 11 B13, 700MHz (Upper C Block) KRC 131 145/1

3.2 Technical Specifications of the EUT

Manufacturer:	Ericsson Canada
Operating Frequency:	TX: 751MHz RX: 782MHz
Emission Designator:	10M0 W7D
Modulation:	LTE OFDMA, QPSK, 16QAM, 64QAM (Two transmitters, 2 receivers per sector)
Antenna Data: (for reference only)	Andrew LNX-6513DS-T4M 12.7dBd, 14.8dBi (max) Beamwidth – Horizontal 65°

3.3 Technical Description

The Ericsson LTE RRU (RRUL) is a single sector Transceiver (2 transmitter, 2 receivers per radio / sector) operating in FDD mode which will be introduced as part of Ericsson's next generation BTS product line. The initial RRU product offering addresses the LTE air interface, while the RRU radio architecture will be 4G agnostic to support OFDM based air interfaces including the long term evolution of GSM/UMTS (LTE), 802.16e OFDMA standards with Multiple Inputs Multiple Outputs (MIMO) operation. Transmitter outputs (TX1, TX2) are isolated and non-correlated for external interface to customer furnished antenna.

The Radio design will address outdoor installations for pole and building/wall mount deployment. RRU electronics are housed in a weather protected environmental enclosure intended for co-location in proximity to the customer furnished antenna. The RRU has an integrated active duplexer for enhanced up link performance and antenna interface. Compliance and performance testing will include a band / spectrum dependent DDM (duplexer) integrated with the RRU product offering.

The RRU operates over the North American 700MHz band employing a band specific duplexer designed to limit operations to specific customer requirements. The RRUL 11 B13 product offering will operate over a Down Link (DL) transmit frequency band from 746MHz to 757MHz, at a channel bandwidth of 10MHz centered at 751MHz. LTE modulation formats OFDMA QPSK, 16QAM and 64QAM will be assessed at a rated output of 30W per transmitter.

The recommended customer furnished antenna detail is as follows: MFG: Andrew Antenna Model: LNX-6513DS-T4M Gain: 12.7dBd (14.8dBi) Beam width: Horizontal 65°

The Ericsson RRU design consists of logical sections comprised of Digital, RF, Power Amplifiers, and a Power Supply and distribution housed in a single outdoor enclosure. Heat fins on the enclosure external surface provide convection cooling for thermal and environmental control. For protection against solar impact, a sun shield mounted on the unit provides additional thermal protection to limit direct solar exposure. The unit operates over an ambient temperature of -40° C to $+55^{\circ}$ C including sun loading.

The digital section provides processing resources to the RRU CPRI based optical link to the Modem and Soft Radio Core. This single sector Radio is targeted to support up to 20MHz base band data bandwidth. (Initial deployment will be limited to 10MHz) The digital section of the transceiver card provides the processing solution for the 4G Radio.

The PSU provides primary power conversion from a nominal input of -48VDC (350W) for the internal PCB circuit requirements. The PA board produces the RF output power for BTS transmission at a rated power up to 30W per transmitter port. The RRU consists of a Radio transceiver and integrated active Duplexer combination for applicable FCC compliance. All compliance measurements and ratings are referenced at the antenna ports / duplexer interface.

А	в	с	D	Е	A	в	с	с		A	D	Public Safety B		Public Safety		Public Safety		с	А	D		Public Si	afety l	в
CH. 52	CH. 53	CH. 54	CH. 55	CH. 56	СН. 57	CH. 58	CH. 59	CH. 60	CH. 61		CH. 62	CH. 63	CH. 64	CH. 65	CH. 66	CF 67	Н. 7	CH. 68	CH. 69					
698 704 710 716 722 728 734 740 746 752 758 764 770 776 782 788 794 800 Lower 700 MHz Band Upper 700 MHz Band (TV Channels 52-59) (TV Channels 60-69)										1906 ノ														
В	lock	Fi	requei	ncies (MHz)	Bandwidth			Pairing				Area Type			Licenses							
	A	698-704, 728-734					12 MHz			2 x 6 MHz				EA			176							
	B	704-710, 734-740				12 MHz			2 x 6 MHz				CMA			734								
	С	7	10-71	16, 74	0-746		12 MHz				2 x	6 MHz	:	CMA			734							
	D	716-722					6 MHz				unpaired			EAG			6							
	E	722-728					6 MHz				unpaired			EA			176							
	С	746-757, 776-787				22]	MHz	1Hz 2 x 11 MHz REAG				٩G		12										
	А	7	57-75	58, 78	7-788		21	MHz			2 x	1 MHz	:	ME	A			52						
	D	7	58-76	53, 78	8-793		101	MHz		2 x 5 MHz Nation				ionwi	de	e 1*								
	В	7	75-77	76, 80	5-806		21	MHz			2 x	1 MHz	:	ME	А		52							

Revised 700 MHz Band Plan for Commercial Services

* Subject to conditions respecting a public/private partnership.

The blocks shaded above in gray (Lower 700 MHz Band C and D Blocks and Upper 700 MHz Band A and B Blocks) were auctioned prior to Auction 73.

Figure 3-1: FCC Revised 700MHz Frequency Band

Radio Standard is LTE, OFDMA TX, (SC-FDMA RX) configured for a 2x2 MIMO operating mode with an output rated power of 30W (44.8dBm) at the antenna port. Transmit outputs 1 and 2 are isolated, non-correlated outputs connected to two isolated customer furnished antenna and are measured/verified independently.

The TX Modulation schemes of QPSK, 16QAM, and 64QAM will be supported along with an operational bandwidth of 10MHz for product release in the 700MHz Upper C Block spectrum. QPSK, 16QAM, and 64 QAM will employ 3/4 CTC data rate coding. The RRU employs a CPRI (Common Public Radio Interface) for interoperability and standardization of the radio protocol interface. To demonstrate compliance, appropriate LTE waveforms will be utilized to generate the RF output, rated power and bandwidth requirements with respect to the modulation variables.

Table 3-1: Applicable FCC 700MHz Blocks

Block	Bandwidth	Frequency
С	11MHz	746 - 757MHz and 776 – 787MHz

Test Units:

Part 27: UUT KRC 131 145/1RRUL 11 B13 700MHz, SN: CH50000356CA05CPRI Modem interface with LTE Test Vectors and traffic (RUMA LPC 102 400/5)Part 15: UUT KRC 131 145/1RRUL 11 B13 700MHz, SN: CH50000356CA05CPRI Modem interface with LTE Test Vectors and traffic (RUMA LPC 102 400/5)CPRI Modem interface with LTE Test Vectors and traffic (RUMA LPC 102 400/5)

Figure 3-2: UUT – Block Diagram RRUL 700MHz

4 Test Conditions

4.1 Specifications

The apparatus has been assessed against the following specifications: FCC CFR 47 Part 27 Miscellaneous Wireless Communications Services

4.2 Test Environment

All tests are performed under the following environmental conditions:

Temperature range: $15 - 30 \, ^{\circ}\text{C}$ Humidity range: $20 - 75 \, ^{\circ}\text{M}$ Pressure range: $86 - 106 \, \text{kPa}$ Power supply range:+/- 5% of rated voltages

4.3 Test Equipment

Table 4-1: Conducted Emissions - List of Test Equipment

Equipment	Manufacturer	Model No.	Asset/Serial No.	Cal Due
Signal Analyzer	Agilent	MXA N9020A	1084944/MY48010211	15 Feb 2012
Signal Analyzer	Agilent	MXA N9020A	1081485/MY47380104	15 Feb 2012
Power Meter	HP	438A	L0544032	24 Nov 2010
Power Sensor	HP	8481A	US37290233	24 Nov 2010
Attenuator 30dB (Qty=2)	Narda	769-30	NA	NA
Attenuator 20dB (Qty=2)	Meca	650-20-1F4	NA	NA
Network Analyzer (Path Loss Calibration)	Agilent	N5230	MY45000798	16 Nov 2010
Climatic Chamber	Burnsco	RTC-37P-3-3	04-13	27 Oct 2010
Power Supply	Xantrex	XHR 60-18	62016	NCR
Digital Volt Meter	Fluke			

Equipment	Manufacturer	Model No.	Asset/Serial No.	Next Cal.				
10 m EMI Test Chamber								
Bilog Antenna	ARA	LPB 2520A	SSG012772	12/21/2010				
Horn Antenna, Double ridged	ЕМСО	3115	SSG012298	02/19/2011				
Active Loop Antenna (H Field)	EMCO	6502	SSG012080	12/01/2010				
Active Monopole Antenna	EMCO	3301B	SSG012683	07/02/2010				
Bilog Antenna	Chase CBL6111	LPB 2520A	SSG012564	10/06/2010				
Double Ridged Horn	ЕМСО	3115	SSG012267	03/12/2011				
Receiver/Spectrum Analyzer	Hewlett Packard	8566B	SSG012521	03/02/2011				
Power Supply	Hewlett Packard	6216A	SSG013063	NR				
Attenuator	Aeroflex/Weinschel	6070-10	SSG012140	10/29/2010				
Spec. A, RF Pre-selector	Hewlett Packard	85685A	SSG012010	03/02/2011				
Spectrum Analyzer Display	Hewlett Packard	85662A	SSG012433	03/02/2011				
Quasi Peak Adaptor	Hewlett Packard	85650A	SSG012620	03/02/2011				
RF Amplifier	Hewlett Packard	8447D	SSG013045	09/24/2010				
Pre-Amplifier	BNR	LNA	SSG012360	01/15/2011				
Signal Generator	Anritsu	69369A	SSG012138	09/28/2010				
High Pass RF Filter	Microwave Circuits inc.	H1G013G1	SSG013705	04/20/2011				
Radio Frequency Filter	FSY Microwave	DC9371	SSG013702	02/10/2011				
High Pass Filter	Microwave Circuits inc.	H3G02G1	SSG012728	03/22/2011				
Band Pass Filter	Hewlett Packard	8430A	SSG012120	02/10/2011				
Coaxial Cable	HUBER + SUHNER	104 Sucoflex	SSG012409	01/27/2011				
Coaxial Cable #23	HUBER + SUHNER	104 Sucoflex	SSG013019	08/17/2010				
Coaxial Cable #8		104 Sucoflex	SSG012131	10/29/2010				
Coaxial Cable #14	HUBER + SUHNER	104 Sucoflex	SSG012041	10/29/2010				
Note: N/A = Not Applicable. NCR = No Cal Required. COU = CAL On Use								

 Table 4-2 Radiated Emissions - List of Test Equipment

5 Applicable Tests

This section contains the following:

FCC CFR 47 Part 27: Test Requirements

The column headed 'Required' indicates whether the associated clauses were invoked for the apparatus under test. The following abbreviations are used:

N No: Not Applicable / Not Relevant.
Y Yes: Mandatory i.e. the apparatus shall conform to these tests.
N/T Not Tested

The results compiled in this document are in accordance and representative of the operation of the apparatus as originally submitted.

5.1 FCC Part 27: Test Parameters

 Table 5-1: Applicable Test Parameters / Results Summary

Clause	Test Method	Test description	Required	Result
27.50(c)	2.1046	RF Output Power	Y	Pass
	2.1047	Modulation Characteristics	Y	Pass
	2.1049	Occupied Bandwidth	Y	Pass
27.53(c)	2.1051	Band Edge Compliance	Y	Pass
27.53(c)	2.1051	Spurious Emissions at the Antenna Terminal	Y	Pass
27.53(c)	2.1053, 2.1057	Field Strength of Spurious Emissions	Y	Pass
27.54	2.1055	Frequency Stability	Y	Pass

6 Test Results

6.1 Effective Radiated Power and Antenna Height

Clause 27.50 Limits: FCC CFR Part 2.1046 Fixed Base Station

(b) The following power and antenna height limits apply to transmitters operating in the 746–763 MHz, 775–793 MHz and 805–806 MHz bands:

(4) Fixed and base stations transmitting a signal in the 746–757 MHz, 758–763 MHz, 776–787 MHz, and 788–793 MHz bands with an emission bandwidth greater than 1 MHz must not exceed an ERP of 1000 watts/MHz and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted if power levels are reduced below 1000 watts/MHz ERP accordance with Table 3 of this section.

(5) Fixed and base stations located in a county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, and transmitting a signal in the 746–757 MHz, 758–763 MHz, 776–787 MHz, and 788–793 MHz bands with an emission bandwidth greater than 1 MHz must not exceed an ERP of 2000 watts/MHz and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted if power levels are reduced below 2000 watts/MHz ERP in accordance with Table 4 of this section.

Table 3 to §27.50.—Permissible Power and Antenna Heights for Base and Fixed Stations in the 698–757 MHz, 758–763 MHz, 776–787 MHz and 788–793 MHz Bands Transmitting a Signal With an Emission Bandwidth Greater than 1 MHz

Antenna height (AAT) in meters (feet)	Effective radiated power (ERP) per MHz (watts/MHz)
Above 1372 (4500)	65
Above 1220 (4000) To 1372 (4500)	70
Above 1067 (3500) To 1220 (4000)	75
Above 915 (3000) To 1067 (3500)	100
Above 763 (2500) To 915 (3000)	140
Above 610 (2000) To 763 (2500)	200
Above 458 (1500) To 610 (2000)	350
Above 305 (1000) To 458 (1500)	600
Up to 305 (1000)	1000

Table 4 to §27.50.—Permissible Power and Antenna Heights for Base and Fixed Stations in the 698–757 MHz, 758–763 MHz, 776–787 MHz and 788–793 MHz Bands Transmitting a Signal With an Emission Bandwidth Greater than 1 MHz

Antenna height (AAT) in meters (feet)	Effective radiated power (ERP) per MHz (watts/MHz)
Above 1372 (4500)	130
Above 1220 (4000) To 1372 (4500)	140
Above 1067 (3500) To 1220 (4000)	150
Above 915 (3000) To 1067 (3500)	200
Above 763 (2500) To 915 (3000)	280
Above 610 (2000) To 763 (2500)	400
Above 458 (1500) To 610 (2000)	700
Above 305 (1000) To 458 (1500)	1200
Up to 305 (1000)	2000

Test Set Up

Figure 6-1 RRU Radio Compliance Set Up / Configuration

Test conditions:

All modulation (QPSK, 16QAM, and 64QAM) modes and different data rates are evaluated using representative waveforms of all modulation schemes. The test results shall include 10MHz bandwidth configurations for 751MHz as applicable.

Physical Channels

A downlink physical channel corresponds to a set of resource elements carrying information originating from higher layers and is the interface defined between 36.212 and 36.211 [15]. The following downlink physical channels are defined:

- Physical Downlink Shared Channel, PDSCH QPSK, 16QAM, 64QAM
- Physical Broadcast Channel, PBCH QPSK
- Physical Downlink Control Channel, PDCCH QPSK
- Physical Control Format Indicator Channel, PCFICH QPSK
- Physical Hybrid ARQ Indicator Channel, PHICH BPSK

LTE standard defines BPSK as an ARQ Indicator Channel, thus being embedded into the LTE signal and does not contain traffic data. As BPSK is embedded in each modulation scheme, waveforms tested represent the worst case conditions.

Procedure:

Channel Power measurements for each output shall be conducted for the applicable bandwidths and modulation schemes for the Lower, Middle and Upper frequency offsets as applicable. The following tables are used to summarize recorded results in addition to applicable captured plots.

Sotting	10MHz Channel Power Output (dBm)						
Setting	QPSK		16 QAM		64 QAM		
		TX1	TX2	TX1	TX2	TX1	TX2
Frequency (CH 5230)	751MHz	44.75	44.77	44.70	44.75	44.72	44.83
RBW	1MHz						
VBW	3MHz						
CH BW	10MHz						
Span	50MHz						
Sweep	1ms						
Reference Level Offset	51.5dB						
Detector	RMS	Aggregate Power =10^(10*LOG(10^(TX1/10)+10^(TX2/10))/10)/1000					10)/1000
Attenuation	10dB	59	.85	59	.37	60	.06

 Table 6-1: Setting / Measurement Results – Channel Power

Antenna Height Limit: (see FCC Clause 27.50 tables 3 and 4 for antenna compliance reference heights)

Note: Antenna are customer furnished ... G = 12.7dBd (max)

Aggregate Power: TX1 + TX2PWR PdBm = $10\log(10^{(TX1 dBm/10)} + 10^{(TX2 dBm/10)}) = 47.79dBm (10MHz)$ PWR W (10MHz) = $10^{(47.79/10)}/1000 = 60.06W$

6.2 RF Safety (Reference 27.52)

Licensees and manufacturers are subject to the radio frequency radiation exposure requirements specified in sections 1.1307(b), 2.1091, and 2.1093 of this chapter, as appropriate.

Technical information showing the basis for this statement must be submitted to the Commission upon request.

The following spread sheet shows an example of the required calculation for MPE (Maximum Permissible Exposure) for RF safety submissions. This calculation is required as a separate exhibit under the FCC submission.

RF Safety: Based on the rated output power and 14.8dB antenna gain, a minimum distance of 4.0 meters to the operating antenna must be maintained.

Prediction of MPE limit at a given distance

Reference_1: Equation from page 51 of EN 50385: Basic standard for the calculation and measurement of electromagnetic field strength and SAR related to human exposure from radio base stations and fixed terminal stations for wireless telecommunication systems (110 MHz - 40 GHz)

Reference 2: Equation from page 18 of OET Bulletin 65, Edition 97-01: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields.

$$S \eta \frac{PG}{4\eta R^2}$$

RRUL 11 B13: 700MHz (Upper C Block)

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	44.80 (dBm)
Maximum peak output power at antenna input terminal:	30199.5172 (mW)
Antenna gain (typical):	14.8 (dBi)
Maximum antenna gain:	30.1995172 (numeric)
Prediction distance:	400 (cm)
Prediction frequency:	737 (MHz)
MPE limit for uncontrolled exposure at prediction frequency:	0.5 (mW/cm^2)
Power density at prediction frequency:	0.453597 (mW/cm^2)
Maximum allowable antenna gain:	15.22299851 (dBi)
Margin of Compliance:	0.42299851

6.3 Occupied Bandwidth

Clause 27.50 2.1049

(a) *Occupied bandwidth*. The frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission. Occupied BW is the portion of the spectrum which contains 99% of the emitted energy (.5% of the remaining is above and .5% is below the occupied BW). The occupied bandwidth may not exceed the authorized bandwidth in the radio service rules. The occupied bandwidth test should be performed for each type of emission listed on the grant.

Procedure:

The following procedure and conditions shall apply for Occupied Bandwidth measurements. As applicable, Lower, Middle and Upper frequency offsets, modulation, and bandwidths shall be assessed and recorded along with the relevant captured plots.

Test Setup

Figure 6-14 RRU Radio Compliance Set Up / Configuration

The following tables shall be used to summarize recorded results in addition to applicable captured plots.

Setting	Occupied Bandwidth (MHz) (Note: BPSK embedded in each modulation scheme)						
	QP	SK	16 Q	QAM	64 Q	QAM	
		TX1	TX2	TX1	TX2	TX1	TX2
Frequency (CH 5230)	751MHz	8.937	8.968	8.939	8.980	8.952	8.970
RBW	180kHz						
VBW	1.8MHz						
CH BW	10MHz						
Span	20MHz						
Sweep	1ms						
Reference Level Offset	51.0dB						
Detector	Peak						
Attenuation	10dB						

Table 6-2: Setting / Measurement Results – Occupied Bandwidth

🗩 Agi	lent Spectrum And	alyzer - Occup	vied BW							
VBV	50 Ω V 1.8000 M	Hz		AC	INT REF	q: 751.00000	ALIGNAUTO		02:26:2 Radio Std: N	3 PM May 05, 2010 Jone
		Ir	nput: RF	#IFGain:Low	Trig: Free #Atten: 10	Run dB	Avg Hold: 20 Ext Gain: -51	/20 .50 dB	Radio Devid	e: BTS
10 dE	3/div Re i	f 50 dBm						_		
Log 40										
30										
20			1	have a second	Carrow Contraction (- www.	\sim		
20										
10										
U 10										
-10										
-20		- 0 -	nod					In.	Anna	
-30	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· v v						and the second	mm
-40										
Cen	ter 751 MHz	2				1			Sp	an 20 MHz
Res	BW 180 kH	z			VB	V 1.8 MH	Z		S	weep 1ms
0	ccupied E	Bandwic	ith		Total P	ower	45.71 dB	m		
		8	.936	7 MHz						
т	ansmit Ere	a Error		-4496 Hz		ower	99 00	%		
		-141-		-4450112		ower	26.00	<i>/</i> 0		
×	ub Bandwi		8	.444 IVINZ	хав		-20.00 a	Б		
MSG							STATUS			

Figure 6-16: 10MHz Occupied Bandwidth TX2_QPSK at 751.0MHz

💴 Agilent Spec	trum Analyzer - Occ	upied BW							
	50 Ω ag 751 0000	00 MHz	AC	INT REF	AL 1: 751.000000	IGN AUTO		01:23:4 Radio Std: N	3 PM May 05, 2010 Ione
		Input: RF	+ #IFGain:Low	 Trig: Free R #Atten: 10 d 	un B	Avg Hold: 20/2 Ext Gain: -51.5	0 0 dB	Radio Devic	e: BTS
10 dB/div	Ref 50 dBi	m							
Log									
40									
30			martun	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.		1		
20									
10							1		
0									
-10							$\left\{ \right\}$		
-20							+		
-30	man	m					h	Marrow	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-40									- 0- 0 -0 44
Center 75	1 MU7								an 20 MHz
Res BW 1	80 kHz			VBW	1.8 MHz			Sh Sh	veep 1 ms
Occup	ied Bandwi	idth		Total Po	wer	45.74 dBm	n		
		8.938	8 MHz						
Transm	it Freq Error	2	4.369 kHz	OBW Po	wer	99.00 %			
x dB Ba	ndwidth	9	.457 MHz	x dB		-26.00 dE	3		
MSG						STATUS			

Figure 6-18: 10MHz Occupied Bandwidth TX2_16QAM at 751.0MHz

🗾 Agilent Spectrum Analyzer - Occ	cupied BW							
Kef Value 50 Ω dBm		AC	INT REF	q: 751.000000	LIGN AUTO		09:53:2 Radio Std: N	0 AM May 05, 2010 Ione
	Input: RF	⊶ #IFGain:Low	Trig: Free F #Atten: 10 c	Run IB	Avg Hold: 20/2 Ext Gain: -51.5	10 50 dB	Radio Devic	e: BTS
10 dB/div Ref 50 dB	m							
40								
40								
30	/	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
20						1		
10						1		
0						+		
-10						+		
-20						+		
-30	~~~~~					·~~~	www.	<u> </u>
-40								• • • • • • • • • • • •
Contor 751 MHz							Cn	on 20 MUs
Res BW 180 kHz			VBW	/ 1.8 MHz			Sv	veep 1 ms
Occupied Bandw	idth		Total Po	wer	45.63 dBn	า		
	8.9519) MHz						
Transmit Freq Erro	r 12	.747 kHz	OBW Po	ower	99.00 %	6		
x dB Bandwidth	9.	484 MHz	x dB		-26.00 dl	3		
MSG					STATUS			

Figure 6-19: 10MHz Occupied Bandwidth TX1_64QAM at 751.0MHz

Figure 6-20: 10MHz Occupied Bandwidth TX2_64QAM at 751.0MHz

6.4 Spurious emissions at the antenna terminal

Clause 27.53(c)

(c) For operations in the 746–758 MHz band and the 776–788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On any frequency outside the 746–758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;

(3) On all frequencies between 763–775 MHz and 793–805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;

(5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;

(6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

(f) For operations in the 746–763 MHz, 775–793 MHz, and 805–806 MHz bands, emissions in the band 1559–1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

Test Setup:

FCC Limit = PWR (dBm) - [43 + 10log(PWR (W))] = 44.8 - 43 + 10log(30) = -13dBm

Procedure:

The following procedure and conditions shall apply for Spurious Emission measurements. As applicable, lower and high side offsets from the channel shall be assessed with respect to all modulation, and bandwidths as well as all emissions up to 8.5GHz. Results shall be compiled and recorded along with the relevant captured plots.

Setting		Spurious Emissions (dBm) FCC Limit -13dBm						
		QPSK		16 QAM		64 QAM		
Measurement ACP <2MHz		TX1	TX2	TX1	TX2	TX1	TX2	
Frequency (CH 5230)	751MHz	Lower Edge Emission (746MHz)						
RBW	30kHz	-29.91	-29.63	-30.12	-28.84	-30.31	-29.56	
VBW	30kHz	Upper Edge Emission (756MHz)						
CH BW	10MHz	-30.71 -30.52 -30.03 -29.25 -30.9				-30.96	-30.68	
Reference Level Offset	51.5dB	Margin to FCC Limit (dB)						
Detector	RMS	16.91 16.63 17.12 15.84 17.31 16				16.56		
Attenuation	6dB	17.71	17.52	17.03	16.25	17.96	17.68	

Table 6-3: Setting / Measurement Results – Spurious Emissions Band Edge BW=10MHz

		Spurious Emissions (dBm) FCC Limit -13dBm						
Setting		QPSK		16 QAM		64 QAM		
Measurement < 1GHz		TX1	TX2	TX1	TX2	TX1	TX2	
Frequency (CH 5230)	751MHz	-39.19	-40.84	-40.10	41.30	-40.45	-40.91	
RBW	100kHz							
VBW	300kHz							
CH BW	10MHz							
Reference Level Offset	51.5dB							
Detector	RMS	Margin to FCC Limit (dB)						
Attenuation	6dB	26.19	27.84	27.10	28.30	27.45	27.91	

		Spurious Emissions (dBm) FCC Limit -13dBm						
Setting	Setting		QPSK		16 QAM		64 QAM	
Measurement > 1GHz		TX1	TX2	TX1	TX2	TX1	TX2	
Frequency (CH 5230)	751MHz	-26.79	-27.01	-25.87	-27.64	-26.20	-27.35	
RBW	1MHz							
VBW	3MHz							
CH BW	10MHz							
Reference Level Offset	51.5dB							
Detector	RMS	Margin to FCC Limit (dB)						
Attenuation	6dB	13.79	14.01	12.87	14.64	13.20	14.35	

Table 6-5: Setting Remarks / Measurement Results – Spurious Emissions > 1GHz

Table 6-6: Setting Ren	narks / Measurem	ent Results – Spui	rious Emissions	763 - 775MHz
a				

Setting		Spurious Emissions (dBm) FCC Limit -46dBm/6.25kHz (-49.19dBm/3kHz)						
		QPSK		16 QAM		64 QAM		
Measurement 763-775MHz		TX1	TX2	TX1	TX2	TX1	TX2	
Frequency (CH 5230)	751MHz	-52.00	-54.96	-52.40	-55.17	-51.41	-55.17	
RBW	3kHz							
VBW								
CH BW	10MHz							
Reference Level Offset	51.5dB							
Detector	RMS	Margin to FCC Limit (dB)						
Attenuation	0dB	2.81	5.77	3.21	5.98	2.22	5.98	

Table 6-7: Setting Remarks / Measurement Results – Spurious Emissions 793 – 805MHz

Setting		Spurious Emissions (dBm) FCC Limit -46dBm/6.25kHz (-49.19dBm/3kHz)					
		QPSK		16 QAM		64 QAM	
Measurement 793 - 805MHz		TX1	TX2	TX1	TX2	TX1	TX2
Frequency (CH 5230)	751MHz	-53.28	-57.00	-53.50	-55.07	-53.39	-55.07
RBW	3kHz						
VBW							
CH BW	10MHz						
Reference Level Offset	51.5dB						
Detector	RMS	Margin to FCC Limit (dB)					
Attenuation	51.5dB	4.09	7.81	4.31	5.88	4.20	5.88

FCC Section 27.53(*c*)(3):

Based on a measurement resolution bandwidth of 6.25 kHz, all frequencies between 763 to 775 MHz and 793 to 805 MHz shall be attenuated at least 76 + $10\log(P) dB$ Limit = $PWR(dBm) - (76+10\log(P) = 44.8 - (76+10\log(30)) = -46 dBm/6.25 kHz$

Limit = $1 \text{ wK}(aBm) = (70 \pm 1000g(1)) = 44.8 = (70 \pm 1000g(50)) = -40 aBm/0.23 \text{ kHz}$ *Measurement BW* = 3kHz (3kHz *RBW Limit* = -46 - 10log(6.25/3)) = -49.19dBm

T-11. (0. C-44!	- Dl / N/(D 14 C		1 <i>22</i> 0 1/10\/[[]_
I Shie 6-X' Netting	f Remarke / Measur	rement Recuite Snu	rinne Emiceinne	1339 - 1010 WHZ
I abic 0-0. Detung	L Multar No / Milaoui	cincin incours. opu	litus Linissions.	1222 - 1010101111
(,			

Setting		Spurious Emissions (dBm) FCC Limit -80dBW EIRP						
		QPSK		16 QAM		64 QAM		
Measurement 1559 – 1610MHz		TX1	TX2	TX1	TX2	TX1	TX2	
Frequency (CH 5230)	751MHz	-56.30	-56.55	-56.29	-56.52	-55.95	-56.52	
RBW	3kHz							
VBW								
CH BW	10MHz							
Reference Level Offset	51.5dB							
Detector	RMS	Margin to FCC Limit (dB)						
Attenuation	0dB	7.11	7.36	7.10	7.33	6.76	7.33	

Note: Emission values listed in the above table were below the SA noise floor.

MXA Noise Floor = -56dBm.

FCC Section 27.53(f) For operations in the 746-763 MHz, 775-793 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

Antenna Gain = 14.8dBi Limit = -80dBW + Antenna Gain = -65.2dBm Margin = Limit – Measurement
🚺 Agilent Spectrum Analyzer - ACP								
$ X $ L 50 Ω		AC	INT REF	a: 751 0000			Pad	02:27:14 PM May 05, 2010
Center Freq 751.00000	out: RF	G	Trig: Free l	q. 70 1.0000 Run	Avg Hold:>	20/20	Tiau	io Sta. None
		IFGain:Low	#Atten: 6 d	В	Ext Gain: ⊀	51.50 dB	Rad	io Device: BTS
10 dB/div Def 50 dBm								
40			44.8	dBm				
30								
20	<u></u>							
							\sim	
-20								
-30							- V	Average
-40								and the second s
Center 751 MHz								Snan 15 MHz
#Res BW 30 kHz			#VE	W 30 kH	IZ			Sweep 63.6 ms
Total Carrier Power 44.76	60 dBm/ 10	.00 MHz	ACP-I	BW				
				Lo	wer U	pper		
Carrier Power	Filter	Offset Freq	Integ BW	dBc	dBm dBc	dBm	Filter	
1 44.76 dBm / 10.00 MHz	OFF	5.015 MHz	30.00 kHz	-79.32	-34.57 -81.30	-36.54	OFF	
		5.150 MHz	100.0 kHz	-75.07	-30.31 -75.46	-30.71	OFF	
		5.250 MHz	100.0 kHz	-74.66	-29.91 -75.87	-31.11	OFF	
		5.350 MHz	100.0 kHz	-74.68	-29.92 -76.15	-31.39	OFF	
		5.450 MHz	100.0 KHz	-74.70	-29.94 -75.65	-30.89		
		5.500 MHZ	100.0 KHZ	-74.72	-29.97 -75.72	-30.96	OFF	
MSG					STATUS			

Figure 6-23: Spurious Emissions TX1_QPSK Band Edge (ACP 650kHz – 2MHz)

D Agi	lent Spect	rum A	nalyzer - Sw	ept SA	AC			IGNALITO			03:30:0	
Vide	o BW	30) kHz	Innut: RF	PNO: East ↔	Trig: Free	Run	Avg Type: I	Pwr(Rl	NS)	02.29.0 TF	RACE 12345 E
				mpac ra	IFGain:Low	Atten: 6 dl	3	Ext Gain: -5	i1.50 dl	3		DET A N N N N N
											Mkr1 55	1.86 MHz
10 dE Log	3/div	Ref	30.00 dE	m		1			1		-08	. тэ чып
									ſ			
20.0												
10.0												
0.00												
-10.0												
-20.0												
-30.0												
							1]		
-40.0	usiders and	ana la di	asul alimbas	lan Andriadalaa maa	www.alimahadu	havenula	What we have a star	L. Antonio Martin	the A	WWW WW	hrwith the not	
-50.0		1.1.1	a hannaa aha	a hin an hin an	••• ••• ••• •••	w. i idire 1.		.			1	
00.0												
-60.0												
Cen #Bo	ter 515	.0 M	Hz		#) (E	347				Cwo	Span	970.0 MHz
MSG	SOW	00 K			#VE			STATUS		SWe	ep rzoms	r (1001 pts)
								514100				

Figure 6-24: Spurious Emissions TX1_QPSK (30MHz - 1GHz)

Figure 6-25: Spurious Emissions TX1_QPSK (1GHz-5GHz)

🗊 Agi	lent Spect	trum A	nalyzer - Swe	pt SA							
<mark>v.</mark> Vide	eo BW	^{50 Ω}	MHz	Input: RF	AC PNO: Fast ↔	INT REF Trig: Free Atten: 6 d	Run B	IGN AUTO Avg Type: Ext Gain: -5	Pwr(RMS) i1.50 dB	02:31:1 TF	3 PM May 05, 2010 RACE 1 2 3 4 5 (TYPE WWWWWW DET A N N N N
10 dl Log	B/div	Ref	30.00 dBi	m						Mkr1 5.9 -26	10 0 GHz 6.79 dBm
20.0											
10.0											
0.00											
-10.0											
-20.0		I .		1							
-30.0	uladin yangan yanga Yangan yangan y	<i>/</i> *110		alltradium di data di		ar ar had a later and a	ዀዀቝዀኯ ኯኯ	an the former of the second	n Hunderbergester	and the start of the	herronder
-50.0											
-60.0											
Star	t 5.000	GH	z							Stop	8.500 GHz
#Re	s BW 1	.0 M	Hz		#VE	SW			Swe	ep 5.87 ms	s (1001 pts)
MSG								STATUS			

Figure 6-26: Spurious Emissions TX1_QPSK (5GHz-8.5GHz)

Figure 6-27: Spurious Emissions TX1_QPSK (763 – 775MHz)

D Agi	lent Spectrum	Analyzer - Swe	ept SA							
Vide	so BW 10	Ω D kHz		AC	INT REF	AL	IGNAUTO AVg Type:	Pwr(RMS)	02:32:4 TF	4 PM May 05, 2010 RACE <mark>1 2 3 4 5 6</mark>
			Input: RF	PNO: Far ↔ FGain:Low	Trig: Free #Atten: 6 d	Run B	Ext Gain: -5	1.50 dB		
									Mkr1 796.	696 MHz
10 di	B/div Re	f 20.00 dB	m						-53	3.28 dBm
Log										
10.0										
0.00										
-10.0										
-20.0										
-30.0										
-36.6										
-40.0										
				▲ 1						
-50.0				! ♥		I				
-60.0	MAR WALK	h and a start a start	J ^{ard} hard ala de la farance	Marine Marine	₩₩₩₩₩₩	allow a start and a start and a start a	ny Mundun ya Ang	har and have a	and the state of the	Marthallyn
								an Lucia a		
-70.0										
Star #Po	t 793.000	MHZ		#)(P	101			C 11	Stop 80	5.000 MHz
#Re	S DW 3.01			#VD			STATUS	5%	reep 1.05 s	r (1001 pts)
wisd							314105			

Figure 6-28: Spurious Emissions TX1_QPSK (793 – 805MHz)

Figure 6-29: Spurious Emissions TX1_QPSK (1559 – 1610MHz)

🗊 Agilent Spectrum Analyzer - ACP								
		AC	INT REF	a: 751 0000			Pao	01:25:02 PM May 05, 20:
VBW 30.000 KHZ	ut: RE		Trig: Free F	q. 75 1.0000 Run	Avg Hold:>	20/20	nau	no sta. None
		IFGain:Low	#Atten: 6 d	B	Ext Gain: ⊀	51.50 dB	Rac	lio Device: BTS
10 dB/div Ref 50 dBm								
40			44.8	dBm				
30								
20	and the second	······································	*****	مريقها سادر مالدوا ارمرجا سال من	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	• • • • • • • • • • • • • • • • • • • 		
□ □							- <u>\</u>	
-10								
-20								
30								
in manuscrimeters							V.	Avers
-40								
Center 751 MHz								Span 15 MH
#Res BW 30 kHz			#VB	W 30 KH	z			Sweep 63.6 m
Total Carrier Power 44.780	0 dBm/ 10.	00 MHz	ACP-I	BW				
				Lov	wer U	pper		
Carrier Power	Filter	Offset Freq	Integ BW	dBc	dBm dBc	dBm	Filter	
1 44.78 dBm / 10.00 MHz	OFF	5.015 MHz	30.00 kHz	-79.32	-34.54 -80.57	-35.80	OFF	
		5.150 MHz	100.0 kHz	-75.10	-30.32 -75.96	-31.18	OFF	
		5.250 MHz	100.0 kHz	-74.89	-30.12 -75.97	-31.19	OFF	
		5.350 MHz	100.0 kHz	-75.14	-30.36 -76.01	-31.24	OFF	
		5.450 MHz	100.0 kHz	-75.72	-30.94 -76.09	-31.31	OFF	
		5.500 MHz	100.0 kHz	-75.63	-30.85 -76.03	-31.25	OFF	
MSC					STATUS			
Mou					STATUS			

Figure 6-30: Spurious Emissions TX1_16 QAM Band Edge (ACP 15kHz – 550kHz)

Figure 6-31: Spurious Emissions TX1_16 QAM Band Edge (ACP 650kHz - 2MHz)

🗩 Agi	lent Spect	trum A	nalyzer - Sw	/ept SA								
Vide	o BW	50 Ω 30) kHz		AC	INT REF	Al	Avg Type: I	Pwr(Ri	MS)	01:26:5 TF	2 PM May 05, 2010 RACE <mark>1 2 3 4 5</mark> 6
				Input: RF	PNO: Fast 😁 IFGain:Low	L. Trig: Free Atten: 6 di	Run 3	Ext Gain: -5	1.50 d	в		
											Mkr1 38	4.05 MHz
10 dE Log	3/div	Ref	30.00 de	Зm							-40).10 dBm
									P	4		
20.0												
40.0												
10.0												
0.00												
-10.0												
-20.0												
-30.0												
10.0					↓ 1							
-40.0	WWW	ملي وا لي ان	man	when the state of the state of the	with the way with the start of	ՠՠֈ ՠֈՠՠֈՠ	[৻] ᠈ヘᡪᡗ᠉ᢔᡰᡣᢦᢩᡀ᠕᠈ᡁ	Thread and the manufactor		1 the strong w	hundren	hannahhannah
-50.0					· · · ·							
-60.0												
Cen #Rea	ter 515 s BIAL1	i.0 M	Hz Hz		#\/E	SIA(Swe	Span	970.0 MHz
MSG	5-2-14	00 N	1112		#9L			STATUS		GWC		(noor pts)

Figure 6-32: Spurious Emissions TX1_16 QAM (30MHz - 1GHz)

Figure 6-33: Spurious Emissions TX1_16 QAM (1GHz-5GHz)

VIDEO BW 30 MHz AC INT REF ALIGN AUTO VIDEO BW 30 MHz AVG Type: Pwr(RMS)	01:28:19 PM TRACE	May 05, 2010
Input: RF PNO: Fast +++ Trig: Free Run	TYPE	ANNNN
	lkr1 6,190	0 GHz
10 dB/div Ref 30.00 dBm	-27.0	6 dBm
20.0		
10.0		
-10.0		
-20.0		
	WWWWWWWW	v talet by the
-40.0		
-50.0		
-00.0		
	C tors 0.4	
#Res BW 1.0 MHz #VBW Sweep	5.87 ms (1	001 pts)
MSG		

Figure 6-34: Spurious Emissions TX1_16 QAM (5GHz-8.5GHz)

Figure 6-35: Spurious Emissions TX1_16 QAM (763 – 775MHz)

🗊 Agi	lent Spect	rum A	nalyzer - Sv	vept SA							
LXI L		50 Ω			AC	INT REF	AL		Pwr(PMS)	01:29:4 TE	3 PM May 05, 2010
viae	O DVV	10	КПZ	Input: RF	PNO: Far ↔	🛏 Trig: Free	Run	Arg Type.	r wr(r(iii))		TYPE WWWWWWWWW
				-	IFGain:Low	#Atten: 6 d	В	Ext Gain: ⊀	51.50 dB		DELANNIN
									I	Mkr1 80 <u>1</u>	196 MHz
10 dE	3/div	Ref	20.00 dl	Bm						-53	3.50 dBm
Log											
10.0											
10.0											
0.00											
-10.0											
-20.0											
-30.0											
-40.0											
									1		
-50.0								•			
	WANNER	L MA	A MARCHINE	Himmenter	- Charle of March 1990	mar Wellwood	Sundral Allertana	Minhontourpally	Manushan	WARAL A MILANO	MANAMAN
-60.0		10.4	- ¥1 - 14 -			الألغدا للمحمان		19			- balan in dhinki in
70.0											
-70.0											
Star	t 793.0	00 N	1Hz							Stop 80	05.000 MHz
#Re	SBW 3	.U K	1Z		#VI	300			SV	/eep 1.63 s	s (1001 pts)
MSG								STATUS			

Figure 6-36: Spurious Emissions TX1_16 QAM (793 – 805MHz)

Figure 6-37: Spurious Emissions TX1_16 QAM (1559 – 1610MHz)

💴 Agilent Spectrum A	nalyzer - ACP									
<mark>LX/</mark> L 50 Ω			AC	INT REF	m 754 0000			Dec	10:00:44 .	AM May 05, 2010
Marker 1 H	Z	uut: RF		Trig: Free I	q. 75 1.0000 Run	Avg Hold:>	20/20	Rat	110 SLG. NO	me
			IFGain:Low	#Atten: 6 d	В	Ext Gain: -	51.50 dB	Rad	lio Device:	BTS
10 dB/div R	ef 50 dBm									
Log										
40				44.8	dBm					
30										
20	// // // //		·*************************************		******		4 martine marti	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
10										
0	/							L		
-10								\		
-20										
20										
-30									a character	Average
-40										
Center 751 MF	7								Sna	n 15 MHz
#Res BW 30 kl	Hz			#VB	W 30 ki	lz			Sweep	o 63.6 ms
Total Carrier Po	wer 44.81	10 dBm/ 10).00 MHz	ACP-I	B\A/					
						wer	Inner			
Carrier Power		Filter	Offset Freq	Integ BW	dBc	dBm dBc	dBm	Filter		
1 44.81 dBn	n / 10.00 MHz	OFF	5.015 MHz	30.00 kHz	-80.83	-36.02 -81.49	-36.68	OFF		
			5.150 MHz	100.0 kHz	-76.44	-31.64 -76.61	-31.80	OFF		
			5.250 MHz	100.0 kHz	-76.28	-31.47 -76.48	-31.68	OFF		
			5.350 MHz	100.0 kHz	-76.39	-31.58 -76.18	-31.37	OFF		
			5.450 MHz	100.0 kHz	-76.29	-31.49 -76.67	-31.87	OFF		
			5.500 MHz	100.0 kHz	-76.22	-31.41 -76.77	-31.96	OFF		
MSG 🕹 File <acp1.< th=""><th>state> saved</th><th></th><th></th><th></th><th></th><th>STATUS</th><th></th><th></th><th></th><th></th></acp1.<>	state> saved					STATUS				

Figure 6-38: Spurious Emissions TX1_64 QAM Band Edge (ACP 15kHz – 550kHz)

Figure 6-39: Spurious Emissions TX1_64 QAM Band Edge (ACP 650kHz - 2MHz)

🗩 Agi	lent Spec	trum Ai	nalyzer - Swe	ept SA							
IXI I Mari	kor 1	50 Ω	2300000		AC	INT REF	AL	IGNAUTO AVG TVDE:	Pwr(RMS)	10:17:	33 AM May 05, 2010 TRACE 1 2 3 4 5 6
meu		512.	2300000	Input: RF	PNO: Fast ↔ IFGain:Low	⊢ Trig: Free Atten: 6 dl	Run B	Ext Gain: -5	51.50 dB		
10 dE	3/div	Ref	30.00 dB	m						Mkr1 57 -4	2.23 MHz 0.45 dBm
LOg									rt (
20.0											
10.0											
0.00											
-10.0											
-20.0											
-30.0											
40.0							♦ ¹				
40.0	Wanter A	halfulgede	wnNywww	hapan faafadharaana	wyphilippediate	- Mary Maryon	allinger of the second s	_{የሚከራ} ግጉሥ ^ም ትግ ^ጭ	North Mar	warning to an a fled the	Jahridson mar allaland
-50.0											
-60.0											
Cen #Res	ter 51: s BW 1	5.0 M 100 k	HZ HZ		#VE	3W			s	spai weep 120 m	n 970.0 MHz Is (1001 pts)
MSG								STATUS			

Figure 6-40: Spurious Emissions TX1_64 QAM (30MHz - 1GHz)

Figure 6-41: Spurious Emissions TX1_64 QAM (1GHz – 5GHz)

🗩 Agi	lent Spec	trum A	.nalyzer - Swe	pt SA						10:00:0	
Mar	ker 1	5.82	26000000	0000 GHz	AC	Tria: Free		Avg Type:	Pwr(RMS)	10:23:0. TF	7 AM May 05, 2010 RACE 1 2 3 4 5 6
				Input: RF	PNO: Fast ++ FGain:Low	Atten: 6 dl	B	Ext Gain: -5	1.50 dB		DET A N N N N N
10 dE	3/div	Ref	30.00 dB	m						Mkr1 5.8 -26	26 0 GHz 3.20 dBm
20.0											
10.0											
0.00											
-10.0											
-20.0				1							
-30.0	and the state	1.1441.1	an in the second	in de Adria de Angelera	แล้งสารณ์ที่มีที่เสียงสา	NINTER A. H. H. autor	แห่งให้สายสาย	antel the states	and the second	dalah turu sahi	المرابع المرابع
-40.0	s a l Mahda Ji	M 1	indi alda, A.A.	halt is such all .		d i shata basa	, o ol di. A lo dada	ale sellente alter	ala et. l a suddanica	atavana kata	Lilledilendendli
-50.0											
-60.0											
Star #Res	t 5.000 s BW 1) GH: 1.0 Ⅳ	z IHz		#VB	w			Swe	Stop ep 5.87 ms	8.500 GHz (1001 pts)
MSG								STATUS			

Figure 6-42: Spurious Emissions TX1_64 QAM (5GHz - 8.5GHz)

Figure 6-43: Spurious Emissions TX1_64 QAM (763 – 775MHz)

🗩 Agi	lent Spectr	um Ana	ilyzer - Swe	pt SA							
Vide	BW	^{50 Ω}	Hz		AC	INT REF	AL	IGNAUTO AVG Type:	Pwr(RMS)	11:38:3 TF	8 AM May 05, 2010 RACE <mark>1 2 3 4 5 6</mark>
				Input: RF	PNO: Far 🔸	Trig: Free #Atten: 6 d	Run B	Ext Gain: -5	1.50 dB		
					Gameow				N	Akr2 796.	960 MHz
10 di	3/div	tef 2	0.00 dB	m						-53	3.39 dBm
Log											
10.0											
0.00											
40.0											
-10.0											
-20.0											
-30.0											
-40.0											
40.0											
-50.0					<mark>}}2</mark>						
	r.h.um	1 Minnt	Malhhari	W some of a ball of the	When the market and	an a direction as	w. Land L. H. Million	with between the section.	Ward Little work	to allow a loss of	A. NHUR MULINA
-60.0	╟╴┄╜╫╂╏		<u>. h</u>	-1 atr 1- 0.00 - 0.0 - 6	1				a klove verb Udit		l dhu abh i da bi
-70.0											
Star	t 793.00	0 M	lz							Stop 80	5.000 MHz
#Re	s BW 3.	0 KH	z		#VB	W			Sw	eep 1.63 s	s (1001 pts)
MSG								STATUS			

Figure 6-44: Spurious Emissions TX1_64 QAM (793 – 805MHz)

Figure 6-45: Spurious Emissions TX1_64 QAM (1559 – 1610MHz)

💴 Agilent Spectrum Analyzer - ACP								
$\frac{1}{2}$ L 50 Ω		AC	INT REF	a: 751.00000	ALIGNAUTO		Rad	02:40:13 PM May 05, 2010 lio Std: None
Center Freq 751.00000	Input: RF	G	⊃ Trig: Free I	Run	Avg Hold:>:	20/20	_	
		IFGain:Low	#Atten: 6 d	8	Ext Gain: -5	1.30 dB	Rad	lio Device: BTS
10 dB/div Ref 50 dBn	n							
40			44.8	dBm				
20								
	1						l	
	r 						$\langle \rangle$	
-10								
-20								
								Average
-40								
Cepter 751 MHz								Snan 15 MHz
#Res BW 30 kHz			#VB	W 30 kH	z			Sweep 63.6 ms
Total Carrier Power 44.	.820 dBm/ 10	0.00 MHz	ACP-I	BW				
				Lov	ver U	pper		
Carrier Power	Filter	Offset Freq	Integ BW	dBc	dBm dBc	dBm	Filter	
1 44.82 dBm / 10.00 MF	tz OFF	5.015 MHz	30.00 kHz	-78.69	-33.87 -80.34	-35.52	OFF	
		5.150 MHz	100.0 kHz	-74.45	-29.63 -75.35	-30.53	OFF	
		5.250 MHz	100.0 kHz	-74.52	-29.70 -75.39	-30.57	OFF	
		5.350 MHz	100.0 kHz	-74.87	-30.05 -75.51	-30.69		
		5.450 MHZ	100.0 KHZ	-74.70	30.00 75.24	-30.80	OFF	
		3.300 MINZ	-100.0 KHZ	-74.81	-56:08 -75:54	-30.32		
MSG 🗼 File <acp2_550k.state></acp2_550k.state>	recalled				STATUS			

Figure 6-46: Spurious Emissions TX2_QPSK Band Edge (ACP 15kHz – 550kHz)

Figure 6-47: Spurious Emissions TX2_QPSK Band Edge (ACP 650kHz – 2MHz)

D Ag	ilent Spec	trum Analy	zer - Swept	SA								
Vide	eo BW	^{50 Ω} 300 k	(Hz	nput: RF	AC PNO: Fast ⊡Gain:Low	INT REF Trig: Free I Atten: 6 dl	Run B	IGN AUTO Avg Type: I Ext Gain: -5	Pwr(RM 1.30 di	41S) 3	02:41:44 TF	3 PM May 05, 2010 RACE 1 2 3 4 5 6 TYPE WWWWWWW DET A N N N N N
10 d	B/div	Ref 30	.00 dBm								Mkr1 562 -40	2.53 MHz).84 dBm
20.0									K			
10.0												
0.00												
-10.0												
-20.0												
-30.0	<u> </u>											
-40.0					lab baadaa	ntaul an amhad	1		1.5.14	والمعا والرو	What have a state of the state	nl tilvat titi hvit, dans
-50.0	(MARY)	Myranad		ar oʻlayila oliyhilad	ahah alƙaraan aha	all Market and with a live to	a an	ar a fual a f	w	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	a Aldellad ass. ik A	ales is shert plauly
-60.0												
Cen #Do	ter 51	5.0 MHz				10/				0	Span	970.0 MHz
#IRC MSG	S BW 1	UU KH2			#VB			STATUS		Swe	ep 120 ms	-(TOUT pts)

Figure 6-48: Spurious Emissions TX2_QPSK (30MHz - 1GHz)

🗾 Agi	ilent Spect	rum A	nalyzer - Swe	pt SA							
vide	eo BW	^{50 Ω} 3.0	MHz	Input: RF	AC PNO: Fast ↔ FGain:Low	INT REF Trig: Free Atten: 6 d	Run B	IGN AUTO Avg Type: Ext Gain: -{	Pwr(RMS) 51.30 dB	02:42:4 TF	9 PM May 05, 2010 RACE 1 2 3 4 5 6 TYPE WWWWWW DET A N N N N
10 dl Log	B/div	Ref	30.00 dB	m						Mkr1 5.9 -27	52 0 GHz 7.01 dBm
20.0											
10.0											
0.00											
-10.0											
-20.0				↓ ↓ ↓							
-30.0		t _{er fu} th	ſ'nŀavkn ⁱ ~afrehm	MANYAN	allewater and a second	and which we where he	MHU HUNGHUT WI	ul and a fill a fil	monuting	กุลใก ¹ คงๆระใหม _่ นระวงทัพ	the map opping the
-50.0											
-60.0											
Star	t 5.000	GH	2							Stop	8.500 GHz
#Re	s BW 1	.0 M	Hz		#VE	3W			Swee	ep 5.87 ms	(1001 pts)
MSG								STATUS			

Figure 6-50: Spurious Emissions TX2_QPSK (5GHz-8.5GHz)

Figure 6-51: Spurious Emissions TX2_QPSK (763 – 775MHz)

D Ag	ilent Spect	rum A	nalyzer - Swep	ot SA							
lXI Mick		50 Ω 10			AC	INT REF	AL	IGNAUTO Ava Type:	Pwr(RMS)	02:43:5 TF	6 PM May 05, 2010 RACE <mark>1 2 3 4 5 f</mark>
		10	KI IZ	Input: RF	PNO: Far 🕞 FGain:Low	⊃ Trig: Free #Atten:6 d	Run IB	Ext Gain: -{	51.30 dB		
										Mkr1 773.	680 MHz
10 d	B/div	Ref	20.00 dBr	n							dBm
LUg											
10.0	L										
0.00											
-10.0											
-20.0	\vdash										
-30.0											
-40.0	\vdash										
50.0											
-30.0	1										
-60.0	Stall and a	Μų	h ha			k half for the first of the fir	planter have been been been been been been been be	. And Marken and A			hall the state of
	1		an sa kha	I TOUR I					. 11		In M. L.
-70.0											
Stai #Re	rt 793.0 s BW <u>3</u>	00 N 1.0 <u>kl</u>	AHZ HZ		#VE	W			Sw	Stop 80 reep 1.6 <u>3 s</u>	5.000 MHz (1001 p <u>ts)</u>
MSG								STATUS			

Figure 6-52: Spurious Emissions TX2_QPSK (793 – 805MHz)

Figure 6-53: Spurious Emissions TX2_QPSK (1559 – 1610MHz)

Figure 6-54: Spurious Emissions TX2_16 QAM Band Edge (ACP 15kHz - 550kHz)

Figure 6-55: Spurious Emissions TX2_16 QAM Band Edge (ACP 650kHz – 2MHz)

🗾 Agi	lent Spect	irum A	nalyzer - Sv	vept SA								
	o BW	50 Ω 30 () kHz		AC	INT REF	AL	IGNAUTO AVG Type:	Pwr(R	MS)	01:13:1 TF	9 PM May 05, 2010 RACE <mark>1 2 3 4 5</mark> 6
				Input: RF	PNO: Fast ↔ IFGain:Low	Trig: Free Atten: 6 dl	Run B	Ext Gain: ⊀	51.30 d	в		
											Mkr1 56	3.50 MHz
10 dE	3/div	Ref	30.00 d	Bm							-41	.30 dBm
LOg									1	l.		
20.0												
10.0												
0.00												
-10.0												
-20.0												
-20.0												
-30.0										<u> </u>		
(0.0							1		Í	<pre>{</pre>		
-40.0	in the state	uwala	New William	and with more thank	man and a second		MANN MUNIN	all and the state of the state	A weat	murh	and the state of the	we with the act of the
-50.0	and Lubur			a l'analar			1 1.1.1					
-60.0												
Cen #Re	ter 515 s BW 1	00 M	Hz Hz		#VE	3W				Swe	Span ep 120 ms	970.0 MHz
MSG					" •			STATUS				

Figure 6-56: Spurious Emissions TX2_16 QAM (30MHz - 1GHz)

Figure 6-57: Spurious Emissions TX2_16 QAM (1GHz – 5GHz)

D Agi	lent Spec	trum A	nalyzer - Sw	vept SA							
<mark>ıxı</mark> Vide	eo BW	50 Ω 3.0	MHz	Input: RF	AC PNO: Fast ↔ IFGain:Low	INT REF Trig: Free Atten: 6 dl	Run B	IGN AUTO Avg Type: Ext Gain: -5	Pwr(RMS) 1.30 dB	<u>01:15:4</u> ТГ	3 PM May 05, 2010 RACE 1 2 3 4 5 6 TYPE WWWWWW DET A N N N N
10 di	B/div	Ref	30.00 d e	3m						Mkr1 6.7 -28	53 5 GHz 3.06 dBm
20.0											
10.0											
0.00											
-10.0											
-20.0							1				
-30.0	1 Marager M	NIN P	MARIA MARIA	ale wante nate with	n water a part of the second	all the second	and the start of the second		ᢞᡣᠬ _{ᢤᡀ} ᡰᡎᡗ ^ᠰ ᡟᡀ	a way and a way and a second	hallow the state of the state o
-40.0	-					· ·	· ·				· ·
-50.0											
-60.0											
Star #Re	t 5.000 s BW 1	GH:	z Hz		#VE	sw			Swe	Stop ep 5.87 ms	8.500 GHz (1001 pts)
MSG								STATUS			

Figure 6-58: Spurious Emissions TX2_16 QAM (5GHz - 8.5GHz)

Figure 6-59: Spurious Emissions TX2_16 QAM (763 – 775MHz)

🗊 Agi	lent Spect	rum A	nalyzer - Swe	pt SA							
Vide	BW	50 Ω 10	kHz		AC	INT REF	Al	IGNAUTO Avg Type:	Pwr(RMS)	01:19:2	8 PM May 05, 2010 RACE 1 2 3 4 5 6
Tiele		10	INI 12	Input: RF	PNO: Far 🔸	Trig: Free #Atten: 6 d	Run B	Ext Gain: -5	1 30 dB		
					-Gam.Low	in according to a		Ext out to		Mkr1 804	220 MHz
10 di	3/div	Ref	20.00 dB	m						-5	5.07 dBm
Log											
10.0											
10.0											
0.00											
-10.0											
20.0											
-20.0											
-30.0											
-40.0											
<i>7</i> 0 0											4
-50.0											• • • • • • • • • • • • • • • • • • •
-60.0	des why	1.1.1			والمعل والمالية والمالية	أالمواجبهم بالماجري	http://www.www.		had the second		han Martha And
		11.16		L'anno Mir I. Ia	his rid his .	district of the	n in Min in i	toost Alexa Is		ի սրովելը։	IIII IIIII
-70.0											
Star	t 793.0	00 N	/IHz							Stop 80	5.000 MHz
#Re	s BW 3	.0 k	HZ		#VB	W			Sw	eep 1.63 s	s (1001 pts)
MSG								STATUS			

Figure 6-60: Spurious Emissions TX2_16 QAM (793 – 805MHz)

💴 Agi	lent Spectri	ım Analyze	er - Swept	SA							
LXI L		50Ω 40 kH=	-		AC	INT REF	AI		Pwr(PMS)	01:20:1:	3 PM May 05, 2010
VICIE	O BVV	10 KH2	- II	nput: RF	PNO: Fast ←	🛻 Trig: Free	Run	Arg type.	r wr(r(iii))		
				·	IFGain:Low	#Atten: 6	dB	Ext Gain: ⊀	51.30 dB		DET A N N N N N
									M	kr1 1.57 <u>7</u>	768 GHz
10 dE	3/div	lef 20.0	00 dBm							-56	6.52 dBm
LUg											
10.0											
10.0											
0.00											
-10.0											
-20.0											
-30.0											
-40.0											
-50.0					1						
	June address	AND & MILL		يتبليك ومشعورية	100	n Barklings of Annalys dates a	the stated at 1	k daar as an Marsila III	معالم ومركبته المع	Here have been block and a	hanne with treated
-60.0	A 41 Materia	a da da kin ki			alled and de rit		2010-2011-0-02161 <mark>-</mark> 2270			a state of the second state	a na serie de la constant de la cons
70.0											
-70.0											
Star	t 1.5590	0 GHz								Stop 1.	61000 GHz
#Res	s BW 3.0) KHZ			#V	BW			Sv	veep 6.94 s	; (1001 pts)
MSG								STATUS			

Figure 6-61: Spurious Emissions TX2_16 QAM (1559 – 1610MHz)

Figure 6-62: Spurious Emissions TX2_64 QAM Band Edge (ACP 15kHz - 550kHz)

Figure 6-63: Spurious Emissions TX2_64 QAM Band Edge (ACP 650kHz - 2MHz)

D Agi	lent Spec	trum A	nalyzer - Swe	ept SA								
IXI I		50 Ω			AC	INT REF	AL		PwríR	MS)	12:18:2· TF	4 PM May 05, 2010 RACE 1 2 3 4 5 6
viete	,0 DW	50	J KI IZ	Input: RF	PNO: Fast +>	→ Trig: Free Atten: 6 di	Run B	Ext Gain: -5	1 50 d	в		
		-			IPGalli.LOW	Theorem of the		Ext Outin 0			Mkr1 58	2 90 MH7
10 di	3/div	Ref	30.00 dB	m							-40).91 dBm
Log										N		
20.0												
10.0												
0.00												
0.00												
-10.0												
-20.0												
-30.0												
							▲ 1)		
-40.0	<u> </u>					منعده المرير الم	ويرب والملولية ومتعطلهم	an sa bi ku		a shared	terr Berland, Mars	Medical Million and an
50.0	er white here	vuqb	/data	MANNAM PARA	and the second state for the	AL Monte de la sur	and a start a s	u ha allan avalar da ak	1. MM.	r y sa y	A MARINA WARANA A SAME I	and the state of t
-50.0												
-60.0												
Cen	ter 51	5.0 M	Hz								Span	970.0 MHz
#Re	s BW 1	100 k	Hz		#VE	3W				Swe	ep 120 ms	; (1001 pts)
MSG								STATUS				

Figure 6-64: Spurious Emissions TX2_64 QAM (30MHz – 1GHz)

Figure 6-65: Spurious Emissions TX2_64 QAM (1GHz - 5GHz)

💴 Agi	lent Spectr	um An	alyzer - Swep	t SA							
Vide	eo BW	50 Ω 3.0	MHz		AC	INT REF	AL	IGNAUTO Avg Type:	Pwr(RMS)	12:21:10 TF	D PM May 05, 2010 RACE <mark>1 2 3 4 5 6</mark>
				nput: RF If	PNO:Fast ↔ •Gain:Low	 Trig: Free Atten: 6 dl 	Run 3	Ext Gain: -5	1.50 dB		
10 di	B/div	Ref 3	0.00 dBn	n						Mkr1 5.7 -27	35 0 GHz 7.57 dBm
209											
20.0											
10.0											
0.00											
-10.0											
-20.0				♦ ¹							
-30.0	114 Laturna	h	1 ¹⁴¹ 1774/WW	and make mail the sur	alle all the bally	an, and many high the	nu hand hand hand hand hand hand hand hand	www.waterway	WILLING HIT	1. AMARIAN IN	(Pallut WWA
-40.0	¥1 '					· ·					
-50.0											
-60.0											
Star	t 5.000	GHz								Stop	8.500 GHz
#Re	s BW 1.	0 MI	lz		#VB	W			Swee	ep 5.87 ms	; (1001 pts)
MSG								STATUS			

Figure 6-66: Spurious Emissions TX2_64 QAM (5GHz - 8.5GHz)

Figure 6-67: Spurious Emissions TX2_64 QAM (763 – 775MHz)

🗊 Agi	lent Spectr	um A	nalyzer -	Swept	SA									
IXI I	BW/	50 Ω 40				AC		INT REF		AL:		e: Pwr(RMS)	01:19	28 PM May 05, 2010 TRACE 1 2 3 4 5 6
vilute	D D V V	10	KΠZ	In	put: RF	PNO: Fa	r ++	Trig: Free	Run		Eut Cain	E4 20 4B		
				_		IFGain:Lo	w	#Atten: 6 d	18	_	Ext Gain:	-51.30 dB	MI	
			~~ ~~	-18										4.220 WHZ
10 de Log	3/div	Rer	20.00	авт										
10.0														
0.00														
-10.0														
-20.0														
20.0														
-30.0														
-40.0														
-50.0														1
	I .													- I - P - I
-60.0	ALL MART	4 4 4	n <mark>a la la</mark>	P to b		hills siles in the second s	<u>Ny I</u> ni i	مريكية <mark>الماريكي المراجم الم</mark>		den al	4444		M WHILMAN	rahan an a
			11	' '		1	1 1.1	an order of the			the state of	the shree	the study	
-70.0														
Star	t 793.00	00 N	1Hz										Stop	805.000 MHz
#Re	s BW 3.	0 kl	Iz				#VB	W				S	weep 1.63	s (1001 pts)
MSG											STATUS			

Figure 6-68: Spurious Emissions TX2_64 QAM (793 – 805MHz)

🎩 Agi	lent Spectri	um Ana	alyzer -	Swept	SA											
Vide		50Ω 10 k					AC		INT REF		ALIGN	AUTO Ava Type:	Pwr(RMS)		01:20:18 TF	3 PM May 05, 2010 RACE 1 2 3 4 5 6
vice	O DW		112	In	put: RF	PN	0: Fast		. Trig: Free	Run			E4 00 JD			
				_		IFG	ain:Low		#Atten: 6 d	В		Ext Gain: -	51.30 dB			
													ľ	vikr	1 1.577	768 GHZ
10 dE Log	3/div R	ter 2	0.00	авт											-00	.52 dBm
10.0																
0.00																
-10.0																
20.0																
-20.0																
-30.0																
00.0																
-40.0																
-50.0								1								
-60.0	di yan yan ya ka	ለማሌሌ	ri-Mirya	r-whithy	PUL BURNE	en de la constante	ry/utages.pert	w.	⋈ ⋈∾ ₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	Mary Mary Constraints	HAN NO	and the second	when with a parties	hryn 1M	ally frithing last	hand and a state of the second of the second se
-70.0																
Star	t 1.5590	0 GI	-Iz												Stop 1.	61000 GHz
#Res	s BW 3.	0 kH	z				#	VB	w					Swee	ep 6.94 s	; (1001 pts)
MSG												STATUS				

Figure 6-69: Spurious Emissions TX2_64 QAM (1559 – 1610MHz)

6.5 Field Strength of Spurious Radiation

Clause 27.53(c)

(c) For operations in the 746–758 MHz band and the 776–788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On any frequency outside the 746–758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(3) On all frequencies between 763–775 MHz and 793–805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;

(5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;

(6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

(f) For operations in the 746–763 MHz, 775–793 MHz, and 805–806 MHz bands, emissions in the band 1559–1610 MHz shall be limited to -70 dBW/MHz equivalent isotropic radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

Test Setup:

Test Procedure

- The EUT was placed on a turntable inside the AFC (configured as in normal operation). The system and its cables were separated from the ground plane by an insulating support 10 mm in height. The system was grounded in accordance with its installation specifications. No additional grounding connections were connected.
- For tests between **30 MHz and 1 GHz** the receive antenna (bi-log/horn) was placed at 10 m away from the EUT. An initial scan was done to find emissions (frequencies) requiring detailed measurement. The prescan was done by rotating the system 360 degrees while recording all emissions (frequency and amplitude). This procedure was repeated for antenna heights of 1 to 4 m, and for horizontal and vertical polarizations of the receiving antenna. The detector mode was quasi-peak (QP) with a 120 kHz bandwidth unless otherwise noted.
- For tests between **1 GHz and 10 GHz** the receive antenna (bi-log/horn) was placed at 10 m away from the EUT. An initial scan was done to find emissions (frequencies) requiring detailed measurement. The prescan was done by rotating the system 360 degrees while recording all emissions (frequency and amplitude). This procedure was repeated for antenna heights of 1 to 4 m, and for horizontal and vertical polarizations of the receiving antenna. The detector mode was average (AVG) with a 1 MHz bandwidth unless otherwise noted.
- For tests between **10 GHz to 18 GHz** the receive horn antenna was placed at a 3 m distance from the EUT. An initial scan was done to find emissions (frequencies) requiring detail measurement. The pre-scan was done by rotating the system 360 degrees while recording all emissions (frequency and amplitude). This procedure was repeated for antenna heights of 1 to 4 m, and for horizontal and vertical polarizations of the receiving antenna. These measurements were made with an average detector mode (AVG) with a 1 MHz bandwidth unless otherwise noted.
- For **all the above frequency ranges** optimization was done based on the pre-scan data. For each identified frequency, the EUT was rotated in azimuth over 360 degrees and the direction of maximum emission was noted. Antenna height was then varied from 1 to 4 m at this azimuth to obtain maximum emissions. The procedure was repeated for both horizontal and vertical polarizations (where applicable) of the search antenna. The maximum level measured was recorded. The spectrum analyzer was verified to make sure it was not saturating in the presence of the radio signal.
- The highest emissions were re-evaluated using the substitution method. This is accomplished by replacing the EUT by a calibrated antenna, cable and signal generator. This equipment is used to transmit a signal that will generate a RF meter reading level identical to the one were done with a bandwidth of 1 MHz.

Calculation of the Compliance Margin

The following example illustrates the manner in which the emissions levels are calculated in the "RE Test Results" **Error! Reference source not found.**

Meter Reading (dBuV) =	Voltage measured using the spectrum analyzer with quasi-peak adapter	
Gain/Loss Factor (dB) =	Cumulative gain or loss of pre-amplifier and cables used in the measurement path (a negative value indicates gain)	
Transducer Factor (dB) =	Antenna factor	
Level (dBuV/m) =	Corrected value or field strength, that is, the parameter of interest that is compared to the limit	
Margin (dB) =	Level with respect to the appropriate limit (a positive Margin indicates that the Level is below the limit and that the measurement is a PASS)	

The rows in these tables are defined as follows.

The values in the Level row are calculated as follows:

Level = Meter Reading + Gain/Loss Factor + Transducer Factor The values in the Margin row are calculated as follows: Margin = Limit – Level

The following example shows the manner in which the compliance margin is calculated for ERP: ERP = Effective radiated power or equivalent radiated power

ERP = Signal generator level – Cable losses + Antenna gain – Half wave dipole gain Margin = Limit – ERP

Limit = EUT Rated Power – Attenuation Attenuation = (43 + 10 Log (Pwr)) Limit = 10 log (30Watt) – (43+ 10 Log(30W)) Limit = - 13 dBm

The following table was derived from measurements made in the Flextronics 10 Meter anechoic chamber.

Reference Flextronics EMC Test Report: K0001750-TR-RAD-02-C01

Table 6-9	Radiated	Emissions
-----------	----------	-----------

Frequency (MHz)	Field Strength (dBuV)	Signal Substitution (dBm)	Cable Loss (dB)	Antenna Gain (dBi)	dBi to dBd Conversion	ERP (dBm)	Limit (dBm)	Margin (dB)
31.6962	33.0	-49.7	0.66	-18.5	2.15	-71.0	-13.0	58.0
79.4329	43.1	-65.5	1.03	0.36	2.15	-69.4	-13.0	55.4
236.2128	40.1	-68.3	1.77	6.55	2.15	-65.7	-13.0	52.7
2255.829	44.8	-60.7	5.56	9.50	2.15	-58.9	-13.0	45.9
6259.494	33.2	-57.3	9.87	11.31	2.15	-58.0	-13.0	45.0
Remarks: All other spurious have more margin								

Figure 6-71 Radiated Emissions Set Up Photo's

6.6 Frequency Stability

Frequency Stability Clause 27.54

27.54 Frequency Stability. - The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

FCC Clause 2.1055 Frequency Stability

2.1055 Measurements required: Frequency stability.

(a) The frequency stability shall be measured with variation of ambient temperature as follows:
(1) From -30° to +50° centigrade for all equipment except that specified in paragraphs (a)(2) and (3) of this section

(b) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range.

(d) The frequency stability shall be measured with variation of primary supply voltage as follows:

(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

Test Setup

Figure 6-72 RRU Stability Set Up / Configuration

Test Conditions:

Extreme Temperature Condition: -30°C to 50°C Extreme Voltage Conditions: ±15% of standard voltage condition.

Settings Remarks

- 1. The EUT would be operated and frequency offset / error monitored over the variables.
- 2. The EUT would be connected to a spectrum analyzer. The frequency stability would be determined by the frequency counter function of the spectrum analyzer.
- 3. Test would be conducted at the temperature range from -30°C to 50°C degree with 10°C intervals. Measurement would also be conducted with varying the primary supply voltage from 85% to 115% of the nominal value.
- 4. Tabulated results and plots are compiled and presented in this section.

Temperature (°C)	DC (V)	Frequency Error (Hz)	Time	
-30	40	3.521	08:30	20 N
-30	48	-1.997	08:30	20 N

Table 6-10: Frequency Stability vs. T	Semperature / Voltage Variation

(°C)	DC (V)	(Hz)	Time	Date
-30	40	3.521	08:30	20 May 2010
-30	48	-1.997	08:30	20 May 2010
-30	55	0.696	08:30	20 May 2010
-20	40	-0.312	09:30	20 May 2010
-20	48	-1.481	09:30	20 May 2010
-20	55	4.446	09:30	20 May 2010
-10	40	2.764	10:30	20 May 2010
-10	48	3.703	10:30	20 May 2010
-10	55	0.886	10:30	20 May 2010
0	40	-1.087	11:30	20 May 2010
0	48	0.684	11:30	20 May 2010
0	55	1.509	11:30	20 May 2010
+10	40	1.116	12:30	20 May 2010
+10	48	1.039	12:30	20 May 2010
+10	55	-0.754	12:30	20 May 2010
+20	40	2.210	13:30	20 May 2010
+20	48	0.315	13:30	20 May 2010
+20	55	0.480	13:30	20 May 2010
+30	40	0.552	14:00	20 May 2010
+30	48	2.018	14:00	20 May 2010
+30	55	1.290	14:00	20 May 2010
+40	40	-1.654	14:30	20 May 2010
+40	48	-2.018	14:30	20 May 2010
+40	55	-1.991	14:30	20 May 2010
+50	40	-2.300	15:00	20 May 2010
+50	48	-1.452	15:00	20 May 2010
+50	55	1.757	15:00	20 May 2010

Figure 6-74: Stability -20°C

Figure 6-75: Stability -10°C

Figure 6-76: Stability 0°C

Figure 6-77: Stability 10°C

Figure 6-78: Stability 20°C

Figure 6-79: Stability 30°C

Figure 6-80: Stability 40°C

Figure 6-81: Stability 50°C

6.7 Submission Exhibits

2.1033 Submission Exhibits

- Schematics
- Bill of Materials
- Block Diagram
- User Manual
- Letter Head Technical Operation and Description
- Letter Head MPE Calculation
- Letter Head, Cover Letter, Confidentiality Request
- External Photo's
- Internal Photo's
- Tune up Procedure
- FCC Form 731
- Label Details (Format and location)
- Set-up Photo's
- Test Report